Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides
NASA Technical Reports Server (NTRS)
Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.
The charmonium dissociation in an ''anomalous wind''
Sadofyev, Andrey V.; Yin, Yi
2016-01-11
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.
2013-03-15
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on themore » order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.« less
Unimodular gravity and the lepton anomalous magnetic moment at one-loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín, Carmelo P., E-mail: carmelop@fis.ucm.es
We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.
Anomalous cosmic-microwave-background polarization and gravitational chirality.
Contaldi, Carlo R; Magueijo, João; Smolin, Lee
2008-10-03
We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.
Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie
2013-04-01
It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.
NASA Astrophysics Data System (ADS)
Xuan, Songbai; Shen, Chongyang; Shen, Wenbin; Wang, Jiapei; Li, Jianguo
2018-06-01
The crustal deformation beneath the Chuan-Dian rhombic block (CDB) and surrounding regions has been studied in geological and geodetic methods, and provide important insights into the kinematics and dynamics about the clockwise movement of this tectonic block. In this work, we present images of the normalized full gradient (NFG) of the Bouguer gravity anomalies from five gravity profiles across the boundary faults of the CDB measured in recent years, and investigate the distribution characteristics of the crustal anomalous bodies along the profiles. Firstly, an anomalous body with eastward dipping exist beneath the Xianshuihe fault, suggesting that crustal mass move to east. Secondly, near the Xiaojiang fault, two anomalous bodies dip westward with depth increasing. The inferred movement direction of the north one is from west to east, and the south one is from east to west. Thirdly, anomalous bodies on the northeast and southwest sides of the Red River fault suggest the directions of crustal movement is from northeast to southwest. These results are also consistent with GPS solutions, and provide gravity evidence for crustal deformation of the CDB with clockwise rotation.
Structure of the southern Rio Grande rift from gravity interpretation
NASA Technical Reports Server (NTRS)
Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.
1986-01-01
Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.
1981-01-01
Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
Anomalous center of mass shift: gravitational dipole moment.
NASA Astrophysics Data System (ADS)
Jeong, Eue Jin
1997-02-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.
Indoor Micro-Gravity Survey: Using Massive Research Equipment for Geophysics Curriculum
NASA Astrophysics Data System (ADS)
Secco, R. A.; Sukara, R.
2016-12-01
There are many lab exercises for upper level school students and freshman undergraduates, especially in the physical sciences, to measure the value of the local acceleration due to gravity (g) near the Earth's surface. In physics courses where physical principles are applied to Earth problems however, the goal is usually to measure a change in a potential field, such as the Earth's gravitational field, in order to determine anomalous subsurface characteristics. We describe an indoor exercise carried out as part of an introductory course in our geophysics program to measure the local change in g resulting from a large anomalous mass inside the building. Our indoor survey was conducted on a length scale of 6 orders of magnitude smaller than the typical airborne gravity survey of 100's-1000's of line kms. We used a large high pressure apparatus as the anomalous object (mass = 30,600 kg) which is used to generate very high pressures for research investigations. Using a Worden gravimeter, we carried out surveys one floor above the press and directly above the press using a purpose-built cradle on a lab gantry crane. The results show clear anomalies caused by the press and in the survey on the floor above the press, also shows a signature of the steel I-beam in the floor. The mass of, and depth to, the press are calculated using well-known formulae in gravity exploration methods. Students are asked to speculate on the origin of the anomalous mass given its depth. While 30 ton pieces of equipment may not exist in most universities, the minimum anomalous mass detectable at the 0.05mgal level is 1000kg and localized masses of this magnitude are more readily available (egs. electron microprobe, mass spectrometer). We also show that large structural I-beams in the building are detectable in our micro-gravity survey. Since they are present in most buildings of modern construction, they can also serve as useful targets for suitably sensitive modern gravimeters to perform indoor micro-gravity surveys.
Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation
NASA Astrophysics Data System (ADS)
Nishizawa, Atsushi
2018-05-01
The direct detection of gravitational waves (GWs) from merging binary black holes and neutron stars marks the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this paper, we propose a new universal framework for testing gravity with GWs, based on the generalized propagation of a GW in an effective field theory that describes modification of gravity at cosmological scales. Then, we perform a parameter estimation study, showing how well the future observation of GWs can constrain the model parameters in the generalized models of GW propagation.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue
2018-04-01
In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.
Measurement of the Heat Capacity of He-II Under a Heat Current Near the Lambda Transition
NASA Technical Reports Server (NTRS)
Harter, Alexa W.; Lee, Richard A. M.; Chui, Talso C. P.; Goodstein, David L.
2000-01-01
We present preliminary measurements of the heat capacity of superfluid helium-4 under an applied heat current near the lambda transition. The calorimeter is a standard cylindrical thermal conductivity cell with a 0.6 mm gap between two copper endplates. The sidewall is made of stainless steel. A heat current density in the range of 1 to 4 microW/sq cm is applied through the helium sample while a pulse method is used to measure the heat capacity. Temperature changes are recorded with high-resolution thermometers (HRTs) located on the top and bottom endplates. Corrections are made to the readings of the HRTs to account for the Kapitza boundary resistance and the anomalous Kapitza boundary resistance. After the corrections, both the top and the bottom HRTs. give the same heat capacity values. The heat capacity is found to be much larger than the prediction of recent theories. We also plotted our data on a scaled plot to test the prediction of scaling by the theories. The result and its interpretation will be presented. The cell height was deliberately made to be thin to reduce the effects of gravity. Nonetheless, gravity is expected to have significant effects on the heat capacity data in the temperature range of our measurement. A space experiment would remove this unwanted gravity effect and allow the true physics to be examined. Moreover, in the absence of gravity, a deeper cell can be used allowing HRTs to be mounted on to the sidewall providing direct measurements of the helium temperature, unaffected by the anomalous Kapitza boundary resistance.
Fluid-gravity model for the chiral magnetic effect.
Kalaydzhyan, Tigran; Kirsch, Ingo
2011-05-27
We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society
Harmon, N.; Forsyth, D.W.; Scheirer, D.S.
2006-01-01
The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric cracking models for the origin of gravity lineaments and associated volcanic ridges, favoring models with a dynamic mantle component such as small-scale convection or channelized asthenospheric return flow. Copyright 2006 by the American Geophysical Union.
An atlas of Rapp's 180-th order geopotential.
NASA Astrophysics Data System (ADS)
Melvin, P. J.
1986-08-01
Deprit's 1979 approach to the summation of the spherical harmonic expansion of the geopotential has been modified to spherical components and normalized Legendre polynomials. An algorithm has been developed which produces ten fields at the users option: the undulations of the geoid, three anomalous components of the gravity vector, or six components of the Hessian of the geopotential (gravity gradient). The algorithm is stable to high orders in single precision and does not treat the polar regions as a special case. Eleven contour maps of components of the anomalous geopotential on the surface of the ellipsoid are presented to validate the algorithm.
The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.
2016-01-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.
Utility of correlation techniques in gravity and magnetic interpretation
NASA Technical Reports Server (NTRS)
Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.
1977-01-01
Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.
The Panther Mountain circular structure, a possible buried meteorite crater
NASA Astrophysics Data System (ADS)
Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.
Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.
The Panther Mountain circular structure, a possible buried meteorite crater
NASA Technical Reports Server (NTRS)
Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.
1992-01-01
Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippov, Alexander A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
The eclipsing binary DI Herculis (DI Her) is known to exhibit anomalously slow apsidal precession below the rate predicted by general relativity. Recent measurements of the Rossiter-McLaughlin effect indicate that stellar spins in DI Her are almost orthogonal to the orbital angular momentum, which explains the anomalous precession in agreement with the earlier theoretical suggestion by Shakura. However, these measurements yield only projections of the spin-orbit angles onto the sky plane, leaving the spin projection onto our line of sight unconstrained. Here we describe a method for determining the full three-dimensional spin orientation of the binary components relying on themore » use of the gravity-darkening effect, which is significant for the rapidly rotating stars in DI Her. Gravity darkening gives rise to a nonuniform brightness distribution over the stellar surface, the pattern of which depends on the stellar spin orientation. Using archival photometric data obtained during multiple eclipses over several decades, we are able to constrain the unknown spin angles in DI Her with this method, finding that the spin axes of both stars lie close to the plane of the sky. Our procedure fully accounts for the precession of stellar spins over the long time span of observations.« less
1984-09-30
EXPERIMENT BACKGROUND Motivated by the desire to measure for the first time the force of 27 gravity on antimatter , Witteborn and Fairbank (WF...and antimatter . There are, however, no direct experimental tests of the gravitational forces on antimatter . Having measured the force of gravity on...electrons, a measurement using positrons would give the first measurement of the force of gravity on antimatter as well as giving a definitive value for
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
The Dissolution of an Interfween Miscible Liquids
NASA Technical Reports Server (NTRS)
Vlad, D.H.; Maher, J.V.
1999-01-01
The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface.
Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul
2012-01-01
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396
Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul
2012-07-07
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Kinsland, G L; Hurtado, M; Pope, K O
2000-04-15
Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.
NASA Technical Reports Server (NTRS)
Kinsland, G. L.; Hurtado, M.; Pope, K. O.; Ocampo, A. C. (Principal Investigator)
2000-01-01
Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.
NASA Astrophysics Data System (ADS)
Barantsrva, O.; Artemieva, I. M.; Thybo, H.
2015-12-01
We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.
Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data
NASA Astrophysics Data System (ADS)
Yang, Yu-shan; Li, Yuan-yuan
2018-01-01
In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.
Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Yapeng; Sun Peng; Zhang Jianhui
2011-06-15
Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less
NASA Astrophysics Data System (ADS)
Uieda, Leonardo; Barbosa, Valéria C. F.
2017-01-01
Estimating the relief of the Moho from gravity data is a computationally intensive nonlinear inverse problem. What is more, the modelling must take the Earths curvature into account when the study area is of regional scale or greater. We present a regularized nonlinear gravity inversion method that has a low computational footprint and employs a spherical Earth approximation. To achieve this, we combine the highly efficient Bott's method with smoothness regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The computational efficiency of our method is attained by harnessing the fact that all matrices involved are sparse. The inversion results are controlled by three hyperparameters: the regularization parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate the regularization parameter using the method of hold-out cross-validation. Additionally, we estimate the density-contrast and the reference depth using knowledge of the Moho depth at certain points. We apply the proposed method to estimate the Moho depth for the South American continent using satellite gravity data and seismological data. The final Moho model is in accordance with previous gravity-derived models and seismological data. The misfit to the gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismological data are greatest in the Guyana Shield, the central Solimões and Amazonas Basins, the Paraná Basin, and the Borborema province. These differences suggest the existence of crustal or mantle density anomalies that were unaccounted for during gravity data processing.
A review of the regional geophysics of the Arizona Transition Zone
NASA Technical Reports Server (NTRS)
Hendricks, J. D.; Plescia, J. B.
1991-01-01
A review of existing geophysical information and new data presented in this special section indicate that major changes in crustal properties between the Basin and Range and Colorado Plateau occur in, or directly adjacent to, the region defined as the Arizona Transition Zone. Although this region was designated on a physiographic basis, studies indicate that it is also the geophysical transition between adjoining provinces. The Transition Zone displays anomalous crustal and upper mantle seismic properties, shallow Curie isotherms, high heat flow, and steep down-to-the-plateau Bouguer gravity gradients. Seismic and gravity studies suggest that the change in crustal thickness, from thin crust in the Basin and Range to thick crust in the Colorado Plateau, may occur as a series of steps rather than a planar surface. Anomalous P wave velocities, high heat flow, shallow Curie isotherms, and results of gravity modeling suggest that the upper mantle is heterogeneous in this region. A relatively shallow asthenosphere beneath the Basin and Range and Transition Zone contrasted with a thick lithosphere beneath the Colorado Plateau would be one explanation that would satisfy these geophysical observations.
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Graviton fluctuations erase the cosmological constant
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine
2012-01-01
We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.
Recent off-axis volcanism in the eastern Gulf of Aden: Implications for plume-ridge interaction
NASA Astrophysics Data System (ADS)
Leroy, Sylvie; d'Acremont, Elia; Tiberi, Christel; Basuyau, Clémence; Autin, Julia; Lucazeau, Francis; Sloan, Heather
2010-04-01
Evidence of anomalous volcanism is readily observed in the Gulf of Aden, although, much of this oceanic basin remains as yet unmapped. In this paper, we investigate the possible connection of the Afar hotspot with a major off-axis volcanic structure and its interpretation as a consequence of a the anomalous presence of melt by integrating several data sets, both published and unpublished, from the Encens-Sheba cruise, the Aden New Century (ANC) cruise and several other onshore and marine surveys. These include bathymetric, gravity, magnetic, magneto-telluric data, and rock samples. Based upon these observations, interpretations were made of seafloor morphology, gravity and magnetic models, seafloor age, geochemical analyses and tectonic setting. We discuss the possible existence of a regional melting anomaly in the Gulf of Aden area and of the probability of its connection to the Afar plume. Several models that might explain the anomalous volcanism are taken into account, such as a local melting anomaly unrelated to the Afar plume, an anomalously large volume of melt associated with seafloor spreading, and interaction of the ridge with the Afar plume. A local melting anomaly and atypical seafloor spreading prove inconsistent with our observations. Two previously proposed models of plume-ridge interactions are examined: the diffuse plume dispersion called pancaked flow and channelized along-axis flow. We conclude that the configuration and structure of this young ocean basin may have the effect of channeling material away from the Afar plume along the Aden and Sheba Ridges to produce the off-axis volcanism observed on the ridge flanks. This interpretation implies that the influence of the Afar hotspot may extend much farther eastwards into the Gulf of Aden than previously believed. The segmentation of the Gulf of Aden and the configuration of the Aden-Sheba system may provide a potential opportunity to study channeled flow of solid plume mantle from the plume along a segmented ridge and nearby continental margins.
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***
NASA Astrophysics Data System (ADS)
Megías, Eugenio; Pena-Benitez, Francisco
2014-03-01
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.
NASA Astrophysics Data System (ADS)
Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.
2017-12-01
We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.
Band-limited Bouguer gravity identifies new basins on the Moon
NASA Astrophysics Data System (ADS)
Featherstone, W. E.; Hirt, C.; Kuhn, M.
2013-06-01
Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.
Upgrading the GT-2A aerogravimetric complex for airborne gravity measurements in the Arctic
NASA Astrophysics Data System (ADS)
Koneshov, V. N.; Klevtsov, V. V.; Solov'ev, V. N.
2016-05-01
The methodical solutions for improving the GT-2A aerogravimetric complexes by incorporating the Javad Quattro-G3D GPS receiver connected to four antennas spaced in two orthogonal planes are discussed. The operation features of the advanced aerogravimetric complex are described and the results of its application during the testing flight to 78° N latitude are presented. The anomalous gravity obtained in the testing flight is compared with the EGM2008 and EIGEN-6C models.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
NASA Astrophysics Data System (ADS)
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
Effect of Varying Crustal Thickness on CHAMP Geopotential Data
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Kis, Karoly I.; vonFrese, Ralph R. B.; Korhonen, Juha V.; Wittmann, Geza; Kim, Hyung Rae; Potts, Larmie V.
2003-01-01
Tn determine the effect of crustal thickness variation on satellite-altitude geopotential anomalies we compared two regions of Europe with vastly different values, South and Central Finland and the Pannonian Basin. In our study regions, crustal thickness exceeds 44 km in Finland and is less than 26 km in the Pannonian Basin. Heat-flow data indicate that the thinner and more active crust of the Pannonian Basin has a value nearly three times that of the Finnish Svecofennian Province. An ovoid positive CHAMP gravity anomaly (-4 mGal) is quasi-coincidental with the CHAMP magnetic anomaly traverses the Pannonian Basin while ground based gravity mapping in Hungary shows that the free-air gravity anomalies across the Pannonian Basin are near 0 to +20 mGal with shorter wavelength anomalies from +40 to less than +60 mGal and some 0 to greater than -20 mGal. Larger anomalies are detected in the mountainous areas. The minor value anomalies can indicate the isostatic equilibrium for Hungary (the central part of the Pannonian Basin). Gravity data over Finland bear overprint of de-glaciation. CHAMP gravity data indicates a west-east positive gradient of less than 4 mGal across South and Central Finland. CHAMP magnetic data (400 km) reveal elongated semi-circular negative anomalies for both regions with South-Central Finland having larger amplitude (less than -6 nT) than that over the Pannonian Basin, Hungary (less than -5 nT). In the latter subducted oceanic lithosphere has been proposed as the anomalous body.
Lorentz violations in multifractal spacetimes
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
Lateral density anomalies and the earth's gravitational field
NASA Technical Reports Server (NTRS)
Lowrey, B. E.
1978-01-01
The interpretation of gravity is valuable for understanding lithospheric plate motion and mantle convection. Postulated models of anomalous mass distributions in the earth and the observed geopotential as expressed in the spherical harmonic expansion are compared. In particular, models of the anomalous density as a function of radius are found which can closely match the average magnitude of the spherical harmonic coefficients of a degree. These models include: (1) a two-component model consisting of an anomalous layer at 200 km depth (below the earth's surface) and at 1500 km depth (2) a two-component model where the upper component is distributed in the region between 1000 and 2800 km depth, and(3) a model with density anomalies which continuously increase with depth more than an order of magnitude.
Towards an exact relativistic theory of Earth's geoid undulation
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.
2015-08-01
The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided.
Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions
NASA Astrophysics Data System (ADS)
Sham, Y.-H.; Leung, P. T.; Lin, L.-M.
2013-03-01
We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.
The inverse gravimetric problem in gravity modelling
NASA Technical Reports Server (NTRS)
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Gravity anomaly and structure associated with the Lamont region of the moon
NASA Technical Reports Server (NTRS)
Dvorak, J.; Phillips, R. J.
1979-01-01
Lamont is a unique lunar feature in southwestern Mare Tranquillitatis associated with radial and concentric ridge patterns and a positive free-air gravity anomaly. Best fitting models to high and low altitude gravity data place nearly all of the anomalous mass in the subsurface, consistent with the hypothesis that Lamont is a mascon. Lamont is positioned on the axis of a 1500 m deep north-south topographic trough occupying western Mare Tranquillitatis. It is proposed that this trough is a synclinal fold in the lunar crust and the tectonic fabric of western Tranquillitatis is consistent with the superposition of the stress fields due to synclinal folding and the loading of the lithosphere by the Lamont mascon.
Asymptotic safety of gravity-matter systems
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2016-04-01
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Gravity anomaly detection: Apollo/Soyuz
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.
1976-01-01
The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.
GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas
NASA Astrophysics Data System (ADS)
Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.
2012-04-01
We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.
Mascons - Progress toward a unique solution for mass distribution.
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Conel, J. E.; Abbott, E. A.; Sjogren, W. L.; Morton, J. B.
1972-01-01
Through a series of analyses with high-altitude Lunar Orbiter and low-altitude Apollo 15 Doppler gravity data, it is shown that the Serenity mascon is a thin body whose horizontal dimensions are well determined and show a strong correlation with circular wrinkle ridge structure. Analysis to date has not uniquely determined the depth of the anomalous mass. However, geological evidence strongly suggests that the mass excess is near the surface, because (1) the surface solution has a geometry highly suggestive of the partial filling of a ringed circular basin, and (2) the boundaries of the anomalous mass separate regions of shallow and deep mare flooding.
Effect of the Earth's inner structure on the gravity in definitions of height systems
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal
2017-04-01
In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified compared to the corresponding surface values mainly due to topographic elevation and terrain geometry as well as the presence of large glaciers in polar regions. Changes of the vertical gravity gradient within the topography attributed to the masses distributed below the geoid (dominated mainly by the isostatic signature and the long-wavelength gravitational signature of deep mantle density heterogeneities) are, on the other hand, relatively small. Despite differences between the normal and normal-orthometric heights could directly be assessed from the surface gravity disturbances only when taken along leveling lines with information about the spirit leveling height differences, our results indicate that differences between these two height systems can be significant.
A special class of solutions in F( R)-gravity
NASA Astrophysics Data System (ADS)
Calzà, Marco; Rinaldi, Massimiliano; Sebastiani, Lorenzo
2018-03-01
We consider a special class of vacuum F( R)-modified gravity models. The form of their Lagrangian is such that the field equations are trivially satisfied when the Ricci scalar is constant. There are many interesting F( R)-models for inflation and dark energy that fall in this class. However, little is known outside the domain of cosmology therefore we aim to explore the class of solutions that are static and spherically symmetric. After some general considerations, we investigate in more detail black hole solutions, traversable wormhole metrics and, finally, configurations that can match the anomalous rotation curves of galaxies.
Effect of Varying Crustal Thickness on CHAMP Geopotential Data
NASA Technical Reports Server (NTRS)
Taylor, P. T.; Kis, K. I.; vonFrese, R. R. B.; Korhonen, J. V.; Wittmann, G.; Kim, H. R.; Potts, L. V.
2003-01-01
To determine the effect of crustal thickness variation on satellite-altitude geopotential anomalies we compared two regions of Europe with vastly different values, Central/Southern Finland and the Pannonian Basin. Crustal thickness exceeds 62 km in Finland and is less than 26 km in the Pannonian Basin. Heat-flow maps indicate that the thinner and more active crust of the Pannonian Basin has a value nearly three times that of the Finnish Svecofennian Province. Ground based gravity mapping in Hungary shows that the free-air gravity anomalies across the Pannonian Basin are near 0 to +20 mGal with shorter wavelength anomalies from +40 to less than +60 mGal and some 0 to greater than -20 mGal. Larger anomalies are detected in the mountainous areas. The minor value anomalies can indicate the isostatic equilibrium for Hungary (the central part of the Pannonian Basin). Gravity data over Finland are complicated by de-glaciation. CHAMP gravity data (400 km) indicates a west-east positive gradient of greater than 4 mGal across Central/Southern Finland and an ovoid positive anomaly (approximately 4 mGal) quasi-coincidental with the magnetic anomaly traversing the Pannonian Basin. CHAMP magnetic data (425 km) reveal elongated semicircular negative anomalies for both regions with South-Central Finland having larger amplitude (less than -6 nT) than that over the Pannonian Basin, Hungary (less than -5 nT). In both regions subducted oceanic lithosphere has been proposed as the anomalous body.
Double-trace flows and the swampland
NASA Astrophysics Data System (ADS)
Giombi, Simone; Perlmutter, Eric
2018-03-01
We explore the idea that large N, non-supersymmetric conformal field theories with a parametrically large gap to higher spin single-trace operators may be obtained as infrared fixed points of relevant double-trace deformations of superconformal field theories. After recalling the AdS interpretation and some potential pathologies of such flows, we introduce a concrete example that appears to avoid them: the ABJM theory at finite k, deformed by \\int O^2, where O is the superconformal primary in the stress-tensor multiplet. We address its relation to recent conjectures based on weak gravity bounds, and discuss the prospects for a wider class of similarly viable flows. Next, we proceed to analyze the spectrum and correlation functions of the putative IR CFT, to leading non-trivial order in 1 /N. This includes analytic computations of the change under double-trace flow of connected four-point functions of ABJM superconformal primaries; and of the IR anomalous dimensions of infinite classes of double-trace composite operators. These would be the first analytic results for anomalous dimensions of finite-spin composite operators in any large N CFT3 with an Einstein gravity dual.
Anomalous accelerations in spacecraft flybys of the Earth
NASA Astrophysics Data System (ADS)
Acedo, L.
2017-12-01
The flyby anomaly is a persistent riddle in astrodynamics. Orbital analysis in several flybys of the Earth since the Galileo spacecraft flyby of the Earth in 1990 have shown that the asymptotic post-encounter velocity exhibits a difference with the initial velocity that cannot be attributed to conventional effects. To elucidate its origin, we have developed an orbital program for analyzing the trajectory of the spacecraft in the vicinity of the perigee, including both the Sun and the Moon's tidal perturbations and the geopotential zonal, tesseral and sectorial harmonics provided by the EGM96 model. The magnitude and direction of the anomalous acceleration acting upon the spacecraft can be estimated from the orbital determination program by comparing with the trajectories fitted to telemetry data as provided by the mission teams. This acceleration amounts to a fraction of a mm/s2 and decays very fast with altitude. The possibility of some new physics of gravity in the altitude range for spacecraft flybys is discussed.
Gravitational collapse in repulsive R+μ4/R gravity
NASA Astrophysics Data System (ADS)
Fathi, Mohsen; Mohseni, Morteza
2016-10-01
In this paper we work out collapsing conditions for a spherical star in the weak field limit of the R+μ4/R gravity and discuss the importance of the parameter μ to generate different criteria in the theory. Such criteria are proved to be resulting in a variety of different fates for the evolution of the outer shells of stars. Furthermore, we investigate the special case of violating the first junction condition and point out corresponding contradictions to the normal cases. These results show that the consistency of the R+μ4/R theory of gravity with the common astrophysical predictions relies highly on the adoption of the parameter μ and satisfaction/violation of the first junction condition. For those anomalous results, further observational attempts are mandatory.
Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)
1981-01-01
The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.
Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge
NASA Astrophysics Data System (ADS)
Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.
2017-12-01
The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.
Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
Evidence for active hotspots on Venus from analysis of Magellan gravity data
NASA Technical Reports Server (NTRS)
Smrekar, Suzanne E.
1994-01-01
The 500-Myr average crater retention age for Venus has raised questions about the present-day level of tectonic activity. In this study we examine the relationship between the gravity and topography of four large volcanic swells, Beta, Atla, Bell, and Western Eistla Regiones, for clues about their stage evolution. The Magellan line-of-sight gravity data are inverted using a point mass model of the anomalous mass to solve for the local vertical gravity field. Spectral admittance calculated from both the local gravity inversions and a spherical harmonic model is compared to three models of compensation: local compensation, a 'flexural' model with local and regional compensation of surface and subsurface loads, and a 'hotspot' model of compensation that includes top loading by volcanoes and subsurface loading due to a deep, low density mass anomaly. The coherence is also calculated in each region, but yields an elastic thickness estimate only at Bell Regio. In all models, the long wavelengths are compensated locally. Our results may indicate a relatively old, possibly inactive plume.
On the anomalous secular increase of the eccentricity of the orbit of the Moon
NASA Astrophysics Data System (ADS)
Iorio, L.
2011-08-01
A recent analysis of a Lunar Laser Ranging (LLR) data record spanning 38.7 yr revealed an anomalous increase of the eccentricity e of the lunar orbit amounting to ? yr-1. The present-day models of the dissipative phenomena occurring in the interiors of both the Earth and the Moon are not able to explain it. In this paper, we examine several dynamical effects, not modelled in the data analysis, in the framework of long-range modified models of gravity and of the standard Newtonian/Einsteinian paradigm. It turns out that none of them can accommodate ?. Many of them do not even induce long-term changes in e; other models do, instead, yield such an effect, but the resulting magnitudes are in disagreement with ?. In particular, the general relativistic gravitomagnetic acceleration of the Moon due to the Earth’s angular momentum has the right order of magnitude, but the resulting Lense-Thirring secular effect for the eccentricity vanishes. A potentially viable Newtonian candidate would be a trans-Plutonian massive object (Planet X/Nemesis/Tyche) since it, actually, would affect e with a non-vanishing long-term variation. On the other hand, the values for the physical and orbital parameters of such a hypothetical body required to obtain at least the right order of magnitude for ? are completely unrealistic: suffices it to say that an Earth-sized planet would be at 30 au, while a jovian mass would be at 200 au. Thus, the issue of finding a satisfactorily explanation for the anomalous behaviour of the Moon’s eccentricity remains open.
Uplift in the Fiordland region, New Zealand: implications for incipient subduction.
House, M A; Gurnis, M; Kamp, P J J; Sutherland, R
2002-09-20
Low-temperature thermochronometry reveals regional Late Cenozoic denudation in Fiordland, New Zealand, consistent with geodynamic models showing uplift of the overriding plate during incipient subduction. The data show a northward progression of exhumation in response to northward migration of the initiation of subduction. The locus of most recent uplift coincides with a large positive Bouguer gravity anomaly within Fiordland. Thermochronometrically deduced crustal thinning, anomalous gravity, and estimates of surface uplift are all consistent with approximately 2 kilometers of dynamic support. This amount of dynamic support is in accord with geodynamic predictions, suggesting that we have dated the initiation of subduction adjacent to Fiordland.
The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification
NASA Astrophysics Data System (ADS)
Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.
2015-12-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.
Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.
1999-01-01
Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.
Thin Film Mediated Phase Change Phenomena: Crystallization, Evaporation and Wetting
NASA Technical Reports Server (NTRS)
Wettlaufer, John S.
1998-01-01
We focus on two distinct materials science problems that arise in two distinct microgravity environments: In space and within the space of a polymeric network. In the former environment, we consider a near eutectic alloy film in contact with its vapor which, when evaporating on earth, will experience compositionally induced buoyancy driven convection. The latter will significantly influence the morphology of the crystallized end member. In the absence of gravity, the morphology will be dominated by molecular diffusion and Marangoni driven viscous flow, and we study these phenomena theoretically and experimentally. The second microgravity environment exists in liquids, gels, and other soft materials where the small mass of individual molecules makes the effect of gravity negligible next to the relatively strong forces of intermolecular collisions. In such materials, an essential question concerns how to relate the molecular dynamics to the bulk rheological behavior. Here, we observe experimentally the diffusive motion of a single molecule in a single polymer filament, embedded within a polymer network and find anomalous diffusive behavior.
Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media.
Bonneau, L; Andreotti, B; Clément, E
2008-09-12
Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a free surface, the acoustic propagation is only possible through surface modes guided by the stiffness gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear elasticity including finite size effects. These results allow one to access the elastic properties of the packing under vanishing confining pressure.
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-06
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2015-04-01
Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of the Lesser Caucasus (western Azerbaijan) under conditions of rugged relief and complex geology. This deposit is well investigated by mining and drilling operations and therefore was used as a reference field polygon for testing this approach. A special scheme for obtaining the Bouguer anomalies has been employed to suppress the terrain relief effects dampening the anomaly effects from the objects of prospecting. The scheme is based on calculating the difference between the free-air anomaly and the gravity field determined from a 3D model of a uniform medium with a real topography. 3-D terrain relief model with an interval of its description of 80 km (the investigated 6 profiles of 800 m length are in the center of this interval) was employed to compute (by the use of GSFC software (Khesin et al., 1996)) the gravitational effect of the medium (σ = 2670 kg/m3). With applying such a scheme the Bouguer anomalies were obtained with accuracy in two times higher than that of TC received by the conventional methods. As a result, on the basis of the improved Bouguer gravity with the precise TC data, the geological structure of the deposit was defined (Khesin et al., 1996). Second approach Second approach was employed at the complex Katekh pyrite-polymetallic deposit, which is located at the southern slope of the Greater Caucasus (northern Azerbaijan). The main peculiarities of this area are very rugged topography of SW-NE trend, complex geology and severe tectonics. Despite the availability of conventional ΔgB (TC far zones were computed up to 200 km), for the enhanced calculation of surrounding terrain topography a digital terrain relief model was created (Eppelbaum and Khesin, 2004). The SW-NE regional topography trend in the area of the Katekh deposit occurrence was computed as a rectangular digital terrain relief model (DTRM) of 20 km long and 600 m wide (our interpretation profile with a length of 800 m was located in the geometrical center of the DTRM). As a whole, about 1000 characteristic points were used to describe the DTRM (most frequently points were focused in the center of the DTRM and more rarely - on the margins). Thus, in the interactive 3D ΔgB modeling (by the use of GSFC software) was computed effect not only from geological bodies occurring in this area, but also from surrounding DTRM. In the issue of this scheme application, two new ore bodies were discovered. Quantitative analysis of gravity anomalies The trivial formulas of quantitative analysis (based on simple relationships between the gravity field intensity and geometrical parameters of the anomalous body) are widely presented in the geophysical literature (e.g., Telford et al., 1993; Parasnis, 1997). However, absence of reliable information about the normal gravity field in the studied areas strongly limits practical application of these methods. Gravity field intensity F is expressed as F = - gradW, (1) where W is the gravity potential. For anomalous magnetic field Ua we can write (when magnetic susceptibility ≤ 0.1 SI unit) (Khesin et al., 1996): Ua = - gradV, (2) where V represents the magnetic potential. Let's consider analytical expressions of some typical models employed in magnetic and gravity fields (Table 1). Table 1. Comparison of some analytical expressions for magnetic and gravity fields Field Analytical expression MagneticThin bed (TB) z Zv = 2I2b-2--2 x + z (3) Point source (rod) mz Zv = ----3/2 (x2 + z2) (4) Gravity Horizontal Circular Cylinder (HCC) -z-- Δg = 2Gσ x2 + z2 (5) Sphere --z--- Δg = GM (x2 + z2)3/2 (6)
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
NASA Astrophysics Data System (ADS)
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
Instability of a gravity gradient satellite due to thermal distortion
NASA Technical Reports Server (NTRS)
Goldman, R. L.
1975-01-01
A nonlinear analytical model and a corresponding computer program were developed to study the influence of solar heating on the anomalous low frequency, orbital instability of the Naval Research Laboratory's gravity gradient satellite 164. The model's formulation was based on a quasi-static approach in which deflections of the satellite's booms were determined in terms of thermally induced bending without consideration of boom vibration. Calculations, which were made for variations in absorptivity, sun angle, thermal lag, and hinge stiffness, demonstrated that, within the confines of a relatively narrow stability criteria, the quasi-static model of NRL 164 not only becomes unstable, but, in a number of cases, responses were computed that closely resembled flight data.
Enhanced peculiar velocities in brane-induced gravity
NASA Astrophysics Data System (ADS)
Wyman, Mark; Khoury, Justin
2010-08-01
The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the ΛCDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3σ level with ΛCDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8σ level, with an estimated probability between 3.3×10-11 and 3.6×10-9 in ΛCDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2σ level with bulk flow observations. The occurrence of the bullet cluster in these theories is ≈104 times more probable than in ΛCDM cosmology.
Granular Superconductors and Gravity
NASA Technical Reports Server (NTRS)
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2017-03-01
In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ≈ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A^* are, instead, not viable because of the excessive smallness of the predicted precessions for them.
NASA Astrophysics Data System (ADS)
Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi
2003-12-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.
2003-01-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
NASA Astrophysics Data System (ADS)
Álvarez, Orlando; Gimenez, Mario; Folguera, Andres; Spagnotto, Silvana; Bustos, Emilce; Baez, Walter; Braitenberg, Carla
2015-11-01
Satellite-only gravity measurements and those integrated with terrestrial observations provide global gravity field models of unprecedented precision and spatial resolution, allowing the analysis of the lithospheric structure. We used the model EGM2008 (Earth Gravitational Model) to calculate the gravity anomaly and the vertical gravity gradient in the South Central Andes region, correcting these quantities by the topographic effect. Both quantities show a spatial relationship between the projected subduction of the Copiapó aseismic ridge (located at about 27°-30° S), its potential deformational effects in the overriding plate, and the Ojos del Salado-San Buenaventura volcanic lineament. This volcanic lineament constitutes a projection of the volcanic arc toward the retroarc zone, whose origin and development were not clearly understood. The analysis of the gravity anomalies, at the extrapolated zone of the Copiapó ridge beneath the continent, shows a change in the general NNE-trend of the Andean structures to an ENE-direction coincident with the area of the Ojos del Salado-San Buenaventura volcanic lineament. This anomalous pattern over the upper plate is interpreted to be linked with the subduction of the Copiapó ridge. We explore the relation between deformational effects and volcanism at the northern Chilean-Pampean flat slab and the collision of the Copiapó ridge, on the basis of the Moho geometry and elastic thicknesses calculated from the new satellite GOCE data. Neotectonic deformations interpreted in previous works associated with volcanic eruptions along the Ojos del Salado-San Buenaventura volcanic lineament is interpreted as caused by crustal doming, imprinted by the subduction of the Copiapó ridge, evidenced by crustal thickening at the sites of ridge inception along the trench. Finally, we propose that the Copiapó ridge could have controlled the northern edge of the Chilean-Pampean flat slab, due to higher buoyancy, similarly to the control that the Juan Fernandez ridge exerts in the geometry of the flat slab further south.
NASA Astrophysics Data System (ADS)
Kim, Yoon-Mi; Lee, Sang-Mook
2018-01-01
The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to examine what effect the variations in the mantle potential temperature and degree of extension may have on the gravity anomaly. According to our model, the latter case is much more likely to cause the variations in gravity anomaly than the former.
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.
1998-01-01
The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.
Gravity field and structure of the Sorong Fault Zone, eastern Indonesia
NASA Astrophysics Data System (ADS)
Sardjono
Gravity surveys along coastlines of islands in the region Banggai-Sula, Eastern Sulawesi, Halmahera, Bacan and Obi were carried out as part of the Sorong Fault Zone Project. Results of the Surveys were integrated with gravity data previously acquired by other projects, including on-land gravity data from the Bird Head area Irian Jaya (Dow et al 1986), Seram Island (Milsom 1977), Buru Island (Oemar and Reminton 1993) and Central Sulawesi (Silver et al. 1983) as well as marine gravity information within and surrounding the Sorong Fault Zone (Bowin et al. 1980). Gravity expeditions of the Sorong Fault Zone Project also include measurements in Mayu Island and the island group of Talaud, situated further north in the Central Molucca Sea region. A total of one hundred and forty two gravity data were acquired in the region of Banggai-Sula islands, forty seven in eastern part of Central Sulawesi, about four hundred in Halmahera, Bacan and Obi, and seventy nine in Mayu and Talaud. Surveys in the eastern part of Central Sulawesi were carried out for the purpose of tieing the older gravity data obtained from Silver et al. (1983) and the more recent data of the Sorong Fault Zone Project. About one thousand thirty hundred and thirty gravity data were acquired as part of the Irian Jaya Geological Mapping Project (IJGMP) in the period of 1978-1983, a project commissioned by the Indonesian Geological Research and Development Centre (GRDC) and the Australian Bureau of Mineral Resources (BMR). The remoteness of the survey areas of the Sorong Fault Zone Project necessitated a careful planning for travel arrangements and provision of logistics. A wide range of magnitude of gravity field was observed in the Sorong Fault Zone, extending from values below -250 mGal recorded in the southern part of the Molucca Sea to values in excess of +320 mGal measured near to sea level in the coastal areas south of Mangole and north of Sulabesi, the two islands of the Sula Group. Steep gradients of free-air gravity were observed in south of Mangole (about 13 mGal/km) and west of Obi (about 15 mGal/km) but elsewhere were gentler. Analyses of gravity data along the Sorong Fault Zone in the region of Barggal-Sula Islands controlled in part by geological, reflection seismic and sidescan sonar data, have produced four models which suggest that the crustal structures beneath the zone consist predominantly of attenuated continental fragments, juxtaposed to thick layer of tectonic melange and anomalous oceanic crusts. The continental fragments appear to be severely attenuated and limited in extent in the east but thicker and wider towards the west. The tectonic melange is underlain by deep seated oceanic crust in the Molucca Sea region. The anomalously thin North Banda Sea crust appears to underlie a very thin layer of sediments and to have suffered some degree of arching. The deep seated oceanic crust and the thick layer of tectonic melange are interpreted as the result of the sinking of the lithospheric plate of the Molucca Sea. The descent of this plate may have produced bending forces which may have initiated flexure which propagates through the surrounding region. Depending on the rigidity of the crustal slab, arching and fracturing may have occurred in the crustal rocks. The arching of the oceanic crust of the North Banda Sea may have been one result of this process. The continental fragments of the Banggai-Sula region appear to dip northwards and this may, in addition to the effect of shear tectonics along the Sorong Fault Zone, also be interpreted as the response of the continental fragments to the sinking of the lithospheric plate of the Molucca Sea. In the Obi region, the gravity data suggest that most of the island is underlain by peridotitic and basaltic rocks. Continental crust appears to form the basement in the south and extend offshore south of the island and juxtaposed to oceanic rock. The ultramafic and basic rocks appear to be emplaced on Obi by a high angle reverse fault which separates the continental block in the south from the oceanic material in the north. The exposed basaltic rocks could be a remnant of the oceanic crust of the Philippine Sea Plate.
Enhanced peculiar velocities in brane-induced gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyman, Mark; Khoury, Justin
The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the {Lambda}CDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3{sigma} level with {Lambda}CDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8{sigma} level, with an estimated probability between 3.3x10{sup -11} and 3.6x10{sup -9} in {Lambda}CDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravitymore » becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2{sigma} level with bulk flow observations. The occurrence of the bullet cluster in these theories is {approx_equal}10{sup 4} times more probable than in {Lambda}CDM cosmology.« less
Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Fontes, Sergio Luiz
2010-05-01
0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1-minute gridded data were obtained from the Satellite Geodesy at the Scripps Institution of Oceanography, Smith & Sandwell (1997; http://topex.ucsd.edu. Gravity anomaly data were re-gridded using the ETOPO2v2 grid. All calculations and maps were made using MatLab 2007 software. 0.3.2 Cross-Product Cross-product is the result of multiplication of bathymetric and gravity anomaly gradient magnitudes by the sine of the angle between them. According to the definition of gradient cross-product minimal values are expected to be found in points where the angle between gradients is close to zero or where one or both of the gradient magnitudes have values close to zero. It creates an ambiguity and a problem for data interpretation since there is no exact correspondence between bathymetric structures and gravity anomalies. 0.3.3 Dot-Product Dot-product is the result of multiplication of bathymetric and gravity anomaly magnitudes by the cosine on the angle between them. According to the definition of dot-product, values close to zero can be generated by near perpendicular orientation of the gradients or small magnitudes of one or both gradients. So, the results are mutually increased in areas with larger magnitudes or smaller angles between gradients. Due to this mutual amplification dot-products are less affected by the ambiguity of cross-product explained above. The same statistical separation of cross-product was used to support the conclusions. 0.3.4 Statistics and Significance Criteria Statistical analysis was made in order to sort the data into two groups to reduce ambiguity effect: first group - data with magnitudes that could be considered anomalous (where the main minimizing source is the angle between the gradients and the second group - data with magnitudes variations that could be considered as (non significant or background (where cross-product value is determined by the small magnitude). It was chosen to use the mean value and standard deviation (std) to sort the data in such two groups. These values were determined for bathymetric and gravity anomaly gradient magnitudes creating two data sets - one where one or both gradient magnitudes are one standard deviation larger than the mean value with a total of 7831 (anomalous) and a second one where both magnitudes differ smaller than one standard deviation from the mean value with 85584 (background ). Statistical analysis of distribution patterns for both groups was made. 0.4 Examples of Method Application 0.4.1 Map of Angles Between Gradients Figure 1 shows the map of angle values. The angle values were divided into 4 equal intervals. The statistical distribution of angles between gradient in the given intervals is the following (percents of the total): 0 to 60° - 51.39% of the values; 60° to 90° -12.08%; 90° to 120° -14.92%; 120° to 180° -21.18%. It can be seen that 51% of the gradients have a small angle between them, 72% of gradients can be considered as parallel (72%) with angles smaller than 60° or bigger than 120° between them. After statistical separation in the anomalous group almost 91% of the gradients have an angle smaller than 60° while in the background group just 48.6%. From these results we can make a conclusion that the majority of the bathymetric and gravity anomaly gradients are related. Regions with higher gradient magnitudes are characterized by cosine values close to 1 (indicating a small angle between them). The size of the areas characterized by small angles between gradients exceed the size of bathymetric and gravity anomaly isolines characterizing the area of influence of the structures and their effects. Regions with no significant anomalies show uncorrelated value spots. 0.4.2 Map of Cross-Product The resulting map shows small spots of higher cross-product magnitudes following magnitude isolines. About 90% of the values are close to minimum. As was mentioned before, we can presume that areas where bathymetry and gravity anomaly gradient cross-products have smallest magnitudes there is a good correspondence between them indicating a good correspondence between shapes. According to these results for the studied area the shapes and positions of bathymetric structures and gravity anomalies are well correlated suggesting strong correlation between source and its effect. 0.4.3 Map of Dot-Product The resulting map resembles bathymetric and gravity anomaly isolines. All the sea mounts, banks, continental slope and other notable geomorphologic structures and gravity anomalies are well delimitated in the dot-product map eliminating uncorrelated areas where gradient orientations can be considered as near perpendicular. The dot-product map of the studied area suggests a strong source-effect between bathymetry and gravity anomaly. 0.5 Conclusions The joint image interpretation technique uses three different criteria that are sensitive to different gradient properties. Angles between gradients are a good indicator of areas where data are related and it is not sensitive to the magnitudes of the gradients. Angles maps can be used to find areas with direct and inverse relation between mapped properties and contour areas of influence of anomalies unseen on gradient magnitude maps alone. Statistical measures of distribution of angles can be an indicator of relation between data sets as show using significance criteria. Cross-product map has a spotted character of contours. To reduce the effects of the ambiguity the separation into two groups proved to be useful. It helps to separate the cross-product values that are minimized due to gradient magnitudes from those that minimize due to sine values which is a measure of correlation between them. Dot-product values contour areas where gradients are correlated. According to joint image interpretation technique applied bathymetric structures especially the volcanic seamounts and banks in the southern part of East-Brazilian Coast are closely related to the observed gravity anomalies and can be interpreted as sources and effect. This technique also helps to evaluate the shape and dispersion of the gravitational effect from a bathymetrical source. 0.6 References Dehlinger P., Marine Gravity, Elsevier, 1978. Gallardo, L. A., and M. A. Meju., Joint 2D cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification, Geophys. J. Int., 169, 1261-1272. (2007) Gallardo, L.A., M. A. Meju (2004), Joint two-dimensional dc resistivity and seismic traveltime inversion with cross-gradients constraints, J. Geophys. Res., 109, B03311, doi:10.1029/2003JB002716 Jacoby, W., and Smilde P. L., Gravity Interpretation, Springer, 2009. McKenzie D. & Bowin C. 1976. The relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81: 1903-1915. Roy. K. K., Potential Theory in Applied Geophysics, Springer, 2008. Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997. Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. Zembruscki, S.G. 1979. Geomorfologia da Margem Continental Sul Brasileira e das Bacias Oceânicas Adjacentes. In: Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC, N° 7.
NASA Astrophysics Data System (ADS)
King, Chi-Yu; Chia, Yeeping
2017-12-01
Streamflow recorded by a stream gauge located 4 km from the epicenter of the 1999 M7.6 Chi-Chi earthquake in central Taiwan showed a large and rapid anomalous increase of 124 m3/s starting 4 days before the earthquake. This increase was followed by a comparable co-seismic drop to below the background level for 8 months. In addition, groundwater-levels recorded at a well 1.5 km east of the seismogenic fault showed an anomalous rise 2 days before the earthquake, and then a unique 4-cm drop beginning 3 h before the earthquake. The anomalous streamflow increase is attributed to gravity-driven groundwater discharge into the creek through the openings of existing fractures in the steep creek banks crossed by the upstream Shueilikun fault zone, as a result of pre-earthquake crustal buckling. The continued tectonic movement and buckling, together with the downward flow of water in the crust, may have triggered the occurrence of some shallow slow-slip events in the Shueilikun and other nearby fault zones. When these events propagate down-dip to decollement, where the faults merges with the seismogenic Chelungpu fault, they may have triggered other slow-slip events propagating toward the asperity at the hypocenter and the Chelungpu fault. These events may then have caused the observed groundwater-level anomaly and helped to trigger the earthquake.
NASA Astrophysics Data System (ADS)
Yang, Chao Yuan
2012-05-01
Anomalous decelerations of spacecraft Pioneer-10,11,etc could be interpreted as signal delay effect between speed of gravity and that of light as reflected in virtual scale, similar to covarying virtual scale effect in relative motion (http://arxiv.org/html/math-ph/0001019v5).A finite speed of gravity faster than light could be inferred (http://arXiv.org/html/physics/0001034v2). Measurements of gravitational variations by paraconical pendulum during a total solar eclipse infer the same(http://arXiv.org/html/physics/0001034v9). A finite Superluminal speed of gravity is the necessary condition to imply that there exists gravitational horizon (GH). Such "GH" of our Universe would stretch far beyond the cosmic event horizon of light. Dark energy may be owing to mutually interactive gravitational horizons of cousin universes. Sufficient condition for the conjecture is that the dark energy would be increasing with age of our Universe since accelerated expansion started about 5 Gyr ago, since more and more arrivals of "GH" of distant cousin universes would interact with "GH" of our Universe. The history of dark energy variations between then and now would be desirable(http://arXiv.org/html/physics/0001034). In "GH" conjecture, the neighborhood of cousin universes would be likely boundless in 4D-space-time without begining or end. The dark energy would keep all universes in continually accelerated expansion to eventual fragmentation. Fragments would crash and merge into bangs, big or small, to form another generation of cousin universes. These scenarios might offer a clue to what was before the big bang.
Multiscale estimation of excess mass from gravity data
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Fedi, Maurizio; Florio, Giovanni
2014-06-01
We describe a multiscale method to estimate the excess mass of gravity anomaly sources, based on the theory of source moments. Using a multipole expansion of the potential field and considering only the data along the vertical direction, a system of linear equations is obtained. The choice of inverting data along a vertical profile can help us to reduce the interference effects due to nearby anomalies and will allow a local estimate of the source parameters. A criterion is established allowing the selection of the optimal highest altitude of the vertical profile data and truncation order of the series expansion. The inversion provides an estimate of the total anomalous mass and of the depth to the centre of mass. The method has several advantages with respect to classical methods, such as the Gauss' method: (i) we need just a 1-D inversion to obtain our estimates, being the inverted data sampled along a single vertical profile; (ii) the resolution may be straightforward enhanced by using vertical derivatives; (iii) the centre of mass is also estimated, besides the excess mass; (iv) the method is very robust versus noise; (v) the profile may be chosen in such a way to minimize the effects from interfering anomalies or from side effects due to the a limited area extension. The multiscale estimation of excess mass method can be successfully used in various fields of application. Here, we analyse the gravity anomaly generated by a sulphide body in the Skelleftea ore district, North Sweden, obtaining source mass and volume estimates in agreement with the known information. We show also that these estimates are substantially improved with respect to those obtained with the classical approach.
3D free-air gravity anomaly modeling for the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina
2016-04-01
In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering the relation between the density and the seismic P-wave velocity VP. We choose the velocity data from the scientific literature. We found that the "layer-cake" model does not explain the measured anomalies satisfyingly and lateral density changes have to be considered for the area beneath the ridge axis. Accordingly we reduced the density values of the lower crust and the upper mantle beneath the axial ridge introducing in the model two additional bodies called partial melted crust and anomalous mantle. Finally we present isobaths maps of the anomalous mantle which highlight the lateral heterogeneity of the oceanic crust beneath the ridge axis. In particular there are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion of the mantle which can lead to the exposure of OCCs.
Glacier mass balance in high-arctic areas with anomalous gravity
NASA Astrophysics Data System (ADS)
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be learned from another industry, e.g. technical chemistry. Several questions associated with the variability of evaporation, ice nucleation, aerosol deposition and snow redistribution in the heterogeneous field of gravity remain open.
Influence of El Nino Southern Oscillation on the Mesospheric Temperature
NASA Technical Reports Server (NTRS)
Li, Tao; Calvo, Natalia; Yue, Jia; Dou, Xiankang; Russell, J. M, III; Mlynczak, M. G.; She, Chiao-Yao; Xue, Xianghui
2013-01-01
Using the middle atmosphere temperature data set observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite experiment between 2002 and 2012, and temperatures simulated by the Whole Atmospheric Community Climate Model version 3.5 (WACCM3.5) between 1953 and 2005, we studied the influence of El Niño-Southern Oscillation (ENSO) on middle atmosphere temperature during the Northern Hemisphere (NH) wintertime. For the first time, a significant winter temperature response to ENSO in the middle mesosphere has been observed, with an anomalous warming of approximately 1.0 K/MEI (Multivariate ENSO Index) in the tropics and an anomalous cooling of approximately 2.0 K/MEI in the NH middle latitudes. The observed temperature responses to ENSO in the mesosphere are opposite to those in the stratosphere, in agreement with previous modeling studies. Temperature responses to ENSO observed by SABER show similar patterns to those simulated by the WACCM3.5 model. Analysis of the WACCM3.5 residual mean meridional circulation response to ENSO reveals a significant downwelling in the tropical mesosphere and upwelling in the NH middle and high latitudes during warm ENSO events, which is mostly driven by anomalous eastward gravity wave forcing in the NH mesosphere.
Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism.
Byrnes, Joseph S; Karlstrom, Leif
2018-02-01
Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.
Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism
Byrnes, Joseph S.; Karlstrom, Leif
2018-01-01
Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~105 to 106 km3. Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time. PMID:29441360
Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta
Nayak, M.; Asphaug, E.
2016-01-01
The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002
Large wave at Daytona Beach, Florida, explained as a squall-line surge
Sallenger, A.H.; List, J.H.; Gelfenbaum, G.; Stumpf, R.P.; Hansen, M.
1995-01-01
On a clear calm evening during July 1992, an anomalously large wave, reportedly 6 m high struck the Daytona Beach, Florida area. It is hypothesized that a squall line and associated pressure jump, travelling at the speed of a free gravity wave, coupled resonantly with the sea surface forming the large wave or "squall-line surge'. The wave was forced along the length of the squall line, with the greatest amplitude occurring at the water depth satisfying the resonant condition. -from Authors
Miller, C.H.; Showail, A.A.; Bazzari, M.A.; Khoja, J.A.; Hajour, M.O.
1990-01-01
A detailed search for gold and associated minerals was begun in the Bi'r Jarbuah area in 1988. Crone electromagnetic (CEM), magnetic, and gravimetric surveys were run in the areas of greatest interest. Anomalous areas are most interesting in the southern part of the area where linear magnetic and gravity anomalies trend east-northeast and overlap in large part. They are most prominent at or near the south end of a diorite pluton where some quartz veins mined by the ancients also trend northeast. A second area, at the extreme southern end of the survey, contains a large CEM anomaly that coincides with northeast-trending magnetic and gravity anomalies. Although this second area is largely overlain by alluvium, a major quartz vein strikes to the northeast in the adjacent bedrock.
On the background independence of two-dimensional topological gravity
NASA Astrophysics Data System (ADS)
Imbimbo, Camillo
1995-04-01
We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.
NASA Astrophysics Data System (ADS)
Uspensky, B. V.; Borovsky, M. Ya; Vafin, R. F.; Valeeva, S. E.; Mudarisova, R. A.
2018-05-01
The article considers the provisions of the ontogenesis of the following factors in the formation of natural bitumen clusters in the Permian deposits of the Melekesskiy region: genetic, geodynamic, structural and hydrogeological. It is shown that tectonically weakened zones and zones of Neogene incisions development are fixed by high-precision gravimetry in the form of intense local minima of gravity. A favorable factor contributing to the "strengthening" of anomalous geophysical effects is the coincidence of the locations of these geological section heterogeneities in the plan. It is recommended at the stage of experimental-industrial operation a complex of geophysical methods for monitoring the processes of natural bitumen deposits development by means of secondary impact on the formation. High-precision magnetic, thermal and electrical prospecting in various modifications are used.
Gravity-darkening exponents in semi-detached binary systems from their photometric observations. II.
NASA Astrophysics Data System (ADS)
Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R.
2006-01-01
This second part of our study concerning gravity-darkening presents the results for 8 semi-detached close binary systems. From the light-curve analysis of these systems the exponent of the gravity-darkening (GDE) for the Roche lobe filling components has been empirically derived. The method used for the light-curve analysis is based on Roche geometry, and enables simultaneous estimation of the systems' parameters and the gravity-darkening exponents. Our analysis is restricted to the black-body approximation which can influence in some degree the parameter estimation. The results of our analysis are: 1) For four of the systems, namely: TX UMa, β Per, AW Cam and TW Cas, there is a very good agreement between empirically estimated and theoretically predicted values for purely convective envelopes. 2) For the AI Dra system, the estimated value of gravity-darkening exponent is greater, and for UX Her, TW And and XZ Pup lesser than corresponding theoretical predictions, but for all mentioned systems the obtained values of the gravity-darkening exponent are quite close to the theoretically expected values. 3) Our analysis has proved generally that with the correction of the previously estimated mass ratios of the components within some of the analysed systems, the theoretical predictions of the gravity-darkening exponents for stars with convective envelopes are highly reliable. The anomalous values of the GDE found in some earlier studies of these systems can be considered as the consequence of the inappropriate method used to estimate the GDE. 4) The empirical estimations of GDE given in Paper I and in the present study indicate that in the light-curve analysis one can apply the recent theoretical predictions of GDE with high confidence for stars with both convective and radiative envelopes.
Essa, Khalid S
2014-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.
Essa, Khalid S.
2013-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472
A three-dimensional gravity study of the 95.5°W propagating rift in the Galapagos spreading center
NASA Astrophysics Data System (ADS)
Phipps Morgan, Jason; Parmentier, E. M.
1987-01-01
Seafloor at the Galapagos 95.5°W propagating rift (PR) has a varied morphological expression that can be spatially correlated with the predicted kinematic history of the PR. A median valley-like depression occurs near the tip of the growing ridge axis. To test if this bathymetry is a dynamic feature supported by mantle or lithosphere strength or if it is due to isostatically compensated crustal thickness variations, we use three-dimensional gravity modelling to constrain the crustal structure in this region, from data collected by Hey in 1979 and 1982. The gravity anomaly at the PR tip depression suggests that the tip depression is not caused by crustal thinning. The data are consistent with a stress-supported PR tip depression caused by asthenospheric along-axis flow into the growing ridge axis (Phipps Morgan and Parmentier [1]). In contrast to the tip depression, seafloor in the sheared zone of material transferred through transform migration from the Cocos to Nazca plate is anomalously shallow and has a pronounced regional 300-400 m tilt towards the growing ridge axis over the 20 km width of the sheared zone. The gravity data also suggest that the sheared zone is not compensated by crustal thickening.
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.
Study on relationship between evolution of regional gravity field and seismic hazard
NASA Astrophysics Data System (ADS)
Li, W.; Xu, C.; Shen, C.
2017-12-01
The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating that present gravity changes at Lushan were caused by SGB to SCB. The results and understanding are of great significance for further study of tectonic characteristics in this region, and the GGS-derived anomalies has the potential to be used as a reliable source of EP on a regional scale for seismic, or a favorable basis for seismic hazards.
Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system
Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.
2017-01-01
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-10
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
NASA Technical Reports Server (NTRS)
McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Simons, Mark; Wieczorek, Mark A.; Phillips, Roger J.; Neumann, Gregory A.; Aharonson, Oded; Head, James W.
2002-01-01
[i] From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T(sub e)) required to support the observed topographic load since the time of loading. We convert T(sub e) to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary shape ) in lieu of topography referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T, values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.
An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murad, Paul
2010-01-28
The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectorymore » of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.« less
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Thomas, H. H.; Wasilewski, P. J.
1981-01-01
An equivalent layer magnetization model is discussed. Inversion of long wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. Refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. The mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. It is suggested that such magnetization levels are achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character.
GPS detection of ionospheric perturbations following the January 17, 1994, northridge earthquake
NASA Technical Reports Server (NTRS)
Calais, Eric; Minster, J. Bernard
1995-01-01
Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements produce pressure waves that propagate at infrasonic speeds in the atmosphere. At ionospheric altitudes low frequency acoustic waves are coupled to ionispheric gravity waves and induce variations in the ionoispheric electron density. Global Positioning System (GPS) data recorded in Southern California were used to compute ionospheric electron content time series for several days preceding and following the January 17, 1994, M(sub w) = 6.7 Northridge earthquake. An anomalous signal beginning several minutes after the earthquake with time delays that increase with distance from the epicenter was observed. The signal frequency and phase velocity are consistent with results from numerical models of atmospheric-ionospheric acoustic-gravity waves excited by seismic sources as well as previous electromagnetic sounding results. It is believed that these perturbations are caused by the ionospheric response to the strong ground displacement associated with the Northridge earthquake.
The fundamental parameters of the chromospherically active K2 dwarf Epsilon Eridani
NASA Technical Reports Server (NTRS)
Drake, Jeremy J.; Smith, Geoffrey
1993-01-01
A silicon array detector was used to record regions exhibiting calcium and iron lines in the spectrum of the chromospherically active K2 dwarf Epsilon Eri at a resolution of 120,000 and with an SNR of not less than 200. The effective temperature, surface gravity, logarithmic iron and calcium abundances, and microturbulence are determined. Three high-excitation lines of Fe I were found to yield anomalously low iron abundances; it is postulated that the origin of the anomaly lies in the nonthermal excitation of the upper photosphere caused by chromospheric emission. It is shown that Epsilon Eri is in an evolutionary stage consistent with an M/solar mass of 0.85 theoretical zero-age main-sequence model. It is suggested that Epsilon Eri is almost certainly a young star of slightly less than one solar mass.
Plouff, Donald
2000-01-01
Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first must be converted (compiled) into an executable form on the user's computer. Although program testing was done in a UNIX (tradename of American Telephone and Telegraph Company) computer environment, it is anticipated that only a system-dependent date-and-time function may need to be changed for adaptation to other computer platforms that accept standard Fortran code.d del iliscipit volorer sequi ting etue feum zzriliquatum zzriustrud esenibh ex esto esequat.
Temperature, gravity, and bolometric correction scales for non-supergiant OB stars
NASA Astrophysics Data System (ADS)
Nieva, M.-F.
2013-02-01
Context. Precise and accurate determinations of the atmospheric parameters effective temperature and surface gravity are mandatory to derive reliable chemical abundances in OB stars. Furthermore, fundamental parameters like distances, masses, radii, luminosities can also be derived from the temperature and gravity of the stars. Aims: Atmospheric parameters recently determined at high precision with several independent spectroscopic indicators in non-local thermodynamic equilibrium, with typical uncertainties of ~300 K for temperature and of ~0.05 dex for gravity, are employed to calibrate photometric relationships. This is in order to investigate whether a faster tool to estimate atmospheric parameters can be provided. Methods: Temperatures and gravities of 30 calibrators, i.e. well-studied OB main sequence to giant stars in the solar neighbourhood, are compared to reddening-independent quantities of the Johnson and Strömgren photometric systems, assuming normal reddening. In addition, we examine the spectral and luminosity classification of the star sample and compute bolometric corrections. Results: Calibrations of temperatures and gravities are proposed for various photometric indices and spectral types. Once the luminosity of the stars is well known, effective temperatures can be determined at a precision of ~400 K for luminosity classes III/IV and ~800 K for luminosity class V. Furthermore, surface gravities can reach internal uncertainties as low as ~0.08 dex when using our calibration to the Johnson Q-parameter. Similar precision is achieved for gravities derived from the β-index and the precision is lower for both atmospheric parameters when using the Strömgren indices [c1] and [u - b] . In contrast, external uncertainties are larger for the Johnson than for the Strömgren calibrations. Our uncertainties are smaller than typical differences among other methods in the literature, reaching values up to ± 2000 K for temperature and ± 0.25 dex for gravity, and in extreme cases, + 6000 K and ± 0.4 dex, respectively. A parameter calibration for sub-spectral types is also proposed. Moreover, we present a new bolometric correction relation to temperature based on our empirical data, rather than on synthetic grids. Conclusions: The photometric calibrations presented here are useful tools to estimate effective temperatures and surface gravities of non-supergiant OB stars in a fast manner. This is also applicable to some single-line spectroscopic binaries, but caution has to be taken for undetected double-lined spectroscopic binaries and single objects with anomalous reddening-law, dubious photometric quantities and/or luminosity classes, for which the systematic uncertainties may increase significantly. We recommend to use these calibrations only as a first step of the parameter estimation, with subsequent refinements based on spectroscopy. A larger sample covering more uniformly the parameter space under consideration will allow refinements to the present calibrations. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max- Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2001-2.2-011 and H2005-2.2-016.Based on observations collected at the European Southern Observatory, Chile, ESO 074.B-0455(A) and from the ESO Archive.Based on spectral data retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP).Appendices A and B are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.
2011-03-01
The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.
Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P
2016-04-01
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.
Oliva, Michele; Dunand, Christophe
2007-01-01
Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.
Tunable anisotropic anomalous Nernst effect and orbital magnetization in Floquet Weyl semimetals
NASA Astrophysics Data System (ADS)
Niu, Zhi Ping; Wu, Xueshi
2018-03-01
Weyl semimetals and nodal line semimetals display a host of novel properties. Floquet Weyl semimetals with tunable Weyl points can be obtained from nodal line semimetals under the circularly polarized off-resonant light. Here we theoretically investigate the anomalous Nernst effect and orbital magnetization in Floquet Weyl semimetals. Due to the anisotropy of the band structure in Floquet Weyl semimetals, highly anisotropic Berry phase mediated anomalous Nernst effect and orbital magnetization in the absence of magnetic field are observed, indicating orientation-dependent applications in the design of nanodevices. The amplitude and sign of anomalous Nernst coefficient and orbital magnetization can be tuned by the light direction, amplitude and polarization. The effect of the chemical potential on anomalous Nernst coefficient and orbital magnetization is also discussed. The light-modulated anomalous Nernst effect and orbital magnetization make Floquet Weyl semimetals potential candidates for thermoelectric devices.
Anomalous magnon Nernst effect of topological magnonic materials
NASA Astrophysics Data System (ADS)
Wang, X. S.; Wang, X. R.
2018-05-01
The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.
Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring
NASA Astrophysics Data System (ADS)
Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo
2011-12-01
We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.
Axion like particles and the inverse seesaw mechanism
Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; ...
2015-05-13
Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomalymore » cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.« less
Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.
NASA Astrophysics Data System (ADS)
Alemu, T. B.; Abdelsalam, M. G.
2017-12-01
The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging of faster shear wave velocity beneath the southwestern MSB at 80 km depth by previous studies mimic the surface and shallow subsurface features that we interpret as indicative of major characteristics of ICONS. Due to their location away from active plate boundaries, most ICONS are buried since the time of their formation. The MSB represents a rare example of a completely exhumed ICONS.
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng
2017-08-01
We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.
Probable Mid-Miocene Caldera in the Modoc Plateau, Northeast California
NASA Astrophysics Data System (ADS)
Bowens, T. E.; Grose, T. L.
2001-12-01
Regional geologic mapping within the Modoc Plateau has resulted in the discovery of a large volcanotectonic anomaly some 21-km in diameter approximately 50-km WSW of the city of Alturas in Modoc County, California. Centrally located within this anomaly lies a structural depression some 11-km in diameter which, based on structural, lithologic, and geophysical characteristics, is believed to represent a deeply eroded mid-Miocene caldera. The region extending outward some 5-km from the proposed caldera displays a sharp, localized structural deflection from a NNW to a WNW structural grain. Lying inboard of this deflection, a series of regionally discordant E-W to NE trending, generally down to the north, normal faults were discovered which are believed to represent rim faults to an ancient caldera. Bedding within the hanging wall of these discordant structures displays highly contorted and regionally anomalous dips. By stereographic removal of the regional northeast dip overprinting the area, the anomalous dips were found to display a radial, steeply inward dipping pattern in close proximity to the proposed rim structures while dips located further inboard are generally flat-lying. Lithologies within the proposed caldera are regionally anomalous and include abundant tuffaceous and flow dominated breccias, closed basin organic sedimentary facies, and an anomalous concentration of volcanic centers of both mafic and felsic compositions. One of these intrusives was age dated at 12.9 Ma indicating the anomaly formed during mid-Miocene time. The location of the proposed caldera is associated with a +20 mgal gravity high, which stands in contrast to a lesser high of +10 mgal associated with the Medicine Lake Caldera some 50-km to the northwest. This combination of structural, lithologic, and geophysical evidence leads to the interpretation of a caldera at this location, herein termed the Stone Coal Valley Caldera.
Fractional Diffusion Equations and Anomalous Diffusion
NASA Astrophysics Data System (ADS)
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
NASA Astrophysics Data System (ADS)
Sengar, Vivek K.; Champati Ray, P. K.; Chattoraj, Shovan L.; Venkatesh, A. S.; Sajeev, R.; Konwar, Purnima; Thapa, Shailaja
2017-10-01
The objective of this work is to identify the potential zones for detailed mineral exploration studies in areas adjoining to a copper prospect using Remotely Sensed data sets. In this study visualization of ASTER data has been enhanced to highlight the mineral-rich areas using various remote sensing techniques such as colour composites and band ratios. VNIR region of ASTER is significant to detect iron oxides while, clay minerals, carbonates and chlorites have characteristic absorption in the SWIR wavelength region. Therefore, an attempt has been made to target the mineral abundant regions through ASTER data processing. Height based information was extracted using high-resolution ALOSDEM to analyse the topographical controls in the region considering the fact that mineral deposits often found associated with geological structures and geomorphological units. Gravity data was used to generate gravity anomaly map which gives clues about subsurface density differences. In this context, base metal ores may show anomalous (high) gravity values in comparison to the non-mineralised areas. Outputs from all the data sets were analysed and correlated with the geological map and available literature. Final validation of results has been done through proper ground checks and laboratory analysis of rock samples collected from the litho-units present in the study area. Based on this study some new areas have been successfully demarcated which may be potential for base metal exploration.
Comment on the Exterior Solutions and Their Geometry in Scalar-Tensor Theories of Gravity
NASA Astrophysics Data System (ADS)
Tsuchida, T.; Watanabe, K.
1999-01-01
We study series of stationary solutions with asymptotic flatness properties in the Einstein-Maxwell-free scalar system because they are locally equivalent to the exterior solutions in some class of scalar-tensor theories of gravity. First, we classify spherical exterior solutions into two types of solutions, an apparently black hole type solution and an apparently worm hole type solution. The solutions contain three parameters, and we clarify their physical significance. Second, we reduce the field equations for the axisymmetric exterior solutions. We find that the reduced equations are partially the same as the Ernst equations. As simple examples, we derive new series of static, axisymmetric exterior solutions, which correspond to Voorhees's solutions. We then establish a non-trivial relation between the spherical exterior solutions and our new solutions. Finally, since null geodesics have conformally invariant properties, we study the local geometry of the exterior solutions by using the optical scalar equations and find some anomalous behavior of the null geodesics.
Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors
NASA Technical Reports Server (NTRS)
Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1997-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.
Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone
Levandowski, William Brower; Boyd, Oliver; Ramirez-Guzman, Leonardo
2016-01-01
Knowledge of the local state of stress is critical in appraising intraplate seismic hazard. Inverting earthquake moment tensors, we demonstrate that principal stress directions in the New Madrid seismic zone (NMSZ) differ significantly from those in the surrounding region. Faults in the NMSZ that are incompatible with slip in the regional stress field are favorably oriented relative to local stress. We jointly analyze seismic velocity, gravity, and topography to develop a 3-D crustal and upper mantle density model, revealing uniquely dense lower crust beneath the NMSZ. Finite element simulations then estimate the stress tensor due to gravitational body forces, which sums with regional stress. The anomalous lower crust both elevates gravity-derived stress at seismogenic depths in the NMSZ and rotates it to interfere more constructively with far-field stress, producing a regionally maximal deviatoric stress coincident with the highest concentration of modern seismicity. Moreover, predicted principal stress directions mirror variations (observed independently in moment tensors) at the NMSZ and across the region.
NASA Astrophysics Data System (ADS)
Morsy, Mona; Rashed, Mohamed
2013-01-01
Sharm El-Sheikh waters were suddenly hit by hydrocarbon spills which created a serious threat to the prosperous tourism industry in and around the city. Analysis of soil samples, water samples, and seabed samples collected in and around the contaminated bay area showed anomalous levels of hydrocarbons. An integrated geophysical investigation, using magnetic, gravity, and ground penetrating radar geophysical tools, was conducted in the headland overlooking the contaminated bay in order to delineate the possible subsurface source of contamination. The results of the geophysical investigations revealed three underground manmade reinforced concrete tanks and a complicated network of buried steel pipes in addition to other unidentified buried objects. The depths and dimensions of the discovered objects were determined. Geophysical investigations also revealed the presence of a north-south oblique slip fault running through the eastern part of the studied area. Excavations, conducted later on, confirmed the presence of one of the tanks delineated by the geophysical surveys.
Geophysical analysis for the Ada Tepe region (Bulgaria) - case study
NASA Astrophysics Data System (ADS)
Trifonova, Petya; Metodiev, Metodi; Solakov, Dimcho; Simeonova, Stela; Vatseva, Rumiana
2013-04-01
According to the current archeological investigations Ada Tepe is the oldest gold mine in Europe with Late Bronze and Early Iron age. It is a typical low-sulfidation epithermal gold deposit and is hosted in Maastrichtian-Paleocene sedimentary rocks above a detachment fault contact with underlying Paleozoic metamorphic rocks. Ada Tepe (25o.39'E; 41o.25'N) is located in the Eastern Rhodope unit. The region is highly segmented despite the low altitude (470-750 m) due to widespread volcanic and sediment rocks susceptible to torrential erosion during the cold season. Besides the thorough geological exploration focused on identifying cost-effective stocks of mineral resources, a detailed geophysical analysis concernig diferent stages of the gold extraction project was accomplished. We present the main results from the geophysical investigation aimed to clarify the complex seismotectonic setting of the Ada Tepe site region. The overall study methodology consists of collecting, reviewing and estimating geophysical and seismological information to constrain the model used for seismic hazard assessment of the area. Geophysical information used in the present work consists of gravity, geomagnetic and seismological data. Interpretation of gravity data is applied to outline the axes of steep gravity transitions marked as potential axes of faults, flexures and other structures of dislocation. Direct inverse techniques are also utilized to estimate the form and depth of anomalous sources. For the purposes of seismological investigation of the Ada Tepe site region an earthquake catalogue is compiled for the time period 510BC - 2011AD. Statistical parameters of seismicity - annual seismic rate parameter, ?, and the b-value of the Gutenberg-Richter exponential relation for Ada Tepe site region, are estimated. All geophysical datasets and derived results are integrated using GIS techniques ensuring interoperability of data when combining, processing and visualizing obtained information from different sources.
NASA Astrophysics Data System (ADS)
Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab
2018-03-01
b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.
Anomalous effects of dense matter under rotation
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki
2018-02-01
We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.
Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium
NASA Astrophysics Data System (ADS)
Baily, Scott Alan
The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isachsen, Y.W.
1978-09-27
Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less
Higgs mass and muon anomalous magnetic moment in supersymmetric models with vectorlike matters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, Motoi; Hamaguchi, Koichi; Institute for the Physics and Mathematics of the Universe
2011-10-01
We study the muon anomalous magnetic moment (muon g-2) and the Higgs boson mass in a simple extension of the minimal supersymmetric (SUSY) standard model with extra vectorlike matters, in the frameworks of gauge-mediated SUSY breaking (GMSB) models and gravity mediation (mSUGRA) models. It is shown that the deviation of the muon g-2 and a relatively heavy Higgs boson can be simultaneously explained in large tan{beta} region. (i) In GMSB models, the Higgs mass can be more than 135 GeV (130 GeV) in the region where the muon g-2 is consistent with the experimental value at the 2{sigma} (1{sigma}) level,more » while maintaining the perturbative coupling unification. (ii) In the case of mSUGRA models with universal soft masses, the Higgs mass can be as large as about 130 GeV when the muon g-2 is consistent with the experimental value at the 2{sigma} level. In both cases, the Higgs mass can be above 140 GeV if the g-2 constraint is not imposed.« less
Thermally driven anomalous Hall effect transitions in FeRh
NASA Astrophysics Data System (ADS)
Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.
2018-04-01
Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abers, G.A.
1994-03-10
Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less
Creating unstable velocity-space distributions with barium injections
NASA Technical Reports Server (NTRS)
Pongratz, M. B.
1983-01-01
Ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped charges are discussed. Active experiments confirm that anomalous ionization processes may operate, but photoionization accounts for the production of the bulk of the barium ions. Pitch-angle diffusion and/or velocity-space diffusion may occur, but observations of barium ions moving upwards against gravity suggests that the ions retain a significant enough fraction of their initial perpendicular velocity to provide a mirror force. The barium ion plasmas should have a range of Alfven Mach numbers and plasma betas. Because the initial conditions can be predicted these active experiments should permit testing plasma instability hypotheses.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ander, M.E.; Heiken, G.; Eichelberger, J.
1981-05-01
A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed.more » The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.« less
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
NASA Astrophysics Data System (ADS)
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).
Tunneling Anomalous and Spin Hall Effects.
Matos-Abiague, A; Fabian, J
2015-07-31
We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
NASA Technical Reports Server (NTRS)
Noever, David; Li, Ning; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair electron density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (about 10-6 g/cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with the percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10(exp 4) was reported above a stationary (non-rotating) superconductor. In the present experiments reported using a sensitive gravimeter (resolution <10(exp -9) unit gravity or variation of 10(exp -6) cm/sq s in accelerations), bulk YBCO superconductors were stably levitated in a DC magnetic field (0.6 Tesla) subject to lateral AC fields (60 Gauss at 60 Hz) and rotation. With magnetic shielding, thermal control and buoyancy compensation, changes in acceleration were measured to be less than 2 parts in 10(exp 8) of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between high-Tc superconductors and gravity. Latest test results will be reported, along with status for future improvements and prospects.
NASA Astrophysics Data System (ADS)
Poland, Michael P.; Carbone, Daniele
2018-03-01
Gas piston events within the summit eruptive vent of Kīlauea Volcano, Hawai`i, are characterized by increases in lava level and by decreases in seismic energy release, spattering, and degassing. During 2010-2011, gas piston events were especially well manifested, with lava level rises of tens of meters over the course of several hours, followed by a sudden drop to preevent levels. The changes in lava level were accompanied by directly proportional changes in gravity, but ground deformation determined from tilt was anticorrelative. The small magnitude of the gravity changes, compared to the large changes in volume within the vent during gas pistons, suggests that pistoning involves the accumulation of a very low-density (100-200 kg/m3) foam at the top of the lava column. Co-event ground tilt indicates that rise in lava level is paradoxically associated with deflation (the opposite is usually true), which can be modeled as an increase in the gas content of the magma column between the source reservoir and the surface. Gas pistoning behavior is therefore associated with not only accumulation of a shallow magmatic foam but also more bubbles within the feeder conduit, probably due to the overall decrease in gas emissions from the lava lake during piston events.
Poland, Michael; Carbone, Daniele
2018-01-01
Gas piston events within the summit eruptive vent of Kīlauea Volcano, Hawai‘i, are characterized by increases in lava level and by decreases in seismic energy release, spattering, and degassing. During 2010–2011, gas piston events were especially well manifested, with lava level rises of tens of meters over the course of several hours, followed by a sudden drop to preevent levels. The changes in lava level were accompanied by directly proportional changes in gravity, but ground deformation determined from tilt was anticorrelative. The small magnitude of the gravity changes, compared to the large changes in volume within the vent during gas pistons, suggests that pistoning involves the accumulation of a very low‐density (100–200 kg/m3) foam at the top of the lava column. Co‐event ground tilt indicates that rise in lava level is paradoxically associated with deflation (the opposite is usually true), which can be modeled as an increase in the gas content of the magma column between the source reservoir and the surface. Gas pistoning behavior is therefore associated with not only accumulation of a shallow magmatic foam but also more bubbles within the feeder conduit, probably due to the overall decrease in gas emissions from the lava lake during piston events.
Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data
NASA Technical Reports Server (NTRS)
Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.
2006-01-01
GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.
Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme
NASA Astrophysics Data System (ADS)
Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing
2017-05-01
Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.
A note on 4D heterotic string vacua, FI-terms and the swampland
NASA Astrophysics Data System (ADS)
Aldazabal, Gerardo; Ibáñez, Luis E.
2018-07-01
We present a conjecture for the massless sector of perturbative 4D N = 1 heterotic (0 , 2) string vacua, including U(1) n gauge symmetries, one of them possibly anomalous (like in standard heterotic compactifications). Mathematically it states that the positive hull generated by the charges of the massless chiral multiplets spans a sublattice of the full charge lattice. We have tested this conjecture in many heterotic N = 1 compactifications in 4D. Our motivation for this conjecture is that it allows to understand a very old puzzle in (0 , 2) N = 1 heterotic compactification with an anomalous U (1). The conjecture guarantees that there is always a D-flat direction cancelling the FI-term and restoring N = 1 SUSY in a nearby vacuum. This is something that has being verified in the past in a large number of cases, but whose origin has remained obscure for decades. We argue that the existence of a lattice generated by massless states guarantees the instability of heterotic non-BPS extremal blackholes, as required by Weak Gravity Conjecture arguments. Thus the pervasive existence of these nearby FI-cancelling vacua would be connected with WGC arguments.
NASA Astrophysics Data System (ADS)
Secco, Richard A.; Sukara, Reynold E.
2016-04-01
There are many lab exercises for upper-level school students and freshman undergraduates to measure the value of the local acceleration due to gravity (g) near Earth's surface. In these exercises, the value of g is usually taken to be constant. The approach is often based on measuring the period of a pendulum that is inversely proportional to the square root of g. Traditional measurements of the period of a simple or inclined pendulum involve use of a stopwatch to measure the time required to complete a number of oscillations, but other more sophisticated measurement techniques for greater accuracy, such as a photogate timing system, measuring the time-dependent tension on the string, or using a stepper motor connected to a conical pendulum have been described. Using video imaging, the mechanics of objects dropped from some height has also been used to determine g. In physics courses where physical principles are applied to Earth problems, however, the goal is usually to measure a change in a potential field, such as Earth's gravitational field, in order to determine anomalous subsurface characteristics. In this paper, we describe an indoor exercise to measure the local change in g resulting from a large anomalous mass near the observation location.
Background and Recent Progress in Anomalous Transport Simulation
2017-07-19
NUMBER (Include area code) 19 July 2017 Briefing Charts 14 June 2017 - 19 July 2017 Background and Recent Progress in Anomalous Transport Simulation ...and Recent Progress in Anomalous Transport Simulation 19 Jul 2017 Justin Koo AFRL/RQRS Edwards AFB, CA 2DISTRIBUTION A: Approved for public release...Baalrud, S.D. and Chabert, P., “Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Furuya, M.; Okubo, S.; Kimata, F.
2006-12-01
Eruptive and caldera-forming activity at Miyakejima volcano, Japan, was accompanied by more than 40 days of seismic swarms, including more than five M6 (or greater) earthquakes, and significant crustal deformation in nearby islands. Here we review ground deformation and gravity changes at Miyakejima and other nearby islands prior to, during, and after the 2000 caldera collapse episode at Miyakejima. While ground displacements observed at Izu-islands can be basically predicted from the Philippine Sea Plate motion in a global perspective, Miyakejima was undergoing inflation if examined locally within the island before the 2000 unrest. It is also known that a couple of leveling benchmarks inside the previous caldera were secularly subsiding [Miyazaki, 1990]. Using JERS1's InSAR data, Furuya~[2004] also confirmed this. Was the localized subsidence before 2000 a precursor for the caldera collapse? We will argue that this is probably not the case. After the beginning of the earthquake swarm on 26 June 2000, significant ground displacements were recorded at Miyakejima both in the permanent GPS stations [e.g., Nishimura et al. 2001] and tiltmeters by the NIED [Ukawa et al. 2001]. Using both FG5 absolute gravimeter and LaCoste-Romberg G-type gravimeters, high precision gravity survey has been repeatedly carried out by ERI, University of Tokyo. Furuya et al~[2003a] showed spatial-temporal gravity changes from the beginning stage to early 2001. Notably, they detected a gravity decrease of as much as 145 μgals (1 μgal=10^{-8} m/s2) at the summit area 2 days prior to the collapse, and interpreted as reflecting the formation of a large void beneath the volcano. Correcting for the effect of topography change due to the collapse, subsequent gravity change data suggested an effective density decrease until the middle August 2000, followed by a significant density increase toward at least November 2000. Those spatial and temporal gravity changes were associated with the explosive eruptions, refilling of magma chamber, and the unprecedented amount of volcanic gas discharge. Kozushima is another volcano island located ~40 km NW to Miyakejima. Although it has been dormant for ~1200 years, it was revealing unexpected displacements that were inconsistent with the PHS motion before 2000 [Kimata et al 1994].Although it is certain that a large volume of dike laterally intruded from Miyakejima toward Kozushima in view of the hypocenter migration, it remained uncertain if the long-lasting earthquake swarm was completely maintained by magma from Miyakejima or if another magma source nearby Kozushima was involved. Using GPS and gravity change data, Furuya et al~[2003b] speculates that the latter hypothesis is more likely. As of September 2006, ground movements of all the GPS sites have significantly slowed down in comparison to those observed during 2000-2001.One notable deformation is the baseline length change between Kozushima and Niijima observed by GEONET, which still significantly exhibits entension at a rate of ~2cm/year; no other significant changes are observed among other islands. Since we did not observe such extension before 2000, we may hypothesize that some magma and/or fault system was activated, triggered by the 2000 dike intrusion episode. We will need clarify what sources are actually generating such a long-lasting anomalous displacement.
Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure
NASA Astrophysics Data System (ADS)
Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing
2018-02-01
Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.
Morphological classification and comparison of suboccipital muscle fiber characteristics
Yamamoto, Masahito; Kitamura, Kei; Morita, Sumiharu; Nagakura, Ryotaro; Matsunaga, Satoru; Abe, Shinichi
2017-01-01
In an attempt to clarify the function of the suboccipital muscles, we performed morphological observation of the suboccipital muscles for variations in the muscle belly and compared the morphology of their muscle fibers in terms of cross-sectional area by immunostaining with anti-myosin heavy chain antibodies. The cadavers of 25 Japanese individuals were used: 22 for morphological examinations and three for histological examinations. Among samples of the rectus capitis posterior major muscle (RCPma) and rectus capitis posterior minor muscle (RCPmi), 86.4% had a typical muscle appearance with a single belly, and 13.6% had an anomalous morphology. None of the samples of the obliquus capitis superior (OCS) or obliquus capitis inferior (OCI) muscles had an anomalous appearance. Measurement of cross-sectional area revealed that fast-twitch muscle fibers in the RCPma and OCI had a significantly greater cross-sectional area than those of the RCPmi and OCS. The cross-sectional area of intermediate muscle fibers was also significantly greater in the OCS than in the RCPma, RCPmi, and OCI. The cross-sectional area of slow-twitch muscle fibers was significantly greater in the OCS than in the RCPma, RCPmi, and OCI, and the RCPmi showed a significantly greater cross-sectional area for slow-twitch muscle fibers than did the RCPma, and OCI. Our findings indicate that the RCPmi and OCS exert a greater force than the RCPma and OCI, and act as anti-gravity agonist muscles of the head. Prolonged head extension in individuals with anomalous suboccipital muscle groups could result in dysfunction due to undue stress. PMID:29354295
Morphological classification and comparison of suboccipital muscle fiber characteristics.
Yamauchi, Masato; Yamamoto, Masahito; Kitamura, Kei; Morita, Sumiharu; Nagakura, Ryotaro; Matsunaga, Satoru; Abe, Shinichi
2017-12-01
In an attempt to clarify the function of the suboccipital muscles, we performed morphological observation of the suboccipital muscles for variations in the muscle belly and compared the morphology of their muscle fibers in terms of cross-sectional area by immunostaining with anti-myosin heavy chain antibodies. The cadavers of 25 Japanese individuals were used: 22 for morphological examinations and three for histological examinations. Among samples of the rectus capitis posterior major muscle (RCPma) and rectus capitis posterior minor muscle (RCPmi), 86.4% had a typical muscle appearance with a single belly, and 13.6% had an anomalous morphology. None of the samples of the obliquus capitis superior (OCS) or obliquus capitis inferior (OCI) muscles had an anomalous appearance. Measurement of cross-sectional area revealed that fast-twitch muscle fibers in the RCPma and OCI had a significantly greater cross-sectional area than those of the RCPmi and OCS. The cross-sectional area of intermediate muscle fibers was also significantly greater in the OCS than in the RCPma, RCPmi, and OCI. The cross-sectional area of slow-twitch muscle fibers was significantly greater in the OCS than in the RCPma, RCPmi, and OCI, and the RCPmi showed a significantly greater cross-sectional area for slow-twitch muscle fibers than did the RCPma, and OCI. Our findings indicate that the RCPmi and OCS exert a greater force than the RCPma and OCI, and act as anti-gravity agonist muscles of the head. Prolonged head extension in individuals with anomalous suboccipital muscle groups could result in dysfunction due to undue stress.
Continued development of mature field: west Cameron Block 45 field, Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, S.R.; Fox, J.F.
Initial acreage acquisition and exploration of the West Cameron Block 45 field, located offshore Louisiana, were based on reconnaissance gravity surveys that revealed an anomalous high across the area. Several phases of development drilling activity have been conducted in the field since its discovery in March 1949. Nearly four decades after initial exploration began, an integrated field study incorporating all available geological, geophysical, petrophysical, and engineering data was undertaken to evaluate the remaining potential of the field. As a result of this study, a detailed structural and stratigraphic framework was developed, the controls on reservoir production performance were established, andmore » additional drillable prospects were delineated.« less
NASA Astrophysics Data System (ADS)
Yang, C.; Li, T.; Smith, A. K.; Dou, X.
2017-12-01
Using the Specified-Dynamic (SD) Whole Atmosphere Community Climate Model (WACCM), we investigated the effects of the Madden-Julian oscillation (MJO) on the mid-winter stratosphere and mesosphere in the southern hemisphere (SH). The most significant responses of the SH polar cap temperature to the MJO are found 30 days after MJO Phase 1 (P1) and 10 days after the MJO Phase 5 (P5) in both the ERA-interim reanalysis and the SD-WACCM simulation. The 200 and 500 hPa geopotential height anomalies in the SH reveal that wave trains emanate from the Indian and Pacific Oceans when the MJO convection is enhanced in the eastern Indian Ocean and the western Pacific. As a result, the upward propagation and dissipation of planetary waves (PWs) in the mid- and high- latitude of the SH stratosphere is significantly enhanced, the Brewer-Dobson (BD) circulation in the SH stratosphere strengthens, and temperatures in the SH polar stratosphere increase. Wavenumber 1 in the stratosphere is the dominant component of the PW perturbation induced by the MJO convection. Filtering by the modified SH stratospheric winds alters the gravity waves (GWs) that propagate to the mesosphere. The dissipation and breaking of these waves causes anomalous downwelling in the mid- and high- latitudes of the mesosphere. The circulation changes, in turn, result in significant anomalous cooling in the mesosphere in response to MJO P1 and P5 at lags of 10 days and 30 days, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M; Sauck, William; Sultan, Mohamed
2013-11-09
Groundwater has been identified as one of the major freshwater sources that can potentially meet the growing demands of Egypt’s population. Gravity data (from 381 ground gravity stations) were collected, processed, and analyzed together with the available aeromagnetic (800 line-km) data to investigate the hydrogeologic and structural settings, areal distribution, geometry, and water storage of the aquifers in El Qaa coastal plain in the southwest Sinai Peninsula, and to assess their longevity given projected extraction rates. Findings include (1) complete Bouguer anomaly and total magnetic intensity maps show two connected sub-basins separated by a narrow saddle with an average basinmore » length of 43 km and an average width of 12 km; (2) two-dimensional modeling of both gravity and magnetic data indicates basin fill with a maximum thickness of 3.5 km; (3) using anomalous residual gravity, the volume of water in storage was estimated at 40–56 km3; and (4) progressive increases in extraction rates over time will deplete up to 40 % of the aquifers’ volume in 200–230 years and will cause the water quality to deteriorate due to seawater intrusion in 45 years. Similar geophysical exploration campaigns, if conducted over the entire coastal plains of the Red Sea and the Gulfs of Suez and Aqaba, could assist in the development of sound and sustainable management schemes for the freshwater resources in these areas. The adopted techniques could pave the way toward the establishment of sustainable utilization schemes for a much larger suite of similar aquifers worldwide.« less
Optimization schemes for the inversion of Bouguer gravity anomalies
NASA Astrophysics Data System (ADS)
Zamora, Azucena
Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
Predicted and Totally Unexpected in the Energy Frontier Opened by LHC
NASA Astrophysics Data System (ADS)
Zichichi, Antonino
2011-01-01
Opening lectures. Sid Coleman and Erice / A. Zichichi. Remembering Sidney Coleman / G.'t Hooft -- Predicted signals at LHC. From extra-dimensions: Multiple branes scenarios and their contenders / I. Antoniadis. Predicted signals at the LHC from technicolor / A. Martin. The one-parameter model at LHC / J. Maxin, E. Mayes and D. V. Nanopoulos. How supercritical string cosmology affects LHC / D. V. Nanopoulos. High scale physics connection to LHC data / P. Nath. Predicted signatures at the LHC from U(I) extensions of the standard model / P. Nath -- Hot theoretical topics. Progress on the ultraviolet finiteness of supergravity / Z. Bern. Status of supersymmetry: Foundations and applications / S. Ferrara and A. Marrani. Quantum gravity from dynamical triangulation / R. Loll. Status of superstring and M-theory / J. H. Schwarz. Some effects of instantons in QCD / G.'t Hooft. Crystalline gravity / G.'t Hooft -- QCD problems. Strongly coupled gauge theories / R. Kenway. Strongly interacting matter at high energy density / L. McLerran. Seminars on specialized topics. The nature and the mass of neutrinos. Majorana vs. Dirac / A. Bettini. The anomalous spin distributions in the nucleon / A. Deshpande. Results from PHENIX at RHIC / M. J. Tannenbaum -- Highlights from laboratories. Highlights from RHIC / Y. Akiba. News from the Gran Sasso Underground Laboratory / E. Coccia. Highlights from TRIUMF / N. S. Lockyer. Highlights from Superkamiokande / M. Koshiba. Highlights from Fermilab / P. J. Oddone. Highlights from IHEP / Y. Wang -- Special sessions for new talents. Fake supergravity and black hole evolution / A. Gnecchi. Track-based improvement in the jet transverse momentum resolution for ATLAS / Z. Marshall. Searches for supersymmetric dark matter with XENON / K. Ni. Running of Newton's constant and quantum gravitational effects / D. Reeb.
Simultaneous solution of the geoid and the surface density anomalies
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.
2012-04-01
The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed methodology is applied for identification of the salt geological structures as well as geoid computations within the northern coasts of Persian Gulf.
Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers
NASA Astrophysics Data System (ADS)
Tong, Wen-Yi; Duan, Chun-Gang
2017-08-01
In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.
Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis.
Liu, Qun; Hendrickson, Wayne A
2017-01-01
The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.
NASA Astrophysics Data System (ADS)
Rindani, Saurabh D.
2000-06-01
We obtain analytic expressions for the energy and polar-angle double differential distributions of a secondary lepton l+(l-) arising from the decay of t (tbar) in with an anomalous tbW decay vertex. We also obtain analytic expressions for the various differential cross-sections with the lepton energy integrated over. In this case, we find that the angular distributions of the secondary lepton do not depend on the anomalous coupling in the decay, regardless of possible anomalous couplings occurring in the production amplitude for . Our study includes the effect of longitudinal e- and e+ beam polarization. We also study the lepton energy and beam polarization dependence of certain CP-violating lepton angular asymmetries arising from an anomalous tbW decay vertex and compare them with the asymmetries arising due to CP-violation in the production process due to the top electric or weak dipole moment.
Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2
NASA Astrophysics Data System (ADS)
Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin
2017-10-01
Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.
NASA Technical Reports Server (NTRS)
Song, Yan; Lysak, Robert L.
1992-01-01
A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.
Analyzing "Real-World" Anomalous Data after Experimentation with a Virtual Laboratory
ERIC Educational Resources Information Center
Toth, Eva Erdosne
2016-01-01
Developing effective pedagogies to help students examine anomalous data is critical for the education of the next generation of scientists and engineers. By definition anomalous data do not concur with prior knowledge, theories and expectations. Such data are the common outcome of empirical investigation in hands-on laboratories (HOLs). These…
Anomalous quartic couplings in W+W- gamma production at e+e- colliders
NASA Astrophysics Data System (ADS)
Leil, G. A.; Stirling, W. J.
1995-04-01
We study the process $e^+e^- \\rightarrow W^+W^- \\gamma$ at high-energy $e^+ e^-$ colliders to investigate the effect of genuine quartic $W^+W^-\\gamma\\gamma$ and $W^+W^- Z\\gamma$ anomalous couplings on the cross section. Deviations from the Standard Model predictions are quantified. We show how bounds on the anomalous couplings can be improved by choosing specific initial state helicity combinations. The dependence of the anomalous contributions on the collider energy is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderveld, R. Ali; Flanagan, Eanna E.; Wasserman, Ira
Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In 'Swiss cheese' models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energymore » or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.« less
Crustal structure of Mars from gravity and topography
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Zuber, M. T.; Wieczorek, M. A.; McGovern, P. J.; Lemoine, F. G.; Smith, D. E.
2004-01-01
Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be >45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, post-dated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes.
Anomalous Nernst and Hall effects in magnetized platinum and palladium
NASA Astrophysics Data System (ADS)
Guo, G. Y.; Niu, Q.; Nagaosa, N.
2014-06-01
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band-structure calculations. We find that both the anomalous Hall (σxyA) and Nernst (αxyA) conductivities can be related to the spin Hall conductivity (σxyS) and band exchange splitting (Δex) by relations σxyA=Δex
Spin injection and detection via the anomalous spin Hall effect of a ferromagnetic metal
NASA Astrophysics Data System (ADS)
Das, K. S.; Schoemaker, W. Y.; van Wees, B. J.; Vera-Marun, I. J.
2017-12-01
We report a spin injection and detection mechanism via the anomalous Hall effect in a ferromagnetic metal. The anomalous spin Hall effect (ASHE) refers to the transverse spin current generated within the ferromagnet. We utilize the ASHE and its reciprocal effect to electrically inject and detect magnons in a magnetic insulator (yttrium iron garnet) in a nonlocal geometry. Our experiments reveal that permalloy has a comparable spin injection and detection efficiency to that of platinum, owing to the ASHE. We also demonstrate the tunability of the ASHE via the orientation of the permalloy magnetization, thus creating possibilities for spintronic applications.
Anomalous scaling of stochastic processes and the Moses effect
NASA Astrophysics Data System (ADS)
Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
Anomalous scaling of stochastic processes and the Moses effect.
Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
Extinct mid-ocean ridges and insights on the influence of hotspots at divergent plate boundaries
NASA Astrophysics Data System (ADS)
MacLeod, Sarah; Dietmar Müller, R.; Williams, Simon; Matthews, Kara
2016-04-01
We review all global examples of confirmed or suspected extinct mid-ocean ridges that are preserved in present-day ocean basins. Data on their spreading rate prior to extinction, time of cessation, length of activity, bathymetric and gravity signature are analysed. This analysis identifies some differences between subgroups of extinct ridges, including microplate spreading ridges, back-arc basin ridges and large-scale mid-ocean ridges. Crustal structure of extinct ridges is evaluated using gravity inversion to seek to resolve a long-standing debate on whether the final stages of spreading leads to development of thinned or thickened crust. Most of the ridges we assess have thinner crust at their axes than their flanks, yet a small number are found to have a single segment that is overprinted by an anomalous feature such as a seamount or volcanic ridge. A more complex cessation mechanism is necessary in these cases. The location of spreading centres at their time of cessation relative to hotspots was also evaluated using a global plate reconstruction. This review provides strong evidence for the long-term interaction of spreading centres with hotspots and plate boundaries have been frequently modified within the radius of a hotspot zone of influence.
Planetary astronomy: Rings, satellites, and asteroids
NASA Technical Reports Server (NTRS)
Greenberg, Richard
1988-01-01
Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.
Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.
2011-03-01
Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.
Could quantum gravity phenomenology be tested with high intensity lasers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magueijo, Joao; Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto M5S 3H8; Theoretical Physics Group, Imperial College, Prince Consort Road, London SW7 2BZ
2006-06-15
In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E{sub P}, but it is also possible that anomalous behavior strikes systems of particles with total energy near E{sub P}. This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E{sub P} do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) specialmore » relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest.« less
Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.
2015-01-01
We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central U.S. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems.
NASA Astrophysics Data System (ADS)
Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua
2016-12-01
Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.
Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Q.; Hendrickson, W.
2017-01-01
The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those thatmore » can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.« less
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-07-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-04-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
Effects of background gravity stimuli on gravity-controlled behavior
NASA Technical Reports Server (NTRS)
Mccoy, D. F.
1976-01-01
Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.
Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Wu, Di; Jiang, Zhengsheng
2014-02-14
Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Auslender, Aaron H.
1999-01-01
The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.
Investigation on dispersion in the active optical waveguide resonator
NASA Astrophysics Data System (ADS)
Qiu, Zihan; Gao, Yining; Xie, Wei
2018-03-01
Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-01-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635
An Anomalous Force on the Map Spacecraft
NASA Technical Reports Server (NTRS)
Starin, Scott R.; ODonnell, James R., Jr.; Ward, David K.; Wollack, Edward J.; Bay, P. Michael; Fink, Dale R.; Bauer, Frank (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) orbits the second Earth-Sun libration point (L2)-about 1.5 million kilometers outside Earth's orbit-mapping cosmic microwave background radiation. To achieve orbit near L2 on a small fuel budget, the MAP spacecraft needed to swing past the Moon for a gravity assist. Timing the lunar swing-by required MAP to travel in three high-eccentricity phasing loops with critical maneuvers at a minimum of two, but nominally all three, of the perigee passes. On the approach to the first perigee maneuver, MAP telemetry showed a considerable change in system angular momentum that threatened to cause on-board Failure Detection and Correction (FDC) to abort the critical maneuver. Fortunately, the system momentum did not reach the FDC limit; however, the MAP team did develop a contingency strategy should a stronger anomaly occur before or during subsequent perigee maneuvers, Simultaneously, members of the MAP team developed and tested various hypotheses for the cause of the anomalous force. The final hypothesis was that water was outgassing from the thermal blanketing and freezing to the cold side of the solar shield. As radiation from Earth warmed the cold side of the spacecraft, the uneven sublimation of frozen water created a torque on the spacecraft.
Butterfly effect in 3D gravity
NASA Astrophysics Data System (ADS)
Qaemmaqami, Mohammad M.
2017-11-01
We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.
True Anomalous Osmosis in Multi-Solute Model Membrane Systems
Grim, Eugene; Sollner, Karl
1960-01-01
The transport of liquid across charged porous membranes separating two electrolytic solutions of different composition consists of both a normal and an anomalous osmotic component. Anomalous osmosis does not occur with electroneutral membranes. Thus, with membranes which can be charged and discharged reversibly, normal osmosis can be measured with the membrane in the electroneutral state, and normal together with anomalous osmosis with the membrane in a charged state, the difference between these two effects being the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, in multi-solute systems with 0.2 and 0.4 osmolar solutions of a variety of electrolytes and of glucose against solutions of other solutes of the same, one-half, and twice these osmolarities. In the simpler systems the magnitude of the true anomalous osmosis can be predicted semiquantitatively by reference to appropriate single-solute systems. In isoosmolar systems with two electrolytic solutions the anomalous osmotic flow rates may reach 300 µl./cm.2 hr. and more; systems with electrolytic solutions against solutions of glucose can produce twice this rate. These fluxes are of the same order of magnitude as the liquid transport rates across such living structures as the mucosa of dog gall bladder, ileum, and urinary bladder. PMID:13708691
NASA Technical Reports Server (NTRS)
Adelman, Saul J.
1987-01-01
Elemental abundance analyses based on the coaddition of at least 10 2.4 A/mm Ila-O Dominion Astrophysical Observatory spectrograms have been performed for three mercury-manganese stars, 53 Tauri, Mu Leporis, and Kappa Cancri. These fine analyses show a greater degree of internal consistency than previous studies based on lower signal-to-noise data. Lines as weak as of order 3 mA are employed in these studies, and lines of atomic species not previously identified have been discovered. The status of 53 Tau as an anomalous member of this class is confirmed in that it lacks a Hg II 3984 A line even at the 2 mA level. Further, its surface gravity indicates it is less evolved than Mu Lep and Chi Cnc. Violations of the odd-even effect in the photospheric abundances of all three stars suggest that nonnuclear processes have operated in their atmospheres. Some of the values are substantially changed from their presumably initial solar values.
BFV-BRST quantization of two-dimensional supergravity
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-12-01
Using data from the Gravity Recovery and Climate Experiment (GRACE) mission, we derive statistically robust 'hotspot' regions of high probability of peak anomalous - i.e. with respect to the seasonal cycle - water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/mon). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hotspot regions to GRACE results, and that most exceptions are located in the Tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020 it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e. combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE-FO. J. Kusche et al. (2016): Mapping probabilities of extreme continental water storage changes from space gravimetry, Geophysical Research Letters, accepted online, doi:10.1002/2016GL069538
Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2017-10-01
The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.
Anomalous Diffraction in Crystallographic Phase Evaluation
Hendrickson, Wayne A.
2014-01-01
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017
López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
NASA Astrophysics Data System (ADS)
Lücke, O. H.; Gutknecht, B. D.
2014-12-01
Most of the forearc region along the Central American Subduction Zone shows a series of trench-parallel, positive gravity anomalies with corresponding gravity lows along the trench and toward the coast. These features extend from Guatemala to northern Nicaragua. However, the Costa Rican segment of the forearc does not follow this pattern. In this region, the along-trench gravity low is segmented, the coastal low is absent, and the forearc gravity high is located onshore at the Nicoya Peninsula which overlies the seismogenic zone. Geodetic and seismological studies along the Costa Rican Subduction Zone suggest the presence of coupled areas beneath the Nicoya Peninsula prior to the 2012, magnitude Mw 7.6 earthquake. These areas had previously been associated with asperities. Previous publications have proposed a mechanical model for the generation of asperities along the Chilean convergent margin based on the structure of the overriding plate above the seismogenic zone in which dense igneous bodies disturb the state of stress on the seismogenic zone and may influence seismogenic processes. In Costa Rica, surface geology and gravity data indicate the presence of dense basalt/gabbro crust overlying the seismogenic zone where the coupling is present. Bouguer anomaly values in this region reach up to 120×10-5 m/s2, which are the highest for Costa Rica. In this work, the state of stress on the Cocos-Caribbean plate interface is calculated based on the geometry and mass distribution of a 3D density model of the subduction zone as interpreted from gravity data from combined geopotential models. Results show a correlation between the coupled areas at the Nicoya Peninsula and the presence of stress anomalies on the plate interface. The stress anomalies are calculated for the normal component of the vertical stress on the seismogenic zone and are interpreted as being generated by the dense material which makes up the forearc in the area. The dense material of the Nicoya Complex mafic rocks and the topographic load of the peninsula on the seismogenic zone may play a role in the distribution of coupled areas and the seismic behavior of the region since the anomalous normal stress on the plate interface may increase the shear stress threshold for rupture.
Living without supersymmetry—the conformal alternative and a dynamical Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-11-01
We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
Marangoni Effects in the Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
Ahmed, Sayeed; Carey, Van P.; Motil, Brian
1996-01-01
Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.
Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Jekeli, Christopher
1989-01-01
The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.
Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina
2016-07-26
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.
Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina
2016-01-01
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333
Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.
Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K
2002-04-01
In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.
Anomalous U(1) models in four and five dimensions and their anomaly poles
NASA Astrophysics Data System (ADS)
Armillis, Roberta; Corianò, Claudio; Delle Rose, Luigi; Guzzi, Marco
2009-12-01
We analyze the role played by anomaly poles in an anomalous gauge theory by discussing their signature in the corresponding off-shell effective action. The origin of these contributions, in the most general kinematical case, is elucidated by performing a complete analysis of the anomaly vertex at perturbative level. We use two independent (but equivalent) representations: the Rosenberg representation and the longitudinal/transverse (L/T) parameterization, used in recent studies of g-2 of the muon and in the proof of non-renormalization theorems of the anomaly vertex. The poles extracted from the L/T parameterization do not couple in the infrared for generic anomalous vertices, as in Rosenberg, but we show that they are responsible for the violations of unitarity in the UV region, using a class of pole-dominated amplitudes. We conclude that consistent formulations of anomalous models require necessarily the cancellation of these polar contributions. Establishing the UV significance of these terms provides a natural bridge between the anomalous effective action and its completion by a nonlocal theory. Some additional difficulties with unitarity of the mechanism of inflow in extra dimensional models with an anomalous theory on the brane, due to the presence of anomaly poles, are also pointed out.
Anomalous tensoelectric effects in gallium arsenide tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.
Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.
Effects of Gravity on Processing Heavy Metal Fluoride Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1997-01-01
The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.
Anomalous Extracellular Diffusion in Rat Cerebellum
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-01-01
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. PMID:25954895
Park, Tuson; Chia, Elbert E M; Salamon, M B; Bauer, E D; Vekhter, I; Thompson, J D; Choi, Eun Mi; Kim, Heon Jung; Lee, Sung-Ik; Canfield, P C
2004-06-11
A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H
Reference Ellipsoid and Geoid in Chronometric Geodesy
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.
2016-02-01
Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric geodesy by making use of the anomalous gravity potential.
NASA Astrophysics Data System (ADS)
Tan, P.; Sippel, J.; Scheck-Wenderoth, M.; Meeßen, C.; Breivik, A. J.
2016-12-01
The study area is located between the Jan Mayen Ridge and the east coast of Greenland. It has a complex geological setting with the ultraslow Kolbeinsey and Mohn's spreading ridges, the anomalously shallow Eggvin Bank, the Jan Mayen Microcontinent (JMMC), and the tectonically active West Jan Mayen Fracture Zone (WJMFZ). In this study, we present the results of forward 3D structural, S-wave velocity, and gravity modeling which provide new insights into the deep crust and mantle structure and the wide-ranging influence of the Iceland Plume. The crustal parts of the presented 3D structural model are mainly constrained by local seismic refraction and reflection data. Accordingly, greatest crustal thicknesses (24 km) are observed on the northern boundary of the JMMC, while the average crustal thickness is 8.5 km and 4 km in the Kolbeinsey and Mohn's Ridge, respectively. The densities of the crustal parts are from previous studies. Additionally, the mantle density is derived from S-wave velocity data (between 50 and 250 km depth), while densities of the lithospheric mantle between the Moho and 50 km are calculated assuming isostatic equilibrium at 250 km depth. This is used as a starting density model which is further developed to obtain a reasonable fit between the calculated and measured (free-air) gravity fields. The observed S-wave tomographic data and the gravity modeling prove that the Iceland plume anomaly in the asthenosphere affects the lithospheric thickness and temperature, from the strongly influenced Middle Kolbeinsey Ridge, to the less affected North Kolbeinsey Ridge (Eggvin Bank), and to the little impacted Mohn's Ridge. Thus, the age-temperature relations of the different mid-ocean ridges of the study area are perturbed to different degrees controlled by the distance from the Iceland Plume. Furthermore, we find that the upper 50 km of lithospheric mantle are thermally affected by the plume only in the southwestern parts of the study area.
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
Holographic DC conductivity and Onsager relations
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Griffin, Tom; Lohitsiri, Nakarin; Melgar, Luis
2017-07-01
Within holography the DC conductivity can be obtained by solving a system of Stokes equations for an auxiliary fluid living on the black hole horizon. We show that these equations can be derived from a novel variational principle involving a functional that depends on the fluid variables of interest as well as the time reversed quantities. This leads to simple derivation of the Onsager relations for the conductivity. We also obtain the relevant Stokes equations for bulk theories of gravity in four dimensions including a ϑF ∧ F term in the Lagrangian, where ϑ is a function of dynamical scalar fields. We discuss various realisations of the anomalous Hall conductivity that this term induces and also solve the Stokes equations for holographic lattices which break translations in one spatial dimension.
Anomalous Evidence, Confidence Change, and Theory Change.
Hemmerich, Joshua A; Van Voorhis, Kellie; Wiley, Jennifer
2016-08-01
A novel experimental paradigm that measured theory change and confidence in participants' theories was used in three experiments to test the effects of anomalous evidence. Experiment 1 varied the amount of anomalous evidence to see if "dose size" made incremental changes in confidence toward theory change. Experiment 2 varied whether anomalous evidence was convergent (of multiple types) or replicating (similar finding repeated). Experiment 3 varied whether participants were provided with an alternative theory that explained the anomalous evidence. All experiments showed that participants' confidence changes were commensurate with the amount of anomalous evidence presented, and that larger decreases in confidence predicted theory changes. Convergent evidence and the presentation of an alternative theory led to larger confidence change. Convergent evidence also caused more theory changes. Even when people do not change theories, factors pertinent to the evidence and alternative theories decrease their confidence in their current theory and move them incrementally closer to theory change. Copyright © 2015 Cognitive Science Society, Inc.
New Anomalous Lieb-Robinson Bounds in Quasiperiodic XY Chains
NASA Astrophysics Data System (ADS)
Damanik, David; Lemm, Marius; Lukic, Milivoje; Yessen, William
2014-09-01
We announce and sketch the rigorous proof of a new kind of anomalous (or sub-ballistic) Lieb-Robinson (LR) bound for an isotropic XY chain in a quasiperiodic transversal magnetic field. Instead of the usual effective light cone |x|≤v|t|, we obtain |x|≤v|t|α for some 0<α <1. We can characterize the allowed values of α exactly as those exceeding the upper transport exponent αu+ of a one-body Schrödinger operator. To our knowledge, this is the first rigorous derivation of anomalous quantum many-body transport. We also discuss anomalous LR bounds with power-law tails for a random dimer field.
Numerical simulation of MPD thruster flows with anomalous transport
NASA Technical Reports Server (NTRS)
Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.
1992-01-01
Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.
Grim, Eugene; Sollner, Karl
1957-01-01
The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time. PMID:13439166
3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Guo, L.; Liu, G.
2011-12-01
In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and comtinue to perform 3D correlation imaging for the redisual gravity data. After several iterations, we can obtain a satisfactoy results. Newly developed general purpose computing technology from Nvidia GPU (Graphics Processing Unit) has been put into practice and received widespread attention in many areas. Based on the GPU programming mode and two parallel levels, five CPU loops for the main computation of 3D correlation imaging are converted into three loops in GPU kernel functions, thus achieving GPU/CPU collaborative computing. The two inner loops are defined as the dimensions of blocks and the three outer loops are defined as the dimensions of threads, thus realizing the double loop block calculation. Theoretical and real gravity data tests show that results are reliable and the computing time is greatly reduced. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Liu, Qian; Jiang, Shaolong; Teng, Jiao
2018-05-01
To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.
Ultracold Molecules in Optical Lattices: Efficient Production and Application to Molecular Clocks
2015-05-03
near the intercombination- line threshold were measured for a variety of states, and explained by considering nonadiabatic effects ( Coriolis coupling) in...Moszynski, T. Zelevinsky. Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts, Physical Review Letters, (12...M. McDonald, G. Reinaudi, W. Skomorowski, R. Moszynski, T. Zelevinsky. Measurement of Nonadiabatic Effects in Ultracold Molecules via Anomalous
Plume-ridge interaction: Shaping the geometry of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric L.
Manifestations of plume-ridge interaction are found across the ocean basins. Currently there are interactions between at least 21 hot spots and nearby ridges along 15--20% of the global mid-ocean ridge network. These interactions produce a number of anomalies including the presence of elevated topography, negative gravity anomalies, and anomalous crustal production. One form of anomalous crustal production is the formation of volcanic lineaments between hotspots and nearby mid-ocean ridges. In addition, observations indicate that mantle plumes tend to "capture" nearby mid-ocean ridges through asymmetric spreading, increased ridge propagation, and discrete shifts of the ridge axis, or ridge jumps. The initiation of ridge jumps and the formation of off-axis volcanic lineaments likely involve similar processes and may be closely related. In the following work, I use theoretical and numerical models to quantify the processes that control the formation of volcanic lineaments (Chapter 2), the initiation of mid-ocean ridge jumps associated with lithospheric heating due to magma passing through the plate (Chapter 3), and the initiation of jumps due to an upwelling mantle plume and magmatic heating governed by melt migration (Chapter 4). Results indicate that lineaments and ridge jumps associated with plume-ridge interaction are most likely to occur on young lithosphere. The shape of lineaments on the seafloor is predicted to be controlled by the pattern of lithospheric stresses associated with a laterally spreading, near-ridge mantle plume. Ridge jumps are likely to occur due to magmatic heating alone only in lithosphere ˜1Myr old, because the heating rate required to jump increases with spreading rate and plate age. The added effect of an upwelling plume introduces competing effects that both promote and inhibit ridge jumps. For models where magmatic heating is controlled by melt migration, repeat ridge jumps are predicted to occur as the plume and ridge separate, but only for restricted values of spreading rate, ridge migration rate, and heating rate. Overall, the results suggest that the combined effect of stresses and magmatism associated with plume-ridge interaction can significantly alter plate geometry over time.
Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors
NASA Astrophysics Data System (ADS)
Yang, F.; Yu, T.; Wu, M. W.
2018-05-01
By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
NASA Astrophysics Data System (ADS)
Martínez-Carreño, N.; García-Gil, S.; Cartelle, V.; de Blas, E.; Ramírez-Pérez, A. M.; Insua, T. L.
2017-05-01
High-resolution seismic profiles, gravity core analysis and radiocarbon data have been used to identify the factors behind the methane production and free gas accumulation in the Ría de Vigo. Lithological and geochemical parameters (sulfate and methane concentration) from seventeen gravity cores were analyzed to characterize the sediment of the ria. The distribution of methane-charged sediments is mainly controlled by the quantity and quality of organic matter. Geochemical analyses reveal minimum methane concentrations ranging between 1 μM and 1 mM in sediments located outside the acoustic gas field, while gas-bearing sediments, show methane concentrations up to 5 mM. A shallowing of the sulfate-methane transition zone (SMTZ) is observed from the outer to the inner area of the ria. The presence of methane in the sulfate reduction zone (SRZ) likely to reflect the existence of methylotropic methanogenesis and/or migration processes of deeper methane gas in the sediments of the Ría de Vigo. The presence of an 'anomalous' high-sulfate concentration layer below the SMTZ in the inner and middle area of the ria, is attributed to the intrusion of sulfate-rich waters from adjacent areas that could be transported laterally through more porous layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, Eduardo; Maldacena, Juan; Chatterjee, Lali
2015-02-02
On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement inmore » both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.« less
On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)
1984-01-01
A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.
NASA Technical Reports Server (NTRS)
Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.
2000-01-01
Atmospheric parameters (T(sub eff), log g), masses and helium abundances are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC6752. For 19 stars we derive magnesium and iron abundances as well and find that iron is enriched by a factor of 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster abundance. Radiation pressure may levitate heavy elements like iron to the surface of the star in a diffusive process. Taking into account the enrichment of heavy elements in our spectroscopic analyses we find that high iron abundances can explain part, but not all, of the problem of anomalously low gravities along the blue HB. The blue HB stars cooler than about 15,100 K and the sdB stars (T(sub eff) greater than or = 20,000 K) agree well with canonical theory when analysed with metal-rich ([M/H] = +0.5) model atmospheres, but the stars in between these two groups remain offset towards lower gravities and masses. Deep Mixing in the red giant progenitor phase is discussed as another mechanism that may influence the position of the blue HB stars in the (T(sub eff), log g)-plane but not their masses.
Anomalous Galactic Dynamics by Collusion of Rindler and Cosmological Horizons
NASA Astrophysics Data System (ADS)
van Putten, Maurice H. P. M.
2017-03-01
In holography, the dimensional reduction of phase space to two dimensions defines a dynamical dark energy of {{Λ }}=(1-q){H}2, associated with the cosmological horizon at a Hubble radius of {R}H=c/H, and inertia m of baryonic matter at acceleration α in terms of a thermodynamic potential U={{mc}}2 of Rindler horizons at ξ ={c}2/α . Here, H is the Hubble parameter with deceleration q and c is the velocity of light. In weak gravity, m drops below Newton’s value m 0 as α < {a}H, when Rindler horizons fall beyond the cosmological horizon. The onset to weak gravity across α ={a}H is sharp by causality. Striking evidence is found in galaxy rotation curves, whose asymptotic dynamics is parameterized by Milgrom’s scale of acceleration {a}0=({cH}/2π )\\sqrt{1-q}. This onset presents a new challenge for canonical dark matter distributions on galactic scales in ΛCDM. Instead, future galaxy surveys may determine {Q}0={{dq}(z)/{dz}| }z=0, to provide a direct test of dynamical dark energy ({Q}0> 2.5) versus ΛCDM ({Q}0< 1) and establish a bound of {10}-30 {{eV}} on the mass of the putative dark matter particle with clustering limited to galaxy clusters.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Roy, Ronald A.
1999-01-01
Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.
Anomalous decay and scattering processes of the meson
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Plenter, Judith
2015-06-01
We amend a recent dispersive analysis of the anomalous decay process by the effects of the tensor meson, the lowest-lying resonance that can contribute in the system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous decay. There are nonnegligible consequences for the transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process , which could be measured in Primakoff reactions in the future.
Chiral transport along magnetic domain walls in the quantum anomalous Hall effect
Rosen, Ilan T.; Fox, Eli J.; Kou, Xufeng; ...
2017-12-01
The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Crmore » $$_y$$Bi$$_x$$Sb$$_{1-x-y}$$)$$_2$$Te$$_3$$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $$\
NASA Astrophysics Data System (ADS)
Akzyanov, R. S.; Rakhmanov, A. L.
2018-02-01
We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
Towards realistic string vacua from branes at singularities
NASA Astrophysics Data System (ADS)
Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando
2009-05-01
We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.
NASA Astrophysics Data System (ADS)
Xu, Weimin; Chen, Shi; Lu, Hongyan
2016-04-01
Integrated gravity is an efficient way in studying spatial and temporal characteristics of the dynamics and tectonics. Differential measurements based on the continuous and discrete gravity observations shows highly competitive in terms of both efficiency and precision with single result. The differential continuous gravity variation between the nearby stations, which is based on the observation of Scintrex g-Phone relative gravimeters in every single station. It is combined with the repeated mobile relative measurements or absolute results to study the regional integrated gravity changes. Firstly we preprocess the continuous records by Tsoft software, and calculate the theoretical earth tides and ocean tides by "MT80TW" program through high precision tidal parameters from "WPARICET". The atmospheric loading effects and complex drift are strictly considered in the procedure. Through above steps we get the continuous gravity in every station and we can calculate the continuous gravity variation between nearby stations, which is called the differential continuous gravity changes. Then the differential results between related stations is calculated based on the repeated gravity measurements, which are carried out once or twice every year surrounding the gravity stations. Hence we get the discrete gravity results between the nearby stations. Finally, the continuous and discrete gravity results are combined in the same related stations, including the absolute gravity results if necessary, to get the regional integrated gravity changes. This differential gravity results is more accurate and effective in dynamical monitoring, regional hydrologic effects studying, tectonic activity and other geodynamical researches. The time-frequency characteristics of continuous gravity results are discussed to insure the accuracy and efficiency in the procedure.
New Data Bases and Standards for Gravity Anomalies
NASA Astrophysics Data System (ADS)
Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.
2008-12-01
Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
Goychuk, Igor; Kharchenko, Vasyl O; Metzler, Ralf
2014-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.
Goychuk, Igor; Kharchenko, Vasyl O.; Metzler, Ralf
2014-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included. PMID:24626511
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo
2016-01-01
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications. PMID:27762286
Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces
NASA Astrophysics Data System (ADS)
Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.
2018-04-01
Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.
NASA Astrophysics Data System (ADS)
Guo, Guang-Yu; Wang, Tzu-Cheng
2017-12-01
Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.
Anomalous fluxes in the plateau regime for a weakly turbulent, magnetically confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1990-09-01
The anomalous particle and heat fluxes, together with the parallel electric current, are determined for a confined plasma in the plateau regime in the presence of weak electrostatic drift-wave turbulence. Proper account is taken of nonstationarity and of the finite ion Larmor radius (FLR). The quasineutrality of the drift-wave fluctuations imposes a consistency condition, by which the evaluation of the anomalous fluxes is closely related to the drift-wave dispersion equation. On the other hand, these fluxes are related to the thermodynamic forces via the poloidal fluxes. For the weak turbulence approximation considered here, a unified formulation of the anomalous transportmore » problem has been obtained, including all aspects of neoclassical theory. The complete set of transport coefficients is calculated and various relations between them are exhibited. It clearly appears, for instance, that the anomalous ion heat flux is a pure FLR effect that vanishes as the Larmor radius goes to zero. The Onsager symmetry is broken for anomalous transport. The Appendix is devoted to a general discussion of the concept of heat flux in turbulent plasmas.« less
Isospin breaking effects in the anomalous processes with vector mesons
NASA Astrophysics Data System (ADS)
Hashimoto, Michio
1996-02-01
We introduce isospin/ SU(3) breaking terms in the anomalous WP coupling in the hidden local symmetry scheme without affecting the low-energy theorem. It is shown that the predictions from these terms coincide successfully with all the experimental data of anomalous decays. It is also predicted that the decay widths of ϱ0 → π0γ and f → η‧γ are 114 ± 7 keV and 0.55 ± 0.055 keV, respectively.
Anomalous extracellular diffusion in rat cerebellum.
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-05-05
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xun, Zhi-Peng; Tang, Gang; Han, Kui; Hao, Da-Peng; Xia, Hui; Zhou, Wei; Yang, Xi-Quan; Wen, Rong-Ji; Chen, Yu-Ling
2010-07-01
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Centrifuge in Free Fall: Combustion at Partial Gravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul
2017-01-01
A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.
Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature
NASA Astrophysics Data System (ADS)
Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru
Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.
Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes' Polydispersity.
Kalwarczyk, Tomasz; Kwapiszewska, Karina; Szczepanski, Krzysztof; Sozanski, Krzysztof; Szymanski, Jedrzej; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Duszynski, Jerzy; Holyst, Robert
2017-10-26
This work, based on in vivo and in vitro measurements, as well as in silico simulations, provides a consistent analysis of diffusion of polydisperse nanoparticles in the cytoplasm of living cells. Using the example of fluorescence correlation spectroscopy (FCS), we show the effect of polydispersity of probes on the experimental results. Although individual probes undergo normal diffusion, in the ensemble of probes, an effective broadening of the distribution of diffusion times occurs-similar to anomalous diffusion. We introduced fluorescently labeled dextrans into the cytoplasm of HeLa cells and found that cytoplasmic hydrodynamic drag, exponentially dependent on probe size, extraordinarily broadens the distribution of diffusion times across the focal volume. As a result, the in vivo FCS data were effectively fitted with the anomalous subdiffusion model while for a monodisperse probe the normal diffusion model was most suitable. Diffusion time obtained from the anomalous diffusion model corresponds to a probe whose size is determined by the weight-average molecular weight of the polymer. The apparent anomaly exponent decreases with increasing polydispersity of the probes. Our results and methodology can be applied in intracellular studies of the mobility of nanoparticles, polymers, or oligomerizing proteins.
The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity
NASA Technical Reports Server (NTRS)
Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.
2009-01-01
NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.
Gravity Spectra from the Density Distribution of Earth's Uppermost 435 km
NASA Astrophysics Data System (ADS)
Sebera, Josef; Haagmans, Roger; Floberghagen, Rune; Ebbing, Jörg
2018-03-01
The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution <150 km, the spectra behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity-density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA's satellite gradiometry mission GOCE down to the spatial resolution of 80-90 km.
Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India
Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.
2006-01-01
Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.
Structural controls on anomalous transport in fractured porous rock
NASA Astrophysics Data System (ADS)
Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian
2016-07-01
Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.
Large anomalous Nernst effect at room temperature in a chiral antiferromagnet
NASA Astrophysics Data System (ADS)
Ikhlas, Muhammad; Tomita, Takahiro; Koretsune, Takashi; Suzuki, Michi-To; Nishio-Hamane, Daisuke; Arita, Ryotaro; Otani, Yoshichika; Nakatsuji, Satoru
2017-11-01
A temperature gradient in a ferromagnetic conductor can generate a transverse voltage drop perpendicular to both the magnetization and heat current. This anomalous Nernst effect has been considered to be proportional to the magnetization, and thus observed only in ferromagnets. Theoretically, however, the anomalous Nernst effect provides a measure of the Berry curvature at the Fermi energy, and so may be seen in magnets with no net magnetization. Here, we report the observation of a large anomalous Nernst effect in the chiral antiferromagnet Mn 3Sn (ref. ). Despite a very small magnetization ~0.002 μB per Mn, the transverse Seebeck coefficient at zero magnetic field is ~0.35 μV K-1 at room temperature and reaches ~0.6 μV K-1 at 200 K, which is comparable to the maximum value known for a ferromagnetic metal. Our first-principles calculations reveal that this arises from a significantly enhanced Berry curvature associated with Weyl points near the Fermi energy. As this effect is geometrically convenient for thermoelectric power generation--it enables a lateral configuration of modules to cover a heat source--these observations suggest that a new class of thermoelectric materials could be developed that exploit topological magnets to fabricate efficient, densely integrated thermopiles.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-10-01
Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
Anomalous current in diffusive ferromagnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.
2017-05-01
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.
Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yang; Feng, Xiao; Ou, Yunbo
We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less
BFV-BRST quantization of two-dimensional supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less
Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Dai; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433; Li, Yufan
2015-05-25
The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.
Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Dai; Li, Yufan; Qu, D.
2015-05-25
The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.
2003-01-01
The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary
2004-01-01
The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koster, J.N.; Sani, R.L.
1990-01-01
Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less
Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro
2001-01-01
This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610
Multisensory integration and internal models for sensing gravity effects in primates.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
Fluid/gravity correspondence for massive gravity
NASA Astrophysics Data System (ADS)
Pan, Wen-Jian; Huang, Yong-Chang
2016-11-01
In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.
Stoichiometry of Cd(S,Se) nanocrystals by anomalous small-angle x-ray scattering
NASA Astrophysics Data System (ADS)
Ramos, Aline; Lyon, Olivier; Levelut, Claire
1995-12-01
In Cd(S,Se)-doped glasses the optical properties are strongly dependent on the size of the nanocrystals, but can be also largely modified by changes in the crystal stoichiometry; however, the information on both stoichiometry and size is difficult to obtain in crystals smaller than 10 nm. The intensity scattered at small angles is classically used to get information about nanoparticles sizes. Moreover the variation of amplitude of this intensity with the energy of the x ray—``the anomalous effect''—near the selenium edge is related to stoichiometry. Anomalous small-angle x-ray scattering has been used as a tentative method to get information about stoichiometry in nanocrystals with size lower than 10 nm. Experiments have been performed on samples treated for 2 days at temperatures in the range 540-650 °C. The samples treated at temperatures above 580 °C contain crystals with size larger than 4 nm. For all these samples the anomalous effect has nearly the same amplitude, and we found the stoichiometry x=0.4 for the CdSxSe1-x nanocrystals. This agrees with the previous results obtained by scanning electron microscopy and Raman spectroscopy. The results are also confirmed by measurements of the position of the optical absorption edge and by wide-angle x-ray scattering experiments. For the sample treated at 560 °C, the nanocrystal size is 3 nm and the stoichiometry x=0.6 is deduced from the anomalous effect. For samples treated at lower temperatures the anomalous effect is not observable, indicating an even lower selenium content in the nanocrystals (x≳0.7). We observed differences in the Se content of nanocrystals for different heat treatments of the same initial glass. These results may be very helpful to interpret the change in the optical properties when the temperature of the treatments decreases in the range 560-590 °C. In this temperature range, compositional effects seem to be of the same order of magnitude as the effects of the quantum confinement.
Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-03-16
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.
Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-01-01
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552
Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina
2014-05-01
New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
Exploring seismicity using geomagnetic and gravity data - a case study for Bulgaria
NASA Astrophysics Data System (ADS)
Trifonova, P.; Simeonova, S.; Solakov, D.; Metodiev, M.
2012-04-01
Seismicity exploration certainly requires comprehensive analysis of location, orientation and length distribution of fault and block systems with a variety of geophysical methods. In the present research capability of geomagnetic and gravity anomalous field data are used for revealing of buried structures inside the earth's upper layers. Interpretation of gravity and magnetic data is well known and often applied to delineate various geological structures such as faults, flexures, thrusts, borders of dislocated blocks etc. which create significant rock density contrast in horizontal planes. Study area of the present research covers the territory of Bulgaria which is part of the active continental margin of the Eurasian plate. This region is a typical example of high seismic risk area. The epicentral map shows that seismicity in the region is not uniformly distributed in space. Therefore the seismicity is described in distributed geographical zones (seismic source zones). Each source zone is characterized by its specific tectonic, seismic, and geological particulars. From the analysis of the depth distribution it was recognized that the earthquakes in the region occurred in the Earth's crust. Hypocenters are mainly located in the upper crust, and only a few events are related to the lower crust. The maximum depth reached is about 50 km in southwestern Bulgaria; outside, the foci affect only the surficial 30-35 km. Maximum density of seismicity involves the layer between 5 and 25 km. This fact determines the capability of potential fields data to reveal crustal structures and to examine their parameters as possible seismic sources. Results showed that a number of geophysically interpreted structures coincide with observed on the surface dislocations and epicenter clusters (well illustrated in northern Bulgaria) which confirms the reliability of the applied methodology. The complicated situation in southern Bulgaria is demonstrated by mosaics structure of geomagnetic field, complex configuration of gravity anomalies and spatial seismicity distribution. Well defined (confirmed by geophysical, geological and seismological data) are the known earthquake source zones (such as Sofia, Kresna, Maritsa, Yambol ) in this part of the territory of Bulgaria. Worth while are the results where no surface structures are present (e.g. Central Rhodope zone and East Rhodope zone, where the 2006 Kurdzhali earthquake sequence is realized). In those cases, gravity and magnetic interpretations proved to be a suitable enough technique which allows determining of position and parameters of the geological structures in depth.
Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates
Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.
2003-01-01
We previously reported on a thermal regime where pure, polycrystalline methane hydrate is preserved metastably in bulk at up to 75 K above its nominal temperature stability limit of 193 K at 0.1 MPa, following rapid release of the sample pore pressure. Large fractions (>50 vol.%) of methane hydrate can be preserved for 2-3 weeks by this method, reflecting the greatly suppressed rates of dissociation that characterize this "anomalous preservation" regime. This behavior contrasts that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) isothermal test conditions, where dissociation rates increase monotonically with increasing temperature. Here, we report on recent experiments that further investigate the effects of temperature, pressure, and composition on anomalous preservation behavior. All tests conducted on sI methane hydrate yielded self-consistent results that confirm the highly temperature-sensitive but reproducible nature of anomalous preservation behavior. Temperature-stepping experiments conducted between 250 and 268 K corroborate the relative rates measured previously in isothermal preservation tests, and elevated pore-pressure tests showed that, as expected, dissociation rates are further reduced with increasing pressure. Surprisingly, sII methane-ethane hydrate was found to exhibit no comparable preservation effect when rapidly depressurized at 268 K, even though it is thermodynamically stable at higher temperatures and lower pressures than sI methane hydrate. These results, coupled with SEM imaging of quenched sample material from a variety of dissociation tests, strongly support our earlier arguments that ice-"shielding" effects provided by partial dissociation along hydrate grain surfaces do not serve as the primary mechanism for anomalous preservation. The underlying physical-chemistry mechanism(s) of anomalous preservation remains elusive, but appears to be based more on textural or morphological changes within the hydrate material itself, rather than on compositional zoning or ice-rind development.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
Nonlocal teleparallel cosmology.
Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C
2017-01-01
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.
NASA Technical Reports Server (NTRS)
Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey
1997-01-01
There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.
The Principle of Equivalence: Demonstrations of Local Effective Vertical and Horizontal
ERIC Educational Resources Information Center
Munera, Hector A.
2010-01-01
It has been suggested that Einstein's principle of equivalence (PE) should be introduced at an early stage. This principle leads to the notion of local effective gravity, which in turn defines effective vertical and horizontal directions. Local effective gravity need not coincide with the direction of terrestrial gravity. This paper describes…
Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2LiMn 3F 12
Xu, Gang; Lian, Biao; Zhang, Shou -Cheng
2015-10-27
In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs 2Mn 3F 12 kagome lattice and on the (001) surface of a Cs 2LiMn 3F 12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding modelmore » based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, G.B.; Faraggi, A.E.
The realistic free fermionic models have had an intriguing success in explaining different properties of the observed particle spectrum. In this paper the authors discuss in some detail the anomalous U(1) symmetry which exists in these models. They study the properties of the anomalous U(1) in both the more realistic NAHE-based free fermionic models and those in a general NAHE class. Appearance of an anomalous U(1) in the more realistic NAHE models is shown to be an effect of reduction of world-sheet supersymmetry from (2,2) to (2,0). They show, however, that in more general (2,1) and (2,0) models, all U(1)more » can remain anomaly-free under certain conditions. Several phenomenological issues related to the anomalous U(1) are discussed. In particular, they note that in some examples the anomalous U(1) arises from the breaking E{sub 6} {yields} SO(10) {times} U(1){sub A}, resulting in U(1){sub A} being family universal.« less
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf
2016-07-27
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-12-01
Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.
Nonsingular universe in massive gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.
2017-06-01
One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.
Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice
NASA Astrophysics Data System (ADS)
Hou, Jing-Min
2013-09-01
We study a two-dimensional fermionic square lattice, which supports the existence of a two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2π-flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2π-flux topological semimetal are protected by two distinct novel hidden symmetries, which both correspond to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry.
Theoretical model for a Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1991-01-01
A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.
Effect of anomalous transport on kinetic simulations of the H-mode pedestal
NASA Astrophysics Data System (ADS)
Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.
2009-11-01
The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649
Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru
2016-06-07
Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.
Drag suppression in anomalous chiral media
Sadofyev, Andrey V.; Yin, Yi
2016-06-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less
Recent advances in the CRANK software suite for experimental phasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannu, Navraj S., E-mail: raj@chem.leidenuniv.nl; Waterreus, Willem-Jan; Skubák, Pavol
2011-04-01
Recent developments in the CRANK software suite for experimental phasing have led to many more structures being built automatically. For its first release in 2004, CRANK was shown to effectively detect and phase anomalous scatterers from single-wavelength anomalous diffraction data. Since then, CRANK has been significantly improved and many more structures can be built automatically with single- or multiple-wavelength anomalous diffraction or single isomorphous replacement with anomalous scattering data. Here, the new algorithms that have been developed that have led to these substantial improvements are discussed and CRANK’s performance on over 100 real data sets is shown. The latest versionmore » of CRANK is freely available for download at http://www.bfsc.leidenuniv.nl/software/crank/ and from CCP4 (http://www.ccp4.ac.uk/)« less
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Impact of Stress on Anomalous Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.
2016-12-01
Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.
Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite
NASA Technical Reports Server (NTRS)
Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.
1996-01-01
Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.
Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik
2008-02-01
Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.
Effect of gravity on the stability and structure of lean hydrogen-air flames
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1991-01-01
Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Soft collinear effective theory for gravity
NASA Astrophysics Data System (ADS)
Okui, Takemichi; Yunesi, Arash
2018-03-01
We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.
Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet
2017-11-01
Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhong; Jiang, Hang-Yu; Zhou, Shi-Ming, E-mail: shiming@tongji.edu.cn
2016-01-15
The anomalous Hall effect (AHE) and magneto-crystalline anisotropy (MCA) are investigated in epitaxial Ni{sub x}Fe{sub 1−x} thin films grown on MgO (001) substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K{sub 1}. When nickel content x decreasing, both b and K{sub 1} vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate Ni{sub x}Fe{sub 1−x} has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings), resulting in the increased b and K{sub 1}. This remarkable correlation betweenmore » b and K{sub 1} can be attributed to the effect of band filling near the Fermi surface.« less
An Anomalous External Force on the MAP Spacecraft
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Bay, P. Michael; Wollack, Edward J.; Fink, Dale R.; Ward, David K.; ODonnell, James R., Jr.; Bauer, Frank H. (Technical Monitor)
2002-01-01
A common theme in discussions of the Microwave Anisotropy Probe (MAP) is the attainment of mission goals for minimal cost. One area of cost savings was a reduction in the fuel budget required. To reach orbit around the L2 notation point of the Earth-Sun system, the MAP spacecraft was guided very close to the Moon, allowing a gravity-assisted trajectory out to L2. In order to property time the lunar swing-by, MAP followed a trajectory of three-and-a-half highly elliptical phasing loops. At each perigee of this trajectory MAP executed a thruster maneuver to increase orbit velocity; maneuvers were required at one or both clothe first two perigees (called P1 and P2) and at the third and final perigee (P-final). The preference was for successful maneuvers at all three perigees because this scheme provided a small, additional fuel savings.
NUMERICAL SIMULATIONS OF CHROMOSPHERIC MICROFLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, R. L.; Fang, C.; Chen, P. F., E-mail: fangc@nju.edu.c
2010-02-20
With gravity, ionization, and radiation being considered, we perform 2.5 dimensional (2.5D) compressible resistive magnetohydrodynamic (MHD) simulations of chromospheric magnetic reconnection using the CIP-MOCCT scheme. The temperature distribution of the quiet-Sun atmospheric model VALC and the helium abundance (10%) are adopted. Our 2.5D MHD simulation reproduces qualitatively the temperature enhancement observed in chromospheric microflares. The temperature enhancement DELTAT is demonstrated to be sensitive to the background magnetic field, whereas the total evolution time DELTAt is sensitive to the magnitude of the anomalous resistivity. Moreover, we found a scaling law, which is described as DELTAT/DELTAt {approx} n{sub H} {sup -1.5} Bmore » {sup 2.1}eta{sub 0} {sup 0.88}. Our results also indicate that the velocity of the upward jet is much greater than that of the downward jet, and the X-point may move up or down.« less
Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production.
Zhang, Zhengkang
2017-01-06
W boson pair production processes at e^{+}e^{-} and pp colliders have been conventionally interpreted as measurements of WWZ and WWγ triple gauge couplings (TGCs). Such an interpretation is based on the assumption that new physics effects other than anomalous TGCs are negligible. While this "TGC dominance assumption" was well motivated and useful at LEP2 thanks to precision electroweak constraints, it is already challenged by recent LHC data. In fact, contributions from anomalous Z boson couplings that are allowed by electroweak precision data but neglected in LHC analyses, which are enhanced at high energy, can even dominate over those from the anomalous TGCs considered. This limits the generality of the anomalous TGC constraints derived in current analyses and necessitates extension of the analysis framework and a change of physics interpretation. The issue will persist as we continue to explore the high-energy frontier. We clarify and analyze the situation in the effective field theory framework, which provides a useful organizing principle for understanding standard model deviations in the high-energy regime.
Crystals for astronomical X-ray spectroscopy
NASA Technical Reports Server (NTRS)
Burek, A.
1976-01-01
Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.
On the impact of topography and building mask on time varying gravity due to local hydrology
NASA Astrophysics Data System (ADS)
Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.
2013-01-01
We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.
Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
Ruden, Douglas M; Bolnick, Alan; Awonuga, Awoniyi; Abdulhasan, Mohammed; Perez, Gloria; Puscheck, Elizabeth E; Rappolee, Daniel A
2018-06-11
Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.
Anomalous Hall effect in epitaxial permalloy thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. Q.; Sun, N. Y.; Shan, R.
2013-10-28
Anomalous Hall effect (AHE) of epitaxial permalloy thin films grown on MgO (001) substrates is investigated. The longitudinal conductivity independent term (i.e., the sum of intrinsic and side-jump contributions) of the anomalous Hall conductivity (AHC) is found to be much smaller than those of Fe and Ni films. Band theoretical calculations of the intrinsic AHC as a function of the number of valence electrons (band filling) indicate that the AHC of the permalloy is in the vicinity of sign change, thus resulting in the smallness of the intrinsic AHC. The contribution of the phonon scattering is found to be comparablemore » to that of the impurity scattering. This work suggests that the permalloy films are ideal systems to understand the AHE mechanisms induced by impurity scattering.« less
Transverse spin Seebeck effect versus anomalous and planar Nernst effects in Permalloy thin films.
Schmid, M; Srichandan, S; Meier, D; Kuschel, T; Schmalhorst, J-M; Vogel, M; Reiss, G; Strunk, C; Back, C H
2013-11-01
Transverse magnetothermoelectric effects are studied in Permalloy thin films grown on MgO and GaAs substrates and compared to those grown on suspended SiN(x) membranes. The transverse voltage along platinum strips patterned on top of the Permalloy films is measured versus the external magnetic field as a function of the angle and temperature gradients. After the identification of the contribution of the planar and anomalous Nernst effects, we find an upper limit for the transverse spin Seebeck effect, which is several orders of magnitude smaller than previously reported.
Anomalous relaxation in fractal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, S.; Yonezawa, F.
1995-03-01
For the purpose of studying some interesting properties of anomalous relaxation in fractal structures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures (Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341 (1941)], which is one of the empirical laws of anomalous relaxation. Scaling properties are found in the relaxation function as well as in the particle density. We also find that, in strucures with almost the same fractal dimension, relaxation in structures withmore » dead ends is slower than that in structures without them. This paper ascertains that the essential aspects of the anomalous relaxation due to many-body effects can be explained in the framework of the one-body model.« less
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.
1988-01-01
Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
Sylos-Labini, Francesca; Ivanenko, Yuri P.
2014-01-01
Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179
NASA Astrophysics Data System (ADS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-10-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.
NASA Astrophysics Data System (ADS)
Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.
2014-12-01
Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org
Evolutionary effects of metalliferous and other anomalous soils in South Central Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, H.; Bradshaw, A.D.
1977-06-01
The extensive metalliferous and other anomalous soils of South Central Africa have been in existence since before the origin of the angiosperms. So, they should have provided situations in which evolution could have continued uninterrupted, except by major climatic changes, over very long periods. The floras on these areas have therefore been examined, and compared to the situation in Northern Europe. The African anomalous floras could be expected to show: (a) a larger number of species which occupy the anomalous soils; this is certainly true; (b) a greater distinctiveness of the populations tolerating the anomalous soils; there is only amore » little evidence for this; (c) a greater number of tolerant populations which have attained the status of distinct endemic species but which have close relatives; there are a few examples of these; (d) a greater number of tolerant endemic species which have lost their close relatives; there are quite a large number of these, some specific to individual areas of a particular type of anomalous soil. The greater number of endemics is a definite characteristic of the floras. However, despite their great stability, the anomalous areas are not occupied by a flora consisting mostly of endemic species. It is clear that many of the plant populations on the areas must be of recent origin. This suggests that there have been sufficient climatic and other changes to eliminate many of the original colonists and allow the immigration of others.« less
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2017-05-01
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.
Effects of land cover change on the tropical circulation in a GCM
NASA Astrophysics Data System (ADS)
Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan
2010-09-01
Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.
Intraductal papillary neoplasm originating from an anomalous bile duct.
Maki, Harufumi; Aoki, Taku; Ishizawa, Takeaki; Tanaka, Mariko; Sakatani, Takashi; Beck, Yoshifumi; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Kokudo, Norihiro
2017-04-01
An 82-year-old woman who had been suffering from repeated obstructive jaundice for 7 years was referred to our hospital. Although endoscopic aspiration of the mucin in the common bile duct had been temporally effective, origin of the mucin production had not been detectable. The patient thus had been forced to be on long-term follow-up without curative resection. Endoscopic retrograde cholangioscopy on admission revealed massive mucin in the common bile duct. In addition, an anomalous bile duct located proximal to the gallbladder was identified. Since the lumen of the anomalous duct was irregular and the rest of biliary tree was completely free of suspicious lesions, the anomalous duct was judged to be the primary site. Surgical resection of the segment 4 and 5 of the liver combined with the extrahepatic biliary tract was performed. Pathological diagnosis was compatible to intraductal papillary neoplasm with high-grade intraepithelial dysplasia of the anomalous bile duct. The patient has been free from the disease for 6.5 years after resection. This is the first case of intraductal papillary neoplasm derived from an anomalous bile duct, which was resected after long-term conservative treatment. The present case suggested the slow growing character of natural history of the neoplasm.
Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition
NASA Technical Reports Server (NTRS)
Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott
2006-01-01
Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.
Cosmological footprints of loop quantum gravity.
Grain, J; Barrau, A
2009-02-27
The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1975-01-01
The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.
Spin transport study in a Rashba spin-orbit coupling system
Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo
2014-01-01
One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193
Nonlinear dynamics induced anomalous Hall effect in topological insulators
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Nonlinear dynamics induced anomalous Hall effect in topological insulators.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-28
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions
NASA Astrophysics Data System (ADS)
Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.
Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
NASA Astrophysics Data System (ADS)
Naruemon, Rueangkham; Charin, Modchang
2016-04-01
Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf
2016-01-01
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. PMID:27462008
Visual gravity cues in the interpretation of biological movements: neural correlates in humans.
Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco
2015-01-01
Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.
Hybrid gravity survey to search for submarine ore deposit
NASA Astrophysics Data System (ADS)
Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.
2011-12-01
Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017245 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017246 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017237 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017249 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017236 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Anomalous Nernst effect in type-II Weyl semimetals
NASA Astrophysics Data System (ADS)
Saha, Subhodip; Tewari, Sumanta
2018-01-01
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.
Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So
2016-05-28
Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of acoustic phonons is observed starting around 2 GPa. They constitute a computational detection of a mechanical instability in ice Ih and the resulting pressure-induced amorphization to HDA.
NASA Astrophysics Data System (ADS)
Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So
2016-05-01
Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of acoustic phonons is observed starting around 2 GPa. They constitute a computational detection of a mechanical instability in ice Ih and the resulting pressure-induced amorphization to HDA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So, E-mail: sohirata@illinois.edu
Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D{sub 2}O ice greater than that of H{sub 2}O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials ismore » taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born–Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of acoustic phonons is observed starting around 2 GPa. They constitute a computational detection of a mechanical instability in ice Ih and the resulting pressure-induced amorphization to HDA.« less
Generalized geometry and non-symmetric metric gravity
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Khoo, Fech Scen; Schupp, Peter; Vysoký, Jan
2016-04-01
Generalized geometry provides the framework for a systematic approach to non-symmetric metric gravity theory and naturally leads to an Einstein-Kalb-Ramond gravity theory with totally anti-symmetric contortion. The approach is related to the study of the low-energy effective closed string gravity actions.
Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The presentation slides include: Moving Past Apollo, Testing in Analog Environments, NEEMO/NBL CG (center of gravity) Studies, Center of Gravity Test Design and Methods, CG Suited Locations and Results, CG Individual Considerations, CG Shirt-Sleeve Locations and Results.
Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming
2012-03-01
Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.
The Hall-induced stability of gravitating fluids
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2018-05-01
We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.
Anisotropy effects on baryogenesis in f(R) theories of gravity
NASA Astrophysics Data System (ADS)
Aghamohammadi, A.; Hossienkhani, H.; Saaidi, Kh.
2018-04-01
We study the f(R) theory of gravity in an anisotropic metric and its effect on the baryon number-to-entropy ratio. The mechanism of gravitational baryogenesis based on the CPT-violating gravitational interaction between derivative of the Ricci scalar curvature and the baryon-number current is investigated in the context of the f(R) gravity. The gravitational baryogenesis in the Bianchi type I (BI) Universe is examined. We survey the effect of anisotropy of the Universe on the baryon asymmetry from the point of view of the f(R) theories of gravity and its effect on nb/s for radiation dominant regime.
Fractional Brownian motors and stochastic resonance
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Kharchenko, Vasyl
2012-05-01
We study fluctuating tilt Brownian ratchets based on fractional subdiffusion in sticky viscoelastic media characterized by a power law memory kernel. Unlike the normal diffusion case, the rectification effect vanishes in the adiabatically slow modulation limit and optimizes in a driving frequency range. It is shown also that the anomalous rectification effect is maximal (stochastic resonance effect) at optimal temperature and can be of surprisingly good quality. Moreover, subdiffusive current can flow in the counterintuitive direction upon a change of temperature or driving frequency. The dependence of anomalous transport on load exhibits a remarkably simple universality.
Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, B. F., E-mail: bfmiao@nju.edu.cn; Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; Huang, S. Y.
2016-01-15
The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.
NASA Astrophysics Data System (ADS)
Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico
2018-03-01
Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.
NASA Technical Reports Server (NTRS)
Kondrachuk, Alexander V.; Boyle, Richard D.
2005-01-01
The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fercho, Steven; Owens, Lara; Walsh, Patrick
2015-08-01
Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggestingmore » the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow groundwater samples indicating only minor additions of magmatic CO2 and He to the groundwater system, although much less than observed near Puna. The much reduced DIC and He abundances at Maui, along with a lack of hotsprings and hydrothermal alteration, as observed near Puna, does not strongly support a deeper hydrothermal system within the HSWRZ.« less
NASA Astrophysics Data System (ADS)
Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng
2018-01-01
Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.
NASA Astrophysics Data System (ADS)
Hao, Guanhua; Noviasky, Nicholas; Cao, Shi; Sabirianov, Ildar; Yin, Yuewei; Ilie, Carolina C.; Kirianov, Eugene; Sharma, Nishtha; Sokolov, Andrei; Marshall, Andrew; Xu, Xiaoshan; Dowben, Peter A.
2018-04-01
The effect of intermediate interfacial oxidation on the in-plane magnetization of multilayer stack Pt/Co/Gd2O3, on a p-type silicon substrate, has been investigated by magneto-optical Kerr effect (MOKE) measurements, the anomalous Hall effect, and magnetoresistance measurements. While voltage controlled perpendicular magnetic anisotropy of a metal/oxide heterostructure is known, this heterostructure displays an inverse relationship between voltage and coercivity. The anomalous Hall effect demonstrates a significant change in hysteresis, with the applied bias sign. There is a higher perpendicular magnetic anisotropy with positive bias exposure.
3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)
NASA Astrophysics Data System (ADS)
Berrino, Giovanna; Camacho, Antonio G.
2008-06-01
To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography. The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account the density of these modelled bodies, we would also suggest that they represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep anomalous body that can be associated with the sill that was suggested by seismic tomography.
NASA Astrophysics Data System (ADS)
Carbone, Daniele; Aloisi, Marco; Vinciguerra, Sergio; Puglisi, Giuseppe
2014-05-01
During the time interval between the 1991-93 and 2001 main flank eruptions of Mt. Etna, volcanic activity was confined to the summit vents. Ground deformation and tomography studies suggest that this activity was fed by a magma body located beneath the north-west flank of the volcano, at a depth of around 7 km b.s.l.. Conversely, gravity studies indicate that the most important mass redistributions during the same period took place within an elongated volume centered below the southeastern sector of the volcano, at depths of 2-4 km b.s.l.. The phases of gravity decrease during the 1994-2001 period coincide with phases of higher strain release rate. The coupling between gravity and seismic data could reflect changes in the rate of micro-fracturing along the NNW-SSE weakness zone that cuts the SE slope of the volcano. This interpretation allows to explain why the main pressure and mass sources active at Etna during the 1994-2001 period do not coincide. The extensional dynamics of the southeastern flank of Etna may represent a second-order effect, triggered by the pressure source below the western flank and accommodated along the NNW-SSE weakness zone. In order to gain quantitative insight into the relationship between stress, strain and mass changes at Etna during the 1994-2001 period, we use a finite element modeling approach. Relying on recent studies involving stress- and temperature-induced degradation of the mechanical properties of rocks, we hypothesize that the inferred NNW-SSE weakness zone is characterized by an anomalously low Young's modulus (E). Results of our analysis are summarized in the following two points. (i) The presence of the weakness zone creates a distortion of the displacements field induced by the deeper pressure source, locally resulting in a weak extensional regime. This finding supports the hypothesis of a cause-effect relation between deeper pressurization beneath the western flank and shallower extension across the fracture zone beneath the SE flank of the volcano. However, the bulk extension across the weakness zone which is only due to pressurization of the magma reservoir is not sufficient to induce the observed gravity changes through changes in the rate of microfracturing. We suggest that propagation of pressurized gas, enhanced by the extensional regime across the NNW-SSE weakness zone, may have exerted tensile stresses across it, in turn increasing the bulk extension. (ii) For a given tensile stress across the fracture zone, the bulk extension increases proportionally as the value of E in the weakness zone decreases, while the ground deformation remains almost the same. This provides an explanation to understand how, during the studied period, the inferred changes in the bulk rate of microfracturing along the NNW-SSE weakness zone could have occurred with an associated small ground deformation. Indeed, we found that, as the value of E in correspondence of the fracture zone decreases, the ratio between deep extension and maximum ground displacement increases and, for values of E equal or less than about 10 GPa, deep extension of 1-2 m can develop with deformation of the surface close to the detection limit of GPS measurements. Our results highlight the importance of performing gravity studies at at volcanoes where there exists a causal link between medium fracturing and volcanic activity.
The Anomalous Hall Effect and Non-Equilibrium Transport
NASA Astrophysics Data System (ADS)
Ye, Fei
1995-01-01
This thesis contains three relatively independent research areas. In the first part of this thesis, the anomalous Hall effect of amorphous, high-resistance, Fe films (2 -10 monolayers thick) is investigated as a function of temperature. We find a logarithmic temperature dependence of the anomalous Hall resistance similar to the Coulomb anomaly of the resistance but twice its magnitude. The measurements are in excellent agreement with a theoretical calculation and provide us with an independent confirmation of the influence of the enhanced Coulomb interaction in disordered electron systems on transport properties. In the second part of the thesis, the nonequilibrium transport properties of metallic microstructures are studied. An electron beam lithography technique is used in making small structures. The electron temperature and phonon temperature are calculated. It is confirmed that the electron temperatures obtained from both thermometers (weak localization and the Coulomb anomaly) are consistent. It is also found that the phonon temperature in the film is considerably higher than the substrate temperature in the experiments. In addition, the dimensionality of the phonon system in the film is discussed, as well as the phonon escape time. In the third part, the magnetic behavior of V on Au films is studied. Weak localization and the anomalous Hall effect are used to investigate the magnetic properties of sub-mono, mono-, and multilayers of Vanadium on the surface of an Au film. Dilute V atoms possess a strong magnetic moment. For a monolayer the magnetic scattering is reduced by a factor of about 40. This suggests a strongly reduced moment of V compared with the dilute V coverage. From the anomalous Hall effect, it is concluded that the magnetic structure is anti-ferromagnetic; the moment per V atom in multilayers progressively diminishes but is still finite for 16 atomic layers of V. In Appendix A, the nonequilibrium distribution of the phonon system in a metal film is evaluated. The phonon escape time and the effective phonon temperature are calculated.
Nonlinear responses of chiral fluids from kinetic theory
NASA Astrophysics Data System (ADS)
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Observations of Anomalous Refraction with Co-housed Telescopes
NASA Astrophysics Data System (ADS)
Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.
2013-01-01
Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.
Relation of tolerance of ambiguity to global and specific paranormal experience.
Houran, J; Williams, C
1998-12-01
We examined the relationship of tolerance of ambiguity to severe global factors and specific types of anomalous or paranormal experience. 107 undergraduate students completed MacDonald's 1970 AT-20 and the Anomalous Experiences Inventory of Kumar, Pekala, and Gallagher. Scores on the five subscales of the Anomalous Experiences Inventory correlated differently with tolerance of ambiguity. Global paranormal beliefs, abilities, experiences, and drug use were positively associated with tolerance of ambiguity, whereas a fear of paranormal experience showed a negative relation. The specific types of anomalous experiences that correlated with tolerance of ambiguity often involved internal or physiological experience, e.g., precognitive dreams, memories of reincarnation, visual apparitions, and vestibular alterations. We generally found no effects of age of sex. These results are consistent with the idea that some paranormal experiences are misattributions of internal experience to external ('paranormal') sources, a process analogous to mechanisms underpinning delusions and hallucinations.
Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.
Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong
2017-05-09
This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawada, Kazuya; Shimomura, Naoki; Doi, Masaaki; Sahashi, Masashi
2010-05-01
Exchange bias from antiferromagnetic (AFM) oxides with a magnetoelectric (ME) effect has been studied for controlling ferromagnetic (FM) magnetizations by an applying electric field. However, thick ME oxides are needed for realizing the electrically controlled exchange biasing. Therefore, in this study the temperature dependencies of the training effect for the Cr2O3-nano-oxide-layer (NOL) are investigated for confirming the ME effect of the Cr2O3-NOL. The anomalous temperature tendencies of system dependent constant for exchange bias and magnetoresistance (MR), κHex and κMR, were observed, which are probably originated from the ME effect of the Cr2O3-NOL because (1) these anomalous temperature tendencies could not be obtained in the CoO-NOL spin valve and (2) the κHex and κMR are defined as the strength of the coupling between FM and AFM spins. It is remarkable result for us to confirm the possibility of the ME effect from the ultrathin Cr2O3 layer (less than 1 nm) because the ME effect was observed in only thick ME materials.
Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice
NASA Astrophysics Data System (ADS)
Hou, Jing-Min
2014-03-01
We study a two-dimensional fermionic square lattice, which supports the existence of two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2 π -flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2 π -flux topological semimetal are protected by two distinct novel hidden symmetries, which both corresponds to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry. [PRL 111, 130403(2013)] This work was supported by the National Natural Science Foundation of China under Grants No. 11004028 and No. 11274061.
Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P
2014-07-15
Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.
Anomalous refraction of light colors by a metamaterial prism.
Silveirinha, Mário G
2009-05-15
A prism of glass separates white light into its spectral components in such a manner that colors associated with shorter wavelengths are more refracted than the colors associated with longer wavelengths. Here, we demonstrate that this property is not universal, and that a lossless metamaterial prism with a suitable microstructure may enable a broadband regime of anomalous dispersion, where the spectral components of light are separated in an unconventional way, so that "violet light" is less refracted than "red light." This phenomenon is fundamentally different from conventional anomalous dispersion effects, which are invariably accompanied by significant loss and are typically very narrow band.
NASA Astrophysics Data System (ADS)
Li, Panpan; Chen, Zhenqian; Shi, Juan
2018-02-01
A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.
Sajdel-Sulkowska, Elizabeth M
2008-01-01
As man embarks on space exploration and contemplates space habitation, there is a critical need for basic understanding of the impact of the environmental factors of space, and in particular gravity, on human survival, health, reproduction and development. This review summarizes our present knowledge on the effect of altered gravity on the developing CNS with respect to the response of the developing CNS to altered gravity (gravireaction), the physiological changes associated with altered gravity that could contribute to this effect (gravitransduction), and the possible mechanisms involved in the detection of altered gravity (graviperception). Some of these findings transcend gravitational research and are relevant to our understanding of the impact of environmental factors on CNS development on Earth.
Biological patterns: Novel indicators for pharmacological assays
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1991-01-01
Variable gravity testing using the KC-135 demonstrated clearly that biological pattern formation was definitely shown to result from gravity alone, and not from oxygen gradients in solution. Motile pattern formation of spermatozoa are driven by alternate mechanisms, and apparently not affected by short-term changes in gravity. The chemical effects found appear to be secondary to the primary effect of gravity. Cryopreservation may be the remedy to the problem of 'spare' or 'standing order' biological samples for testing of space lab investigations, but further studies are necessary.
NASA Technical Reports Server (NTRS)
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
Nespoli works with ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017243 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Dynamics of an Unsteady Diffusion Flame: Effects of Heat Release and Gravity
1990-09-27
UNSTEADY DIFFUSION FLAME: EFFECTS OF HEAT RELEASE AND GRAVITY INTRODUCTION Experiments on laminar diffusion flames have shown that gravity affects the flame ... length and width as well as its extinction characteristics (1-4). These studies have been conducted in drop towers and have focused on fuel jets with
Criteria for Applying the Lucas-Washburn Law.
Li, Kewen; Zhang, Danfeng; Bian, Huiyuan; Meng, Chao; Yang, Yanan
2015-09-14
Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigated both theoretically and experimentally. The mathematical model derived analytically was used to calculate the imbibition rates in porous media with different permeabilities. The results demonstrated that the effect of gravity on spontaneous imbibition was governed by the hydraulic conductivity of the porous media (permeability of the imbibition systems). The criteria for applying the Lucas-Washburn law have been proposed. The effect of gravity becomes more apparent with the increase in permeability or with the decrease in CGR number (the ratio of capillary pressure to gravity forces) and may be ignored when the CGR number is less than a specific value N(*)(cg) ≅ 3.0. The effect of gravity on imbibition in porous media can be modeled theoretically. It may not be necessary to conduct spontaneous imbibition experiments horizontally in order to exclude the effect of gravity, as has been done previously.
Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.
Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E
2015-06-01
Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.
Analytical Study of Gravity Effects on Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Edelman, R. B.; Fortune, O.; Weilerstein, G.
1972-01-01
A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.
NASA Astrophysics Data System (ADS)
Shi, Wujun; Muechler, Lukas; Manna, Kaustuv; Zhang, Yang; Koepernik, Klaus; Car, Roberto; van den Brink, Jeroen; Felser, Claudia; Sun, Yan
2018-02-01
We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl , a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75 % of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.
Ghorai, Pradip Kr; Yashonath, S
2005-03-10
Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).
Anomalous cross-modulation between microwave beams
NASA Astrophysics Data System (ADS)
Ranfagni, Anedio; Mugnai, Daniela; Petrucci, Andrea; Mignani, Roberto; Cacciari, Ilaria
2018-06-01
An anomalous effect in the near field of crossing microwave beams, which consists of an unexpected transfer of modulation from one beam to the other, has found a plausible interpretation within the framework of a locally broken Lorentz invariance. A theoretical approach of this kind deserves to be reconsidered also in the light of further experimental work, including a counter-check of the phenomenon.
Anomalous dimension of subleading-power N-jet operators
NASA Astrophysics Data System (ADS)
Beneke, Martin; Garny, Mathias; Szafron, Robert; Wang, Jian
2018-03-01
We begin a systematic investigation of the anomalous dimension of subleading power N-jet operators in view of resummation of logarithmically enhanced terms in partonic cross sections beyond leading power. We provide an explicit result at the one-loop order for fermion-number two N-jet operators at the second order in the power expansion parameter of soft-collinear effective theory.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.; Alvarez, L. S.
1993-01-01
The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.
NASA Astrophysics Data System (ADS)
Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.
2010-12-01
For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.
Pressure Profiles in a Loop Heat Pipe Under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Pressure Profiles in a Loop Heat Pipe under Gravity Influence
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less
Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.
Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.
Gravity Effects in Condensing and Evaporating Films
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.
2004-01-01
A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.
Numerical study of gravity effects on phase separation in a swirl chamber.
Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L
2016-01-01
The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.
Advances in space biology and medicine. Vol. 1
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L. (Editor)
1991-01-01
Topics discussed include the effects of prolonged spaceflights on the human body; skeletal responses to spaceflight; gravity effects on reproduction, development, and aging; neurovestibular physiology in fish; and gravity perception and circumnutation in plants. Attention is also given to the development of higher plants under altered gravitational conditions; the techniques, findings, and theory concerning gravity effects on single cells; protein crystal growth in space; and facilities for animal research in space.
Anomaly-free cosmological perturbations in effective canonical quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail
2015-05-01
This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.
Topological Defects in Double Exchange Materials and Anomalous Hall Resistance.
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Brey, L.
2000-03-01
Recently it has been proposed that the anomalous Hall effect observed in Double Exchange materials is due to Berry phase effects caused by carrier hopping in a nontrivial spins background (J.Ye et al.) Phys.Rev.Lett. 83, 3737 1999.In order to study this possibility we have performed Monte Carlo simulations of the Double Exchange model and we have computed, as a function of the temperature, the number of topological defects in the system and the internal gauge magnetic field associated with these defects. In the simplest Double Exchange model the gauge magnetic field is random, and its average value is zero. The inclusion in the problem of spin-orbit coupling privileges the opposite direction of the magnetization and an anomalous Hall resistance (AHR) effect arises. We have computed the AHR, and we have obtained its temperature dependence. In agreement with previous experiments we obtain that AHR increases exponentially at low temperature and presents a maximum at a temperature slightly higher than the critical temperature.
Anomalous spin Josephson effect
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng
2016-10-01
We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.
Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG
Miao, B. F.; Huang, S. Y.; Qu, D.; ...
2016-01-29
The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. Here, it is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from themore » ANE.« less
The Effect of Divided Attention on Inhibiting the Gravity Error
ERIC Educational Resources Information Center
Hood, Bruce M.; Wilson, Alice; Dyson, Sally
2006-01-01
Children who could overcome the gravity error on Hood's (1995) tubes task were tested in a condition where they had to monitor two falling balls. This condition significantly impaired search performance with the majority of mistakes being gravity errors. In a second experiment, the effect of monitoring two balls was compared in the tubes task and…
Recommended Research on Artificial Gravity. Chapter 13
NASA Technical Reports Server (NTRS)
Vernikos, Joan; Paloski, William; Fuller, Charles; Clement, Gilles
2006-01-01
Based on the summaries presented in the above sections of what is still to be learned on the effects of artificial gravity on human functions, this chapter will discuss the short- and long-term steps of research required to understand fundamentals and to validate operational aspects of using artificial gravity as an effective countermeasure for long-duration space travel.
Evaluation of ames Multistix-SG for urine specific gravity versus refractometer specific gravity.
Adams, L J
1983-12-01
A comparison of urine specific gravity by a commercially available multiple reagent strip (Multistix-SG; Ames Division, Miles Laboratory) versus refractometer specific gravity (TS Meter; American Optical Corporation) was performed on 214 routine urine specimens. Agreement to +/- 0.005 was found in 72% of the specimens (r = 0.80). Urine specific gravity by the Multistix-SG showed a significant positive bias at urine pHs less than or equal to 6.0 and a negative bias at urine pHs greater than 7.0 in comparison to refractometer specific gravity. At concentrated (specific gravity greater than or equal to 1.020) specific gravities, up to 25% of urine specimens were misclassified as not concentrated by Multistix-SG specific gravity in comparison to refractometer specific gravity. The additional cost of the specific gravity reagent to a multiple reagent test strip in addition to the poor performance relative to refractometer specific gravity leads to the conclusion that including this specific gravity methodology on a multiple reagent strip is neither cost effective nor clinically useful.
Retrocausation Or Extant Indefinite Reality?
NASA Astrophysics Data System (ADS)
Houtkooper, Joop M.
2006-10-01
The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.
Role of Gravity Waves in Determining Cirrus Cloud Properties
NASA Technical Reports Server (NTRS)
OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong
2008-01-01
Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).
NASA Astrophysics Data System (ADS)
Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei
2013-01-01
The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and thereafter multi-gravity currents fills unlike in most slope channel-fills.
Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited
NASA Astrophysics Data System (ADS)
Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-12-01
Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP programs.
NLO QCD effective field theory analysis of W+W- production at the LHC including fermionic operators
NASA Astrophysics Data System (ADS)
Baglio, Julien; Dawson, Sally; Lewis, Ian M.
2017-10-01
We study the impact of anomalous gauge boson and fermion couplings on the production of W+W- pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W+W- pair production fails at pT˜500 - 1000 GeV .
Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang
2015-01-01
We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change.
Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang
2015-01-01
We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change. PMID:25923519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jedrecy, N., E-mail: jedrecy@insp.jussieu.fr; Hamieh, M.; Hebert, C.
We show that the well-established universal scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 1.6} between anomalous Hall and longitudinal conductivities in the low conductivity regime (σ{sub xx} < 10{sup 4} Ω{sup −1} cm{sup −1}) transforms into the scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 2} at the onset of strong electron localization. The crossover between the two relations is observed in magnetite-derived Zn{sub x}Fe{sub 3-x}O{sub 4} thin films where an insulating/hopping regime follows a bad metal/hopping regime below the Verwey transition temperature T{sub v}. Our results demonstrate that electron localization effects come into play in the anomalous Hall effect (AHE)more » modifying significantly the scaling exponent. In addition, the thermal evolution of the anomalous Hall resistivity suggests the existence of spin polarons whose size would decrease below T{sub v}.« less
Anomalous Hall effect in ZrTe 5
Liang, Tian; Lin, Jingjing; Gibson, Quinn; ...
2018-03-19
Research in topological matter has expanded to include the Dirac and Weyl semimetals which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated inmore » the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. Finally, this suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.« less
Anomalous Hall effect in ZrTe5
NASA Astrophysics Data System (ADS)
Liang, Tian; Lin, Jingjing; Gibson, Quinn; Kushwaha, Satya; Liu, Minhao; Wang, Wudi; Xiong, Hongyu; Sobota, Jonathan A.; Hashimoto, Makoto; Kirchmann, Patrick S.; Shen, Zhi-Xun; Cava, R. J.; Ong, N. P.
2018-05-01
Research in topological matter has expanded to include the Dirac and Weyl semimetals1-10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.
Anomalous Hall effect in ZrTe 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Tian; Lin, Jingjing; Gibson, Quinn
Research in topological matter has expanded to include the Dirac and Weyl semimetals which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated inmore » the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. Finally, this suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.« less
Collective excitations in Weyl semimetals in the hydrodynamic regime
NASA Astrophysics Data System (ADS)
Sukhachov, P. O.; Gorbar, E. V.; Shovkovy, I. A.; Miransky, V. A.
2018-07-01
The spectrum of collective excitations in Weyl materials is studied by using consistent hydrodynamics. The corresponding framework includes the vortical and chiral anomaly effects, as well as the dependence on the separations between the Weyl nodes in energy b 0 and momentum . The latter are introduced via the Chern–Simons contributions to the electric current and charge densities in Maxwell’s equations. It is found that, even in the absence of a background magnetic field, certain collective excitations (e.g. the helicon-like modes and the anomalous Hall waves) are strongly affected by the chiral shift . In a background magnetic field, the existence of the distinctive longitudinal and transverse anomalous Hall waves with a linear dispersion relation is predicted. They originate from the oscillations of the electric charge density and electromagnetic fields, in which different components of the fields are connected via the anomalous Hall effect in Weyl semimetals.
Nadel, A S; Norton, M E; Wilkins-Haug, L
1997-05-01
To perform a cost-effectiveness analysis of various protocols used in the diagnostic evaluation of pregnancies complicated by elevated levels of maternal serum alpha-fetoprotein (MSAFP). The variables incorporated in this model were the prevalence of relevant fetal anomalies; the sensitivity and specificity of MSAFP at 2.0 or 2.5 multiples of the median (MoM); and the sensitivity, specificity, cost, and safety of targeted ultrasound and amniocentesis. We expressed the cost-effectiveness of each strategy as the total cost of the diagnostic evaluation divided by the number of anomalous fetuses identified, yielding the cost per identified anomalous fetus. In a hypothetical cohort of 100,000 singleton pregnancies, a strategy of targeted ultrasound for MSAFP of at least 2.0 MoM detected 90 of 110 structurally abnormal fetuses, without iatrogenic fetal loss, at a cost of $5700 per anomalous fetus. A strategy of amniocentesis with karyo-type determination for MSAFP of at least 2.5 MoM detected 15 additional abnormal fetuses (87 structural abnormalities, ten autosomal aneuploidies, and eight sex chromosomal aneuploidies), with nine iatrogenic fetal losses, at an incremental cost of $46,100 per anomalous fetus. The increased cost and iatrogenic fetal loss rate may not justify the increased diagnostic yield of amniocentesis as compared with ultrasound in the evaluation of pregnancies complicated by elevated MSAFP.
Some physiological effects of alternation between zero gravity and one gravity
NASA Technical Reports Server (NTRS)
Graybiel, A.
1977-01-01
The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
Self-gravity wake structures in Saturn's a ring revealed by Cassini vims
Hedman, M.M.; Nicholson, P.D.; Salo, H.; Wallis, B.D.; Buratti, B.J.; Baines, K.H.; Brown, R.H.; Clark, R.N.
2007-01-01
During the summer of 2005, the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft observed a series of occultations of the star o Ceti (Mira) by Saturn's rings. These observations revealed pronounced variations in the optical depth of the A ring with longitude, which can be attributed to oriented structures in the rings known as self-gravity wakes. While the wakes themselves are only tens of meters across and below the resolution of the measurements, we are able to obtain information about the orientation and shapes of these structures by comparing the observed transmission at different longitudes with predictions from a simple model. Our findings include the following: (1) The orientation of the wakes varies systematically with radius, trailing by between 64?? and 72?? relative to the local radial direction. (2) The maximum transmission peaks at roughly 8% for B = 3.45?? in the middle A ring (???129,000 km). (3) Both the wake orientation and maximum transmission vary anomalously in the vicinity of two strong density waves (Janus 5:4 and Mimas 5:3). (4) The ratio of the wake vertical thickness H to the wake pattern wavelength ?? (assuming infinite, straight, regularly-spaced wake structures) varies from 0.12 to 0.09 across the A ring. Gravitational instability theory predicts ?? ??? 60 m, which suggests that the wake structures in the A ring are only ???6 m thick. ?? 2007. The American Astronomical Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Sebera, Josef; Bezděk, Aleš; Kostelecký, Jan; Pešek, Ivan; Shum, C. K.
2016-01-01
The most important high-resolution geopotential models such as EGM96 and EGM2008 have been released approximately once per decade. In light of the ability of modern satellite, airborne or terrestrial techniques to provide new data sets every year (e.g., in polar and ocean areas), these data can be readily included in existing models without waiting for a new release. In this article, we present a novel ellipsoidal approach for updating high-resolution models over the oceans with new gridded data. The problem is demonstrated using the EGM2008 model updated with DTU10 geoid and gravity grids that provide additional signal over the Arctic oceans. The result of the procedure are the ellipsoidal and the spherical harmonic coefficients up to degree 4320 and 4400, respectively. These coefficients represent the input data set to within 0.08 mGal globally, with the largest differences located at the land-ocean boundaries, which is two orders of magnitude less than real accuracy of gravity data from satellite altimetry. Along with the harmonic coefficients a detailed map of the second vertical derivative of the anomalous potential (or vertical gravitational gradient) on 1 arc-min grid is anticipated to improve or complement the original DTU10 geoid model. Finally, an optimized set of Jekeli's functions is provided as they allow for computing oblate ellipsoidal harmonics up to a very high degree and order (>10,000) in terms of the hypergeometric formulation.
Geological indicators for impact: The anomalous case of the Vredefort structure, South Africa
NASA Technical Reports Server (NTRS)
Antoine, L. A. G.; Reimold, W. U.
1988-01-01
The Vredefort Dome is located within and almost central to the Witwatersrand basin in its presently known extent. It exposes a central Archean granite core which is surrounded by a collar of supracrustal rocks. These collar rocks outline a strong polygonal geometry. The Archean core is comprised of two concentric zones, the Outer Granite Gneiss (OGG), and the core central Inlandsee Leucogranofels (ILG). The rocks of the inner core display granulite facies metamorphism, while the OGG is in amphibolite facies. The inner core is believed from recent drill hole information to be underlain by mafic and ultramafic gneisses, the extent of which cannot be assessed at present. A fairly broad zone of charnockites separates the OGG and ILG domains. This zone is characterized by a high concentration of pseudotachylite and ductile shearing. Whereas a number of other domical structures are located within or surrounding the Witwatersrand basin, the Vredefort structure is anomalous, in that it has: a partly polygonal geometry; extensive alkali intrusives in the northwestern sector; granophyre dykes (ring-dykes peripheral to the contact collar-basement and NW-SE or NE-SW trending dykes within the Archean basement); contact metamorphism of the collar supracrustal rocks; the overturning of collar supracrustals in the northern sectors; deformation phenomena widely regarded as representing shock metamorphism (pseudotachylite, (sub)planar microdeformation features in quartz, shatter cones and occurrences of high-P quartz polymorphs); a positive 30 mgal gravity anomaly; and high amplitude magnetic anomalies. Recent geophysical, structural and petrological evidence pertinent for the identification of the processes that led to the formation of the Vredefort structure are summarized.
The direct effects of gravity on the control and output matrices of controlled structure models
NASA Technical Reports Server (NTRS)
Rey, Daniel A.; Alexander, Harold L.; Crawley, Edward F.
1992-01-01
The effects of gravity on the dynamic performance of structural control actuators and sensors are dual forms of an additive perturbation that can attenuate or amplify the device response (input or output). The modal modeling of these perturbations is derived for the general case of arbitrarily oriented devices and arbitrarily oriented planes of deformation. A nondimensional sensitivity analysis to identify the circumstances under which the effects of gravity are important is presented. Results show that gravity effects become important when the product of the ratio of the normalized modal slope and the modal displacement is comparable to the ratio of the gravitational acceleration and the product of the beam length and the squared eigenfrequency for a given mode.
Flow Boiling Critical Heat Flux in Reduced Gravity
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.
2004-01-01
This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment
NASA Technical Reports Server (NTRS)
Brooker, John E.; Ruff, Gary A.
2004-01-01
The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
NASA Astrophysics Data System (ADS)
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boos, E. E.; Bunichev, V. E.; Vorotnikov, G. A.
2016-01-15
The results of searches for effects beyond the Standard Model in processes of single top-quark production in the CMS experiment are presented. Anomalous contributions of the vector and magnetic types in top-quark interaction with the W boson and b quark and quark-flavor-changing neutral currents in top-quark interaction with the c or u quark via gluon exchange were studied. The respective analysis was performed with the aid of Bayesian neural networks. No statistically significant deviations were found, and upper limits on anomalous couplings at a 95% confidence level were set.
An anomalous subdiffusion model for calcium spark in cardiac myocytes
NASA Astrophysics Data System (ADS)
Tan, Wenchang; Fu, Chaoqi; Fu, Ceji; Xie, Wenjun; Cheng, Heping
2007-10-01
The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from ryanodine receptors in the sarcoplasmic reticulum (SR). Here, an anomalous subdiffusion model is developed to explore Ca2+ spark formation in cardiac myocytes. Numerical simulations reproduce the brightness, the time course, and spatial size of a typical cardiac Ca2+ spark. It is suggested that the diffusion of Ca2+ spark in the cytoplasm may no longer obey Fickian second law, but the anomalous space subdiffusion. The physical reason is perhaps due to the effects of the electric field of the calcium ions and the viscoelasticity of the cytoplasm and its complex structures.
Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer
NASA Astrophysics Data System (ADS)
Wei, Tao; Duan, Fei
2018-03-01
We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.
Anomalous refraction of a low divergence monochromatic light beam in a transparent slab.
Lequime, Michel; Amra, Claude
2018-04-01
An exact formulation for the propagation of a monochromatic wave packet impinging on a transparent, homogeneous, isotropic, and parallel slab at oblique incidence is given. Approximate formulas are derived for low divergence light beams. These formulas show the presence of anomalous refraction phenomena at any slab thickness, including negative refraction and flat lensing effects, induced by reflection at the rear face.
1993-06-01
Qad and the other, which can be considered due to edges effects, Qcd . 2.2.1 Extended Anomalous Diffraction The anomalous diffraction formula is derived...particle with an array of N point dipoles on a cubic lattice . The polarization of each dipole is found by solving a self- consistent set of linear
Cutoff for extensions of massive gravity and bi-gravity
NASA Astrophysics Data System (ADS)
Matas, Andrew
2016-04-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.
Effect of Artificial Gravity: Central Nervous System Neurochemical Studies
NASA Technical Reports Server (NTRS)
Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.
1997-01-01
The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.
Xu, Boyan; Su, Lu; Wang, Zhenxiong; Fan, Yang; Gong, Gaolang; Zhu, Wenzhen; Gao, Peiyi; Gao, Jia-Hong
2018-04-17
Anomalous diffusion model has been introduced and shown to be beneficial in clinical applications. However, only the directionally averaged values of anomalous diffusion parameters were investigated, and the anisotropy of anomalous diffusion remains unexplored. The aim of this study was to demonstrate the feasibility of using anisotropy of anomalous diffusion for differentiating low- and high-grade cerebral gliomas. Diffusion MRI images were acquired from brain tumor patients and analyzed using the fractional motion (FM) model. Twenty-two patients with histopathologically confirmed gliomas were selected. An anisotropy metric for the FM-related parameters, including the Noah exponent (α) and the Hurst exponent (H), was introduced and their values were statistically compared between the low- and high-grade gliomas. Additionally, multivariate logistic regression analysis was performed to assess the combination of the anisotropy metric and the directionally averaged value for each parameter. The diagnostic performances for grading gliomas were evaluated using a receiver operating characteristic (ROC) analysis. The Hurst exponent H was more anisotropic in high-grade than in low-grade gliomas (P = 0.015), while no significant difference was observed for the anisotropy of α. The ROC analysis revealed that larger areas under the ROC curves were produced for the combination of α (1) and the combination of H (0.813) compared with the directionally averaged α (0.979) and H (0.594), indicating an improved performance for tumor differentiation. The anisotropy of anomalous diffusion can provide distinctive information and benefit the differentiation of low- and high-grade gliomas. The utility of anisotropic anomalous diffusion may have an improved effect for investigating pathological changes in tissues. Copyright © 2018 Elsevier Inc. All rights reserved.
Neutron stars in a perturbative f(R) gravity model with strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can
2013-10-01
In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equationsmore » derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.« less
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Sugenoya, Junichi; Sato, Maki; Shimizu, Yuuki; Kanikowska, Dominika; Nishimura, Nooki; Takada, Hiroki; Takada, Masumi; Mano, Tadaki; Ishida, Koji; Akima, Hiroshi; Katayama, Keisho; Hirayanagi, Kaname; Shiozawa, Tomoki; Yajima, Katzuyoshi; Watanabe, Yoriko; Suzuki, Satomi; Fukunnaga, Tetsuo; Masuo, Yoshihisa
2008-06-01
Effectiveness of centrifuge-induced artificial gravity and ergometric exercise as a countermeasure to space deconditioning, including cardiovascular deconditioning, myatrophy, and osteoporosis, induced by 20 days of head-down bedrest., was examined in 12 healthy men in 2006, and 8 healthy men in 2007. Bedrest was performed with 2300 kcal of diet. Water intake was recommended more than the urine volume in a previous day. A new protocol for artificial gravity with ergometric exercise was adopted, with 1.6 G of artificial gravity at heart level and 60 W of exercise every day in 2006, and every other day in 2007. The load was suspended when subjects complained all-out, and was continued until 30 min cumulative total load time. Gravity was stepped up by 0.2 G or exercise load was stepped up by 15 W alternately when the subject endured the load for 5 min. Gravity tolerance was examined by using centrifuge, and anti-G score was determined before and after the bedrest. Not all result has been analyzed, however, effectiveness of artificial gravity with ergometric exercise was evidenced in orthostatic tolerance, physical fitness, cardiac function, myatrophy, and bone metabolism in everyday protocol, but not in every other day protocol. We concluded this everyday protocol was effective in cardiovascular deconditioning myatrophy, and bone metabolism.
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-05-14
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-01-01
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu
2017-05-25
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu
2017-01-01
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086
NASA Astrophysics Data System (ADS)
Zhao, Q.
2017-12-01
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.
Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier
2018-04-23
Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.
NASA Technical Reports Server (NTRS)
Vijayakumar, M.; Tewari, S. N.; Lee, J. E.; Curreri, P. A.
1990-01-01
Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy.
Visual gravitational motion and the vestibular system in humans
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-01-01
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761
Visual gravitational motion and the vestibular system in humans.
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-12-26
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.
The effect of gravity on plant germination
NASA Astrophysics Data System (ADS)
Takakura, T.; Goto, E.; Tanaka, M.
1996-01-01
An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degC under an average light condition of 110 mumol/m^2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under micro gravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth.
Microgravity effects of sea urchin fertilization and development
NASA Technical Reports Server (NTRS)
Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.
1992-01-01
Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.
Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation
NASA Astrophysics Data System (ADS)
Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.
2017-06-01
There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.
Experimental observation of negative effective gravity in water waves.
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.
Experimental Observation of Negative Effective Gravity in Water Waves
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
Fire Detection Organizing Questions
NASA Technical Reports Server (NTRS)
2004-01-01
Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.
Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.
McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T
2013-12-13
Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.
Quantum effects in the dynamics of deeply supercooled water
Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...
2015-02-26
In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature T g~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.
Phenomenology of anomalous chiral transports in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang
2018-01-01
High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.
Black holes in massive gravity as heat engines
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.
2018-06-01
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
Gravitational Effects on Cellular Flame Structure
NASA Technical Reports Server (NTRS)
Dunsky, C. M.; Fernandez-Pello, A. C.
1991-01-01
An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.
Xu, X. Q.; Dudson, B.; Snyder, P. B.; ...
2010-10-22
A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Bloch-Siegert shift in Dirac-Weyl fermionic systems
NASA Astrophysics Data System (ADS)
Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.
2018-04-01
The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.
Degree-strength correlation reveals anomalous trading behavior.
Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang
2012-01-01
Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.
Short term load forecasting of anomalous load using hybrid soft computing methods
NASA Astrophysics Data System (ADS)
Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.
2016-04-01
Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.
Three-Axis Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1987-01-01
Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.
Interactions between gravitropism and phototropism in plants
NASA Technical Reports Server (NTRS)
Correll, Melanie J.; Kiss, John Z.
2002-01-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Interactions between gravitropism and phototropism in plants.
Correll, Melanie J; Kiss, John Z
2002-06-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Composition-dependent magnetic response properties of Mn1 -xFexGe alloys
NASA Astrophysics Data System (ADS)
Mankovsky, S.; Wimmer, S.; Polesya, S.; Ebert, H.
2018-01-01
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn1 -xFexGe alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈0.85 in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at x ≈0.8 . A corresponding behavior with a sign change at x ≈0.5 is predicted also for the Fermi-sea contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall effect and the sign change of the spin Hall effect conductivities.
Active Response Gravity Offload System
NASA Technical Reports Server (NTRS)
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities
NASA Astrophysics Data System (ADS)
Mohanty, Subhanjoy; Basri, Gibor; Jayawardhana, Ray; Allard, France; Hauschildt, Peter; Ardila, David
2004-07-01
We present an analysis of high-resolution optical spectra for a sample of very young, mid- to late-M, low-mass stellar and substellar objects: 11 in the Upper Scorpius association, and two (GG Tau Ba and Bb) in the Taurus star-forming region. Effective temperatures and surface gravities are derived from a multiple-feature spectral analysis using TiO, Na I, and K I, through comparison with the latest synthetic spectra. We show that these spectral diagnostics complement each other, removing degeneracies with temperature and gravity in the behavior of each. In combination, they allow us to determine temperature to within 50 K and gravity to within 0.25 dex, in very cool young objects. Our high-resolution spectral analysis does not require extinction estimates. Moreover, it yields temperatures and gravities independent of theoretical evolutionary models (although our estimates do depend on the synthetic spectral modeling). We find that our gravities for most of the sample agree remarkably well with the isochrone predictions for the likely cluster ages. However, discrepancies appear in our coolest targets: these appear to have significantly lower gravity (by up to 0.75 dex) than our hotter objects, even though our entire sample covers a relatively narrow range in effective temperature (~300 K). This drop in gravity is also implied by intercomparisons of the data alone, without recourse to synthetic spectra. We consider, and argue against, dust opacity, cool stellar spots, or metallicity differences leading to the observed spectral effects; a real decline in gravity is strongly indicated. Such gravity variations are contrary to the predictions of the evolutionary tracks, causing improbably low ages to be inferred from the tracks for our coolest targets. Through a simple consideration of contraction timescales, we quantify the age errors introduced into the tracks through the particular choice of initial conditions and demonstrate that they can be significant for low-mass objects that are only a few megayears old. However, we also find that these errors appear insufficient to explain the magnitude of the age offsets in our lowest gravity targets. We venture that this apparent age offset may arise from evolutionary model uncertainties related to accretion, deuterium burning and/or convection effects. Finally, when combined with photometry and distance information, our technique for deriving surface gravities and effective temperatures provides a way of obtaining masses and radii for substellar objects independent of evolutionary models; radius and mass determinations are presented in Paper II.
Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, we describe algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment. A simple theoretical framework [Terwilliger et al.(2016),Acta Cryst.D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. Thephenix.plan_sad_experimenttool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimatemore » the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. Thephenix.scale_and_mergetool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and thephenix.anomalous_signaltool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, we describe algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment. A simple theoretical framework [Terwilliger et al.(2016),Acta Cryst.D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. Thephenix.plan_sad_experimenttool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimatemore » the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. Thephenix.scale_and_mergetool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and thephenix.anomalous_signaltool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.« less
Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.
2010-09-01
ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound
Clément, Gilles R; Bukley, Angelia P; Paloski, William H
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.
How to detect when cells in space perceive gravity
NASA Technical Reports Server (NTRS)
Bjoerkman, Thomas
1989-01-01
It is useful to be able to measure when and whether cells detect gravity during spaceflights. For studying gravitational physiology, gravity perception is the response the experimentalist needs to measure. Also, for growing plants in space, plant cells may have a non-directional requirement for gravity as a development cue. The main goals of spaceflight experiments in which gravity perception would be measured are to determine the properties of the gravity receptor and how it is activated, and to determine fundamental characteristics of the signal generated. The main practical difficulty with measuring gravity sensing in space is that gravity sensing cannot be measured with certainty on earth. Almost all experiments measure gravitropic curvature. Reciprocity and intermittent stimulation are measurements which were made to some degree on earth using clinostatting, but which would provide clearer results if done with microgravity rather than clinostatting. These would be important uses of the space laboratory for determining the nature of gravity sensing in plants. Those techniques which do not use gravitropic curvature to measure gravity sensing are electrophysiological. The vibrating probe would be somewhat easier to adapt to space conditions than the intracellular microelectrode because it can be positioned with less precision. Ideally, a non-invasive technique would be best suited if an appropriate measure could be developed. Thus, the effect of microgravity on cultured cells is more likely to be by large-scale physical events than gravity sensing in the culture cells. It is not expected that it will be necessary to determine whether individual cultured cells perceive gravity unless cells grow abnormally even after the obvious microgravity effects on the culture as a whole can be ruled out as the cause.
Gravity effects on information filtering and network evolving.
Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi
2014-01-01
In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model.
Aquatic Invertebrate Development Working Group
NASA Technical Reports Server (NTRS)
Meyers, D.
1985-01-01
Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.
Gravity Effects on Information Filtering and Network Evolving
Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi
2014-01-01
In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162
Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand
NASA Astrophysics Data System (ADS)
Greve, A.; Stern, T. A.
2017-12-01
Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new crust are most likely the primary sources of the impressive 4 GW heat output of the CVR.
Physical Foundations of Plasma Microwave Sources Based on Anomalous Doppler Effect
2007-09-17
International Science and Technology Center ( ISTC ), Moscow. ISTC Project A-1512p Physical Foundations of Plasma Microwave Sources Based on Anomalous...07 – 31-Aug-07 5a. CONTRACT NUMBER ISTC Registration No: A-1512p 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Physical foundations of plasma microwave... ISTC 05-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES
Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.
Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi
2017-01-01
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.
Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain
Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu
2017-01-01
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear’s vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes. PMID:28591153
NASA Technical Reports Server (NTRS)
Goembel, L.; Herrero, F. A.
1995-01-01
The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.
An index of anomalous convective instability to detect tornadic and hail storms
NASA Astrophysics Data System (ADS)
Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong
2017-12-01
In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.
NASA Astrophysics Data System (ADS)
He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing
Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.
The threshold for stellar winds in hot main-sequence stars
NASA Technical Reports Server (NTRS)
Grigsby, James A.; Morrison, Nancy D.
1995-01-01
The profiles of ultraviolet resonance lines of C IV were surveyed in a sample of 29 cluster and association members in the spectral type range O9-B2 III-V, together with a few field stars of interest. The temperatures and gravities of the stars were taken from the model atmosphere analysis by Grigsby, Morrison, & Anderson (1992), and the luminosities were estimated on the basis of cluster and association distances from the recent literature. A parameter P(sub w) was defined in order to describe the degree and assymetry of the C IV profile. This parameter, together with total C IV equivalent width, was found to be well correlated with stellar luminosity and temperature. A few anomalous stars were noted: tau Sco, HD 66665, HD 13621, and the ON stars HD12323 and HD 201345. The results suggest a sudden onset of observable mass loss at T(effective) = 27,500 +/- 500 K, log (L/solar luminosity) = 4.4 +/- 0.12, in agreement with the previous study by Prinja (1989). At T(effective) = 28,000 K and log g = 4, our non-LTE model atmospheres show an enhancement in the ground-state population of C(+3) in their topmost layer, which could be responsible for initiation of the winds via radiation pressure on the C(+3) ions, or for the onset of visibility of C(+3) ions in the wind because of an increase in the optical depth in the C IV lines in the outermost layers.
Satellite Gravity Drilling the Earth
NASA Technical Reports Server (NTRS)
vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.
2005-01-01
Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.
Effect of Gravity on the Mammalian Cell Deformation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y.; Gonda, Steven
1995-01-01
The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.
Baglio, Julien; Dawson, Sally; Lewis, Ian M.
2017-10-03
In this paper, we study the impact of anomalous gauge boson and fermion couplings on the production of W +W - pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W +W - pair production fails at p T ~more » 500 - 1000 GeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglio, Julien; Dawson, Sally; Lewis, Ian M.
In this paper, we study the impact of anomalous gauge boson and fermion couplings on the production of W +W - pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W +W - pair production fails at p T ~more » 500 - 1000 GeV.« less
NASA Astrophysics Data System (ADS)
Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K.
2018-04-01
Spatial distribution of temperature modulation due to the anomalous Ettingshausen effect (AEE) is visualized in a ferromagnetic FePt thin film with in-plane and out-of-plane magnetizations using the lock-in thermography technique. Comparing the AEE of FePt with the spin Peltier effect (SPE) of a Pt/yttrium iron garnet junction provides direct evidence of different symmetries of AEE and SPE. Our experiments and numerical calculations reveal that the distribution of heat sources induced by AEE strongly depends on the direction of magnetization, leading to the remarkable different temperature profiles in the FePt thin film between the in-plane and perpendicularly magnetized configurations.
Geometrical contribution to the anomalous Nernst effect in TbFeCo thin films
NASA Astrophysics Data System (ADS)
Ando, Ryo; Komine, Takashi
2018-05-01
The geometrical contribution to the anomalous Nernst effect in magnetic thin films was experimentally investigated by varying the aspect ratios and electrode configurations. The bar-type electrode configuration induces a short-circuit current near both edges of electrodes and decreases the effective Nernst voltage, while the point-contact (PC) electrode exploits the intrinsic Nernst voltage. In a sample with PC electrodes, as the sample width along the transverse direction of the thermal flow increases, the Nernst voltage increases monotonically. Thus, a much wider element with PC electrodes enables us to bring out a larger Nernst voltage by utilizing perpendicularly magnetized thin films.
Effects of gravity perturbation on developing animal systems
NASA Technical Reports Server (NTRS)
Malacinski, G. M.; Neff, A. W.
1986-01-01
The use of developing animal systems to analyze the effects of microgravity on animals is discussed. Some of the key features of developing systems, especially embryos, are reviewed and relevant space data are summarized. Issues to be addressed in the design of future space experiments are discussed. It is noted that an embryo which exhibits ground based gravity effects should be selected for use as a model system and individual variation in gravity response among batches of embryos should be taken into account.
Cosmic censorship in quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Bonanno, A.; Koch, B.; Platania, A.
2017-05-01
We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.
Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights
NASA Astrophysics Data System (ADS)
Chechkin, A. V.; Gonchar, V. Yu.; Gorenflo, R.; Korabel, N.; Sokolov, I. M.
2008-08-01
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. For processes lacking such scaling the corresponding description may be given by diffusion equations with fractional derivatives of distributed order. Such equations were introduced in A. V. Chechkin, R. Gorenflo, and I. Sokolov [Phys. Rev. E 66, 046129 (2002)] for the description of the processes getting more anomalous in the course of time (decelerating subdiffusion and accelerating superdiffusion). Here we discuss the properties of diffusion equations with fractional derivatives of the distributed order for the description of anomalous relaxation and diffusion phenomena getting less anomalous in the course of time, which we call, respectively, accelerating subdiffusion and decelerating superdiffusion. For the former process, by taking a relatively simple particular example with two fixed anomalous diffusion exponents we show that the proposed equation effectively describes the subdiffusion phenomenon with diffusion exponent varying in time. For the latter process we demonstrate by a particular example how the power-law truncated Lévy stable distribution evolves in time to the distribution with power-law asymptotics and Gaussian shape in the central part. The special case of two different orders is characteristic for the general situation in which the extreme orders dominate the asymptotics.
NASA Astrophysics Data System (ADS)
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath
2015-11-30
X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less