Science.gov

Sample records for anomalous hollow electron

  1. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  2. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  3. Collimation Studies with Hollow Electron Beams

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  4. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  5. The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Changlin; Chen, Huaijun; Zhai, Shilong; Liu, Song; Zhao, Xiaopeng

    2015-02-01

    This paper presents an acoustic metasurface (AMS) model consisting of split hollow sphere (SHS) resonator arrays with the property of negative modulus. It shows that the AMS can imprint phase discontinuities on an acoustic reflected wave as it traverses the interface between two media. By designing suitable phase gradients, the AMS enables the perpendicularly incident acoustic wave to be converted to a surface wave or reflected in any angle. Four kinds of AMSs, which can anomalously manipulate the reflected wave’s direction, are simulated to fulfill the generalized Snell’s law. The results provide an available and simple path to experimentally achieving the AMS.

  6. Photonic versus electronic quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2017-03-01

    We derive the diagram of the topological phases accessible within a generic Hamiltonian describing quantum anomalous Hall effect for photons and electrons in honeycomb lattices in the presence of a Zeeman field and spin-orbit coupling (SOC). The two cases differ crucially by the winding number of their SOC, which is 1 for the Rashba SOC of electrons, and 2 for the photon SOC induced by the energy splitting between the TE and TM modes. As a consequence, the two models exhibit opposite Chern numbers ±2 at low field. Moreover, the photonic system shows a topological transition absent in the electronic case. If the photonic states are mixed with excitonic resonances to form interacting exciton-polaritons, the effective Zeeman field can be induced and controlled by a circularly polarized pump. This new feature allows an all-optical control of the topological phase transitions.

  7. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  8. Propagation of energetic electrons in a hollow plasma fiber

    SciTech Connect

    Zhou, C. T.; He, X. T.; Chew, L. Y.

    2010-08-02

    Transport of energetic electrons in a hollow plasma fiber is investigated. The high-current electron beam induces in the fiber strong radial electric fields and azimuthal magnetic fields on the inner and outer surfaces of the hollow fiber. The hot electrons are pushed out by the surface magnetic field and returned into the fiber by the sheath electric field. Imbalance of the latter fields can drive chaotic oscillations of electrons around the fiber wall. Intense thin return-current layers inside both the inner and outer wall surfaces are observed. This enhances local joule heating around both surfaces by the return current.

  9. Classical Aspect of the Anomalous Magnetic Moment of the Electron

    NASA Astrophysics Data System (ADS)

    Bordovitsyn, V. A.; Kulikova, A. V.; Savitskaya, Yu. N.

    2017-03-01

    Some integral effects of electromagnetic interactions, such as the electromagnetic mass and the anomalous magnetic moment of the electron, are discussed on the basis of covariant methods of classical electrodynamics.

  10. Electron Acceleration Using Hollow Fiber with Table Top Terawatt Laser

    NASA Astrophysics Data System (ADS)

    Mizuta, Yoshio; Kondo, Kiminori; Zhenglin, Chen; Nakabayashi, Takashi; Nakanii, Nobuhiko; Kodama, Ryosuke; Mima, Kunioki; Tanaka, Kazuo

    2008-11-01

    A table top laser system can produce over 10TW laser pulse in present. If we focus these optical pulses to μm size, the focused intensity can be relativistic for electrons. In such a high field, the electron plasma wave (EPW) can be excited. This EPW is attractive for the accelerating field for charged particles. However, the effective interaction length is only a few hundred micro meters. For GeV electron acceleration, this short interaction length should be overcome. A simple hollow fiber is used for obtaining a longer acceleration distance. The spot diameter and the length of focused area should be 10μm and 10mm, respectively. We used the hollow fiber which has 20μm inner diameter and 10mm length. To fill the fiber with enough density atoms with keeping a good vacuum condition, the differential pumping system was used. Presently, we have succeeded in injecting μJ femtosecond pulses into the fine hollow fiber in the atmosphere. In this propagation, a strong self phase modulation occurred to generate a white light. Our plan for coming experiment and possible limiting factors will be discussed.

  11. In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam.

    PubMed

    El Mel, Abdel-Aziz; Bittencourt, Carla

    2016-06-07

    With the current development of electron beam sources, the use of transmission electron microscopes is no more limited to imaging or chemical analysis but has rather been extended to nanoengineering. This includes the e-beam induced growth, etching and structural transformation of nanomaterials. In this review we summarize recent progress on the e-beam induced morphological transformation of nanostructures from solid to hollow. We provide a detailed account of the processes reported so far in the literature with a special emphasis on the mechanistic understanding of the e-beam induced hollowing of nanomaterials. Through an important number of examples, we discuss how one can achieve a precise control of such hollowing processes by understanding the fundamental mechanisms occurring at the atomic scale during the irradiation of solid nanostructures. Finally, we conclude with remarks and our own view on the prospective future directions of this research field.

  12. Hollow-fiber membranes for photosensitized electron transport

    SciTech Connect

    Wamser, C.C.; Otvos, J.W.; Calvin, M.

    1981-01-01

    Commercially available cellulose acetate hollow fiber membranes have been investigated for possible use in artificial photosynthesis solar energy schemes. The function of the membrane is to contain the photosensitizer and to separate the oxidized and reduced species which result from photosensitized electron transfer reactions on each side of the membrane wall. Membranes were successfully modified by a process of soaking in a THF solution saturated with porphyrin, followed by a water rinse. This procedure gives dark purple fibers which contain up to 30 mM zinc tetraphenylporphyrin in the fiber walls. A plumbing system has been developed to allow flow of a solution through the inner channels of a 24-fiber bundle while it is immersed in a separate outer solution. Preliminary studies indicate that the fibers are somewhat permeable to both EDTA and dimethyl viologen, the electron donor and acceptor molecules, respectively. Preliminary photochemical studies on cut-up pieces of the treated fiber indicate that it does photosensitize a reaction between EDTA and dimethyl viologen in aqueous solution.

  13. Band like Electronic Structures in Square Hollow Quantum Dots by 3D-MHFKS Calculation

    NASA Astrophysics Data System (ADS)

    Takizawa, Tokihiro; Okada, Hoshihito; Matsuse, Takehiro

    To find novel aspects of the electronic structures in quantum dots (QD) from a view point of spatial broken symmetry, 3-dimensional-mesh Hartree-Fock-Kohn-Sham (3D-MHFKS) calculations1 are applied to the interacting electron system of electron number N in a symmetry broken hollow QD. For the case of a square hollow quantum dot confined in square hard wall (HW) potential (SSHQD), the magnetic (B) field dependence of the obtained single particle energy levels and chemical potentials in B-N diagram are shown to have a band like electronic structures over the wide B-field range up to 20T. To clarify the origin of the band like electronic structures in SSHQD, 3D-MHFKS calculations are also applied for the mixed symmetry QD's with a circular hollow in square HW potential (SCHQD) and with a square hollow in circular HW potential (CSHQD).

  14. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Sarfraz, M.; Shah, H. A.

    2014-09-01

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  15. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    SciTech Connect

    Abbas, G. Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  16. The electronic properties of superatom states of hollow molecules.

    PubMed

    Feng, Min; Zhao, Jin; Huang, Tian; Zhu, Xiaoyang; Petek, Hrvoje

    2011-05-17

    Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound

  17. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    SciTech Connect

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.

    2015-12-15

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.

  18. Simulation of Hollow Electron Beam Collimation in the Fermilab Tevatron Collider

    SciTech Connect

    Morozov, I.A.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The concept of augmenting the conventional collimation system of high-energy storage rings with a hollow electron beam was successfully demonstrated in experiments at the Tevatron. A reliable numerical model is required for understanding particle dynamics in the presence of a hollow beam collimator. Several models were developed to describe imperfections of the electron beam profile and alignment. The features of the imperfections are estimated from electron beam profile measurements. Numerical simulations of halo removal rates are compared with experimental data taken at the Tevatron.

  19. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  20. HOLLOW ELECTRON BEAM COLLIMATION FOR HL-LHC - EFFECT ON THE BEAM CORE

    SciTech Connect

    Fitterer, M.; Stancari, G.; Valishev, A.; Bruce, R.; Papadopoulou, S.; Papotti, G.; Pellegrini, D.; Pellegrini, S.; Valuch, D.; Wagner, J. F.

    2016-10-05

    Collimation with hollow electron beams or lenses (HEL) is currently one of the most promising concepts for active halo control in HL-LHC. In previous studies it has been shown that the halo can be efficiently removed with a hollow electron lens. Equally important as an efficient removal of the halo, is also to demonstrate that the core stays unperturbed. In this paper, we present a summary of the experiment at the LHC and simulations in view of the effect of the HEL on the beam core in case of a pulsed operation.

  1. Positron Acceleration by Plasma Wakefields Driven by a Hollow Electron Beam

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Antonsen, T. M.; Palastro, J. P.

    2015-11-01

    A scheme for positron plasma wakefield acceleration using hollow or donut-shaped electron driver beams is studied. An annular-shaped, electron-free region forms around the hollow driver beam, creating a favorable region (longitudinal field is accelerating and transverse field is focusing) for positron acceleration. For Facility for Advanced Accelerator Experimental Tests (FACET)-like parameters, the hollow beam driver produces accelerating gradients on the order of 10 GV /m . The accelerating gradient increases linearly with the total charge in the driver beam. Simulations show acceleration of a 23-GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4% and very small emittance over a plasma length of 140 cm is possible.

  2. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  3. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-03-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE~20°. Such a behaviour is consistent with Giovannini-Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.

  4. Anomalous Broadening of Balmer H{sub {alpha}} Line in Aluminum and Copper Hollow Cathode Glow Discharges

    SciTech Connect

    Sisovic, N. M.; Majstorovic, G. Lj.; Konjevic, N.

    2008-10-22

    The presented results are concerned with the shape of Balmer alpha line emitted from a low pressure DC glow discharge with aluminum (Al) and copper (Cu) hollow cathode (HC) in pure H{sub 2} and Ar-H{sub 2} gas mixture. The analysis indicates that the line profile represents a convolution of Gaussian profiles resulting from different collision excitation processes.

  5. Non-nuclear Electron Transport Channels in Hollow Molecules

    SciTech Connect

    Zhao, Jin; Petek, Hrvoje

    2014-08-15

    Electron transport in inorganic semiconductors and metals occurs through delocalized bands formed by overlapping electron orbitals. Strong correlation of electronic wave functions with the ionic cores couples the electron and lattice motions, leading to efficient interaction and scattering that degrades coherent charge transport. By contrast, unoccupied electronic states at energies near the vacuum level with diffuse molecular orbitals may form nearly-free-electron bands with density maxima in non-nuclear interstitial voids, which are subject to weaker electron-phonon interaction. The position of such bands typically above the frontier orbitals, however, renders them unstable with respect to electronic interband relaxation and therefore unsuitable for charge transport. Through electronic-structure calculations, we engineer stable, non-nuclear, nearly-free-electron conduction channels in low-dimensional molecular materials by tailoring their electrostatic and polarization potentials. We propose quantum structures of graphane-derived Janus molecular sheets with spatially isolated conducting and insulating regions that potentially exhibit emergent electronic properties, as a paradigm for molecular-scale non-nuclear charge conductors; we also describe tuning of their electronic properties by application of external fields and calculate their electron–acoustic-phonon interaction.

  6. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  7. Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation

    SciTech Connect

    Redaelli, S.; Bertarelli, A.; Bruce, R.; Perini, D.; Rossi, A.; Salvachua, B.; Stancari, G.; Valishev, A.

    2015-06-01

    Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes are also discussed.

  8. Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project

    SciTech Connect

    Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.

    1996-01-01

    In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}

  9. Dynamics of a helium plasma sheet created by a hollow-cathode electron beam

    NASA Astrophysics Data System (ADS)

    Larigaldie, S.; Caillault, L.

    2000-12-01

    A hollow-cathode device has been shown to operate as a plasma reflector for electronic steering of radar beams using helium in the 0.2-0.5 Torr pressure range. Compared to previous experiments, the use of this light gas significantly reduces the spurious sputtering effects on the cathode materials. A semi-quantitative physical model was developed to describe the observed evolution of microwave beam transmissions through the plasma sheet as a function of frequency. This model stresses the importance of electron-ion recombination on the edge of the plasma sheet, due to simultaneous low electron temperatures and high electron densities.

  10. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in

  11. Intrashell Electron Interaction Mediated Photoformation of Hollow Atoms near Threshold

    SciTech Connect

    Houtari, S.; Kao, C.; Hamalainen, K.; Diamant, R.; Sharon, R.; Deutsch, M.

    2008-07-25

    Double photoionization (DPI) of an atom by a single photon is a direct consequence of electron-electron interactions within the atom. We have measured the evolution of the K-shell DPI from threshold up in transition metals by high-resolution x-ray emission spectroscopy of the K{sup h}a hypersatellites, photoexcited by monochromatized synchrotron radiation. The measured evolution of the single-to-double photoionization cross-section ratio with excitation energy was found to be universal. Theoretical fits suggest that near threshold DPI is predominantly a semiclassical knockout effect, rather than the purely quantum-mechanical shake-off observed at the infinite photon energy limit.

  12. Anomalously low electronic thermal conductivity in metallic vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Sangwook; Hippalgaonkar, Kedar; Yang, Fan; Hong, Jiawang; Ko, Changhyun; Suh, Joonki; Liu, Kai; Wang, Kevin; Urban, Jeffrey J.; Zhang, Xiang; Dames, Chris; Hartnoll, Sean A.; Delaire, Olivier; Wu, Junqiao

    2017-01-01

    In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently.

  13. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  14. Anomalous electronic structure and magnetoresistance in TaAs2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs2 is a new topological semimetal [Z2 invariant (0;111)] withoutmore » Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  15. Anomalously low electronic thermal conductivity in metallic vanadium dioxide.

    PubMed

    Lee, Sangwook; Hippalgaonkar, Kedar; Yang, Fan; Hong, Jiawang; Ko, Changhyun; Suh, Joonki; Liu, Kai; Wang, Kevin; Urban, Jeffrey J; Zhang, Xiang; Dames, Chris; Hartnoll, Sean A; Delaire, Olivier; Wu, Junqiao

    2017-01-27

    In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently.

  16. Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Leng, Yuxin

    2013-10-01

    We numerically study the propagation dynamics and compression of ultrashort laser pulses in a hollow-core fiber (HCF) filled with noble gases at different carrier wavelengths from 1.8 μm to 3.9 μm. In the optimal parameter range, single-cycle or even sub-cycle pulses with clean spatial and temporal profiles can be obtained due to chirp compensation beyond 3rd order by bulk material. It is found that the intensity-dependent group velocity sets the upper limits on both the gas pressures and input pulse energies if a clean and well-compressed pulse is required only through compression with bulk materials. In order to use higher gas pressures and larger input energies, two ways are demonstrated to deal with the limitations imposed by the intensity-dependent group velocity.

  17. FEL indulators with the hollow-ring electron beam

    SciTech Connect

    Epp, V.; Bordovitsyn, V.; Kozhevnikov, A.

    1995-12-31

    A conceptual design of undulators with a modulated longitudinal magnetic field is proposed. The magnetic field is created by use of a solenoid with axis coincident with the electron beam axis. In order to modulate the magnetic field we propose an insertion of a row of alternating ferromagnetic and superconducting diaphragms in line with electron beam. The simulation of two-dimensional distribution of the magnetic field in the plane containing undulator axis was made using the computer code {open_quotes}Mermaid{close_quotes}. The magnetic field was analysed as a function of the system geometry. The dependence on the spacing l between superconducting diaphragms, inner a and outer b radii of the last ones is investigated. Two versions of the device are considered: with ferromagnetic rings made of magnetically soft material placed between the superconducting diaphragms and without them. It is shown that the field modulation depth increases with ratio of b/l and can exceed 50% in case of the ferromagnetic insertions. An approximate analytical calculation of the magnetic field distribution is performed as follows. The axial-symmetrical magnetic field can be defined by the vector potential with only one nonzero component A(r,{phi}) where r and {phi} are the cylindrical coordinates. The solution of the Laplace`s equation is found under the assumption that the magnetic field is infinitely extended and periodic along the z-axis. The boundary conditions are defined by the undulator design. The result is used for the calculation of the particle dynamics and for the investigations of the trajectory stability. The spectral and angular distribution of the radiation emitted from the described systems is found. The estimations show that the proposed design allows to create relatively high magnitude of the magnetic field (up to 1 T) with a short period about 1 cm or less.

  18. Photon equation of motion with application to the electron's anomalous magnetic moment

    SciTech Connect

    Ritchie, A B

    2007-12-06

    The photon equation of motion previously applied to the Lamb shift is here applied to the anomalous magnetic moment of the electron. Exact agreement is obtained with the QED result of Schwinger. The photon theory treats the radiative correction to the photon in the presence of the electron rather than its inverse as in standard QED. The result is found to be first-order in the photon-electron interaction rather than second-order as in standard QED, introducing an ease of calculation hitherto unavailable.

  19. Anomalous Ground State of the Electrons in Nano-confined Water

    DTIC Science & Technology

    2016-06-13

    Anomalous ground state of the electrons in nano-confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...R) Abstract: Water confined on the scale of 20Å, is known to have different transport and thermodynamic properties from that of bulk water , and...the proton momentum distribution has recently been shown to have qualitatively different properties from that exhibited in bulk water . The

  20. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.

    PubMed

    Harutyunyan, Hayk; Martinson, Alex B F; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V; Govorov, Alexander O; Wiederrecht, Gary P

    2015-09-01

    The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.

  1. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  2. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-06-13

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  3. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  4. Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach

    SciTech Connect

    Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.; /SLAC

    2012-02-17

    We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.

  5. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1 and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  6. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1more » and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  7. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  8. Broadband microwave measurement of electron temperature of a large coaxial gridded hollow cathode helium plasma

    NASA Astrophysics Data System (ADS)

    Gao, Ruilin; Yuan, Chengxun; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Li, Hui; Wu, Jian

    2016-10-01

    This paper reports a new kind of large coaxial gridded hollow cathode discharge at low pressure in a helium atmosphere. A method is presented to determine the electron temperature by measuring the broadband microwave properties; typically, the frequency band extends from 2 to 12 GHz. The method involves positioning the discharge device between the two antenna ports to measure the scattering parameter using a network analyzer. For a weak ionized plasma, this method is stable over the entire frequency range. A microwave signal loss of 0.27-37.83 dB was measured within the frequency range. Based on the measured attenuation of the microwaves, the electron temperature was estimated to range from 1.6-4.6 eV under different conditions, which showed good agreements with the results of Langmuir Probe measurements.

  9. Velocity space evolution of a minority energetic electron population undergoing the anomalous Doppler instability

    SciTech Connect

    Lai, W. N.; Chapman, S. C.; Dendy, R. O.

    2015-11-15

    The kinetic evolution in velocity space of a minority suprathermal electron population that is undergoing the anomalous Doppler instability (ADI) is investigated using the results from fully nonlinear numerical simulations that self-consistently evolve particles and fields in a plasma. Electron trajectories in phase space during different stages of the ADI are captured, and are analysed in relation to the characteristics of the excited electric fields and of the overall distribution of particles. For some electrons, trapping and mirroring effects are observed during the saturation phase. A relationship between the second order moments of the perpendicular electron distribution function and time is established, and is used to investigate the range of applicability of analytical approximations drawn from classical theory, that involve a quasilinear wave-driven diffusion operator.

  10. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    SciTech Connect

    Stancari, Giulio

    2014-03-25

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.

  11. Turbulence-induced anomalous electron diffusion in the plume of the VASIMR VX-200

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher; Ballenger, Maxwell; Squire, Jared; Longmier, Benjamin; Carter, Mark; Glover, Tim

    2012-10-01

    The separation of electrons from magnetic nozzles is critical to the function of the VASIMR engine and is of general importance to the field of electric propulsion. Separation of electrons by means of anomalous cross field diffusion is considered. Plume measurements using spectral analysis of custom high frequency probes characterizes the nature of oscillating electric fields in the expanding magnetic nozzle. The oscillating electric field results in frequency dependent density variations that can lead to anomalously high transport in the absence of collisions mimicking collisional transport. The spatial structure of the fluctuating fields is consistent with turbulence caused by separation of energetic (> 100 eV) non-magnetized ions and low energy magnetized electrons via the modified two-stream instability (MTSI) and generalized lower hybrid drift instability (GLHDI). Electric fields as high as 300 V/m are observed at frequencies up to an order of magnitude above the lower hybrid frequency. The electric field fluctuations dissipate with increasing axial distance consistent with changes in ion flux streamlines as plasma detachment occurs.

  12. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  13. Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Sánchez, R.; Esposito, B.

    2002-05-01

    Due to the relativistic decrease of the electron cyclotron frequency, a cyclotron resonance may appear between runaway electrons and lower hybrid waves. A single particle description of the runaway dynamics [J. R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998)] is extended to analyze the effect of the interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening. The conditions under which the resonant interaction can play a role in limiting the runaway energy are established and it is shown that, under typical lower hybrid current drive operation parameters, an efficient wave-particle coupling may occur. Observations of a fast pitch angle scattering event during the current decay phase of Ohmic discharges in the Toroidal Experiment for Technically Oriented Research (TEXTOR) [R. J. E. Jaspers, Ph.D. thesis, Technical University Eindhoven (1995)] are interpreted in terms of such interaction.

  14. Anomalous electron heating and energy balance in an ion beam generated plasma

    SciTech Connect

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  15. Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Tang, C. G.; Chen, Y. H.; Liu, Y.; Wang, Z. G.

    2009-09-01

    We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

  16. Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas.

    PubMed

    Tang, C G; Chen, Y H; Liu, Y; Wang, Z G

    2009-09-16

    We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

  17. Long- and short-lived electrons with anomalously high collision rates in laser-ionized gases.

    PubMed

    Kampfrath, Tobias; Gericke, Dirk O; Perfetti, Luca; Tegeder, Petra; Wolf, Martin; Frischkorn, Christian

    2007-12-01

    Ultrashort broadband terahertz pulses are applied to probe the electron dynamics of gaseous Ar and O2 following ionization by an intense femtosecond laser pulse. The conductivity in the plasma center is extracted by a modified Wentzel-Kramers-Brillouin approach. It exhibits a nearly perfect Drude-like spectral shape and yields the temporal evolution of the free-electron density and collision rate. While the electron density in the Ar plasma remains nearly constant during the first 200ps after generation, it decays much faster in O2 due to dissociative recombination which is only possible in molecular plasmas. Adding a small amount of the electron scavenger SF6 to Ar reduces the electron lifetime in the plasma dramatically and allows us to determine the electron temperature to about 20,000K . Furthermore, anomalously high, metal-like electron collision rates of up to 25THz are found. Kinetic plasma theory substantially underestimates these rates pointing towards additional and more complex processes randomizing the total electronic momentum. Our results are relevant to both lightning control and generation of terahertz radiation by intense laser pulses in gases.

  18. Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes

    SciTech Connect

    Xu, X. Q.; Dudson, B.; Snyder, P. B.; Umansky, M. V.; Wilson, H.

    2010-10-22

    A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realistic high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.

  19. Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes

    DOE PAGES

    Xu, X. Q.; Dudson, B.; Snyder, P. B.; ...

    2010-10-22

    A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less

  20. Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    The standard model of the Jovian nebula postulates that its particle source is the extended cloud of neutral sulfur and oxygen atoms that escape from the satellite Io and become ionized through electron impact from the corotating plasma. Its energy source is the gyroenergy acquired by newly formed pickup ions as they are swept up to corotation velocity by the planetary magnetic field. Elastic collisions between plasma ions and electrons cool the ions and heat the electrons, while inelastic collisions cool the electrons and excite the ions to radiate intense line emission, which is the primary energy-loss mechanism for the plasma. This neutral cloud theory of the Io plasma torus, as it has come to be known, has been the subject of recent critcism which asserts that the theory cannot account for the observed charge state of the plasma which features O(+) and S(2+) as the dominant ions. It is shown in this work that the inclusion of a small population of super-thermal electrons is required to achieve the correct ion partitioning among various charge states. It is also argued that the anomalous ionization effect of the superthermal electrons is responsible for the overall spatial bifurcation of the nebula into a hot multiply charged plasma region outside of 5.7 Jovian radii and a cool singly ionized plasma inside this distance.

  1. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  2. Guide for 3D WARP simulations of hollow electron beam lenses. Practical explanation on basis of Tevatron electron lens test stand

    SciTech Connect

    Moens, Vince

    2014-06-08

    The purpose of this guide is to help successive students handle WARP. It outlines the installation of WARP on personal computers as well as super-computers and clusters. It furthermore teaches the reader how to handle the WARP environment and run basic scripts. Lastly it outlines how to execute the current Hollow Electron Beam Lens scripts.

  3. Defect Control of Conventional and Anomalous Electron Transport at Complex Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; Kim, Bongju; Swartz, Adrian G.; Merz, Tyler A.; Hikita, Yasuyuki; Harashima, Satoshi; Sato, Hiroki K.; Minohara, Makoto; Hoffmann-Eifert, Susanne; Dittmann, Regina; Hwang, Harold Y.

    2016-07-01

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO3 /SrTiO3 (100) interfaces. Field-dependent Hall characteristics (2-300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K . Considering these two sources of nonlinearity, we suggest a phenomenological model capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. The most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.

  4. Runaway electron distributions and their stability with respect to the anomalous Doppler resonance

    SciTech Connect

    Fuchs, V.; Shoucri, M.; Teichmann, J.; Bers, A.

    1986-06-01

    The stability of non-relativistic runaway electron distributions with respect to the anomalous Doppler resonance is examined in a range of parameters of interest to tokamaks, i.e., for Y identical to ..omega../sub pe//..cap omega../sub ce/ less than or equal to 2 and for ohmic electric fields epsilon identical to E/E/sub c/ less than or equal to 0.1. Distribution functions are calculated numerically within a region up to 35 v/sub e/ (thermal velocities) using a finite-element 2-D Fokker-Planck code. Alternatively, an analytic approximation for the runaway distribution function is used, valid beyond the critical velocity v/sub c/ approx. = v/sub e/ (E/sub c//E)/sup 1/2/. Stability thresholds in (..omega.., k/sub parallel/) - space are then determined.

  5. Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy.

    PubMed

    Tang, Dai-Ming; Wei, Xianlong; Wang, Ming-Sheng; Kawamoto, Naoyuki; Bando, Yoshio; Zhi, Chunyi; Mitome, Masanori; Zak, Alla; Tenne, Reshef; Golberg, Dmitri

    2013-03-13

    Mechanical properties and fracture behaviors of multiwalled WS2 nanotubes produced by large scale fluidized bed method were investigated under uniaxial tension using in situ transmission electron microscopy probing; these were directly correlated to the nanotube atomic structures. The tubes with the average outer diameter ∼40 nm sustained tensile force of ∼2949 nN and revealed fracture strength of ∼11.8 GPa. Surprisingly, these rather thick WS2 nanotubes could bear much higher loadings than the thin WS2 nanotubes with almost "defect-free" structures studied previously. In addition, the fracture strength of the "thick" nanotubes did not show common size dependent degradation when the tube diameters increased from ∼20 to ∼60 nm. HRTEM characterizations and real time observations revealed that the anomalous tensile properties are related to the intershell cross-linking and geometric constraints from the inverted cone-shaped tube cap structures, which resulted in the multishell loading and fracturing.

  6. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor; Sydorenko, Dmytro; Ventzek, Peter L. G.

    2016-09-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam-plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system. This research was funded by US Department of Energy.

  7. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro; Kaganovich, Igor D.; Ventzek, Peter L. G.

    2016-10-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam- plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system.

  8. Collisionless reversed magnetic shear trapped electron instability and contribution of sidebands to anomalous transport

    NASA Astrophysics Data System (ADS)

    Rogister, André L.; Singh, Raghvendra

    2005-11-01

    By keeping account of the trapped electron ∇B and curvature drifts, it is found that the spatial decay of the collisionless electron drift wave is governed either by the trapped electron response or by the resonant interaction of ions with the sidebands of the primary oscillation. In the former case, pairs of spatially bounded unstable and damped solutions are obtained for negative magnetic shear (ŝ<0) if, as usual, LTe=1/∂rlnTe<0; there are no bounded solutions if ŝLTe<0. In the latter case, there is either a set of bounded damped solutions if ηi>0 or a set of bounded unstable solutions if ηi<0. The unstable modes have a radiating character and the growth rates are γ ˜(2n+1)√1+2q2 ∣ŝ∣∣LNωe*/qR∣ (n is the Hermite polynomial solution index, q the safety factor, ŝ the magnetic shear parameter, R the major radius, ωe* the electron diamagnetic frequency, LN=1/∂rlnNe, and ηi=LN/LTi).The sidebands are responsible for unusually large ratios Qe/TeΓe, where Qe and Γe are the anomalous electron energy flux and the particle flux. These results may explain the box-type Te profile observed in lower hybrid current drive reversed magnetic shear plasmas on the Japan Atomic Energy Research Institute Tokamak 60 Upgrade (JT-60U) [H. Ninomiya and the JT-60U Team, Phys. Fluids B 4, 2070 (1992)]. It is finally demonstrated that the ballooning hypothesis generally leads to conflicting requirements: it is thus hardly relevant for the electron drift branch! The "radiating" boundary condition that has formerly been imposed on the slab solution is finally discussed.

  9. Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas

    SciTech Connect

    Lai, W. N.; Chapman, S. C.; Dendy, R. O.

    2013-10-15

    Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v{sub ||}≥(ω+Ω{sub ce})/k{sub ||} are present; here Ω{sub ce} denotes electron cyclotron frequency, ω the wave angular frequency, and k{sub ||} the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here, we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j·E in the simulations, we follow the energy transfer between the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ω{sub ce}/(ω{sub pe}+Ω{sub ce}) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ω{sub pe}/(ω{sub pe}+Ω{sub ce}); here ω{sub pe} denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ω{sub ce}>ω{sub pe}. The simulations also exhibit a spectral feature which may correspond to the observations of suprathermal narrowband emission at ω{sub pe} detected from low density tokamak plasmas.

  10. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

    PubMed Central

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M. N.; Picozzi, S.; Yadzani, A.; Panaccione, G.; Cava, R. J.

    2016-01-01

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional. PMID:26924386

  11. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2.

    PubMed

    Das, Pranab Kumar; Di Sante, D; Vobornik, I; Fujii, J; Okuda, T; Bruyer, E; Gyenis, A; Feldman, B E; Tao, J; Ciancio, R; Rossi, G; Ali, M N; Picozzi, S; Yadzani, A; Panaccione, G; Cava, R J

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.

  12. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

    DOE PAGES

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbitalmore » degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.« less

  13. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  14. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    PubMed Central

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; Foucar, Lutz; Gorel, Alexander; Aquila, Andrew; Botha, Sabine; Doak, R. Bruce; Koglin, Jason; Liang, Mengning; Shoeman, Robert L.; Williams, Garth; Boutet, Sebastien; Schlichting, Ilme

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Moreover, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysing data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms. PMID:27158504

  15. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    SciTech Connect

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; Foucar, Lutz; Gorel, Alexander; Aquila, Andrew; Botha, Sabine; Doak, R. Bruce; Koglin, Jason; Liang, Mengning; Shoeman, Robert L.; Williams, Garth; Boutet, Sebastien; Schlichting, Ilme

    2016-03-09

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysing data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.

  16. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    DOE PAGES

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...

    2016-03-09

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less

  17. Runaway electron distributions and their stability with respect to the anomalous Doppler resonance

    SciTech Connect

    Fuchs, V.; Shoucri, M.; Teichmann, J.; Bers, A.

    1988-08-01

    The stability of nonrelativistic runaway electron distributions with respect to the anomalous Doppler resonance is examined in a range of parameters of interest to tokamaks, i.e., for Yequivalent..omega../sub p//sub e//..cap omega../sub c//sub e/less than or equal to2 and for Ohmic electric fields epsilonequivalentE/E/sub c/less than or equal to0.1. Distribution functions are calculated numerically within a region up to 35v/sub e/ (thermal velocities) using a finite-element 2-D Fokker--Planck code. Alternatively, an analytic approximation for the runaway distribution function is used, valid beyond the critical velocity v/sub c/approx. =v/sub e/(E/sub c//E)/sup 1//sup ///sup 2/. Stability thresholds in (..omega..,k/sub parallel/) space are then determined. For example, for Y = 1 and epsilon = 0.1, and providing that the runaway tail extends at least to 30v/sub e/, unstable waves exist having ..omega..less than or equal to0.6..cap omega../sub c//sub e/ and k/sub parallel/less than or equal to0.03..cap omega../sub c//sub e//v/sub e/.

  18. A kinetic cyclotron maser instability associated with a hollow beam of electrons

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Freund, H. P.

    1984-01-01

    A kinetic cyclotron maser instability associated with a hollow-beam distribution function is studied. The instability differs from that discussed for the gyrotron device in two respects: in the present case the momentum dispersion is substantial, and furthermore there exists a low-energy background plasma. On the basis of physical arguments it can be demonstrated that the hollow-beam distribution is far more unstable than the loss cone distribution which has been extensively investigated in recent years. A criterion for maximum growth rate is established on the basis of consideration of the resonance ellipse. The validity of this criterion is supported by the results of numerical calculation.

  19. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers.

    PubMed

    Ghadiri, Elham; Taghavinia, Nima; Zakeeruddin, Shaik M; Grätzel, Michael; Moser, Jacques-E

    2010-05-12

    Nanostructured TiO(2) hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion efficiency of 7.2% reached under simulated AM 1.5 (100 mW cm(-2)) solar illumination.

  20. Formation of Nanoparticles by Control of Electron Temperature in Hollow-Typed Magnetron Radio Frequency CH4/H2 Plasma

    NASA Astrophysics Data System (ADS)

    Emi, Junichi; Kato, Kohgi; Abe, Toshimi; Iizuka, Satoru

    2006-10-01

    In this study, we investigate the effects of electron temperature Te on the production of nanoparticles by using the grid-biasing method in hollow-typed magnetron radio frequency (RF) CH4/H2 plasma. We find that nanoparticles are produced in low-Te plasma. On the other hand, thin film depositions, such as nanowalls, are mainly observed and almost no nanoparticles are created in high-Te plasma. This implies that a reduction in the CH2/CH3 radical ratio is important for producing nanoparticles, together with a reduction in sheath potential in front of the substrate. The change in electron temperature in plasma has a marked effect on film quality.

  1. Wear Mechanisms in Electron Sources for Ion Propulsion, 2: Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.; Polk, James E.

    2008-01-01

    The wear of the keeper electrode in discharge hollow cathodes is a major impediment to the implementation of ion propulsion onboard long-duration space science missions. The development of a predictive theoretical model for hollow cathode keeper life has long been sought, but its realization has been hindered by the complexities associated with the physics of the partially ionized gas and the associated erosion mechanisms in these devices. Thus, although several wear mechanisms have been hypothesized, a quantitative explanation of life test erosion profiles has remained incomplete. A two-dimensional model of the partially ionized gas in a discharge cathode has been developed and applied to understand the mechanisms that drove the erosion of the keeper in two long-duration life tests of a 30-cm ion thruster. An extensive set of comparisons between predictions by the numerical simulations and measurements of the plasma properties and of the erosion patterns is presented. It is found that the near-plume plasma oscillations, predicted by theory and observed by experiment, effectively enhance the resistivity of the plasma as well as the energy of ions striking the keeper.

  2. Wear Mechanisms in Electron Sources for Ion Propulsion, 1: Neutralizer Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira

    2008-01-01

    Upon the completion of two long-duration life tests of a 30-cm ion engine, the orifice channel of the neutralizer hollow cathode was eroded away to as much as twice its original diameter. Whereas the neutralizer cathode orifice opened significantly, no noticeable erosion of the discharge cathode orifice was observed. Noquantitative explanation of these erosion trends has been established since the completion of the two life tests. A two-dimensional model of the partially ionized gas inside these devices has been developed and applied to the neutralizer hollow cathode. The numerical simulations show that the main mechanism responsible for the channel erosion is sputtering by Xe+. These ions are accelerated by the sheath along the channel and bombard the surface with kinetic energy/charge of about 17 V at the beginning of cathode life. The density of the ions inside the neutralizer orifice is computed to be as high as 2.1 x 10(sup 22) m(sup -3). Because of the 3.5-times larger diameter of the discharge cathode orifice, the ion density inside the orifice is more than 40 times lower and the sheath drop 7 V lower compared with the values in the neutralizer. At these conditions, Xe+ can cause no significant sputtering of the surface.

  3. Effect of entropy on anomalous transport in electron-temperature-gradient-modes

    SciTech Connect

    Yaqub Khan, M.; Iqbal, J.; Ul Haq, A.

    2014-05-15

    Due to the interconnection of entropy with temperature and density of plasma, it would be interesting to investigate plasma related phenomena with respect to entropy. By employing Braginskii transport equations, it is proved that entropy is proportional to a function of potential and distribution function of entropy is re-defined, ∇S–drift in obtained. New dispersion relation is derived; it is found that the anomalous transport depends on the gradient of the entropy.

  4. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  5. Performance of 75-millimeter-bore bearings using electron-beam-welded hollow balls with a diameter ratio of 1.26

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Parker, R. J.; Scibbe, H. W.

    1975-01-01

    An experimental investigation was performed to determine the rolling element fatigue life of electron beam-welded hollow balls with a diameter ratio (o.d./i.d.) of 1.26 and to determine the operating characteristics of bearings using these hollow balls. Similar bearings with solid balls were also tested and the data compared. The bearings were operated at shaft speeds up to 28,000 rpm with a thrust load of 2200 N (500 lb). Ball failures during the bearing tests were due to flexure fatigue. The solid and hollow ball bearings tested showed little difference in outer race temperatures and indicated the same bearing torque. The 17.5-mm (0.6875-in.) diameter balls were also tested in the five-ball fatigue tester and showed no significant difference in life when compared with the life of a solid ball.

  6. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    SciTech Connect

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-04-15

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  7. Anomalous transition of major charge carriers from holes to electrons observed in single-crystal films of tungsten

    NASA Astrophysics Data System (ADS)

    Jiang, Y. C.; Liu, G. Z.; Gao, J.; Wang, J. F.

    2016-12-01

    Tungsten (W) films were grown on SrTi O3 substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy demonstrated that these as-grown films are highly epitaxial and single crystalline with the [00 l ] orientation. A special lattice stacking for the W/STO interface is observed to significantly reduce the lattice mismatching, which can be explained by the coincidence lattice model. The Hall effect has been investigated over the temperature range of 4-330 K. An anomalous transition of the major charge carriers from holes to electrons was observed in these W films upon cooling. The threshold temperature, in which the sign of the Hall coefficient RH was reversed, was found to increase with the film thinning. With the sample's thickness reduced to several unit cells, its major carriers remained electrons even at room temperature. Calculations using the density functional perturbation theory revealed that such a transition from p type to n type could be attributed to the appearance of an electron pocket along the M-Γ direction induced by the lattice mismatching between the W film and SrTi O3 substrate.

  8. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  9. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  10. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors.

    PubMed

    Inosov, D S; Fink, J; Kordyuk, A A; Borisenko, S V; Zabolotnyy, V B; Schuster, R; Knupfer, M; Büchner, B; Follath, R; Dürr, H A; Eberhardt, W; Hinkov, V; Keimer, B; Berger, H

    2007-12-07

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  11. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  12. Anomalous electron diffusion across a magnetic field in a beam-plasma system

    SciTech Connect

    Okuda, H.; Ono, M.; Armstrong, R.J.

    1987-10-01

    The diffusion of electrons across a magnetic field in the presence of a beam-plasma instability has been studied by means of two-dimensional numerical simulations. It is found that the beam electrons can diffuse much faster across the magnetic field than the thermal electrons. This can be explained by the fact that the electrons in the beam are in resonance with the waves excited by the beam-plasma instability so that they experience a nearly dc electric field, causing large cE x B/B/sup 2/ excursions. 8 refs., 5 figs.

  13. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  14. Anomalously strong two-electron one-photon X-ray decay transitions in CO caused by avoided crossing

    PubMed Central

    Couto, Rafael C.; Guarise, Marco; Nicolaou, Alessandro; Jaouen, Nicolas; Chiuzbăian, Gheorghe S.; Lüning, Jan; Ekholm, Victor; Rubensson, Jan-Erik; Såthe, Conny; Hennies, Franz; Kimberg, Victor; Guimarães, Freddy F.; Agren, Hans; Gel’mukhanov, Faris; Journel, Loïc; Simon, Marc

    2016-01-01

    The unique opportunity to study and control electron-nuclear quantum dynamics in coupled potentials offered by the resonant inelastic X-ray scattering (RIXS) technique is utilized to unravel an anomalously strong two-electron one-photon transition from core-excited to Rydberg final states in the CO molecule. High-resolution RIXS measurements of CO in the energy region of 12–14 eV are presented and analyzed by means of quantum simulations using the wave packet propagation formalism and ab initio calculations of potential energy curves and transition dipole moments. The very good overall agreement between the experimental results and the theoretical predictions allows an in-depth interpretation of the salient spectral features in terms of Coulomb mixing of “dark” with “bright” final states leading to an effective two-electron one-photon transition. The present work illustrates that the improved spectral resolution of RIXS spectra achievable today may call for more advanced theories than what has been used in the past. PMID:26860458

  15. Magnetic and anomalous electronic transport properties of the quaternary Heusler alloys Co2Ti1-xFexGe

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, B.; Midhunlal, P. V.; Babu, P. D.; Kumar, N. Harish

    2016-06-01

    The half-metallic Heusler alloy Co2TiGe has a ferromagnetic ground state with a low magnetic moment (2 μB). It is free of atomic antisite disorder but has low Curie temperature (~390 K). In contrast the other cobalt based Heusler alloy Co2FeGe has high Curie temperature (~980 K) and high magnetic moment (5.6 μB) while exhibiting antisite disorder and lack of half-metallicity. Hence it is of interest to investigate the magnetic and transport properties of solid solutions of these two materials with contrasting characteristics. We report the structural, magnetic and electronic transport properties of quaternary Co2Ti1-x FexGe (x=0.2, 0.4, 0.6, 0.8) Heusler alloys. The alloys crystallize in L21 structure but with antisite disorder. The magnetization measurements revealed that the alloys were of soft ferromagnetic type with high Curie temperatures. Deviation from Slater-Pauling behavior and drastic change in electronic transport properties with some anomalous features were observed.The complex electronic transport properties have been explained using different scattering mechanisms.

  16. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

    SciTech Connect

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M. N.; Picozzi, S.; Yadzani, A.; Panaccione, G.; Cava, R. J.

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.

  17. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  18. Hollow-fiber solvent bar microextraction with gas chromatography and electron capture detection determination of disinfection byproducts in water samples.

    PubMed

    Correa, Liliana; Fiscal, Jhon Alex; Ceballos, Sandra; de la Ossa, Alberto; Taborda, Gonzalo; Nerin, Cristina; Rosero-Moreano, Milton

    2015-09-10

    A liquid-phase microextraction method that uses a hollow-fiber solvent bar microextraction technique was developed by combining gas chromatography with electron capture detection for the analysis of four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, and bromoform) in drinking water. In the microextraction process, 1-octanol was used as the solvent. The technique operates in a two-phase mode with a 5 min extraction time, a 700 rpm stirring speed, a 30°C extraction temperature, and NaCl concentration of 20%. After microextraction, one edge of the membrane was cut, and 1 μL of solvent was collected from the membrane using a 10 μL syringe. The solvent sample was directly injected into the gas chromatograph. The analytical characteristics of the developed method were as follows: detection limits, 0.017-0.037 ng mL(-1) ; linear working range, 10-900 ng mL(-1) ; recovery, 74 ± 9-91 ± 2; relative standard deviation, 5.7-10.3; and enrichment factor, 330-455. A simple, fast, economic, selective, and efficient method with big possibilities for automation was developed with a potential use to apply with other matrices and analytes.

  19. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  20. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  1. Anomalously Large Chiral Sensitivity in the Dissociative Electron Attachment of 10-Iodocamphor

    NASA Astrophysics Data System (ADS)

    Dreiling, J. M.; Lewis, F. W.; Mills, J. D.; Gay, T. J.

    2016-03-01

    We have studied dissociative electron attachment (DEA) between low energy (≤0.6 eV ) longitudinally polarized electrons and gas-phase chiral targets of 3-bromocamphor (C10 H15 BrO ), 3-iodocamphor (C10 H15 IO ), and 10-iodocamphor. The DEA rate depends on the sign of the incident electron helicity for a given target handedness, and it varies with both the atomic number (Z ) and location of the heaviest atom in the molecule. While simple dynamic mechanisms can account for the asymmetry dependence on Z , they fail to explain the large asymmetry variation with the heavy atom location.

  2. Understanding the dramatic role of anomalous dispersion on the measurement of electron densities in plasmas using interferometers

    SciTech Connect

    Nilsen, J; Johnson, W R; Iglesias, C A; Scofield, J H

    2005-07-20

    For decades the electron density of plasmas has been measured using optical interferometers. With the availability of good X-ray laser sources in the last decade interferometers have been extended into the wavelength range 14-47 nm, which has enabled researchers to probe even higher density plasmas. The data analysis assumes the index of refraction is due only to the free electrons, which makes the index less than one. Recent interferometer experiments in Al plasmas observed plasmas with index of refraction greater than one at 14 nm and brought into question the validity of the usual formula for calculating the index. In this paper we show how the anomalous dispersion from bound electrons can dominate the free electron contribution to the index of refraction in many plasmas and make the index greater than one or enhance the contribution to the index such that one would greatly overestimate the density of the plasma using interferometers. Using a new average-atom code we calculate the index of refraction in many plasmas at different temperatures for photon energies from 0 to 100 eV and compare against calculations done with OPAL. We also present examples of other plasmas that may have index of refraction greater than one at X-ray laser energies. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  3. Anomalously high efficiencies for electronic energy transfer from saturated to aromatic hydrocarbons at low aromatic concentrations

    SciTech Connect

    Yiming Wang; Johnston, D.B.; Lipsky, S. )

    1993-01-14

    The absolute efficiency of electric energy transfer from cis-decalin excited at 161 nm to 2,5-diphenyloxazole (PPO) has been measured over a PPO concentration range from 1.0 [times] 10[sup [minus]2] to 2.0 [times] 10[sup [minus]5] M via measurements of both the cis-decalin and the PPO fluorescence. At concentrations above ca. 10[sup [minus]3] M, the normal fluorescing state of cis-decalin plays the dominant role in the energy transfer. At lower concentrations, however, there appears to be an important contribution from some other nonfluorescing state of cis-decalin. The fraction of PPO fluorescence generated by this dark state rises from ca.10% at 0.01 M to ca. 70% at 2 [times] 10[sup [minus]5] M. The effects of addition of O[sub 2] of dilution with isooctane, and of cooling to [minus]35[degrees]C on the quantum yield of this process are reported. The results obtained here confirm earlier results with other saturated hydrocarbon donor + aromatic acceptor systems that have suggested the existence of a dark donor state that dominates the transfer process at low acceptor concentrations via some anomalously efficient mechanism. For the system cis-decalin + PPO at 21[degrees]C, the transfer probability for this process at the lowest concentration studied of 2 [times] 10[sup [minus]5] M is 2.5 [times] 10[sup [minus]3] per photon absorbed and 0.060 per dark state produced. 34 refs., 13 figs., 6 tabs.

  4. Intrashell Electron-Interaction-Mediated Photoformation of Hollow Atoms near Threshold

    NASA Astrophysics Data System (ADS)

    Huotari, S.; Hämäläinen, K.; Diamant, R.; Sharon, R.; Kao, C. C.; Deutsch, M.

    2008-07-01

    Double photoionization (DPI) of an atom by a single photon is a direct consequence of electron-electron interactions within the atom. We have measured the evolution of the K-shell DPI from threshold up in transition metals by high-resolution x-ray emission spectroscopy of the Khα hypersatellites, photoexcited by monochromatized synchrotron radiation. The measured evolution of the single-to-double photoionization cross-section ratio with excitation energy was found to be universal. Theoretical fits suggest that near threshold DPI is predominantly a semiclassical knockout effect, rather than the purely quantum-mechanical shake-off observed at the infinite photon energy limit.

  5. Cyclotron maser using the anomalous Doppler effect

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Borisov, A. R.; Fomenko, G. P.; Shlapakovskii, A. S.; Shtein, Iu. G.

    1983-11-01

    The operation of an anomalous-Doppler-effect cyclotron-resonance maser using a waveguide partially filled with dielectric as the slow-wave system is reported. The device investigated is similar to that of Didenko et al. (1983) and comprises a 300-mm-long 50-mm-o.d. 30-mm-i.d. waveguide with fabric-laminate dielectric, located 150 mm from the cathode in a 500-mm-long region of uniform 0-20-kG magnetic field, and a coaxial magnetic-insulation gun producing a 13-mm-i.d. 25-mm-o.d. hollow electron beam. Radiation at 12 + or - 1 mm wavelength and optimum power 20 MW is observed using hot-carrier detectors, with a clear peak in the power-versus-magnetic-field curve at about 6.4 kG.

  6. Evidence for Anomalous Energization of Electrons by Beam-Ionosphere Interactions in the Auroral F-region

    NASA Astrophysics Data System (ADS)

    Akbari, H.; Semeter, J. L.

    2014-12-01

    We and others have previously identified anomalous Incoherent Scatter Radar (ISR) spectra confined to narrow altitude ranges near the F-region peak and correlated with dynamic auroral precipitation [Isham et al., 2012; Akbari et al., 2012, 2013]. The radar echoes are attributed to beam-generated Langmuir turbulence. In this work we used a 1-dimentional Zakharov simulation to constrain the range of physical mechanisms underlying these observational features. Our results suggest the presence of a local F-region energy source, possibly produced by non-linear wave-wave interactions. In details we have found that: 1) Simultaneous enhancements in ion-line and plasma-line channels of the PFISR can be produced by strong Langmuir turbulence and caviton collapse generated by relatively strong soft electron beams (< 1 keV) that lack the electron population directly resonant with the detectable waves. 2) Except for cases of very high electron to ion temperature ratios (Tr > 6), caviton collapse would give rise to a dominant zero-frequency peak in the ion-line channel. In these cases simulated spectral features do not match those measured by ISRs. 3) Observations of enhanced ion-acoustic shoulders and lack of observation of such high temperature ratios in ISR measurements, therefore, suggest that the Parametric Decay Instability (PDI) operates at the observations wavenumbers. This in turns requires local energization of lower energy electrons (< 20 eV) at ~250 km. 4) The existence of other modes and processes is also supported by observations of non-linear features in the plasma-line measurements.

  7. Anomalous electronic structure and magnetoresistance in TaAs2

    SciTech Connect

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs2 is a new topological semimetal [Z2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  8. Efficiency enhancement of anomalous-Doppler electron cyclotron masers with tapered magnetic field

    SciTech Connect

    Xie, Chao-Ran; Hou, Zhi-Ling; Kong, Ling-Bao E-mail: pkliu@pku.edu.cn; Liu, Pu-Kun E-mail: pkliu@pku.edu.cn; Du, Chao-Hai; Jin, Hai-Bo

    2014-02-15

    The efficiency of slow-wave electron cyclotron masers (ECM) is usually low, thus limiting the practical applications. Here, a method of tapered magnetic field is introduced for the efficiency enhancement of the slow-wave ECM. The numerical calculations show that the tapered magnetic-field method can enhance the efficiency of slow-wave ECM significantly. The effect of beam electron velocity spread on the efficiency has also been studied. Although the velocity spread reduces the efficiency, a great enhancement of efficiency can still be obtained by the tapered magnetic field method.

  9. Experimental and Theoretical Investigation of Microwave Millimeter Radiation from Hollow, Rotating Electron Beams.

    DTIC Science & Technology

    1985-11-30

    project includes an Imagen laser printer and several graphics terminals. This facility has been installed in a separate shielded room in our high bay...of several experi- has an electron beam propagating in some cylindrical "- " mental studies on the University of Marland’s high-en- waveguide immersed...try FEL has been explored both theoretically and experi- trons rotate is added an azimuthally periodic wiggler field, mentally in a collaborative

  10. Hollow Retroreflectors

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A hollow retroreflector is a mirror-like instrument that reflects light and other radiations back to the source. After developing a hollow retroreflector for NASA's Apollo-Soyuz mission, PLX, Inc. continued to expand the technology and develop a variety of retroreflector systems. The Lateral Transfer Hollow Retroreflector maintains precise separation, at any wavelength, of incoming and existing beams regardless of their orientation. It can be used as an instrument or as a component of an optical system. In the laboratory, it offers a new efficient means of beam positioning. In other applications, it connects laser resonators, aligns telescope mirrors and is useful in general boresighting and alignment.

  11. Experimental and Theoretical Investigation of Microwave and Millimeter Wave Radiation from Hollow, Rotating, Electron Beams.

    DTIC Science & Technology

    1981-11-01

    detection bands (X, Ku, K (a) produced by a rotating electron beam in a cylindrical drif t tube. 9- 600 (a a)400- ~200. 28 32 36 f (GHz) 600 (b) ~400...are plotted in an radii Rj,Ro, as shown in Fig. 2. o- k , diagram. At the interaction points indicated ( k -f ,a-) The stability of the system is examined...by linearizingw-kqs diaram Atd t5h. i ercto porbit indicaton ( k -naw -) and ( k ,’ ,w), we have "resopant interaction". If these are Eqs. (4) and (5

  12. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  13. Anomalous quasiparticle lifetime and strong electron-phonon coupling in graphite.

    PubMed

    Sugawara, K; Sato, T; Souma, S; Takahashi, T; Suematsu, H

    2007-01-19

    We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy on high-quality single crystals of graphite to elucidate the character of low-energy excitations. We found evidence for a well-defined quasiparticle (QP) peak in the close vicinity of the Fermi level comparable to the nodal QP in high-T(c) cuprates, together with the mass renormalization of the band at an extremely narrow momentum region around the K(H) point. Analysis of the QP lifetime demonstrates the presence of strong electron-phonon coupling and linear energy dependence of the QP scattering rate indicative of a marked deviation from the conventional Fermi-liquid theory.

  14. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

    DOE PAGES

    Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; ...

    2016-11-21

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V–1s–1 and 104 cm2 V–1 s–1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conductionmore » electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. As a result, encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.« less

  15. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe.

    PubMed

    Bandurin, Denis A; Tyurnina, Anastasia V; Yu, Geliang L; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V; Kumar, Roshan Krishna; Gorbachev, Roman V; Kudrynskyi, Zakhar R; Pezzini, Sergio; Kovalyuk, Zakhar D; Zeitler, Uli; Novoselov, Konstantin S; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V; Fal'ko, Vladimir I; Geim, Andre K; Cao, Yang

    2017-03-01

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 10(3) cm(2) V(-1) s(-1) and 10(4) cm(2) V(-1) s(-1) at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  16. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

    SciTech Connect

    Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'ko, Vladimir I.; Geim, Andre K.; Cao, Yang

    2016-11-21

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V–1s–1 and 104 cm2 V–1 s–1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. As a result, encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  17. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

    NASA Astrophysics Data System (ADS)

    Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'Ko, Vladimir I.; Geim, Andre K.; Cao, Yang

    2016-11-01

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V‑1 s‑1 and 104 cm2 V‑1 s‑1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  18. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    PubMed Central

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Lane, Thomas J.; Liang, Meng; Lundström, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Zhang, Lindsey; Wakatsuki, Soichi; Holton, James M.; Boutet, Sébastien

    2016-01-01

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs. PMID:27811937

  19. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser.

    PubMed

    Hunter, Mark S; Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G; Dao, E Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J; Lane, Thomas J; Liang, Meng; Lundström, Ulf; Koglin, Jason E; Mgbam, Paul; Rao, Yashas; Zhang, Lindsey; Wakatsuki, Soichi; Holton, James M; Boutet, Sébastien

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.

  20. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  1. Probing anomalous couplings using di-Higgs production in electron-proton collisions

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ruan, Xifeng; Islam, Rashidul; Cornell, Alan S.; Klein, Max; Klein, Uta; Mellado, Bruce

    2017-01-01

    A proposed high energy Future Circular Hadron-Electron Collider would provide sufficient energy in a clean environment to probe di-Higgs production. Using this channel we show that the azimuthal angle correlation between the missing transverse energy and the forward jet is a very good probe for the non-standard hhh and hhWW couplings. We give the exclusion limits on these couplings as a function of integrated luminosity at a 95% C.L. using the fiducial cross sections. With appropriate error fitting methodology we find that the Higgs boson self coupling could be measured to be ghhh(1) = 1.00-0.17(0.12)+0.24(0.14) of its expected Standard Model value at √{ s} = 3.5 (5.0) TeV for an ultimate 10 ab-1 of integrated luminosity.

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: An Extended Extrinsic Mechanism for Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Yan, Yu-Zhen; Li, Hui-Wu; Hu, Liang-Bin

    2009-12-01

    The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to spin-orbit dependent impurity scatterings.

  3. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  4. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  5. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  6. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  7. Grain size determination in nano-scale polycrystalline aggregates by precession illumination-hollow cone dark field imaging in the transmission electron microscope

    SciTech Connect

    Kulovits, A.K. Facco, G.; Wiezorek, J.M.K.

    2012-01-15

    Precession illumination hollow cone dark field (PI-HCDF) transmission electron microscopy (TEM) provides high contrast multi-beam dark field images, which are suitable for effective and robust grain size measurements in nano-scale polycrystalline aggregates. Precession illumination with slightly converged electron beam probes and precession angles up to 3 Degree-Sign has been produced using a computer-controlled system using a JEOL JEM 2000FX TEM instrument. Theoretical and practical aspects of the experimental technique are discussed using example precession illumination hollow cone diffraction patterns from single crystalline NiAl and the importance of selecting the appropriate precession angle for PI-HCDF image formation and interpretation is described. Results obtained for precession illumination are compared with those of conventional parallel beam illumination experiments. Nanocrystalline Al has been used to evaluate the influence of the precession angle on PI-HCDF image contrast with a focus on grain size analysis. PI-HCDF imaging has been applied for grain size measurements in regions of a nanocrystalline Al thin film adjacent to the edge of a pulsed laser melted and rapidly solidified region and determined the dimensions of a heat-affected zone. - Highlights: Black-Right-Pointing-Pointer New TEM method for grain size measurements combines TEM resolution with obtainability of statistically significant data sets. Black-Right-Pointing-Pointer We use precession illumination to produce time precession illumination hollow cone diffraction patterns PI-HCDP. Black-Right-Pointing-Pointer Contrast in dark field images (PI-HCDF) formed from PI-HCDP is easy to interpret as dynamical effects are reduced. Black-Right-Pointing-Pointer PI-HCDFs use several time-averaged g-rings simultaneously and contain more information than conventional DF-images. Black-Right-Pointing-Pointer Easy contrast interpretation and less dark field images required, allows fast, robust and

  8. Hollow memories

    NASA Astrophysics Data System (ADS)

    2014-04-01

    A hollow-core optical fibre filled with warm caesium atoms can temporarily store the properties of photons. Michael Sprague from the University of Oxford, UK, explains to Nature Photonics how this optical memory could be a useful building block for fibre-based quantum optics.

  9. Anomalous Local Fermi Liquid in f2-Singlet Configuration: Impurity Model for Heavy-Electron System UPt3

    NASA Astrophysics Data System (ADS)

    Yotsuhashi, Satoshi; Miyake, Kazumasa; Kusunose, Hiroaki

    2016-03-01

    It is shown by the Wilson numerical renormalization group method that a strongly correlated impurity with a crystalline-electric-field singlet ground state in the f2-configuration exhibits an anomalous local Fermi liquid state in which the static magnetic susceptibility remains an uncorrelated value while the NMR relaxation rate is enhanced in proportion to the square of the mass enhancement factor. Namely, the Korringa-Shiba relation is apparently broken. This feature closely matches the anomalous behaviors observed in UPt3, i.e., the coexistence of an unenhanced value of the Knight shift due to quasiparticles contribution (the decrease across the superconducting transition) and the enhanced relaxation rate of NMR. Such an anomalous Fermi liquid behavior suggests that the Fermi liquid corrections for the susceptibility are highly anisotropic.

  10. Anomalous excitons and screenings unveiling strong electronic correlations in SrTi1 -xNbxO3 (0 ≤x ≤0.005 )

    NASA Astrophysics Data System (ADS)

    Gogoi, Pranjal Kumar; Sponza, Lorenzo; Schmidt, Daniel; Asmara, Teguh Citra; Diao, Caozheng; Lim, Jason C. W.; Poh, Sock Mui; Kimura, Shin-ichi; Trevisanutto, Paolo E.; Olevano, Valerio; Rusydi, Andrivo

    2015-07-01

    Electron-electron (e-e) and electron-hole (e-h) interactions are often associated with many exotic phenomena in correlated electron systems. Here, we report an observation of anomalous excitons at 3.75, 4.67, and 6.11 eV at 4.2 K in bulk SrTiO3. Fully supported by ab initio G W Bethe-Salpeter equation calculations, these excitons are due to strong e-h and e-e interactions with different characters: 4.67 and 6.11 eV are resonant excitons and 3.75 eV is a bound Wannier-like exciton with an unexpectedly higher level of delocalization. Measurements and calculations on SrTi1 -xNbxO3 for 0.0001 ≤x ≤0.005 further show that the energy and spectral-weight of the excitonic peaks vary as a function of electron doping (x ) and temperature, which are attributed to screening effects. Our results show the importance of e-h and e-e interactions yielding to anomalous excitons and thus bring out a new fundamental perspective in SrTiO3.

  11. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo2O5.5+δ highly epitaxial thin films

    PubMed Central

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.; Ponce, A.

    2014-01-01

    A giant magnetoresistance effect (∼46% at 20 K under 7 T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo2O5.5+δ (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100)LBCO || (001)MgO and [001]LBCO || [100]MgO or [010]MgO. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties. PMID:24453381

  12. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+δ} highly epitaxial thin films

    SciTech Connect

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.

    2014-01-14

    A giant magnetoresistance effect (∼46% at 20 K under 7 T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+δ} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  13. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600°C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  14. Model of a Hollow Cathode Insert Plasma

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2004-01-01

    A 2-D axisymmetric fluid model of the plasma in the insert region of a hollow cathode is presented. The level of sophistication included in the model is motivated in part by the need to determine quantitatively plasma fluxes to the emitter surface. The ultimate goal is to assess whether plasma effects can degrade the life of impregnated inserts beyond those documented throughout the 30-50 year history of vacuum cathode technologies. Results from simulations of a 1.2-cm diameter cathode operating at a discharge current of 25 A, and a gas flow rate of 5 sccm, suggest that approximately 10 A of electron current, and 3.5 A of ion current return to the emitter surface. The total emitted electron current computed by the model is about 35 A. Comparisons with plasma measurements suggest that anomalous heating of the plasma due to two-stream instabilities is possible near the orifice region. Solution to the heavy species energy equation, with classical transport and no viscous effects, predicts heavy species temperatures as high as 2640 K.

  15. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    SciTech Connect

    Xie, Kan; Farnell, Casey C.; Williams, John D.

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  16. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  17. A New Geometric Method Based on Two-Dimensional Transmission Electron Microscopy for Analysis of Interior versus Exterior Pd Loading on Hollow Carbon Nanofibers

    SciTech Connect

    Shuai, Danmeng; Wang, Chong M.; Genc, Arda; Werth, Charles J.

    2011-04-18

    Hallow carbon nanofibers (CNFs) are being explored as catalyst supports because of their unique properties; catalytic activities with both interior and exterior metal loadings are being evaluated. Electron tomography (3D transmission electron microscopy, 3D TEM) has been used to estimate internal versus external loading of metal nanoclusters. However, this method is time consuming and requires a specialized TEM. We prepared three hollow CNF supported Pd samples with various Pd localizations, and developed a geometric analysis method based on 2D TEM images to estimate Pd internal versus external loading percentages. Results show the similar localization for the same sample in terms of the number, surface area, and mass of Pd nanoclusters but distinct values for different samples. To test our method, we compare results for one segment of a CNF using both 3D scanning transmission electron microscopy (3D TEM) and our new 2D geometic analysis method. Agreement is within 15.1%. Our results also agree with 3D TEM results from the literature for similarly prepared Pd on CNFs (within 5.6%). Our geometric analysis method is proposed as a more straightforward and fast way to evaluate metal nanocluster localizations on tubular supports.

  18. 2D Particle-In-Cell simulations of the electron-cyclotron instability and associated anomalous transport in Hall-Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdenek; Péchereau, François; Bourdon, Anne; Chabert, Pascal

    2016-09-01

    This work studies the electron-cyclotron instability in Hall-Effect Thrusters (HETs) using a 2D Particle-In-Cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system where a magnetic field, B0, is aligned along the X-axis (radial direction, including absorbing walls), a constant electric field, E0, along the Z-axis (axial direction, perpendicular to simulation plane), and the E0xB0 direction along the Y-axis (O direction, with periodic boundaries). Although for low plasma densities classical electron-neutral collisions theory describes well electron transport, at sufficiently high densities (as measured in HETs) a strong instability can be observed that enhances the electron mobility, even in the absence of collisions. The instability generates high frequency ( MHz) and short wavelength ( mm) fluctuations in both the electric field and charged particle densities. We investigate the correlation between these fluctuations and their role with anomalous electron transport; complementing previous 1D simulations. Plasma is self-consistently heated by the instability, but since the latter does not reach saturation in an infinitely long 2D system, saturation is achieved through implementation of a finite axial length that models convection in E0 direction. With support of Safran Aircraft Engines.

  19. Operating characteristics of a hollow-cathode neutralizer for 5 and 8 centimeter-diameter electron bombardment mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1975-01-01

    Thin-tip 0.3-cm-outside-diameter hollow-cathode neutralizers were used to investigate causes of neutralizer tip erosion experienced in thruster endurance tests. Bell-jar tests indicated that neutralizers with new rolled tantalum foil inserts coated with an emissive mixture eroded very little over the neutral flow rates investigated (3 to 10 mA) for simulated 5- and 8-cm-diameter thruster neutralizer conditions. Tip erosion rates of neutralizers operated with no insert or emissive mixture increased by two orders of magnitude for both configurations as the neutral flow rate decreased. Spectroscopic analysis of the discharge plasma from neutralizers operated with inserts coated with the emissive mixture detected tungsten at all neutral flow rates for both thruster neutralizer conditions. The only source of tungsten was the tip. Therefore, detection of tungsten indicated neutralizer tip erosion. Barium, an element of the emissive mixture, was detected at low neutral flow rates for the 5-cm-diameter thruster neutralizer operating condition only.

  20. Anomalous Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    Many astrophysicists believe that Anomalous X-Ray Pulsars (AXP), Soft Gamma-Ray Repeaters (SGR), Rotational Radio Transients (RRAT), Compact Central Objects (CCO) and X-Ray Dim Isolated Neutron Stars (XDINS) belong to different classes of anomalous objects with neutron stars as the central bodies inducing all their observable peculiarities. We have shown earlier [1] that AXPs and SGRs could be described by the drift model in the framework of the preposition on usual properties of the central neutron star (rotation periods P 0.01 - 1 sec and, surface magnetic fields B ~ 10^11-10^13 G). Here we shall try to show that some differences of the sources under consideration will be explained by their geometry (particularly, by the angle β between their rotation and magnetic axes). If β <~ 100 (the aligned rotator) the drift waves at the outer layers of the neutron star magnetosphere should play a key role in the observable periodicity. For large values of β (the case of the nearly orthogonal rotator) an accretion from the surrounding medium (for example, from the relic disk) can cause some modulation and transient events in received radiation. Recently Kramer et al. [2] and Camilo et al. [3] have shown that AXPs J1810-197 and 1E 1547.0 - 5408 have both small angles β, that is these sources are nearly aligned rotators, and the drift model should be used for their description. On the other hand, Wang et al. [4] detected IR radiation from the cold disk around the isolated young X-ray pulsar 4U 0142+61. This was the first evidence of the disk-like matter around the neutron star. Probably there is the bimodality of anomalous pulsars. AXPs, SGRs and some radio transients belong to the population of aligned rotators with the angle between the rotation axis and the magnetic moment β < 200. These objects are described by the drift model, and their observed periods are connected with a periodicity of drift waves. Other sources have β ~ 900, and switching on's and switching off

  1. The Origin of Anomalous Electronic Circular Dichroism Spectra of [RuPt_2(tppz)_2Cl_2]^{4+} in Acetonitrile

    NASA Astrophysics Data System (ADS)

    Yu, H. G.

    2013-06-01

    The [RuPt_2(tppz)_2Cl_2]^{4+} (tppz=2,3,5,6-tetra(2-pyridyl)pyrazine) is a potential material for water photo-oxidation to produce oxygen molecules. Recent experiments found that it has anomalous electronic circular dichroism (ECD) spectra in acetonitrile. In order to explain the ECD spectra, we have carried out a detailed study using a hybrid density functional theory (DFT), together with the Stuttgart/Dresden effective core potentials (MWB) for the metal and P atoms. The solvation effects in acetonitrile were taken into account in terms of the conductor polarizable continuum model (C-PCM) with the universal force field (UFF) approach. The UV-vis spectra of the complexes were calculated using the time-dependent DFT (TDDFT) method on the optimized geometry of individual system. In this talk, we will discuss the DFT/TDDFT calculations and propose a mechanism for the abnormal ECD spectra.

  2. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  3. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  4. Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion

    SciTech Connect

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2007-03-15

    Measurements, simplified analyses, and two-dimensional numerical simulations with a fluid plasma model show that classical resistivity cannot account for the elevated electron temperatures and steep plasma potential gradients measured in a 25-27.5 A electric propulsion hollow cathode. The cathode consisted of a 1.5 cm hollow tube with an {approx}0.28 cm diameter orifice and was operated with 5.5 SCCM (SCCM denotes cubic centimeter per minute at STP) of xenon flow using two different anode geometries: a segmented cone and a circular flat plate. The numerical simulations show that classical resistivity yields as much as four times colder electron temperatures compared to the measured values in the orifice and near-plume regions of the cathode. Classical transport and Ohm's law also predict exceedingly high electron-ion relative drift speeds compared to the electron thermal speed (>4). It is found that the addition of anomalous resistivity based on existing growth rate formulas for electron-ion streaming instabilities improves qualitatively the comparison between the numerical results and the time-averaged measurements. Simplified analyses that have been based largely on the axial measurements support the conclusion that additional resistivity is required in Ohm's law to explain the measurements. The combined results from the two-dimensional simulations and the analyses bound the range of enhanced resistivity to be 3-100 times the classical value.

  5. Origin of anomalous electronic circular dichroism spectrum of RuPt2(tppz)2Cl2(PF6)4 in acetonitrile.

    PubMed

    Yu, Hua-Gen

    2014-07-24

    We report a theoretical study of the structures, energetics, and electronic spectra of the Pt(II)/Ru(II) mixed-metal complex RuPt2(tppz)2Cl2(PF6)4 (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine) in acetonitrile. The hybrid B3LYP density functional theory and its TDDFT methods were used with a complete basis set (CBS) extrapolation scheme and a conductor polarizable continuum model (C-PCM) for solvation effects. Results showed that the trinuclear complex has four types of stable conformers and/or enantiomers. They are separated by high barriers owing to the repulsive H/H geometrical constraints in tppz. A strong entropy effect was found for the dissociation of RuPt2(tppz)2Cl2(PF6)n in acetonitrile. The UV-visible and emission spectra of the complex were also simulated. They are in good agreement with experiments. In this work we have largely focused on exploring the origin of anomalous electronic circular dichroism (ECD) spectra of the RuPt2(tppz)2Cl2(PF6)4 complex in acetonitrile. As a result, a new mechanism has been proposed together with a clear illustration by using a physical model.

  6. Anomalously large effects of pressure on electron transfer kinetics in solution: The aqueous manganate(VI)-permanganate(VII) system

    NASA Astrophysics Data System (ADS)

    Swaddle, T. W.; Spiccia, L.

    1986-05-01

    The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.

  7. On the parameters of runaway electron beams and on electrons with an "anomalous" energy at a subnanosecond breakdown of gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. K.; Beloplotov, D. V.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Sorokin, D. A.

    2015-09-01

    The generation of runaway electron beams in gases at atmospheric pressure has been studied with a real picosecond accuracy. Their main parameters have been determined. It has been found that three groups of electrons can be separated at a subnanosecond voltage pulse in a runaway electron beam generated in air at atmospheric pressure. It has been proven that the duration of a beam pulse in air at atmospheric pressure behind an anode foil is ~100 ps.

  8. Anomalous effective polarity of an air/liquid-mixture interface: a heterodyne-detected electronic and vibrational sum frequency generation study.

    PubMed

    Mondal, Sudip Kumar; Inoue, Ken-ichi; Yamaguchi, Shoichi; Tahara, Tahei

    2015-10-07

    We study the effective polarity of an air/liquid-mixture interface by using interface-selective heterodyne-detected electronic sum frequency generation (HD-ESFG) and vibrational sum frequency generation (HD-VSFG) spectroscopies. With water and N,N-dimethylformamide (DMF) chosen as two components of the liquid mixture, the bulk polarity of the mixture is controlled nearly arbitrarily by the mixing ratio. The effective polarity of the air/mixture interface is evaluated by HD-ESFG with a surface-active solvatochromic molecule used as a polarity indicator. Surprisingly, the interfacial effective polarity of the air/mixture interface increases significantly, when the bulk polarity of the mixture decreases (i.e. when the fraction of DMF increases). Judging from the hydrogen-bond structure at the air/mixture interface clarified by HD-VSFG, this anomalous change of the interfacial effective polarity is attributed to the interface-specific solvation structure around the indicator molecule at the air/mixture interface.

  9. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    SciTech Connect

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Lane, Thomas J.; Liang, Meng; Lundstrom, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Zhang, Lindsey; Wakatsuki, Soichi; Holton, James M.; Boutet, Sebastien

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.

  10. Anomalous spin Josephson effect

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng

    2016-10-01

    We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.

  11. Pressure effect and electron diffraction on the anomalous transition in ternary superconductor Bi2Rh3Se2

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Chan, C. L.; Mukherjee, S.; Chou, C. C.; Tseng, C. M.; Hsu, S. L.; Chu, M.-W.; Lin, J.-Y.; Yang, H. D.

    2014-01-01

    The effect of external hydrostatic pressure up to 22.23 kbar on the temperature-dependent transport properties of the ternary compound Bi2Rh3Se2 is investigated. Interestingly, the resistive anomaly at Ts~250 K, previously proposed as a charge-density-wave (CDW) transition, is shifted to higher temperature with increasing pressure, in distinct contrast to an established knowledge for CDW. Using temperature-dependent electron-diffraction characterizations, we have unraveled that this transition is, in effect, of a structural phase-transformation nature, experiencing the symmetry reduction from a high-symmetry C-centered monoclinic lattice to a low-symmetry primitive one below Ts. A more elaborately determined room-temperature C-centered lattice was also proposed.

  12. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    SciTech Connect

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-09-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  13. Dynamic hollow fiber protected liquid phase microextraction and quantification using gas chromatography combined with electron capture detection of organochlorine pesticides in green tea leaves and ready-to-drink tea.

    PubMed

    Huang, Shih-Pin; Huang, Shang-Da

    2006-11-24

    The dynamic hollow fiber protected liquid phase microextraction (DHFP-LPME) technique was evaluated for the extraction of organochlorine pesticides (OCPs) in green tea leaves and ready-to-drink tea prior to gas chromatography combined-electron capture detection (GC-ECD) analysis. A conventional microsyringe with a 1.5 cm length of hollow fiber attached to its needle was connected to a syringe pump to perform the extraction. The microsyringe was used as both the microextraction device and the sample introduction device for GC-ECD analysis. In this work, the organochlorine pesticides were extracted and condensed to a volume of 3 microl of organic extracting solvent (1-octanol) confined within a 1.5 cm length of hollow fiber. The effects of extraction solvent, extraction time, sample agitation, plunger speed, and extraction temperature and salt concentration content on the extraction performance were also investigated. Good enrichments were achieved (34-297-fold) with this method, and good repeatabilities of extraction were obtained, with full name (RSDs) below 12.57%. Detection limits were much below 1 microg l(-1) for ready-to-drink tea and much below 1 microg g(-1) for green tea leaves.

  14. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  15. 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk; Bourdon, Anne; Chabert, Pascal

    2017-03-01

    In this work we study the electron drift instability in Hall-effect thrusters (HETs) using a 2D electrostatic particle-in-cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system modeling the radial-azimuthal (r{--}θ ) plane for large radius thrusters. A magnetic field, {{B}}0, is aligned along the Oy axis (r direction), a constant applied electric field, {{E}}0, along the Oz axis (perpendicular to the simulation plane), and the {{E}}0× {{B}}0 direction is along the Ox axis (θ direction). Although electron transport can be well described by electron–neutral collisions for low plasma densities, at high densities (similar to those in typical HETs), a strong instability is observed that enhances the electron cross-field mobility; even in the absence of electron–neutral collisions. The instability generates high frequency (of the order of MHz) and short wavelength (of the order of mm) fluctuations in both the azimuthal electric field and charged particle densities, and propagates in the {{E}}0× {{B}}0 direction with a velocity close to the ion sound speed. The correlation between the electric field and density fluctuations (which leads to an enhanced electron–ion friction force) is investigated and shown to be directly responsible for the increased electron transport. Results are compared with a recent kinetic theory, showing good agreement with the instability properties and electron transport.

  16. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  17. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  18. Anomalous zones (domal)

    SciTech Connect

    Kupfer, D.H. )

    1990-09-01

    Each zone contains several anomalous salt properties (anomalous features). Zones cannot be characterized by any single property Zones are highly variable, lenticular, and discontinuous in detail; however, once established, they commonly have a predictable trend. The individual anomalous features can occur alone (locally in pairs) over areas of various sizes and shapes. These alone occurrences are not anomalous zones. Anomalous zones may be of any origin, and origin is not part of the definition. Typical origins include: primary (sedimentary), external sheath zone, separating two spines of salt, or caused by toroidal flow. The major importance of an anomalous zone is that it consists of various anomalous features distributed discontinuously along the zone. Thus, if three or more anomalous properties are observed together, one should look for others. The anomalous zones observed in the Gulf Coast thus far are vertical, linear, and semicontinuous. Most are reasonably straight, but some bend sharply, end abruptly, or coalesce. Textures in salt involve grain size, color (white to dark gray), grain shape, or grain distribution of the salt. Typical anomalous textures are coarse-grain, poikiloblastic, and friability. A change in color is commonplace and seldom anomalous. Structural anomalous features, broadly defined, account for most of the rest of the anomalous features. Not uncommonly they cause mining problems. Among the structural anomalous features: INCLUSIONS: Sediments, hydrocarbons, brine, gases. Common gases are air (as N{sub 2}), CH-compounds, CO{sub 2}, and H{sub 2}S. STRUCTURES: Sheared salt, undue stabbing or jointing, voids (crystal-lined pockets), permeability, increased porosity COMPOSITION: High anhydrite content, visible anhydrite as grains or boudins, very black salt = disseminated impurities such as clay.

  19. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  20. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  1. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  2. Preparation of magnetic nickel hollow fibers with a trilobe structure using cellulose acetate fibers as templates

    NASA Astrophysics Data System (ADS)

    Zeng, Changfeng; Li, Ping; Zhang, Lixiong

    2013-02-01

    Nickel hollow fibers with trilobe shape in cross section and monolithic nickel structures composed of trilobe shaped nickel hollow fibrous networks were prepared by using cellulose acetate fibers from cigarette filters as the template. Magnetic ZSM-5/Ni hollow fibers were then fabricated by using the nickel-based hollow fibers as the support. The samples were characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, and X-ray diffraction. The results indicate that nickel hollow fibers and ZSM-5/Ni hollow fibers retain the morphology of the cellulose acetate fibers, and the monolithic nickel structures can be prepared by pre-shaping the cellulose acetate fibers. The thickness of the nickel layer can be regulated by controlling the electroless plating times. The saturation magnetization and coercivity of the trilobe shaped nickel hollow fibers and ZSM-5/Ni hollow fibers are 27.78 and 21.59 emu/g and 78 and 61 Oe, respectively.

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Anomalous Hall Effect in Spin-Polarized Two-Dimensional Hole Gas with Cubic-Rashbsa Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Ren, Li; Mi, Yi-Ming

    2010-09-01

    Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, short-ranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbands are occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.

  4. Hollow-Fiber Clinostat

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  5. General sacrificial template method for the synthesis of cadmium chalcogenide hollow structures.

    PubMed

    Miao, Jian-Jun; Jiang, Li-Ping; Liu, Chang; Zhu, Jian-Min; Zhu, Jun-Jie

    2007-07-09

    Semiconductor CdX (X=Te, Se, S) hollow structures have been successfully prepared by using Cd(OH)Cl precursors as a sacrificial template. The hollow structures can be hollow spheres or tubes by controlling the shape of the sacrificial template. The products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectrometry. The obtained results showed that the hollow structures had complementary shapes and sizes of the original sacrificial templates. This is a general method for the synthesis of cadmium chalcogenide hollow structures, and the method is simpler and more practical than direct synthesis of certain hollow structures, which further widens the avenue to using those materials that have been synthesized with various shapes to fabricate specific hollow structures.

  6. Low-pressure glow discharge with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Bogodielnyi, Illia

    2011-10-01

    We measured the breakdown curves of a dc glow discharge with hollow cathode and flat electrodes in the gap between the electrodes L = 100 mm. At low gas pressure, the left branches of the breakdown curves for the hollow cathode and the flat electrodes are identical. At high gas pressures, the right branch of the breakdown curve of the discharge with a hollow cathode is close to the breakdown curve for the distance between the plane electrodes, equal to the gap between the edge of the plates of the hollow cathode and flat anode. Current-voltage characteristics of the hollow cathode discharge were measured. At low gas pressure discharge is in the high-voltage (electron beam) form with ascending CVC. In the gas pressure range p > 0.1 Torr the discharge first burns in the glow mode. At higher current the discharge goes into the hollow cathode mode, filling the space between the plates, and it has an almost vertical CVC. The transition from a glow discharge mode into a hollow one possesses a hysteresis. At gas pressures p ~ 1 Torr the hollow cathode effect disappears, since the thickness of the cathode layer is small compared with the gap between the plates of the cathode.

  7. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  8. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  9. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  10. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.

    PubMed

    Niu, Kai-Yang; Park, Jungwon; Zheng, Haimei; Alivisatos, A Paul

    2013-01-01

    We study the formation of bismuth oxide hollow nanoparticles by the Kirkendall effect using liquid cell transmission electron microscopy (TEM). Rich dynamics of bismuth diffusion through the bismuth oxide shell have been captured in situ. The diffusion coefficient of bismuth through bismuth oxide shell is 3-4 orders of magnitude higher than that of bulk. Observation reveals that defects, temperature, sizes of the particles, and so forth can affect the diffusion of reactive species and modify the kinetics of the hollowing process.

  11. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  12. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    PubMed

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis.

  13. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Anomalous Kondo-Switching Effect of a Spin-Flip Quantum Dot Embedded in an Aharonov-Bohm Ring

    NASA Astrophysics Data System (ADS)

    Chen, Xiong-Wen; Shi, Zhen-Gang; Song, Ke-Hui

    2009-11-01

    We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch.

  14. Facile Synthesis and High Photocatalytic Degradation Performance of ZnO-SnO2 Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Jin, Changqing; Ge, Chenghai; Jian, Zengyun; Wei, Yongxing

    2016-11-01

    ZnO-SnO2 hollow spheres were successfully synthesized through a hydrothermal method-combined carbon sphere template. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The average diameter of hollow spheres is about 150 nm. The photocatalytic activity of the as-prepared samples was investigated by photodegrading Rhodamine B. The results indicated that the photocatalytic activities of ZnO-SnO2 hollow spheres are higher than ZnO hollow spheres. The degradation efficiency of the hollow spheres could reach 99.85% within 40 min, while the ZnO hollow spheres need 50 min.

  15. Facile Synthesis and High Photocatalytic Degradation Performance of ZnO-SnO2 Hollow Spheres.

    PubMed

    Jin, Changqing; Ge, Chenghai; Jian, Zengyun; Wei, Yongxing

    2016-12-01

    ZnO-SnO2 hollow spheres were successfully synthesized through a hydrothermal method-combined carbon sphere template. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The average diameter of hollow spheres is about 150 nm. The photocatalytic activity of the as-prepared samples was investigated by photodegrading Rhodamine B. The results indicated that the photocatalytic activities of ZnO-SnO2 hollow spheres are higher than ZnO hollow spheres. The degradation efficiency of the hollow spheres could reach 99.85% within 40 min, while the ZnO hollow spheres need 50 min.

  16. Discharge with Hollow Cathode (Selected Chapters),

    DTIC Science & Technology

    1983-04-12

    view of its mechanism made Rose in [77]. Let us dismantle/select the fundamental conclusions of this work which are based on the study of the...too little in order to support discharge by means of : 7-processes, and therefore the mechanism of secondary processes in the arc with hollow cathode...which leads to the output of electrons from the cathode, thermoemission, then the temperature of cathode surface T3 must be T.=p33OK. Unfortunately, the

  17. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  18. Dispersion analysis of hollow-core modes in ultralarge-bandwidth all-silica Bragg fibers with nanosupports

    NASA Astrophysics Data System (ADS)

    Cojocaru, E.

    2006-03-01

    Dispersion of the fundamental confined modes in hollow-core all-silica Bragg fibers with nanosupports is analyzed. The transfer-matrix formalism is applied. Anomalies in the group-velocity dispersion are evidenced at long wavelengths, toward the upper limit of the bandgap. The results confirm that, as in microstructured photonic crystal fibers, this anomalous dispersion is due to prevention of the confined hollow-core modes from crossing the surface modes, the avoided crossings are more apparent in the variation of group velocity with wavelength. The dependence of these avoided crossings on the hollow-core radius and the layer thicknesses is briefly analyzed.

  19. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  20. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  1. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  2. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  3. Macromolecular X-ray structure determination using weak, single-wavelength anomalous data

    SciTech Connect

    Bunkóczi, Gábor; McCoy, Airlie J.; Echols, Nathaniel; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Holton, James M.; Read, Randy J.; Terwilliger, Thomas C.

    2014-12-22

    We describe a likelihood-based method for determining the substructure of anomalously scattering atoms in macromolecular crystals that allows successful structure determination by single-wavelength anomalous diffraction (SAD) X-ray analysis with weak anomalous signal. With the use of partial models and electron density maps in searches for anomalously scattering atoms, testing of alternative values of parameters and parallelized automated model-building, this method has the potential to extend the applicability of the SAD method in challenging cases.

  4. Anomalous law of cooling

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  5. Anomalous law of cooling.

    PubMed

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  6. Anomalous law of cooling

    SciTech Connect

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  7. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  8. Fabrication of hollow spheres by dry-gel conversion and its application in the selective hydrodesulfurization of FCC gasoline.

    PubMed

    Zhang, Jinchang; Wang, Gang; Jin, Fengying; Fang, Xiangchen; Song, Chunshan; Guo, Xinwen

    2013-04-15

    Hollow spheres were synthesized from MCM-41 solid spheres by dry-gel conversion. It was found that water amount has a major impact on the formation of hollow spheres. Transmission electron microscopy (TEM) images revealed that the hollow spheres are between 500 and 600 nm in size with a dense shell of ca. 100 nm. The synthesized hollow sphere sample was examined as a support for hydrodesulfurization catalyst. The sulfur removal was enhanced while olefin hydrogenation of FCC gasoline was suppressed, and thus, the octane value was preserved when the hollow spheres (Na type) were loaded with Ni and Mo oxides as catalyst.

  9. Geomagnetically trapped anomalous cosmic rays

    SciTech Connect

    Selesnick, R.S.; Cummings, A.C.; Cummings, J.R.

    1995-06-01

    Since its launch in July 1992, the polar-orbiting satellite SAMPEX has been collecting data on geomagnetically trapped heavy ions, predominantly O, N, and Ne, at energies {ge}15 MeV/nucleon and in a narrow L shell range L = 2. Their location, elemental composition, energy spectra, pitch angle distribution, and time variations all support the theory that these particles originated as singly ionized interplanetary anomalous cosmic rays that were stripped of electrons in the Earth`s upper atmosphere and subsequently trapped. The O are observed primarily at pitch angles outside the atmospheric loss cones, consistent with a trapped population, and their distribution there is nearly isotropic. The abundances relative to O of the N, possible Ne, and especially C are lower than the corresponding interplanetary values, which may be indicative of the trapping efficiencies. The distributions of trapped N, O, and Ne in energy and L shell suggest that most of the ions observed at the SAMPEX altitude of {approximately}600 km are not fully stripped when initially trapped. A comparison of the trapped intensity with the much lower interplanetary intensity of anomalous cosmic rays provides model-dependent estimates of the product of the trapping probability and the average trapped particle lifetime against ionization losses in the residual atmosphere for particles that mirror near the SAMPEX altitude. 36 refs., 13 figs., 1 tab.

  10. Effect of growth temperature on the electronic transport and anomalous Hall effect response in co-sputtered Co2FeSi thin films

    NASA Astrophysics Data System (ADS)

    Yadav, Anjali; Chaudhary, Sujeet

    2015-11-01

    Co-sputtered Co2FeSi thin films are studied by varying the growth temperature (Ts) as a control parameter in terms of the appreciable change in the disorder. The effect of Ts on structural, magnetic, electrical, and magneto-transport properties was investigated. As Ts is increased from room temperature to 400 °C, an improvement in the crystallinity and atomic ordering are observed. These are found to be correlated with the associated reduction in residual resistivity ( ρ x x 0 ) from 410 to 88 μΩ cm, an increment in residual resistivity ratio (r) from 0.8 to 1.23, and an increase in saturation magnetization from 1074 to 1196 emu/cc. The spin wave stiffness constant in these films is found to increase with Ts, with a reasonably high value of 358 meVÅ2 at the optimum value of Ts of 400 °C. Further, the obtained high carrier concentration and mobility values (at 10 K) of ˜30 e-s/f.u. and ˜0.11 cm2 V-1 s-1 for the films deposited at Ts = 400 °C shows the presence of compensated Fermi surface. The transport properties are investigated qualitatively from the scaling of anomalous Hall resistivity ρx y s (T) with the longitudinal resistivity ρ x x ( T ) data, employing the extrinsic (skew- and side-jump scatterings) and intrinsic scattering contributions. The variation in the intrinsic scattering contributions observed via the variation in linear dependence of ρx y s on ρx x 2 with the change in Ts is found to be associated with the improvement in the crystallinity of these films.

  11. Attenuated retroreflectors for electronic distance measurement

    NASA Astrophysics Data System (ADS)

    Parker, David H.; Goldman, Michael A.; Radcliff, Bill; Shelton, John W.

    Methods are described for attenuating solid glass and hollow retroreflectors, without introducing optical path length modifications, for electronic distance measurement. Construction of a prototype novel-design hollow retroreflector is described.

  12. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  13. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.

  14. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    1999-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.

  15. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns a density of about 1 to about 6 pounds/cubic ft and a volume change of 1 to about 20 percent by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic ft and a compression strength 2 of about 100 to about 1400 pounds/sq in.

  16. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  17. Preparation and characterization of optical-functional diblock copolymer brushes on hollow sphere surface via atom transfer radical polymerization

    SciTech Connect

    Wang, Li-Ping; Li, Wen-Zhi; Zhao, Li-Min; Zhang, Chun-Juan; Wang, Yan-Dong; Kong, Li-Li; Li, Ling-Ling

    2010-09-15

    The optical-functional poly(methyl methacrylate)-block-Tb complex diblock copolymer brushes grafted from hollow sphere surface via atom transfer radical polymerization were investigated in this work. A sufficient amount of azo initiator was introduced onto hollow sphere surface firstly. Then the monomer methyl methacrylate was polymerized via surface-initiated reverse atom transfer radical polymerization using azo group modified hollow sphere as initiator. Following, the poly(methyl methacrylate) modified hollow sphere was used as maroinitiator for surface-initiated atom transfer radical polymerization of Tb complex. The samples were characterized by Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance, gel permeation chromatographer and transmission electron microscopy, respectively. The results indicated that the poly(methyl methacrylate) had grafted from hollow sphere surface and the average diameter of hollow core was about 1 {mu}m. The optical properties of the poly(methyl methacrylate)-block-Tb copolymer modified hollow sphere were also reported.

  18. Nonlocal Anomalous Hall Effect.

    PubMed

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  19. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  20. Preparation of hollow magnetite microspheres and their applications as drugs carriers

    PubMed Central

    2012-01-01

    Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile. Graphical abstract Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications. PMID:22490731

  1. COS NUV Detector Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13129. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  2. ACS SBC Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.

  3. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 19 proposal 12779.

  4. COS NUV Detector Recovery After Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes almost the same steps as Cycle 19 proposal 12723. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  5. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13150.

  6. Hollow Force, Hollow Metaphor: Assessing the Current Defense Drawdown

    DTIC Science & Technology

    2016-04-04

    testimony to Congress, the Army’s Chief of Staff, General Edward Meyer, used the phrase “hollow Army” to articulate his perception of an undermanned...force?” Panetta employed a metaphor used previously in post-conflict periods when political and defense leaders debated the extent and depth of...phrase to articulate his perception of an undermanned, poorly trained post- Vietnam U.S. Army.5 The phrase was later expanded to “hollow force” by

  7. Hollow Force, Hollow Metaphor: Assessing The Current Defense Drawdown

    DTIC Science & Technology

    2016-04-04

    testimony to Congress, the Army’s Chief of Staff, General Edward Meyer, used the phrase “hollow Army” to articulate his perception of an undermanned...force?” Panetta employed a metaphor used previously in post-conflict periods when political and defense leaders debated the extent and depth of...phrase to articulate his perception of an undermanned, poorly trained post- Vietnam U.S. Army.5 The phrase was later expanded to “hollow force” by

  8. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  9. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  10. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  11. 'Laguna Hollow'Undisturbed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the patch of soil at the bottom of the shallow depression dubbed 'Laguna Hollow' where the Mars Exploration Rover Spirit will soon begin trenching. Scientists are intrigued by the clustering of small pebbles and the crack-like fine lines, which indicate a coherent surface that expands and contracts. A number of processes can cause materials to expand and contract, including cycles of heating and cooling; freezing and thawing; and rising and falling of salty liquids within a substance. This false-color image was created using the blue, green and infrared filters of the rover's panoramic camera. Scientists chose this particular combination of filters to enhance the heterogeneity of the martian soil.

  12. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  13. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  14. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-10-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  15. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane.

    PubMed

    Zarycz, M Natalia C; Sauer, Stephan P A; Provasi, Patricio F

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the (1)J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the (1)J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes--SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  16. Numerical Simulations of the Partially-Ionized Gas in a 100-A LaB6 Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Goebel, Dan M.; Jorns, Benjamin A.; Polk, James E.; Guerrero, Pablo

    2013-01-01

    Numerical simulations of a hollow cathode with a LaB6 emitter operating at 100 A have been performed for the first time using the 2-D Orificed Cathode (OrCa2D) code. Results for a variety of plasma properties are presented and compared with laboratory measurements. The large size of the device permits peak electron number densities in the cathode interior that are lower than those established in the NSTAR hollow cathode, which operates with a 7.3x lower discharge current and 3.2x lower mass flow rate. Also, despite the higher discharge current in the LaB6 cathode, the maximum electron current density is lower, by 4.2x, than that in the NSTAR cathode due to the larger orifice size. Simulations and direct measurements show that at 12 sccm of xenon flow the peak emitter temperature is in the range of 1594-1630 C. It is also found that the conditions for the excitement of current-driven streaming instabilities and ion-acoustic turbulence (IAT) are satisfied in this cathode, similarly to what was found in the past in its smaller counterparts like the NSTAR cathode. Based on numerical simulations, it has long been argued that these instabilities may be responsible for the anomalously large ion energies that have been measured in these discharges as well as for the enhancement of the plasma resistivity. Confirmation of the presence of IAT in this cathode is presented for the first time in a companion paper.

  17. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  18. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  19. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  20. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  1. Fickian dispersion is anomalous

    NASA Astrophysics Data System (ADS)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  2. Neoclassical and anomalous flows in stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Marine, T.; Spong, D. A.

    2009-11-01

    The impact of magnetic geometry and plasma profiles on flows and viscosities in stellarators is investigated. This work examines both neoclassical and anomalous flows for a number of configurations including a particular focus on the Helically Symmetric Experiment (HSX) and other quasi-symmetric configurations. Neoclassical flows and viscosities are calculated using the PENTA code [1]. For anomalous flows, the neoclassical viscosities from PENTA are used in a transport code that includes Reynolds stress flow generation [2]. This is done for the standard quasi-helically symmetric configuration of HSX, a symmetry-breaking mirror configuration and a hill configuration. The impact of these changes in the magnetic geometry on neoclassical viscosities and flows in HSX are discussed. Due to variations in neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. These effects are shown to vary as the ratio of electron to ion temperature varies. In particular, as the ion temperature increases relative to the electron flow shear is shown to increase. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  3. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  4. Anomalous feedback and negative domain wall resistance

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  5. In-plane magnetization-induced quantum anomalous Hall effect.

    PubMed

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

  6. Magnetic hollow mesoporous silica nanospheres: facile fabrication and ultrafast immobilization of enzymes.

    PubMed

    Chen, Yu; Chen, Hangrong; Guo, Limin; Shi, Jianlin

    2011-12-01

    Hollow mesoporous silica nanospheres with large pore size of around 11 nm have been synthesized by a structural difference based selective etching strategy, and the highly dispersed hydrophobic Fe3O4 nanoparticles with a particle size of 5 nm were then impregnated into hollow cores of nanospheres through these large pores by a vacuum impregnation technique. The structural characteristics of obtained magnetic composites were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Selected Area Electron Diffraction (SAED), Ultraviolet-visible (UV-Vis) and Vibrating Sample Magnetometer (VSM). The results show that the obtained Fe3O4-hollow mesoporous silica composites exhibit superparamagnetic property with saturation magnetization value of 4.17 emu/g. Furthermore, the obtained supports show ultrafast immobilization of hemoglobin and the immobilized enzymes are not denatured, indicating that the superparamagnetic hollow mesoporous silica spheres are excellent support for immobilization of enzymes with magnetic recycling property.

  7. Fractal model of anomalous diffusion.

    PubMed

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  8. Anomalous absorption of laser light on ion acoustic fluctuations

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  9. Detection of anomalous events

    DOEpatents

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  10. Hollow glass waveguides: New variations

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  11. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  12. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  13. New route for hollow materials

    NASA Astrophysics Data System (ADS)

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-08-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures.

  14. New route for hollow materials

    PubMed Central

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-01-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures. PMID:27554448

  15. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  16. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  17. Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films

    SciTech Connect

    Lin, Junhao; He, Weidong; Vilayur Ganapathy, Subramanian; Peppernick, Samuel J.; Wang, Bin; Palepu, Sandeep; Remec, Miroslav; Hess, Wayne P.; Hmelo, Anthony B.; Pantelides, Sokrates T.; Dickerson, James

    2013-11-27

    Through thermally annealing well-arrayed, circular, nanoscale thin films of gold, deposited onto [111] silicon/silicon dioxide substrates, both solid and hollow gold particles of different morphologies with controllable sizes were obtained. The thin film could form individual particle or clusters of particles by tuning the diameter of it. Hollow gold particles were featured by their large size whose diameter was larger than 500 nm and confirmed by a cross-section view. Hollow gold particles show greater plasmonic field enhancement under photoemission electron microscopy. Potential growth mechanisms for these structures are explored

  18. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  19. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  20. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  1. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  2. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Jialong; Xia, Tianyu; Wang, Shouguo; Yang, Guang; Dong, Bowen; Wang, Chao; Ma, Qidi; Sun, Young; Wang, Rongming

    2016-06-01

    structures. Compared with commercial Pt/C, well aligned hollow FePt nanochains show greatly enhanced catalytic activities in the methanol oxidation reaction (MOR) due to more favorable mass flow. Magnetic measurements indicate that the magnetic properties including Curie temperature and saturation magnetization can be tuned by the control of the size and shape of hollow nanochains. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00883f

  3. Numerical simulation of the sustaining discharge in radio frequency hollow cathode discharge in argon

    SciTech Connect

    Jiang, Xin-Xian; He, Feng Ouyang, Ji-Ting; Chen, Qiang Ge, Teng

    2014-03-15

    In this paper, a two-dimensional fluid model was developed to study the radio frequency (RF) hollow cathode discharge (HCD) in argon at 1 Torr. The evolutions of the particle density distribution and the ionization rate distribution in RF HCD at 13.56 MHz indicate that the discharge mainly occurs inside the hollow cathode. The spatio-temporal distributions of the ionization rate and the power deposition within the hollow cathode imply that sheath oscillation heating is the primary mechanism to sustain the RF HCD, whereas secondary electron emission plays a negligible role. However, as driving frequency decreases, secondary electron heating becomes a dominant mechanism to sustain the discharge in RF hollow cathode.

  4. Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity

    PubMed Central

    2014-01-01

    Herein, we report an effective, facile, and low-cost route for preparing ZnO hollow microspheres with a controlled number of shells composed of small ZnO nanoparticles. The formation mechanism of multiple-shelled structures was investigated in detail. The number of shells is manipulated by using different diameters of carbonaceous microspheres. The products were characterized by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The as-prepared ZnO hollow microspheres and ZnO nanoparticles were then used to study the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation, and the triple-shelled ZnO hollow microspheres exhibit the best photocatalytic activity. This work is helpful to develop ZnO-based photocatalysts with high photocatalytic performance in addressing environmental protection issues, and it is also anticipated to other multiple-shelled metal oxide hollow microsphere structures. PMID:25328500

  5. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  6. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-12-31

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/{eta}{sub i} and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  7. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-01-01

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/[eta][sub i] and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  8. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    SciTech Connect

    Ma, Wei; Chen, Gen; Zhang, Dan; Zhu, Jianyu; Qiu, Guanzhou; Liu, Xiaohe

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled with nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.

  9. Hollow electrode plasma excitation source

    DOEpatents

    Ballou, Nathan E.

    1992-01-01

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

  10. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  11. Hollow Plasma in a Solenoid

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-11-30

    A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

  12. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  13. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  14. Cetyltrimethyl ammonium bromide assisted hydrothermal growth of hematite hollow cubes

    SciTech Connect

    Wang, Wei-Wei; Yao, Jia-Liang

    2010-11-15

    Hematite hollow cubes have been prepared by forced hydrolysis of ferric chloride solutions under hydrothermal conditions. The effects of reaction time, reaction temperature and cetyltrimethyl ammonium bromide on the transformation process from akageneite to hematite were investigated in detail. The products were characterized by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. It is found that cetyltrimethyl ammonium bromide was a critical factor influencing the phase transformation process of akageneite and the final morphology of the as-prepared products. With cetyltrimethyl ammonium bromide, hematite hollow cubes and porous spheres were obtained. Otherwise only dense cubes were observed even prolonging reaction time or increasing reaction temperature. The mechanism was proposed.

  15. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  16. Evidence for Anomalous Effects on the Current Evolution in Tokamak Operating Scenarios

    SciTech Connect

    Casper, T; Jayakumar, R; Allen, S; Holcomb, C; Makowski, M; Pearlstein, L; Berk, H; Greenfield, C; Luce, T; Petty, C; Politzer, P; Wade, M; Murakami, M; Kessel, C

    2006-10-03

    Alternatives to the usual picture of advanced tokamak (AT) discharges are those that form when anomalous effects alter the plasma current and pressure profiles and those that achieve stationary characteristics through mechanisms so that a measure of desired AT features is maintained without external current-profile control. Regimes exhibiting these characteristics are those where the safety factor (q) evolves to a stationary profile with the on-axis and minimum q {approx} 1 and those with a deeply hollow current channel and high values of q. Operating scenarios with high fusion performance at low current and where the inductively driven current density achieves a stationary configuration with either small or non-existing sawteeth may enhance the neutron fluence per pulse on ITER and future burning plasmas. Hollow current profile discharges exhibit high confinement and a strong ''box-like'' internal transport barrier (ITB). We present results providing evidence for current profile formation and evolution exhibiting features consistent with anomalous effects or with self-organizing mechanisms. Determination of the underlying physical processes leading to these anomalous effects is important for scaling of current experiments for application in future burning plasmas.

  17. Synthesis, Characterization, and Application of Hollow Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Song, Yian

    This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first part of this dissertation focuses on the optimization of synthesis parameters and the scale-up production of ZnO nanowires by vapor transport method. Uniform ZnO nanowires with 40 nm width can be produced by using 1100 °C reaction temperature and 20 sccm oxygen flow rate, which are the two most important parameters. The use of ethanol as carbon source with or without water steam provides uniform carbonaceous deposition on ZnO nanowire templates. The amount of as-deposited carbonaceous material can be controlled by reaction temperature and reaction time. Due to the catalytic property of ZnO surface, the thicknesses of carbonaceous layers are typically in nanometers. Different methods to remove the ZnO templates are explored, of which hydrogen reduction at temperatures higher than 700 °C is most efficient. The ZnO templates can also be removed under ethanol environment, but the temperatures need to be higher than 850 °C for practical use. Characterizations of hollow carbon nanofibers show that the hollow carbon nanostructures have a high specific surface area (>1100 m2/g) with the presence of mesopores ( 3.5 nm). The initial data on energy storage as electrodes of electrochemical double layer capacitors show that high specific capacitance (> 220 F/g) can be obtained, which is related to the high surface area and unique porous hollow structure with a thin wall.

  18. Fabrication, magnetic, and ferroelectric properties of multiferroic BiFeO3 hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Yi; Cheng, Zhen Xiang; Xue Dou, Shi; Attard, Darren Jon; Lin Wang, Xiao

    2011-04-01

    Hollow BiFeO3 nanoparticles were synthesized by an electrospray route for the first time. The phase purity and structure have been investigated by x-ray diffraction and Raman spectroscopy. Transmission and scanning electron microscope investigations revealed that the as-obtained BiFeO3 hollow spheres were polycrystalline, with a shell thickness of 35 nm. The formation mechanism can be possibly explained by Ostwald ripening. Raman spectra have verified decreased vibrational frequencies in BiFeO3 nanoparticles. These hollow and core-shell multiferroic nanoparticles exhibit significantly enhanced ferromagnetism from 5 to 600 K due to a broken spiral spin structure. The ferroelectricity of hollow BiFeO3 particles exhibits a lower switching electric field, which is confirmed by Kelvin probe force microscopy.

  19. Decay time of hollow argon atoms formed below metal and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Briand, J. P.; Phaneuf, R.; Aryal, N. B.; Baral, K. K.; Thomas, C. M.; Esteves, D. A.

    2013-09-01

    Slow highly charged ions penetrating surfaces quickly capture many electrons in highly excited states, leaving empty the innermost shells, forming hollow atoms. These hollow atoms then fill their innermost shells in a stepwise manner through a long cascade of Auger and x-ray transitions. We have measured the mean emission depths of the series of x rays emitted during the decay cascade of Ar hollow atoms formed below the surface of metal and dielectric materials. It has been found that the decay times of these hollow atoms are much longer in dielectrics than in metals, and at keV/q kinetic energies, at depths of the order of 10-20 nm, considerably deeper than any expected value. These findings have been tentatively explained by the different responses of metals and dielectrics to the slow penetration of a highly charged ion.

  20. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation.

    PubMed

    Bin, Duan; Yang, Beibei; Zhang, Ke; Wang, Caiqin; Wang, Jin; Zhong, Jiatai; Feng, Yue; Guo, Jun; Du, Yukou

    2016-11-07

    In this study, galvanic replacement provides a simple route for the synthesis of PdAg hollow nanoflower structures by using the Ag-seeds as sacrificial templates in the presence of l-ascorbic acid (reductant) and CTAC (capping agent). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and EDS mapping were used to characterize the as-prepared PdAg hollow nanoflower catalysts, where they were alloyed nanoflower structures with hollow interiors. By maneuvering the Pd/Ag ratio, we found that the as-prepared Pd1 Ag3 hollow nanoflower catalysts had the optimized performance for catalytic activity toward ethanol oxidation reaction. Moreover, these as-prepared PdAg hollow nanoflower catalysts exhibited noticeably higher electrocatalytic activity as compared to pure Pd and commercial Pd/C catalysts due to the alloyed Ag-Pd composition as well as the hollow nanoflower structures. It is anticipated that this work provides a rational design of other architecturally controlled bimetallic nanocrystals for application in fuel cells.

  1. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  2. Current-driven plasma acceleration versus current-driven energy dissipation. III - Anomalous transport

    NASA Technical Reports Server (NTRS)

    Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1992-01-01

    In the present paper the linear stability description and weak turbulence theory are used to develop a second order description of wave-particle transport and anomalous dissipation. The goal is to arrive at anomalous transport coefficients that can be readily included in fluid flow codes. In particular, expressions are derived for the heating rates of ions and electrons by the unstable waves and for the electron-wave momentum exchange rate that controls the anomalous resistivity effect. Comparative calculations were undertaken assuming four different saturation models: ion trapping, electron trapping, ion resonance broadening, and thermodynamic bound. A foremost finding is the importance of the role of electron Hall parameter in scaling the level of anomalous dissipation for the parameter range of the MPD thruster plasma. Polynomial expressions of the relevant transport coefficients cast solely in terms of macroscopic parameters are also obtained for inclusion in plasma fluid codes for the self-consistent numerical simulation of real thruster flows including microturbulent effects.

  3. Anomalous Earth flybys of spacecraft

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2015-07-01

    A small deviation from the potential is expected for the gravitational interaction of extended bodies. It is explained as a consequence of a recently proposed gravitational impact model (Wilhelm et al. in Astrophys. Space Sci. 343:135-144, 2013) and has been applied to anomalous perihelion advances by Wilhelm and Dwivedi (New Astron. 31:51-55, 2014). The effect—an offset of the effective gravitational centre from the geometric centre of a spherical symmetric body—might also be responsible for the observed anomalous orbital energy gains and speed increases during Earth flybys of several spacecraft. However, close flybys would require detailed considerations of the orbit geometry. In this study, an attempt is made to explain the anomalous Earth flybys of the Galileo, NEAR Shoemaker and Rosetta spacecraft.

  4. Anomalous Diffraction at Ultra-High Energy for Protein Crystallography

    SciTech Connect

    Jakoncic,J.; Di Michiel, M.; Zhong, Z.; Honkimaki, V.; Jouanneau, Y.; Stojanoff, V.

    2006-01-01

    Single-wavelength anomalous diffraction (SAD), multiwavelength anomalous diffraction (MAD) and single isomorphous replacement with anomalous scattering (SIRAS) phasing at ultra-high X-ray energy, 55 keV, are used successfully to determine a high-quality and high-resolution experimental electronic density map of hen egg-white lysozyme, a model protein. Several combinations, between single- and three-wavelength, with native data were exploited to demonstrate that standard phasing procedures with standard equipment and software can successfully be applied to three-dimensional crystal structure determination of a macromolecule, even at these very short wavelengths. For the first time, a high-quality three-dimensional molecular structure is reported from SAD phasing with ultra-high-energy X-rays. The quality of the crystallographic data and the experimental electron density maps meet current standards. The 2.7% anomalous signal from three Ho atoms, at the Ho K edge, was sufficient to obtain a remarkable electron density and build the first lanthanide structure for HEWL in its entirety.

  5. Purification of nanoparticles by hollow fiber diafiltration

    NASA Astrophysics Data System (ADS)

    Veeken, J.

    2012-09-01

    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R&D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  6. Catastrophic extraction of anomalous events

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Ro, Sookwang; Kostrzewski, Andrew

    2012-06-01

    In this paper we discuss extraction of anomalous events based on the theory of catastrophes, a mathematical theory of continuous geometrical manifolds with discrete singularities called catastrophes. Intelligence exploitation systems and technologies include such novel data mining techniques as automatic extraction of discrete anomalous events by software algorithms based on the theory of catastrophes, that can reduce complex problems to a few essential so-called state variables. This paper discusses mostly corank-1 catastrophes with only one state variable, for simplicity. As an example we discuss mostly avionics platforms and catastrophic failures that can be recorded by flight instruments.

  7. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  8. Analysis of XeC1 Emission in a Hollow Cathode Discharge.

    DTIC Science & Technology

    1981-06-01

    Discharge .......... ................... 7 3 Potential Energy Diagram for AB* Excimer ...... ............ 9 4 Hollow Cathode Construction...Containing Ne, Xe, HCl .... .................. ... 30 IV Calculated and Experimental Emission Energies (AE), Wave- lengths (1), and Lifetimes (r) for...characteristic by pro- viding both 200 - 400 ev "beam like" electrons and high densities ( 1012/cm3) of low energy ( 700K) electrons. A simple model is

  9. Scaling theory for anomalous semiclassical quantum transport

    NASA Astrophysics Data System (ADS)

    Sena-Junior, M. I.; Macêdo, A. M. S.

    2016-01-01

    Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample's average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry-Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry-Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov's universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.

  10. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  11. Method to fabricate hollow microneedle arrays

    DOEpatents

    Kravitz, Stanley H.; Ingersoll, David; Schmidt, Carrie; Flemming, Jeb

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  12. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  13. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  14. Nickel titanates hollow shells: nanosphere, nanorod, and their photocatalytic properties.

    PubMed

    Li, Qiuye; Xing, Yangyang; Zong, Lanlan; Li, Rui; Yang, Jianjun

    2013-01-01

    Two kinds of hollow shell structured nickel titanates (nanosphere, nanorod) were prepared by the microwave-assisted hydrothermal method using carbon material as the template. Their phase structure, morphology, and optical properties were well characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). Comparing with the template-free NiTiO3 (NiTiO3-TF), the two kinds of hollow shell structured NiTiO3 have larger Brunauer-Emmet-Teller (BET) surface areas. Both NiTiO3 nanosphere (NiTiO3-NS) and nanorod (NiTiO3-NR) showed remarkably photocatalytic H2 evolution from the methanol aqueous solution under full-arc lamp and visible light. Additional, their photocatalytic activities were also determined by photo-degradation of methyl blue (MB), and the degradation yield reached nearly 100% within 100 min on NiTiO3-NR under visible light. Whatever in photocatalytic H2 evolution or MB degradation, their photocatalytic activities all followed the order: NiTiO3-NR > NiTiO3-NS > NiTiO3-TF. The higher photocatalytic activities of the hollow shelled NiTiO3 should be due to their larger BET surface areas and more utilization of the incident light.

  15. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  16. Instability of plasma plume of micro-hollow cathode discharge

    SciTech Connect

    Levko, D.; Bliokh, Y. P.; Gurovich, V. Tz.; Krasik, Ya. E.

    2015-11-15

    The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper–anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

  17. Multiwavelength anomalous diffraction at high x-ray intensity.

    PubMed

    Son, Sang-Kil; Chapman, Henry N; Santra, Robin

    2011-11-18

    The multiwavelength anomalous diffraction (MAD) method is used to determine phase information in x-ray crystallography by employing anomalous scattering from heavy atoms. X-ray free-electron lasers (FELs) show promise for revealing the structure of single molecules or nanocrystals, but the phase problem remains largely unsolved. Because of the ultrabrightness of x-ray FEL, samples experience severe electronic radiation damage, especially to heavy atoms, which hinders direct implementation of MAD with x-ray FELs. Here, we propose a generalized version of MAD phasing at high x-ray intensity. We demonstrate the existence of a Karle-Hendrickson-type equation in the high-intensity regime and calculate relevant coefficients with detailed electronic damage dynamics of heavy atoms. The present method offers a potential for ab initio structural determination in femtosecond x-ray nanocrystallography.

  18. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  19. Reflected wavefronts modulation with acoustic metasurface based on double-split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Changlin; Zhao, Xiaopeng; Chen, Huaijun; Zhai, Shilong; Shen, Fangliang

    2015-08-01

    Metasurfaces with sub-wavelength thickness and planar profile have exhibited abnormal manipulation to waves that could not be realized by traditional materials. Here, we present an acoustic metasurface (AMS) model composed of double-split hollow sphere (DSHS) resonator arrays with the functionality of modulating reflected wavefronts at will. By tailoring the split-hole diameter of DSHS, the AMS can be designed to cover 2 π phase shifts with a step of π/4. The acoustic waves perpendicularly and obliquely incident on the AMS can be reflected at any angle, including anomalous reflection and negative reflection. These anomalous manipulations of the reflected wave are simulated to fulfill the generalized Snell's law by projecting suitable phase gradient. Such AMS provides another path to acoustic applications such as acoustic imaging, cloaking, beam steering devices.

  20. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  1. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    SciTech Connect

    Igor D. Kaganovich; Oleg V. Polomarov; Constantine E. Theodosiou

    2005-06-24

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma.

  2. Model of the Plasma Potential Distribution in the Plume of a Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, Ioannis G.; Goebel, Dan M.

    2004-01-01

    In this paper we present results from a new model of the plasma potentials in the plume just downstream of the hollow cathode keeper. We examine the electron drift velocity as the hollow cathode plasma and neutral gas expand downstream of the keeper. If the drift velocity exceeds the thermal velocity a double layer potential structure develops that is the source of hot electrons. Ions are accelerated upstream through the double layer. The locations of the double layers are calculated using a simple model. It is shown that as the cathode gas flow increases, the location of the double layer moves farther downstream.

  3. Synthesis and characterization of titania hollow fiber and its application to the microextraction of trace metals.

    PubMed

    Huang, Chaozhang; Hu, Bin

    2011-04-07

    A titania hollow fiber membrane was successfully synthesized in a macro range via a template method coupled with a sol-gel process. Thermal gravimetric and differential thermal analysis (TG-DTA) was employed to study the effect of heat treatment on the synthesized hollow fiber, and the crystal forms of the titania hollow fiber membranes at different temperatures were studied by X-ray diffraction (XRD). The pore structure of the prepared titania hollow fiber was characterized by scanning electron micrograph (SEM) and nitrogen adsorption/desorption measurements. The prepared titania hollow fiber membrane was explored as a new adsorption material for trace metals for the first time and a new method of titania hollow fiber membrane solid phase microextraction (MSPME) online coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace amount of Cd, Co, V and Ni in human serum samples. In order to validate the developed method, two certified reference materials of NIES.No.10-b rice flour and BCR No.184 bovine muscle were analyzed and the determined values were in good agreement with the certified values.

  4. Hierarchical flower-like Co3-xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Pan, Shunhao; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin

    2013-03-01

    A facile method is proposed for the synthesis of three-dimensional (3D) flower-like Co3-xFexO4 ferrite (CF) hollow spheres, using SiO2@FeOOH as precursor. The CF hollow spheres are efficient for the catalytic degradation of methylene blue (MB) in the presence of H2O2 at 80 °C. The obtained CF hollow spheres were characterized using transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and N2 adsorption-desorption isotherm measurements. The formation of 3D hierarchical flower-like superstructure was influenced by the relative amount of urea used. As the mole ratio of CoCl2 and urea decreased, the structure of the products was tailored from yolk-like spheres to hollow spheres with different sized void interiors. Moreover, N2 adsorption-desorption isotherm analysis showed that the CF hollow spheres have a large specific surface area (163 m2 g-1) which provided more activity sites. The CF hollow spheres can catalyze the oxidation of MB efficiently. These results indicate that the designed CF hollow spheres exhibit promising capability for the degradation of dyes.A facile method is proposed for the synthesis of three-dimensional (3D) flower-like Co3-xFexO4 ferrite (CF) hollow spheres, using SiO2@FeOOH as precursor. The CF hollow spheres are efficient for the catalytic degradation of methylene blue (MB) in the presence of H2O2 at 80 °C. The obtained CF hollow spheres were characterized using transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and N2 adsorption-desorption isotherm measurements. The formation of 3D hierarchical flower-like superstructure was influenced by the relative amount of urea used. As the mole ratio of CoCl2 and urea decreased, the structure of the products was tailored from yolk-like spheres to hollow spheres with different sized void interiors. Moreover, N2 adsorption-desorption isotherm

  5. Hollow plasmonic antennas for broadband SERS spectroscopy.

    PubMed

    Messina, Gabriele C; Malerba, Mario; Zilio, Pierfrancesco; Miele, Ermanno; Dipalo, Michele; Ferrara, Lorenzo; De Angelis, Francesco

    2015-01-01

    The chemical environment of cells is an extremely complex and multifaceted system that includes many types of proteins, lipids, nucleic acids and various other components. With the final aim of studying these components in detail, we have developed multiband plasmonic antennas, which are suitable for highly sensitive surface enhanced Raman spectroscopy (SERS) and are activated by a wide range of excitation wavelengths. The three-dimensional hollow nanoantennas were produced on an optical resist by a secondary electron lithography approach, generated by fast ion-beam milling on the polymer and then covered with silver in order to obtain plasmonic functionalities. The optical properties of these structures have been studied through finite element analysis simulations that demonstrated the presence of broadband absorption and multiband enhancement due to the unusual geometry of the antennas. The enhancement was confirmed by SERS measurements, which showed a large enhancement of the vibrational features both in the case of resonant excitation and out-of-resonance excitation. Such characteristics indicate that these structures are potential candidates for plasmonic enhancers in multifunctional opto-electronic biosensors.

  6. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  7. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A. Paul; Yin, Yadong; Erdonmez, Can Kerem

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  8. Precise Quantization of Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew

    In the quantum anomalous Hall effect, electron transport in a magnetically-doped topological insulator takes place through chiral, dissipationless edge channels. In this talk, we discuss the behavior of a nearly ideal implementations of the effect in which the Hall resistance is within a part per 10,000 of its quantized value and the longitudinal resistivity can reach below 1 Ω per square. Nearly all Cr-doped topological insulator samples demonstrate extreme temperature dependence that is well-modeled by a small effective gap, allowing control over quantization with an unexpected magnetocaloric effect. We also discuss measurements of new device geometries and non-local resistances that identify the sources of dissipation that limit the effect. (Now at Rigetti Computing).

  9. Anomalous normal mode oscillations in semiconductor microcavities

    SciTech Connect

    Wang, H.; Hou, H.Q.; Hammons, B.E.

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  10. Design and Synthesis of TiO2 Hollow Spheres with Spatially Separated Dual Cocatalysts for Efficient Photocatalytic Hydrogen Production

    PubMed Central

    Jiang, Qianqian; Li, Li; Bi, Jinhong; Liang, Shijing; Liu, Minghua

    2017-01-01

    TiO2 hollow spheres modified with spatially separated Ag species and RuO2 cocatalysts have been prepared via an alkoxide hydrolysis–precipitation method and a facile impregnation method. High-resolution transmission electron microscopy studies indicate that Ag species and RuO2 co-located on the inner and outer surface of TiO2 hollow spheres, respectively. The resultant catalysts show significantly enhanced activity in photocatalytic hydrogen production under simulated sunlight attributed to spatially separated Ag species and RuO2 cocatalysts on TiO2 hollow spheres, which results in the efficient separation and transportation of photogenerated charge carriers. PMID:28336859

  11. Multi-crystal Anomalous Diffraction for Low-resolution Macromolecular Phasing

    SciTech Connect

    Q Liu; Z Zhang; W Hendrickson

    2011-12-31

    Multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) are the two most commonly used methods for de novo determination of macromolecular structures. Both methods rely on the accurate extraction of anomalous signals; however, because of factors such as poor intrinsic order, radiation damage, inadequate anomalous scatterers, poor diffraction quality and other noise-causing factors, the anomalous signal from a single crystal is not always good enough for structure solution. In this study, procedures for extracting more accurate anomalous signals by merging data from multiple crystals are devised and tested. SAD phasing tests were made with a relatively large (1456 ordered residues) poorly diffracting (d{sub min} = 3.5 {angstrom}) selenomethionyl protein (20 Se). It is quantified that the anomalous signal, success in substructure determination and accuracy of phases and electron-density maps all improve with an increase in the number of crystals used in merging. Structure solutions are possible when no single crystal can support structural analysis. It is proposed that such multi-crystal strategies may be broadly useful when only weak anomalous signals are available.

  12. Silicon dioxide hollow microspheres with porous composite structure: synthesis and characterization.

    PubMed

    Yan, Xiuli; Lei, Zhongli

    2011-10-15

    In this paper, a strategy for hollow porous silica microspheres with ideally flower structure is presented. SiO(2)/PAM hybrid composite microspheres with porous were synthesized by the reaction that the porous polyacrylamide (PAM) micro-gels immersed in tetraethoxysilane (TEOS) anhydrous alcohol solution and water in a moist atmosphere, with ammonium hydroxide as a catalyst. The SiO(2) hollow microspheres with porous were obtained after calcination of the composite microspheres at 550 °C for 4 h. The morphology, composition, and crystalline structure of the microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FI-IR), and X-ray diffraction (XRD), N(2) absorption analysis, respectively. The results indicated that the obtained hollow porous SiO(2) microspheres were a perfect flower structure.

  13. Synthesis and characterization of hollow cadmium oxide sphere with carbon microsphere as template.

    PubMed

    Wang, Gongling; Lai, Xiaoyong; Wang, Dan

    2013-02-01

    Cadmium Oxide (CdO) hollow spheres have been synthesized by using carbon microsphere as sacrificial template. The products were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The average diameter and shell thickness of as-prepared hollow spheres are about 600 nm and 50 nm, respectively. The formation of hollow spheres was investigated and it was found that the shell formed when the heating temperature reached about 673 K and the sequential heat treatment could remove the carbon template. Moreover, the influence of other experimental parameters including concentration (0.1-5 M) and type of cadmium salts (cadmium chloride, cadmium acetate and cadmium nitrate, etc.) as well as type of solvents (water, ethanol and dimethylfomamide) were also investigated.

  14. Hydrothermal synthesis of Ni(12)P(5) hollow microspheres, characterization and photocatalytic degradation property.

    PubMed

    Li, Jun; Ni, Yonghong; Liao, Kaiming; Hong, Jianming

    2009-04-01

    In this paper, we report the successful synthesis of Ni(12)P(5) hollow spheres via a facile hydrothermal route, employing white phosphorus (WP) and nickel nitrate as the reactants in the presence of hexamethylenetetramine (HMT) and polyethylene glycol 10000 (PEG-10000). The phase and morphology of the product were characterized by means of powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). HMT and surfactant (PEG-10000) played important roles in the formation of Ni(12)P(5) hollow microspheres. Furthermore, research also showed that the as-prepared Ni(12)P(5) hollow spheres could photocatalytically degrade some organic dyes such as Safranine T and Pyronine B under irradiation of 365 nm UV light.

  15. Faraday anomalous dispersion optical tuners

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  16. Anomalous Thermalization in Ergodic Systems

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Bar Lev, Yevgeny

    2016-10-01

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  17. Anomalous Thermalization in Ergodic Systems.

    PubMed

    Luitz, David J; Bar Lev, Yevgeny

    2016-10-21

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  18. Colligative properties of anomalous water.

    PubMed

    Everett, D H; Haynes, J M; McElroy, P J

    1970-06-13

    Investigations of the phase behaviour on freezing and subsequent melting and of other properties indicate that anomalous water is a solution containing a fixed amount of relatively involatile material in normal water. There seems to be no need to postulate the existence of a new polymer of water in such solutions. If only water and silica are present, the properties are consistent with those of a silicic acid gel.

  19. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  20. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  1. Fast plasma heating by anomalous and inertial resistivity effects

    NASA Technical Reports Server (NTRS)

    Duijveman, A.; Hoyng, P.; Ionson, J. A.

    1981-01-01

    Fast plasma heating by anomalous and inertial resistivity effects is described. A small fraction of the plasma contains strong currents that run parallel to the magnetic field and are driven by an exponentiating electric field. The anomalous character of the current dissipation is caused by the excitation of electrostatic ion cyclotron and/or ion acoustic waves. The role of resistivity due to geometrical effects is considered. Through the use of a marginal stability analysis, equations for the average electron and ion temperatures are derived and numerically solved. The evolution of the plasma is described as a path in the drift velocity diagram, in which the drift velocity is plotted as a function of the electron to ion temperature ratio.

  2. Hollow GdPO4:Eu3+ microspheres: Luminescent properties and applications as drug carrier

    NASA Astrophysics Data System (ADS)

    Tang, Yanxia; Mei, Rui; Yang, Shaokun; Tang, Hongxia; Yin, Wenzhong; Xu, Yongchun; Gao, Yaping

    2016-04-01

    GdPO4:Eu3+ samples were synthesized by a hydrothermal process using melamine formaldehyde (MF) as template. The X-ray diffraction (XRD) patterns and the Fourier Transform Infrared (FTIR) spectrum suggested that GdPO4:Eu3+ has a hexagonal phase. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed that the obtained GdPO4:Eu3+ are hollow microspheres with diameters in the range of 1-1.5 μm. Under the excitation at 245 nm, hexagonal GdPO4:Eu3+ hollow microspheres showed emission bands originating from the 5D0 → 7FJ (J = 1, 2, 3 and 4) transitions of Eu3+. The drug release properties of hexagonal GdPO4:Eu3+ hollow microspheres were exhibited by the doxorubicin hydrochloride (DOX) release test. The biocompatibility of hexagonal GdPO4:Eu3+ hollow microsphere was tested by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicated that hollow GdPO4:Eu3+ microspheres have potential applications in biomedicine fields.

  3. Formation of hollow bone-like morphology of calcium carbonate on surfactant/polymer templates

    NASA Astrophysics Data System (ADS)

    Mantilaka, M. M. M. G. P. G.; Pitawala, H. M. T. G. A.; Rajapakse, R. M. G.; Karunaratne, D. G. G. P.; Upul Wijayantha, K. G.

    2014-04-01

    Novel hollow, bone-like structures of Precipitated Calcium Carbonate (PCC) are fabricated, for the first time, starting from naturally occurring dolomite. The hollow, bone-like structures are prepared by precipitating calcium carbonate on self-assembled poly(acrylic acid)/cetyltrimethylammonium chloride (PAA/CTAC) template. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopic (FE-SEM) studies reveal that the bone-like structure is composed of Amorphous Calcium Carbonate (ACC) nanoparticles in the center and calcite nanoparticles at the edges. Bone-like PCC particles are in particle length of 2-3 μm and particle width of 1 μm. The internal hollow structures of bone-like particles are observed from TEM images. As identified by FE-SEM images, the bone-like structure has been formed through the crystal growth of initially formed ACC nanoparticles. The ACC particles are stabilized in the center while the calcite crystals have been grown from the ACC toward the edges of the structure to form a bone-like morphology. We also propose a possible mechanism for the formation of hollow bone-like PCC in this study. The fabricated hollow, bone-like PCC has potential applications in the preparation of release systems such as drugs, cosmetics and pigments.

  4. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  5. Anomalous atmospheric absorption spectra due to water dimer

    NASA Astrophysics Data System (ADS)

    Cai, Peipei; Zhang, Hansheng; Shen, Shanxiong; Cheng, I.-Shan

    1986-11-01

    The anomalous atmospheric absorption spectra in the window wavelength region of 8-14 microns have been suggested due to the water dimer. Based on laboratory measurements, water continuum CO2 laser absorption spectra and a resonance absorption line due to the weak local wave vapor pure rotational transition have been reported. The equilibrium concentration of water dimers in the atmosphere, the electronic binding energy and the theoretical calculations for absorption attenuation have been obtained in agreement with published data.

  6. Microring embedded hollow polymer fiber laser

    SciTech Connect

    Linslal, C. L. Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  7. Method for producing small hollow spheres

    DOEpatents

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  8. Method for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1979-01-09

    Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  9. Non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-04-15

    The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

  10. Designing hollow nano gold golf balls.

    PubMed

    Landon, Preston B; Mo, Alexander H; Zhang, Chen; Emerson, Chris D; Printz, Adam D; Gomez, Alan F; DeLaTorre, Christopher J; Colburn, David A M; Anzenberg, Paula; Eliceiri, Matthew; O'Connell, Connor; Lal, Ratnesh

    2014-07-09

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.

  11. Anomalous behavior of 1/f noise in graphene near the charge neutrality point

    NASA Astrophysics Data System (ADS)

    Takeshita, Shunpei; Matsuo, Sadashige; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Arakawa, Tomonori; Kobayashi, Kensuke

    2016-03-01

    We investigate the noise in single layer graphene devices from equilibrium to far-from equilibrium and found that the 1/f noise shows an anomalous dependence on the source-drain bias voltage (VSD). While the Hooge's relation is not the case around the charge neutrality point, we found that it is recovered at very low VSD region. We propose that the depinning of the electron-hole puddles is induced at finite VSD, which may explain this anomalous noise behavior.

  12. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  13. Analysis of MESSENGER high-resolution images of Mercury's hollows and implications for hollow formation

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Stadermann, Amanda C.; Susorney, Hannah C.; Ernst, Carolyn M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Murchie, Scott L.; McCubbin, Francis M.; Kinczyk, Mallory J.; Gillis-Davis, Jeffrey J.; Solomon, Sean C.

    2016-09-01

    High-resolution images from MESSENGER provide morphological information on the nature and origin of Mercury's hollows, small depressions that likely formed when a volatile constituent was lost from the surface. Because graphite may be a component of the low-reflectance material that hosts hollows, we suggest that loss of carbon by ion sputtering or conversion to methane by proton irradiation could contribute to hollows formation. Measurements of widespread hollows in 565 images with pixel scales <20 m indicate that the average depth of hollows is 24 ± 16 m. We propose that hollows cease to increase in depth when a volatile-depleted lag deposit becomes sufficiently thick to protect the underlying surface. The difficulty of developing a lag on steep topography may account for the common occurrence of hollows on crater central peaks and walls. Disruption of the lag, e.g., by secondary cratering, could restart growth of hollows in a location that had been dormant. Images at extremely high resolution (~3 m/pixel) show that the edges of hollows are straight, as expected if the margins formed by scarp retreat. These highest-resolution images reveal no superposed impact craters, implying that hollows are very young. The width of hollows within rayed crater Balanchine suggests that the maximum time for lateral growth by 1 cm is ~10,000 yr. A process other than entrainment of dust by gases evolved in a steady-state sublimation-like process is likely required to explain the high-reflectance haloes that surround many hollows.

  14. Au20Si12: A hollow Catalan pentakis dodecahedron.

    PubMed

    Guo, J J; Zhao, H Y; Wang, J; Ai, L Y; Liu, Y

    2017-02-14

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  15. Au20Si12: A hollow Catalan pentakis dodecahedron

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Zhao, H. Y.; Wang, J.; Ai, L. Y.; Liu, Y.

    2017-02-01

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  16. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    PubMed

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance.

  17. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  18. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    SciTech Connect

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  19. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.

    1992-01-01

    The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.

  20. Galilean satellites - Anomalous temperatures disputed

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Lebofsky, L. A.; Veeder, G. J.; Cutts, J. A.

    1977-01-01

    Anomalous averaged infrared brightness temperatures of the Galilean satellites of Jupiter reported by Gross (1975) are rejected as falsely conceived and lacking physical reality. It is argued that the calculations of equilibrium temperatures should be corrected, whereupon predictions would be in satisfactory agreement with observations, in conformity with the radiometric method of determining the diameters of asteroids and satellites. The IR irradiance and the related disk-averaged brightness temperature for the spectral band are recommended as more relevant. Attention is drawn to some interesting discrepancies between calculated and observed temperatures of the Jovian satellites which merit further investigation.

  1. Minimal model for anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Flekkøy, Eirik G.

    2017-01-01

    A random walk model with a local probability of removal is solved exactly and shown to exhibit subdiffusive behavior with a mean square displacement the evolves as ˜t1 /2 at late times. This model is shown to be well described by a diffusion equation with a sink term, which also describes the evolution of a pressure or temperature field in a leaky environment. For this reason a number of physical processes are shown to exhibit anomalous diffusion. The presence of the sink term is shown to change the late time behavior of the field from 1 /t1 /2 to 1 /t3 /2 .

  2. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Fontheim, E. G.; Ong, R. S. B.; Roble, R. G.; Mayr, H. G.; Hoegy, W. H.; Ionson, J. A.; Baron, M. J.; Wickwar, V. B.; Vondrak, R. R.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A = 1) disagrees considerably with the measured profile over most of the altitude range up to 450 km. It is shown that an anomaly coefficient with a sharp peak of the order of 10,000 centered around the F2 peak is consistent with observations.

  3. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    DOEpatents

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  4. Hollow rhodoliths increase Svalbard's shelf biodiversity

    NASA Astrophysics Data System (ADS)

    Teichert, Sebastian

    2014-11-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  5. Hollow rhodoliths increase Svalbard's shelf biodiversity

    PubMed Central

    Teichert, Sebastian

    2014-01-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans. PMID:25382656

  6. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  7. Influence of the floating potential on micro-hollow cathode operation

    SciTech Connect

    Levko, D.; Bliokh, Y. P.; Krasik, Ya. E.

    2015-06-15

    The influence of a keeper electrode with a floating potential on the operation of a micro-hollow cathode is studied using the two-dimensional particle-in-cell Monte Carlo collisions model. The floating potential is determined self-consistently, taking into account the electron and ion charges collected by the keeper and the potential induced by the plasma non-compensated space charge. It is shown that the parameters of the micro-hollow cathode operation vary significantly, according to whether the keeper potential is floating or has a specified constant value.

  8. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance.

    PubMed

    Li, Xiaona; Huang, Renkun; Hu, Yanhua; Chen, Yongjuan; Liu, Wenjun; Yuan, Rusheng; Li, Zhaohui

    2012-06-04

    Bi(2)WO(6) hollow microspheres with dimension of ca. 1.5 μm were synthesized via a hydrothermal method using polystyrene particles as the template. The as-prepared Bi(2)WO(6) hollow microspheres can be further transformed to double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres. The samples were fully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, N(2)-sorption Brunauer-Emmett-Teller surface area, UV-vis diffuse-reflectance spectroscopy, and X-ray photoelectron spectroscopy. The as-formed double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres exhibit enhanced photocatalytic activity due to the hollow nature and formation of the p-n junction between p-type Bi(2)O(3) and n-type Bi(2)WO(6). The study provides a general and effective method in the fabrication of composition and dimension-tunable composite hollow microspheres with sound heterojunctions that may show a variety of applications.

  9. Titania coated hollow glass microspheres for environmental applications

    NASA Astrophysics Data System (ADS)

    Koopman, Mark C.

    The potential applicability of titania coated hollow glass microspheres (HGMs) to the photocatalytic degradation of microbiological and organic chemical water pollutants could have dramatic positive effects on improving the quality of industrial wastewaters that empty into rivers and streams, as well as potential use in economically improving the quality of drinking water. Heterogeneous photocatalysis using titania has been extensively studied since the 1990's because of its non-toxic nature, its high quantum yield of electrons and photo-holes, and its ability to use ambient solar radiation as a power source. Although titania embodies extraordinarily attractive properties for a range of environmental applications, a viable substrate or method of using the material effectively has not been recognized. HGMs are particularly attractive as a support for titania because of their low density and high surface area to volume ratio, but details of how they react to imposed loading, wear, and impact have not been addressed, nor have materials engineering analyses that could maximize their utility been made. In this study we have examined the microstructure, morphology and micro-compression properties of two types of titania coated hollow microspheres, a commercially produced HGM and cenospheres, a derivative of fly ash. Comparisons of uncoated and titania coated hollow microspheres showed improved failure loads and facture energies for the titania coated materials over the uncoated hollow microspheres. Also, the relationship between failure load and hollow microsphere diameter was characterized and the function employed to explain part of the gain in average failure load for the HGMs. Microscopic examination of titania coated HGMs that were subjected to various turbulent conditions, as well as intentional fracture, indicated good interfacial integrity, which supports the viability of both types of HGMs for potential applications. The photocatalytic reactivity of the titania

  10. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    SciTech Connect

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki; Nakashima, Kenichi

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  11. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  12. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    USGS Publications Warehouse

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  13. Quantum anomalous Hall effect in real materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-11-01

    Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.

  14. Template Synthesis of Shape-Tailorable NiS2 Hollow Prisms as High-Performance Supercapacitor Materials.

    PubMed

    Dai, Ziyang; Zang, Xiaoxian; Yang, Jun; Sun, Chencheng; Si, Weili; Huang, Wei; Dong, Xiaochen

    2015-11-18

    Uniform NiS2 hollow nanoprisms have been controllably synthesized by a facial sacrificial template method including two-step refluxed reactions. The morphology of the hollow NiS2 prisms can be easily tailored by the low cost nickel complex template. With unique hollow structure, efficient electron, and ion transport pathway as well as single crystal structure, the NiS2 hollow prisms electrode exhibits excellent pseudocapacitive performance in LiOH electrolyte. It can deliver a specific capacitance of 1725 F g(-1) at a current density of 5 A g(-1) and 1193 F g(-1) even at a current density of 40 A g(-1). Furthermore, the materials also present an amazing cycling stability, that is, the specific capacitance can increase from 1367 F g(-1) to 1680 F g(-1) after 10,000 cycles of charge-discharge at the current density of 20 A g(-1).

  15. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  16. Hollow Nano- and Microstructures as Catalysts.

    PubMed

    Prieto, Gonzalo; Tüysüz, Harun; Duyckaerts, Nicolas; Knossalla, Johannes; Wang, Guang-Hui; Schüth, Ferdi

    2016-11-23

    Catalysis is at the core of almost every established and emerging chemical process and also plays a central role in the quest for novel technologies for the sustainable production and conversion of energy. Particularly since the early 2000s, a great surge of interest exists in the design and application of micro- and nanometer-sized materials with hollow interiors as solid catalysts. This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis. First, the main synthesis strategies toward hollow materials are succinctly summarized, with emphasis on the (regioselective) incorporation of various types of catalytic functionalities within their different subunits. The principles underlying the scientific and technological interest in hollow materials as solid catalysts, or catalyst carriers, are then comprehensively reviewed. Aspects covered include the stabilization of catalysts by encapsulation, the introduction of molecular sieving or stimuli-responsive "auxiliary" functionalities, as well as the single-particle, spatial compartmentalization of various catalytic functions to create multifunctional (bio)catalysts. Examples are also given on the applications which hollow structures find in the emerging fields of electro- and photocatalysis, particularly in the context of the sustainable production of chemical energy carriers. Finally, a critical perspective is provided on the plausible evolution lines for this thriving scientific field, as well as the main practical challenges relevant to the reproducible and scalable synthesis and utilization of hollow micro- and nanostructures as solid catalysts.

  17. Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Zhang, Shichao; Zhang, Lan; Lin, Ruoxu; Wu, Xiaomeng; Fang, Hua; Ren, Yanbiao

    2014-02-01

    Hollow carbonized polypyrrole (PPy) spheres are synthesized using poly(methyl methacrylate-ethyl acrylate-acrylic acid) latex spheres as sacrificial templates. The hollow spherical carbonized PPy/sulfur composite cathode materials are prepared by heating the mixture of hollow carbonized PPy spheres and element sulfur at 155 °C for 24 h. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the hollow structures of the carbonized PPy spheres and the homogeneous distribution of sulfur on the carbonized PPy shells. The hollow spherical carbonized PPy/sulfur composite with 60.9 wt.% S shows high specific capacity and excellent cycling stability when used as the cathode materials in lithium/sulfur cells, whose initial specific discharge capacity reaches as high as 1320 mA h g-1 and the reversible discharge capacity retains 758 mA h g-1 after 400 cycles at 0.2C. The excellent electrochemical properties benefit from the hollow structures and the flexible shells of the carbonized PPy spheres.

  18. Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor.

    PubMed

    Wang, Bijun; Luo, Liqiang; Ding, Yaping; Zhao, Dongsheng; Zhang, Qiaolin

    2012-09-01

    Cupric acetate/polyacrylonitrile composite nanofibers were prepared by electrospinning and hollow copper oxide (CuO) particles were produced after subsequent thermal treatment process. The electrospun hollow CuO particles modified carbon paste electrode (CPE) was demonstrated for the first time for nonenzymatic hydrogen peroxide (H(2)O(2)) sensor. The structures and morphologies of hollow CuO particles were characterized by scanning electron microscopy and X-ray diffraction spectrum. The assay performance of the modified sensor to H(2)O(2) was evaluated by cyclic voltammetry and amperometry, revealing high sensitivity (1746.50 μA mM(-1) cm(-2)), low detection limit (0.022 μM) and wide linear response of determination of H(2)O(2) oxidation in the range of 0.05 μM to 1.00 mM.

  19. Chemical Composition and Ultrastructure of Suberin from Hollow Heart Tissue of Potato Tubers (Solanum tuberosum).

    PubMed

    Dean, B B; Kolattukudy, P E; Davis, R W

    1977-05-01

    The disorder of potato tubers (Solanum tuberosum var. Russet Burbank) called "hollow heart" is manifested by the occurrence of hollow regions in internal parts of the tuber. The structure and composition of the suberin from the tissue lining of these internal cavities were determined by gas chromatography and mass spectrometry of the LiAlH(4)-hydrogenolysis products. Identification of octadecene-1,18-diol as the major component and the presence of hexadecane-1,16-diol and very long chain (>C(18)) alcohols in the hydrogenolysate showed that the suberin lining the internal cavities is quite similar to that found in the periderm of external wounds and the natural skin. Electron microscopic examination showed similar lamellar structure for the suberin of hollow heart, external wound periderm, and the natural skin of potato tubers. The results show that suberin can develop in a tissue which is not exposed to the external environment.

  20. 12CaO-7Al2O3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2017-01-01

    The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  1. Hollow Block Copolymer Nanoparticles through a Spontaneous One-Step Structural Reorganization

    PubMed Central

    Petzetakis, Nikos; Robin, Mathew P.; Patterson, Joseph P.; Kelley, Elizabeth G.; Cotanda, Pepa; Bomans, Paul H. H.; Sommerdijk, Nico A. J. M.; Dove, Andrew P.; Epps, Thomas H.; O'Reilly, Rachel K.

    2013-01-01

    The spontaneous one-step synthesis of hollow nanocages and nanotubes from spherical and cylindrical micelles based on poly(acrylic acid)-b-polylactide (P(AA)-b-P(LA)) block copolymers (BCPs) has been achieved. This structural reorganization, which occurs simply upon drying of the samples, was elucidated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We show that it was necessary to use stain-free imaging to examine these nanoscale assemblies, as the hollow nature of the particles was obscured by application of a heavy metal stain. Additionally, the internal topology of the P(AA)-b-P(LA) particles could be tuned by manipulating the drying conditions to give solid or compartmentalized structures. Upon re-suspension, these reorganized nanoparticles retain their hollow structure and can be display significantly enhanced loading of a hydrophobic dye compared to the original cylinders. PMID:23391297

  2. Efficient rapid microwave-assisted route to synthesize InP micrometer hollow spheres

    SciTech Connect

    Zheng Xiuwen Hu Qitu; Sun Chuansheng

    2009-01-08

    The efficiencies of two methods of synthesizing InP micro-scale hollow spheres are compared via the analogous solution-liquid-solid (ASLS) growth mechanism, either through a traditional solvothermal procedure, or via a microwave-assisted method. Scanning electronic microscopy (SEM) images show that most of the as-grown samples are micrometer hollow spheres, which indicates the efficiency of both methods. For traditional solvothermal route, long time (10 h) is necessary to obtain the desired samples, however, for the microwave-assisted route, 30 min is enough for hollow spherical products. An optimal choice of microwave irradiating time allows reducing the reaction time from hours to minutes. The proposed ASLS growth mechanism has also been discussed in detail.

  3. 44th Annual Anomalous Absorption Conference

    SciTech Connect

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  4. Destructive Evaluation of a Xenon Hollow Cathode after a 28,000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1998-01-01

    International Space Station (ISS) plasma contactor system requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. In order to demonstrate the lifetime capability of the HCA, a series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify hollow cathode lifetime capability and contamination control protocols. This hollow cathode accumulated 27,800 hours of operation before it failed during a restart attempt. The cathode was subsequently destructively analyzed in order to determine the failure mechanism. Microscopic examination of the cathode interior determined that relatively small changes in the cathode physical geometry had occurred and barium tungstates, which are known to limit the emission process, had formed over a majority of the electron emitter surface. Because the final state of the insert was consistent with expected impregnate chemistry, the hollow cathode was believed to have reached the end of its usable life under the test conditions.

  5. Hierarchical CoS2@C hollow microspheres constructed by nanosheets with superior lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Li, Tingting; Hu, Qian; Li, Chengpin; Guo, Hong

    2015-07-01

    An effective approach of alcoholysis is employed to prepare hollow CoS2@C hybrid nanosheets aggregates as anode materials for Li-ion batteries. Amorphous carbon can be loaded on the CoS2 nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results of the formation of hollow structures. The capacity of the sample can remain stable as high as 720 mAhg-1 after 200 cycles, and it also exhibits good rate capacity. The nano-scaled characteristics of CoS2 nanosheets embedded in the aggregates ensure the electrode having a high capacity and the fast Li-ion diffusion in the electrode. The in-situ introduction of carbon renders the electrode having a good electronic conductivity and can effectively prevent the formation of polysulfide anions. The unique hollow structures can shorten the length of Li-ion diffusion, which is benefit for the rate performance. The hollow structure also offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Therefore, the prepared hierarchical hollow CoS2@C materials constructed by nanosheets exhibit outstanding electrochemical performance.

  6. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    SciTech Connect

    Igor D. Kaganovich

    2002-01-18

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected.

  7. Sound Insulation in a Hollow Pipe with Subwavelength Thickness

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Long; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-03-01

    Suppression of the transmission of undesired sound in ducts is a fundamental issue with wide applications in a great variety of scenarios. Yet the conventional ways of duct noise control have to rely on mismatched impedance or viscous dissipation, leading the ducts to have ventilation capability weakened by inserted absorbers or a thick shell to accommodate bulky resonators. Here we present a mechanism for insulating sound transmission in a hollow pipe with subwavelength thickness, by directly reversing its propagating direction via anomalous reflection at the flat inner boundary with well-designed phase profile. A metamaterial-based implementation is demonstrated both in simulation and in experiment, verifying the theoretical prediction on high-efficient sound insulation at the desired frequencies by the resulting device, which has a shell as thin as 1/8 wavelength and an entirely open passage that maintains the continuity of the background medium. We have also investigated the potential of our scheme to work in broadband by simply cascading different metamaterial unit cells. Without the defects of blocked path and bulky size of existing sound insulators, we envision our design will open new route to sound insulation in ducts and have deep implication in practical applications such as designs of ventilation fans and vehicle silencers.

  8. Sound Insulation in a Hollow Pipe with Subwavelength Thickness.

    PubMed

    Zhang, Hai-Long; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-03-08

    Suppression of the transmission of undesired sound in ducts is a fundamental issue with wide applications in a great variety of scenarios. Yet the conventional ways of duct noise control have to rely on mismatched impedance or viscous dissipation, leading the ducts to have ventilation capability weakened by inserted absorbers or a thick shell to accommodate bulky resonators. Here we present a mechanism for insulating sound transmission in a hollow pipe with subwavelength thickness, by directly reversing its propagating direction via anomalous reflection at the flat inner boundary with well-designed phase profile. A metamaterial-based implementation is demonstrated both in simulation and in experiment, verifying the theoretical prediction on high-efficient sound insulation at the desired frequencies by the resulting device, which has a shell as thin as 1/8 wavelength and an entirely open passage that maintains the continuity of the background medium. We have also investigated the potential of our scheme to work in broadband by simply cascading different metamaterial unit cells. Without the defects of blocked path and bulky size of existing sound insulators, we envision our design will open new route to sound insulation in ducts and have deep implication in practical applications such as designs of ventilation fans and vehicle silencers.

  9. Sound Insulation in a Hollow Pipe with Subwavelength Thickness

    PubMed Central

    Zhang, Hai-Long; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-01-01

    Suppression of the transmission of undesired sound in ducts is a fundamental issue with wide applications in a great variety of scenarios. Yet the conventional ways of duct noise control have to rely on mismatched impedance or viscous dissipation, leading the ducts to have ventilation capability weakened by inserted absorbers or a thick shell to accommodate bulky resonators. Here we present a mechanism for insulating sound transmission in a hollow pipe with subwavelength thickness, by directly reversing its propagating direction via anomalous reflection at the flat inner boundary with well-designed phase profile. A metamaterial-based implementation is demonstrated both in simulation and in experiment, verifying the theoretical prediction on high-efficient sound insulation at the desired frequencies by the resulting device, which has a shell as thin as 1/8 wavelength and an entirely open passage that maintains the continuity of the background medium. We have also investigated the potential of our scheme to work in broadband by simply cascading different metamaterial unit cells. Without the defects of blocked path and bulky size of existing sound insulators, we envision our design will open new route to sound insulation in ducts and have deep implication in practical applications such as designs of ventilation fans and vehicle silencers. PMID:28272486

  10. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  11. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  12. Controllable synthesis of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres via supercritical anti-solvent precipitation

    SciTech Connect

    Jiang Haoxi; Huang Pan; Liu Lin; Zhang Minhua

    2012-01-15

    Nanocrystalline Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres were successfully synthesized via supercritical anti-solvent precipitation using supercritical CO{sub 2} as the anti-solvent. It was found that the as-produced samples exhibited hollow spherical structures with uniform diameters ranging from 30 to 50 nm and the sphere walls were composed of various oriented nanocrystallites, with sizes of 3-7 nm. The results of high-resolution transmission electron microscopy showed that the formation of the hollow structures could be controlled by adjusting the solution concentration. The results of temperature-programmed reduction and oxygen storage capacity measurements showed that the hollow nanospheres had enhanced redox properties. A possible mechanism for the formation of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres has also been proposed and experimental investigated.

  13. Criteria of radio-frequency ring-shaped hollow cathode discharge using H{sub 2} and Ar gases for plasma processing

    SciTech Connect

    Ohtsu, Yasunori; Kawasaki, Yujiro

    2013-01-21

    In order to achieve high-density capacitively coupled plasma, a radio-frequency (RF) ring-shaped hollow cathode discharge has been developed as a candidate for processing plasma sources. The plasma density in the hollow cathode discharge reaches a high magnitude of 10{sup 10}-10{sup 11} cm{sup -3}. The RF ring-shaped hollow cathode discharge depends on the pressure and mass of the working gas. Criteria required for producing a RF ring-shaped hollow cathode discharge have been investigated for various gas pressures using H{sub 2} and Ar gases for high-density plasma production. The results reveal that the criteria for the occurrence of the hollow cathode effect are that the trench width should be approximately equal to the sum of the electron-neutral mean free paths and twice the sheath thickness of the RF powered electrode.

  14. A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties

    SciTech Connect

    Patrinoiu, Greta; Tudose, Madalina; Calderon-Moreno, Jose Maria; Birjega, Ruxandra; Budrugeac, Petru; Ene, Ramona; Carp, Oana

    2012-02-15

    ZnO hollow spheres have been synthesized by a simple and environmentally friendly template assisted route. Starch-derived carbonaceous spheres were used as template, impregnated with Zn(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O to obtain zinc-containing precursor spheres and thermally treatment at 600 Degree-Sign C, yielding hollow ZnO spherical shells. The precursor spheres and hollow shells were characterized by X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, thermal analysis and room-temperature photoluminescence measurements. The hollow spherical shells with diameters of {approx}150 nm and wall thickness of {approx}20 nm, are polycrystalline, with a mean crystallite size of 22 nm, exhibiting interesting emission features, with a wide multi-peak band covering blue and green regions of the visible spectrum. The photocatalytic activities (under UV and visible light irradiations) of the ZnO spherical shells evaluated for the phenol degradation reaction in aqueous solutions are outstanding, a total phenol conversion being registered in the case of UV irradiation experiments. - Graphical abstract: The photocatalytic reaction initiated by the photoexcitation of the semiconductor (ZnO), leads to the formation of electron-hole, while part of the electron-hole pairs recombine, some holes combine with water to form {center_dot}OH radicals and some electrons convert oxygen to super oxide radical ({center_dot}O{sub 2}{sup -}). Highlights: Black-Right-Pointing-Pointer Green synthesis of ZnO hollow spheres. Black-Right-Pointing-Pointer Starch-derived carbonaceous spheres as spherical hard template. Black-Right-Pointing-Pointer ZnO hollow spheres with notable visible photoluminescence properties. Black-Right-Pointing-Pointer ZnO hollow spheres with photocatalytical activity in degradation/mineralization of phenol.

  15. Hierarchical flower-like Co₃-xFexO₄ ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue.

    PubMed

    Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Pan, Shunhao; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin

    2013-04-07

    A facile method is proposed for the synthesis of three-dimensional (3D) flower-like Co3-xFexO4 ferrite (CF) hollow spheres, using SiO2@FeOOH as precursor. The CF hollow spheres are efficient for the catalytic degradation of methylene blue (MB) in the presence of H2O2 at 80 °C. The obtained CF hollow spheres were characterized using transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and N2 adsorption-desorption isotherm measurements. The formation of 3D hierarchical flower-like superstructure was influenced by the relative amount of urea used. As the mole ratio of CoCl2 and urea decreased, the structure of the products was tailored from yolk-like spheres to hollow spheres with different sized void interiors. Moreover, N2 adsorption-desorption isotherm analysis showed that the CF hollow spheres have a large specific surface area (163 m(2) g(-1)) which provided more activity sites. The CF hollow spheres can catalyze the oxidation of MB efficiently. These results indicate that the designed CF hollow spheres exhibit promising capability for the degradation of dyes.

  16. Accurate hierarchical control of hollow crossed NiCo2O4 nanocubes for superior lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Liu, Lixiang; Li, Tingting; Chen, Weiwei; Liu, Jiajia; Guo, Yuanyuan; Guo, Yicheng

    2014-04-01

    . Therefore, hollow crossed NiCo2O4 nanocube electrodes exhibit excellent electrochemical performance. This method is simple and of low cost, which may open a new avenue for fast synthesis of hollow crossed structural nano-functional materials for energy storage, catalysts, sensors and other new applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00930d

  17. Anomalous perturbative transport in tokamaks due to drift-wave turbulence

    SciTech Connect

    Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )

    1994-03-01

    A new method for calculating the anomalous transport in tokamak plasmas is presented. The renormalized nonlinear plasma response function is derived using the direct-interaction approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma are obtained. The anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nucl. Technol. Fusion [bold 1], 479 (1981)] are used to evaluate all transport coefficients numerically, as well as the spectrum modulation. The relation between the theoretical results and the experimental data is discussed. Although this paper focuses on electron transport for simplicity, the method can also be used to calculate anomalous transport due to ion instabilities, such as the ion-temperature-gradient instability.

  18. Magnetic and optical properties of electrospun hollow nanofibers of SnO{sub 2} doped with Ce-ion

    SciTech Connect

    Mohanapriya, P.; Victor Jaya, N.; Pradeepkumar, R.; Natarajan, T. S.

    2014-07-14

    Cerium doped SnO{sub 2} hollow nanofibers were synthesized by electrospinning. High resolution scanning electron microscope (HRSEM) and transmission electron microscopy (TEM) analysis showed hollow nanofibers with diameters around ∼200 nm. The optimized substitution of Ce ion into SnO{sub 2} lattices happened above 6 mol. % doping as confirmed by Powder X-ray diffraction (XRD) studies. Optical band gap was decreased by the doping confirming the direct energy transfer between f-electrons of rare earth ion and the SnO{sub 2} conduction or valence band. The compound also exhibited room temperature ferromagnetism with the saturation magnetization of 19 × 10{sup −5} emu/g at 6 mol. %. This study demonstrates the Ce doped SnO{sub 2} hollow nanofibers for applications in magneto-optoelectronic devices.

  19. Characterization of hollow cathode, ring cusp discharge chambers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.

    1989-01-01

    An experimental study into the effects of changes in such physical design parameters as hollow cathode position, anode position and ring cusp magnetic field configuration and strength on discharge chamber performance, is described. The results are presented in terms of comparative plasma ion energy cost, extracted ion fraction and ion beam profile data. Such comparisons are used to demonstrate specific means by which changes in these design parameters induce changes in performance, i.e., through changes in the loss rates of primary electrons to the anode, of ions to discharge chamber walls or of ions to cathode and anode surfaces. Results show: (1) the rate of primary electron loss to the anode decreases as the anode is moved downstream of the ring cusp toward the screen grid, (2) the loss rate of ions to hollow cathode surfaces are excessive if the cathode is located upstream of a point of peak magnetic flux density on the discharge chamber centerline, and (3) the fraction of the ions produced that are lost to discharge chamber walls and ring magnet surfaces is reduced by positioning the magnet rings so the plasma density is uniform over the grid surface and so there are no steep magnetic flux density gradients near the walls through which ions can be lost by Bohm diffusion. The uniformity of the plasma density at the grids can also be improved by moving the point of primary electron injection into the discharge chamber off of the chamber centerline. Other results show the discharge chamber losses decrease when a filament cathode is substituted for a hollow cathode to the extent of the hollow cathode operating power. When plasma ion energy cost is determined in such a way that the cost of operating the hollow cathode is subtracted out, the performance using either electron source is similar.

  20. Thermospheric topside neutral density, ionospheric anomalous electric field and resistivity measurements by active experiment at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Rietveld, Michael; Blagoveshchenskaya, Nataly; Yamazaki, Yosuke

    2016-07-01

    We have developed an active ground-based technique to estimate the topside thermospheric neutral density as well as topside ionospheric anomalous electric field and resistivity at EISCAT, combining the EISCAT UHF radar, HF heater and optics. When pumping the ionosphere the F-region electron temperature is significantly raised, increasing the upward plasma pressure gradient in the topside ionosphere, resulting in observed ion up-flow along the magnetic field line. Simultaneously, pump-induced suprathermal electrons produce artificial optical emissions. Using the modified ion-momentum equation, the thermospheric neutral density is estimated. Alternatively, using the MSIS model the field-aligned anomalous electric field is estimated. From the optical data the suprathermal electron flux is estimated, giving an estimate of the anomalous resistivity. Results from recent observations at EISCAT are presented.

  1. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  2. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  3. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  4. Anomalous diffraction in hyperbolic materials

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  5. Persistently anomalous Pacific geomagnetic fields

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Constable, Catherine G.

    A new average geomagnetic field model for the past 3kyr (ALS3K) helps bridge a large temporal sampling gap between historical models and more traditional paleomagnetic studies spanning the last 5 Myr. A quasi-static feature seen historically in the central Pacific has the opposite sign in ALS3K; its structure is similar to, but of larger amplitude than, that in the time-averaged geomagnetic field for the last 5 Myr. Anomalous geomagnetic fields exist beneath the Pacific over timescales ranging from 10²-106 years. It is unlikely that bias over such long time scales arises from electromagnetic screening, but conceivable that the Lorentz force is influenced by long wavelength thermal variations and/or localized regions of increased electrical conductivity (associated with compositional anomalies and possibly partial melt). This is consistent with recent seismic observations of the lower mantle.

  6. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  7. Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces

    NASA Astrophysics Data System (ADS)

    Takatani, Kunihiro; Matsuura, Yuji; Miyagi, Mitsunobu

    1995-07-01

    Transmission losses in quartz hollow waveguides with rough inner surfaces have been measured, and an anomalous loss decrease has been observed just beyond the resonance wavelength at the infrared. Detailed analyses have been conducted to check the applicability of available theories in the prediction of additional loss increases or decreases in wide infrared-wavelength regions. A new theory based on a thin-film-coating model has also been presented for the first time, to our knowledge, to describe the additional loss behavior.

  8. Anomalous Sediment Mixing by Bioturbation

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Xie, M.; Packman, A. I.

    2013-12-01

    Bioturbation, the reworking of sediments by animals and plants, is the dominant mode of sediment mixing in low-energy environments, and plays an important role in sedimentary biogeochemical processes. Mixing resulting from bioturbation has historically been modeled as a diffusive process. However, diffusion models often do not provide a sufficient description of sediment mixing due to bioturbation. Stochastic models, such as the continuous time random walk (CTRW) model, provide more general descriptions of mixing behavior that are applicable even when regular diffusion assumptions are not met. Here we present results from an experimental investigation of anomalous sediment mixing by bioturbation in freshwater sediments. Clean and heavy-metal-contaminated sediments were collected from Lake DePue, a backwater lake of the Illinois River. The burrowing worm species Lumbriculus variegatus was introduced to homogenized Lake DePue sediments in aerated aquaria. We then introduced inert fine fluorescent particles to the sediment-water interface. Using time-lapse photography, we observed the mixing of the fluorescent particles into the sediment bed over a two-week period. We developed image analysis software to characterize the concentration distribution of the fluorescent particles as a function of sediment depth, and applied this to the time-series of images to evaluate sediment mixing. We fit a one-dimensional CTRW model to the depth profiles to evaluate the underlying statistical properties of the mixing behavior. This analysis suggests that the sediment mixing caused by L. variegatus burrowing is subdiffusive in time and superdiffusive in space. We also found that heavy metal contamination significantly reduces L. variegatus burrowing, causing increasingly anomalous sediment mixing. This result implies that there can be important feedbacks between sediment chemistry, organism behavior, and sediment mixing that are not considered in current environmental models.

  9. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    PubMed

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO2 modified reduced graphene oxide microspheres (hollow TiO2-rGO microspheres or H-TiO2-rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO2-rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO2-rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO2-rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H2O2 detection performance-the wide linear range of 0.1-360μM for H2O2 (sensitivity of 417.6 μA mM(-1) cm(-2)) and the extremely low detection limit of 10nM for H2O2. Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H2O2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO2-rGO microspheres will find wide potential applications in environmental analysis and biomedical detection.

  10. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  11. Uniform hollow Lu2O3:Ln (Ln = Eu3+, Tb3+) spheres: facile synthesis and luminescent properties.

    PubMed

    Yang, Piaoping; Gai, Shili; Liu, Yanchao; Wang, Wenxin; Li, Chunxia; Lin, Jun

    2011-03-21

    Uniform hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) phosphors have been successfully prepared via a urea-assisted homogeneous precipitation method using carbon spheres as templates, followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, kinetic decays, quantum yields (QY), and UV-visible diffuse reflectance spectra were employed to characterize the samples. The results show that hollow Lu(2)O(3):Ln spheres can be indexed to cubic Gd(2)O(3) phase with high purity. The as-prepared hollow Lu(2)O(3):Ln phosphors are confirmed to be uniform in shape and size with diameter of about 300 nm and shell thickness of approximate 20 nm. The possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow Lu(2)O(3):Ln microspheres has been proposed. Upon ultraviolet (UV) and low-voltage electron beams excitation, the hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) spheres exhibit bright red (Eu(3+), (5)D(0)-(7)F(2)) and green (Tb(3+), (5)D(4)-(7)F(5)) luminescence, which may find potential applications in the fields of color display and biomedicine.

  12. Fabrication of ultrathin In2O3 hollow fibers for UV light sensing

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Long, Yun-Ze; Zhang, Hong-Di; Liu, Shu-Liang; Liu, Ling-Zhi; Zhang, Jun-Cheng; Liu, Guo-Xia; Shan, Fu-Kai

    2014-11-01

    Ultrathin indium oxide (In2O3) hollow fibers were successfully fabricated by electrospinning poly(vinylidene fluoride) (PVDF) nanofibers, magnetron sputtering of In2O3 on PVDF fibers followed by calcination of In2O3/PVDF composite fibers. The hollow In2O3 fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD) and UV-Visible spectroscopy. The outer diameter of the hollow fibers was in the range of 700-900 nm, and the inner diameter was about 400-600 nm. The optoelectronic properties of the In2O3 fibers were investigated by the irradiation of UV light with different wavelengths (254, 308 and 365 nm). It was found that the In2O3 hollow nanofibers had a fast and strong response to UV irradiation. The response time was less than 10 s, and the sensitivity (˜102) decreased with the UV light wavelength increasing or the light intensity decreasing.

  13. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Bastús, Neus G.; Puntes, Victor; Arbiol, Jordi

    2016-09-01

    Metallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.

  14. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Bastús, Neus G.; Puntes, Victor; Arbiol, Jordi

    2017-01-01

    Metallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.

  15. Sacrificial Silver Nanoparticles: Reducing GeI2 To Form Hollow Germanium Nanoparticles by Electroless Deposition.

    PubMed

    Nolan, Bradley M; Chan, Eric K; Zhang, Xinming; Muthuswamy, Elayaraja; van Benthem, Klaus; Kauzlarich, Susan M

    2016-05-24

    Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag(+) cation (i.e., AgI product). Annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials.

  16. Template-free synthesis of uniform single-crystal hollow cerium dioxide nanocubes and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Han, Xiguang; Li, Liang; Wang, Chao

    2013-07-01

    Monodisperse single-crystal hollow cerium dioxide nanocubes with exposed (001) facets have been synthesized with the assistance of ammonium chloride (NH4Cl) and polyvinylpyrrolidone (PVP) in a water and ethanol system. A series of experiments indicate that ammonium ion plays an important role in the formation of the hollow structure and PVP plays a key role in the formation of a cubic shape. The hollow cerium dioxide nanocubes exhibit excellent CO catalytic oxidation activity.Monodisperse single-crystal hollow cerium dioxide nanocubes with exposed (001) facets have been synthesized with the assistance of ammonium chloride (NH4Cl) and polyvinylpyrrolidone (PVP) in a water and ethanol system. A series of experiments indicate that ammonium ion plays an important role in the formation of the hollow structure and PVP plays a key role in the formation of a cubic shape. The hollow cerium dioxide nanocubes exhibit excellent CO catalytic oxidation activity. Electronic supplementary information (ESI) available: the preparation and characterization of CeO2 and measurement details for the CO oxidation reaction. See DOI: 10.1039/c3nr01948a

  17. Xanthoceraside hollow gold nanoparticles, green pharmaceutics preparation for poorly water-soluble natural anti-AD medicine.

    PubMed

    Meng, Da-Li; Shang, Lei; Feng, Xiao-He; Huang, Xing-Fei; Che, Xin

    2016-06-15

    In order to increase the solubility of poorly water-soluble natural product, xanthoceraside, an effective anti-AD compound from Xanthoceras sorbifolia Bunge, and maintain its natural property, the xanthoceraside hollow gold nanoparticles were successively prepared by green ultrasonic method with silica spheres as templates and HF solution as selective etching solvent. Hollow gold nanoparticles and drug-loaded hollow gold nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The solubilities of xanthoceraside loaded on hollow gold nanoparticles were increased obviously from 3.0μg/ml and 2.5μg/ml to 12.7μg/ml and 10.7μg/ml at 25°C and 37°C, respectively. The results of XRD and DSC indicated that the reason for this increase was mainly due to the amorphous state of xanthoceraside loaded on the hollow gold nanoparticles. In summary, the method of loading xanthoceraside onto hollow gold nanoparticles was a green and useful strategy to improve the solubility and dissolution of poorly water-soluble natural products and worth to applying to other natural products.

  18. Process for manufacturing hollow fused-silica insulator cylinder

    SciTech Connect

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  19. Method of making a non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-10-07

    The method of making a non-lead hollow point bullet has the steps of a) compressing an unsintered powdered metal composite core into a jacket, b) punching a hollow cavity tip portion into the core, c) seating an insert, the insert having a hollow point tip and a tail protrusion, on top of the core such that the tail protrusion couples with the hollow cavity tip portion, and d) swaging the open tip of the jacket.

  20. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  1. Hollow mesoporous raspberry-like colloids with removable caps as photoresponsive nanocontainers

    NASA Astrophysics Data System (ADS)

    Hu, Chi; West, Kevin R.; Scherman, Oren A.

    2016-04-01

    The fabrication, characterisation and controlled cargo release of hollow mesoporous raspberry-like colloids (HMRCs), which are assembled by utilising host-guest complexation of cucurbit[8]uril (CB[8]) are described. CB[8] is employed as a supramolecular linker to `stick' the viologen functionalised paramagnetic iron oxide nanoparticles onto an azobenzene functionalised hollow mesoporous silica core. The formed HMRCs are photoresponsive and can be reversibly disassembled upon light irradiation, endowing them with an ability to release loaded cargo under photocontrol. While the assembled HMRCs retain cargo inside their cavity, disassembled particles with their iron oxide nanoparticle `caps' removed will release the loaded cargo through the mesoporous shell of the hollow silica colloids. A model system using a boronic acid derivative as the cargo in the HMRCs and Alizarin Red salt as a sensor for the released boronic acid is demonstrated.The fabrication, characterisation and controlled cargo release of hollow mesoporous raspberry-like colloids (HMRCs), which are assembled by utilising host-guest complexation of cucurbit[8]uril (CB[8]) are described. CB[8] is employed as a supramolecular linker to `stick' the viologen functionalised paramagnetic iron oxide nanoparticles onto an azobenzene functionalised hollow mesoporous silica core. The formed HMRCs are photoresponsive and can be reversibly disassembled upon light irradiation, endowing them with an ability to release loaded cargo under photocontrol. While the assembled HMRCs retain cargo inside their cavity, disassembled particles with their iron oxide nanoparticle `caps' removed will release the loaded cargo through the mesoporous shell of the hollow silica colloids. A model system using a boronic acid derivative as the cargo in the HMRCs and Alizarin Red salt as a sensor for the released boronic acid is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01016D

  2. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  3. Lightweight hollow rooftop mirrors for stabilized interferometry

    NASA Astrophysics Data System (ADS)

    Hill, Robert J.; Courtney, Trevor L.; Park, Samuel D.; Jonas, David M.

    2013-10-01

    Hollow rooftop mirrors, also known as dihedral retroreflectors, can simultaneously preserve polarization, minimize chromatic dispersion, and allow beams to be stacked inside an interferometer. Two hollow rooftop mirrors were fabricated and characterized using a Fizeau interferometer and an inexpensive home-built jig instead of a master cube. The mass was 3.3 g for a clear aperture surface area of 110 mm2 with maximum retroreflected beam deviation of 12 arc s. With a hollow rooftop mirror mounted on a piezoelectric transducer in one arm of a Mach-Zehnder interferometer, a displacement stability of ±0.8 nm rms was achieved using active feedback. The rooftop mirrors' suitability for Fourier transform spectroscopy was demonstrated.

  4. Mechanisms of a linear hollow cathode used for the production of a helium plasma sheet

    NASA Astrophysics Data System (ADS)

    Caillault, L.; Larigaldie, S.

    2002-05-01

    A hollow-cathode device has been shown to operate as a plasma reflector for radar electronic beam steering using helium in the 0.2-0.5 Torr pressure range. Compared to former experiments, the use of this light gas reduces significantly spurious sputtering effect on the cathode materials. In a previous paper, a semi-quantitative physical model was developed to calculate the time evolution of the sheet reflectivity from the experimental current Id(t) measured across the discharge. A self-consistent, numerical, stationary model is now developed to describe the main physical mechanisms that govern the hollow-cathode source. The model describes the coupling between the high-voltage collisional sheath and the magnetized plasma through the hollow cathode. The cold electron creation rate includes the efficiency of ionization from the fast secondary electrons emitted from the surface of the cathode, lowered by the three-body recombination process in volume and by the ejection of a part of these fast electrons out of the cathode plasma. As the recombination rate scales as Te-9/2, the energy balance of the electrons must be solved precisely, so that the collisional-radiative exchanges in Helium are included in the model. The results are then compared to the experimental V-I characteristics for different pressures of the neutral gas; there is good agreement between the theoretical plasma model and the experiment.

  5. A new method for adjusting the lateral transfer hollow retroreflector

    NASA Astrophysics Data System (ADS)

    Ershov, Alexandr G.

    2013-05-01

    A new method for adjusting the lateral transfer hollow retroreflector is presented. It allows in a simple way to adjust the hollow retroreflectors with a lateral shifting. It enables to make the manufacturing process of adjustable lateral hollow retroreflectors easier and cheaper. The testing optical bed of this method is displayed. The evaluation of uncertainties and a limit value for this method are given.

  6. Correspondence between Soft and Rapidity Anomalous Dimensions

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexey A.

    2017-02-01

    We establish a correspondence between ultraviolet singularities of soft factors for multiparticle production and rapidity singularities of soft factors for multiparton scattering. This correspondence is a consequence of the conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way, provides one with a proof of rapidity renormalization procedure for multiparton scattering [including the transverse momentum dependent (TMD) factorization as a special case]. As a by-product, we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop expressions for TMD and a general multiparton scattering rapidity anomalous dimension are derived.

  7. Three loop cusp anomalous dimension in QCD.

    PubMed

    Grozin, Andrey; Henn, Johannes M; Korchemsky, Gregory P; Marquard, Peter

    2015-02-13

    We present the full analytic result for the three loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the lightlike cusp anomalous dimension. We find evidence that this quantity is universal for any gauge theory and use this observation to predict the nonplanar n(f)-dependent terms of the four loop cusp anomalous dimension.

  8. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  9. Anomalous dispersion enhanced Cerenkov phase-matching

    SciTech Connect

    Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  10. Correspondence between Soft and Rapidity Anomalous Dimensions.

    PubMed

    Vladimirov, Alexey A

    2017-02-10

    We establish a correspondence between ultraviolet singularities of soft factors for multiparticle production and rapidity singularities of soft factors for multiparton scattering. This correspondence is a consequence of the conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way, provides one with a proof of rapidity renormalization procedure for multiparton scattering [including the transverse momentum dependent (TMD) factorization as a special case]. As a by-product, we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop expressions for TMD and a general multiparton scattering rapidity anomalous dimension are derived.

  11. Bioreactor design considerations for hollow organs.

    PubMed

    Fish, Jeff; Halberstadt, Craig; McCoy, Darell W; Robbins, Neil

    2013-01-01

    There are many important considerations in the design, construction, and use of a bioreactor for growing hollow organs such as vessels, gastrointestinal tissue, esophagus, and others. The growth of new organs requires a specialized container that provides sterility and an environment conducive to cell-seeding and attachment onto a three-dimensional bioabsorbable porous scaffold, incubation, maturation, and shipping for implantation. The materials' selection, dimensions, manufacturing, testing, and use of the bioreactor are all factors that should be considered in designing a bioreactor for the development of hollow organs.

  12. Microfabricated hollow microneedle array using ICP etcher

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  13. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.

    PubMed

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S G; Ramakrishna, Seeram

    2012-03-07

    Hollow mesoporous one dimensional (1D) TiO(2) nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO(2) nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO(2) nanofibers possess a high surface area of 118 m(2) g(-1) with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO(2) nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (J(sc)) are measured as 5.6% and 10.38 mA cm(-2) respectively, which are higher than those of DSSC made using regular TiO(2) nanofibers under identical conditions (η = 4.2%, J(sc) = 8.99 mA cm(-2)). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO(2) nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO(2) nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO(2) nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO(2) nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO(2) nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO(2) nanocatalysts.

  14. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  15. Observation of anomalous Iron Ion Charge Distribution in FTU

    SciTech Connect

    Finkenthal, M; May, M; Pacella, D; Leigheb, M; Zagorski, R; Mattioli, M; Fournier, K

    2003-11-14

    Iron coming from the poloidal limiter or the stainless steel vessel is an important intrinsic impurity in the FTU tokamak discharges, and X-ray and VUV spectroscopy provide useful information about the impurity behavior. The iron ion charge state distribution, as usual for tokamaks, is analyzed assuming a collisional radiative model and an anomalous perpendicular diffusion. In our experiment the iron ionization level depends, as it is expected, on central electron temperature (fig. 1), but the ion charge state distribution shows a different behavior when the first wall material or the iron source are changed.

  16. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  17. Dynamo and anomalous transport in the reversed field pinch

    SciTech Connect

    Prager, S.C.

    1998-08-01

    The reversed field pinch is an effective tool to study the macroscopic consequences of magnetic fluctuations, such as the dynamo effect and anomalous transport. Several explanations exist for the dynamo (the self-generation of plasma current)--the MHD dynamo, the kinetic dynamo, and the diamagnetic dynamo. There is some experimental evidence for each, particularly from measurements of ion velocity and electron pressure fluctuations. Magnetic fluctuations are known to produce energy and particle flux in the RFP core. Current profile control is able to decrease fluctuation-induced transport by a factor of five. Improved confinement regimes are also obtained at deep reversal and, possibly, with flow shear.

  18. Anomalous compression in ? - an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Shekar, N. V. Chandra; Sahu, P. Ch; Rajagopalan, M.; Yousuf, Mohammad; Rajan, K. Govinda

    1997-07-01

    High-pressure x-ray diffraction experiments were performed on 0953-8984/9/27/016/img9 up to 23 GPa. Anomalous compressibility behaviour of the system was observed in the pressure range 7 - 14 GPa. The experiments are compared with similar observations in 0953-8984/9/27/016/img10 and 0953-8984/9/27/016/img11. Band structure calculations have been performed to look for a possible explanation of this behaviour through the concept of electron transfer from the f to the d orbitals.

  19. Non-equilibrium cation distribution and enhanced spin disorder in hollow CoFe2O4 nanoparticles.

    PubMed

    Jaffari, G Hassnain; Ceylan, A; Bui, Holt P; Beebe, Thomas P; Ozcan, S; Shah, S Ismat

    2012-08-22

    We present magnetic properties of hollow and solid CoFe(2)O(4) nanoparticles that were obtained by annealing of Co(33)Fe(67)/CoFe(2)O(4) (core/shell) nanoparticles. Hollow nanoparticles were polycrystalline whereas the solid nanoparticles were mostly single crystal. Electronic structure studies were performed by photoemission which revealed that particles with hollow morphology have a higher degree of inversion compared to solid nanoparticles and the bulk counterpart. Electronic structure and the magnetic measurements show that particles have uncompensated spins. Quantitative comparison of saturation magnetization (M(S )), assuming bulk Néel type spin structure with cationic distribution, calculated from quantitative XPS analysis, is presented. The thickness of uncompensated spins is calculated to be significantly large for particles with hollow morphology compared to solid nanoparticles. Both morphologies show a lack of saturation up to 7 T. Moreover magnetic irreversibility exists up to 7 T of cooling fields for the entire temperature range (10-300 K). These effects are due to the large bulk anisotropy constant of CoFe(2)O(4) which is the highest among the cubic spinel ferrites. The effect of the uncompensated spins for hollow nanoparticles was investigated by cooling the sample in large fields of up to 9 T. The magnitude of horizontal shift resulting from the unidirectional anisotropy was more than three times larger than that of solid nanoparticles. As an indication signature of uncompensated spin structure, 11% vertical shift for hollow nanoparticles is observed, whereas solid nanoparticles do not show a similar shift. Deconvolution of the hysteresis response recorded at 300 K reveals the presence of a significant paramagnetic component for particles with hollow morphology which further confirms enhanced spin disorder.

  20. Large anomalous Hall effect in a half-Heusler antiferromagnet

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Chisnell, R.; Devarakonda, A.; Liu, Y.-T.; Feng, W.; Xiao, D.; Lynn, J. W.; Checkelsky, J. G.

    2016-12-01

    The quantum mechanical (Berry) phase of the electronic wavefunction plays a critical role in the anomalous and spin Hall effects, including their quantized limits. While progress has been made in understanding these effects in ferromagnets, less is known in antiferromagnetic systems. Here we present a study of antiferromagnet GdPtBi, whose electronic structure is similar to that of the topologically non-trivial HgTe (refs ,,), and where the Gd ions offer the possibility to tune the Berry phase via control of the spin texture. We show that this system supports an anomalous Hall angle ΘAH > 0.1, comparable to the largest observed in bulk ferromagnets and significantly larger than in other antiferromagnets. Neutron scattering measurements and electronic structure calculations suggest that this effect originates from avoided crossing or Weyl points that develop near the Fermi level due to a breaking of combined time-reversal and lattice symmetries. Berry phase effects associated with such symmetry breaking have recently been explored in kagome networks; our results extend this to half-Heusler systems with non-trivial band topology. The magnetic textures indicated here may also provide pathways towards realizing the topological insulating and semimetallic states predicted in this material class.

  1. Detecting anomalous phase synchronization from time series

    SciTech Connect

    Tokuda, Isao T.; Kumar Dana, Syamal; Kurths, Juergen

    2008-06-15

    Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.

  2. The charmonium dissociation in an ''anomalous wind''

    SciTech Connect

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmonium color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.

  3. The charmonium dissociation in an ''anomalous wind''

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less

  4. Electron Spin and Its History

    NASA Astrophysics Data System (ADS)

    Commins, Eugene D.

    2012-11-01

    The history of electron spin is summarized. Topics include the discovery of electron spin, the birth of quantum electrodynamics, the invention of magnetic resonance, the invention of renormalization, the anomalous magnetic moment of the electron in experiment and theory, and searches for the electron electric dipole moment.

  5. Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2014-09-01

    catalytic oxidizing decomposition of methylene blue with sulfate radicals as compared to cobalt phosphonate nanoparticles synthesized in single water system, which could be attributed to enhanced mass transfer and high surface area for the hollow material. Some operational parameters, including pH and reaction temperature, were found to influence the oxidation process. The present results suggest that cobalt phosphonate material can perform as an efficient heterogeneous catalyst for the degradation of organic contaminants, providing insights into the rational design and development of alternative catalysts for wastewater treatment. Electronic supplementary information (ESI) available: XRD patterns and digital photographs of DTPMP. See DOI: 10.1039/c4nr02679a

  6. Preparation of hollow-fibre and composite hollow-fibre carbon membranes

    SciTech Connect

    Linkov, V.M.; Sanderson, R.D.; Jacobs, E.P.

    1994-12-31

    Interest in carbon membranes world-wide has increased remarkably since Softer et al. introduced, in 1983, hollow-fibre carbon membranes produced by the pyrolysis of commercial cellulose membranes. The scientific community was attracted by the high permselectivities of these membranes and their stability at high temperatures. Scientific organizations in Japan, France, Germany and other countries have made efforts to prepare mechanically stable carbon hollow fibres by various techniques. Materials other than cellulose, such as phenolic resins and polyacrylonitrile (PAN), were used for this purpose. Although some Positive results have been reported in the literature, mechanically strong and flexible carbon hollow-fibre membranes with high porosity and highly asymmetrical structure have not yet been produced. Here, the production of hollow-fiber carbon membranes, the modification of their porous structure, and the investigation into various techniques for coating them with inorganic and organic materials, are presented.

  7. Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal.

    PubMed

    Cai, Jiabai; Wu, Xueqing; Zheng, Fengying; Li, Shunxing; Wu, Yaling; Lin, Yanping; Lin, Liting; Liu, Biwen; Chen, Qiaoying; Lin, Luxiu

    2017-03-15

    After polystyrene@titanium dioxide (PS@TiO2) composite with different size was calcined at designated temperature, TiO2 hollow sphere with controllable size was obtained for high efficient photo-reduction of Cr(VI). The feature of the TiO2 hollow sphere was investigated by SEM, TEM, XRD, UV-Vis, and photoluminescence. The photo-reduction of Cr(VI) were measured for the performance assessment of the TiO2 hollow sphere, Cr(VI) was used as an electron acceptor. After irradiation for 2h, the photo-reduction rate of Cr(VI) (pH=2.82) for TiO2(450nm) was 96%, which exhibited an increase of 5% and 8% compared with TiO2(370nm) and TiO2(600nm). The absorption edges of TiO2 hollow sphere (450nm) was largest with the increasing of hollow sphere size from 370 to 600nm. The optimal hollow sphere size of TiO2 was 450nm for the photo-reduction of Cr(VI), because the light-harvesting efficiency (the best of absorption edge) and photo-generated electron-hole separation rate (the best of photo-reduction rate) of TiO2 hollow sphere were controlled by its hollow sphere size. In addition, we find that the behavior of the hydrogen production was inhibited by the coexistence Cr(VI) solution. This study can improve our understanding of the mechanism for the activity enhancement by the optimal hollow sphere size of TiO2.

  8. Ion acoustic turbulence in a 100-A LaB₆ hollow cathode.

    PubMed

    Jorns, Benjamin A; Mikellides, Ioannis G; Goebel, Dan M

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB(6) hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  9. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers.

    PubMed

    Ouzounov, Dimitre G; Ahmad, Faisal R; Müller, Dirk; Venkataraman, Natesan; Gallagher, Michael T; Thomas, Malcolm G; Silcox, John; Koch, Karl W; Gaeta, Alexander L

    2003-09-19

    The measured dispersion of a low-loss, hollow-core photonic band-gap fiber is anomalous throughout most of the transmission band, and its variation with wavelength is large compared with that of a conventional step-index fiber. For an air-filled fiber, femtosecond self-frequency--shifted fundamental solitons with peak powers greater than 2megawatts can be supported. For Xe-filled fibers, nonfrequency-shifted temporal solitons with peak powers greater than 5.5 megawatts can be generated, representing an increase in the power that can be propagated in an optical fiber of two orders of magnitude. The results demonstrate a unique capability to deliver high-power pulses in a single spatial mode over distances exceeding 200 meters.

  10. Experimental realization of acoustic metasurface with double-split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Lin; Wang, Zhen-Ru; Shen, Fang-Liang; Chen, Huai-Jun; Zhai, Shi-Long; Zhao, Xiao-Peng

    2016-03-01

    We experimentally present an acoustic metasurface (AMS) with sub-wavelength thickness based on the meta-molecule consisting of eight different sized double-split hollow spheres (DSHSs). By designing the discontinuous phase profile covered 2π span induced by the DSHSs, the AMS can manipulate the reflected acoustic waves in a way that could not be imitated by natural materials. Both simulations and experiments show that the AMS can realize anomalous reflection, i.e., a normal incident wave can be reflected into an oblique direction. Moreover, the reflection angle can be flexible controlled by mechanically tuning the spatial distance of the DSHSs in the AMS, which is consistent with the generalized Snell's law.

  11. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-09

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  12. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect

    Zhao, Jinbo; Wu, Lili; Zou, Ke

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  13. Synthesis of Br-doped TiO2 hollow spheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Zhu, Shengli; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin; Liang, Chunyong; Inoue, Akihisa

    2017-02-01

    The Br-doped hollow TiO2 photocatalysts were prepared by a simple hydrothermal process on the carbon sphere template following with calcination at 400 °C. The structure and properties of photocatalysts were characterized by X-ray diffraction, Raman spectrum, scanning electron microscope, transmission electron microscopy, N2 desorption-adsorption, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The TiO2 hollow spheres are in diameter of 500 nm with shell thickness of 50 nm. The shell is composed of small anatase nanoparticles with size of about 10 nm. The TiO2 hollow spheres exhibit high crystalline and high surface area of 89.208 m2/g. With increasing content of Br doping, the band gap of TiO2 hollow spheres decreased from 2.85 to 1.75 eV. The formation of impurity band in the band gap would narrow the band gap and result in the red shift of absorption edge from 395 to 517 nm, which further enhances the photocatalytic activity. The appropriate Br doping improves the photocatlytic activity significantly. The TiO2 hollow spheres with 1.55% Br doping (0.5Br-TiO2) exhibit the highest photocatalytic activity under full light. More than 98% of RhB, MO, and MB can be photodegraded using 0.5Br-TiO2 with concentration of 10 mg/L in 40, 30, and 30 min, respectively. The degradation rate of Br-doped photocatalysts was 40% faster than undoped ones.

  14. The Hollow Men: A Cautionary Tale.

    ERIC Educational Resources Information Center

    Fruman, Norman

    1991-01-01

    A review of Charles Sykes' book "The Hollow Men: Politics and Corruption in Higher Education" focuses on the portion that chronicles the political history of Dartmouth College (New Hampshire) from 1769. It is found to be a comprehensive analysis of the college's decline resulting from a "radically politicized and…

  15. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  16. Growth of hollow nickel fluoride whiskers

    SciTech Connect

    Petrov, S. V.; Orekhov, Yu. F.; Fedorov, P. P.

    2009-07-15

    Hollow nickel fluoride whiskers have been obtained by condensation from the vapor phase onto a platinum substrate in a flow of hydrogen fluoride. Crystals up to 5 mm in length have a square cross section with a 300 {+-} 30-{mu}m side. The wall thickness is 85 {+-} 20 {mu}m.

  17. Comparison of fabrication techniques for hollow retroreflectors

    NASA Astrophysics Data System (ADS)

    Preston, Alix; Merkowitz, Stephen

    2014-06-01

    Despite the wide usage of hollow retroreflectors, there is limited literature involving their fabrication techniques and only two documented construction methods could be found. One consists of an adjustable fixture that allows for the independent alignment of each mirror, while the other consists of a modified solid retroreflector that is used as a mandrel. Although both methods were shown to produce hollow retroreflectors with arc second dihedral angle errors, a comparison and analysis of each method could not be found, which makes it difficult to ascertain which method would be better suited to use for precision-aligned retroreflectors. Although epoxy bonding is generally the preferred method to adhere the three mirrors, a relatively new method known as hydroxide-catalysis bonding (HCB) presents several potential advantages over epoxy bonding. HCB has been used to bond several optical components for space-based missions, but has never been applied for construction of hollow retroreflectors. We examine the benefits and limitations of each bonding fixture as well as the present results and analysis of hollow retroreflectors made using both epoxy and HCB techniques.

  18. Inspecting Hollow Parts With a CAT Scanner

    NASA Technical Reports Server (NTRS)

    Kuhr, G. A.

    1985-01-01

    Technique well known in medicine, used on manufactured objects. As it passes through a part, beam of X-rays or other radiation attenuated and scattered. Computer records variations in beam as part rotated and constructs cross section for display on video monitor. Computeraided tomography (CAT) measures wall thickness and detecting flaws in hollow turbine blades or other curved parts.

  19. Template engaged synthesis of hollow ceria-based composites

    NASA Astrophysics Data System (ADS)

    Chen, Guozhu; Rosei, Federico; Ma, Dongling

    2015-03-01

    Hollow ceria-based composites, which consist of noble metal nanoparticles or metal oxides as a secondary component, are being studied extensively for potential applications in heterogeneous catalysis. This is due to their unique features, which exhibit the advantages of a hollow structure (e.g. high surface area and low weight), and also integrate the properties of ceria and noble metals/metal oxides. More importantly, the synergistic effect between constituents in hollow ceria-based composites has been demonstrated in various catalytic reactions. In this feature article, we summarize the state-of-the-art in the synthesis of hollow ceria-based composites, including traditional hard-templates and more recently, sacrificial-template engaged strategies, highlighting the key role of selected templates in the formation of hollow composites. In addition, the catalytic applications of hollow ceria-based composites are briefly surveyed. Finally, challenges and perspectives on future advances of hollow ceria-based composites are outlined.

  20. Template engaged synthesis of hollow ceria-based composites.

    PubMed

    Chen, Guozhu; Rosei, Federico; Ma, Dongling

    2015-03-19

    Hollow ceria-based composites, which consist of noble metal nanoparticles or metal oxides as a secondary component, are being studied extensively for potential applications in heterogeneous catalysis. This is due to their unique features, which exhibit the advantages of a hollow structure (e.g. high surface area and low weight), and also integrate the properties of ceria and noble metals/metal oxides. More importantly, the synergistic effect between constituents in hollow ceria-based composites has been demonstrated in various catalytic reactions. In this feature article, we summarize the state-of-the-art in the synthesis of hollow ceria-based composites, including traditional hard-templates and more recently, sacrificial-template engaged strategies, highlighting the key role of selected templates in the formation of hollow composites. In addition, the catalytic applications of hollow ceria-based composites are briefly surveyed. Finally, challenges and perspectives on future advances of hollow ceria-based composites are outlined.

  1. Synthesis and characterization of Eu3+:Gd2O3 hollow spheres for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kumari, Manisha; Sharma, Prashant K.

    2016-05-01

    Multifunctional magnetic Nanoparticles (MFMNPs) are potentially applicable in both drug delivery systems (DDS) and hyperthermia treatment. Structural, surface morphology and optical property were investigated by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) measurement. Uniform Eu3+:Gd2O3 hollow microspheres of 1.8-2.0 μm diameters were synthesized by template based approach. We found that synthesized Hollow spheres are 100 nm in thickness. FE-SEM images revealed that the synthesized material are hollow in structure with good porous structure and these pores work as pathway for releasing drugs from the hollow particle inside. Luminescent properties of material were studied by room temperature photoluminescence emission spectra under the excitation of 275 nm. Material exhibit bright red emission corresponding to the 5D0-7F2 transition of the activator ions under ultraviolet light excitation, which might find potential applications in fields such as drug delivery or biological labeling because of their excellent luminescence properties.

  2. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    SciTech Connect

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-15

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  3. Low-temperature solvothermal synthesis of EuS hollow microspheres

    SciTech Connect

    Peng, Yong; Wang, Hong; Li, Peng; Fu, Yao Xing, Mingming; Jiang, Tao; Luo, Xixian

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis, and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.

  4. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigeru; Akiba, Masato; Arakawa, Yoshihiro; Horiike, Hiroshi; Sakuraba, Junji

    1982-07-01

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation.

  5. Hollow hybrid polymer-graphene oxide nanoparticles via Pickering miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Thickett, Stuart C.; Wood, Noriko; Ng, Yun Hau; Zetterlund, Per B.

    2014-07-01

    The preparation of hybrid hollow capsules consisting of a cross-linked polymer shell and a coating of graphene oxide (GO) is demonstrated. The capsules are prepared by Pickering miniemulsion polymerization, exploiting the surface activity of GO for its use as a colloidal surfactant. This approach represents a simple and convenient route towards hollow carbon nanostructures for a variety of applications. The incorporation of surface-modified TiO2 nanoparticles into the interior of these capsules was also demonstrated.The preparation of hybrid hollow capsules consisting of a cross-linked polymer shell and a coating of graphene oxide (GO) is demonstrated. The capsules are prepared by Pickering miniemulsion polymerization, exploiting the surface activity of GO for its use as a colloidal surfactant. This approach represents a simple and convenient route towards hollow carbon nanostructures for a variety of applications. The incorporation of surface-modified TiO2 nanoparticles into the interior of these capsules was also demonstrated. Electronic supplementary information (ESI) available: Characterization of GO nanosheets, TEM images of porous polymer particles, polymer conversion vs. time data, particle size data, BET isotherm data. See DOI: 10.1039/c4nr01175a

  6. Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release.

    PubMed

    Wang, Baolin; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-09-01

    Hollow magnetic fibers for trigger based drug release were synthesized using one-step co-axial electrospinning (COX-ES). This was achieved by encapsulating the antifungal active 'ketoconazole' (KCZ) and iron oxide (Fe3O4) nanoparticles (NPs) in composite form within the core shell polymeric matrix material (polycaprolactone, PCL) during the COX-ES process. Dimethyl silicone oil was used as the inner core (liquid) of co-flowing solutions, which subsequently perfused out of the two-phase electrospun microstructures to form hollow fibers. Resulting drug-loaded magnetic hollow fibers were characterized using optical microscopy, scanning electron microscopy and Fourier Transform Infra-Red. The tensile strength and magnetization properties of composite fibers were also assessed. KCZ drug concentration in electrospinning solutions strongly influenced resulting fiber morphology, drug loading efficiency and release. Expedited drug release during a slow-sustained phase was demonstrated through the application of an auxiliary magnetic field. Variations in tensile strength (∼1.3-6.3MPa) were due to composite fiber components compromising polymer chain integrity. In-vitro cell studies (using human cervical carcinoma cell lines) demonstrated fiber biocompatibility. The present study demonstrates the potential application of magnetic hollow fibers for controlled treatment of fungal infections and antimicrobial indications.

  7. Anomalous intense driver (AID) concept

    SciTech Connect

    Thode, L.E.

    1980-03-01

    An optimized electron bunching mechanism is utilized to efficiently couple the energy of a 5 to 100 MeV, 1 to 30 TW electron beam into a 3 to 50 cm/sup 3/ plasma of electron density 10/sup 17/ to 10/sup 20/ cm-/sup 3/. An efficient coupling of beam energy and momentum to the plasma is possible due to the relativistic nature of the beam dynamics combined with the short wavelength of the bunching mechanism in a high-density plasma. The rapidly produced multi-kilovolt plasma can be used directly to develop a pulsed neutron and x-ray source. Alternatively, the plasma can be used to drive a hierarchy of inertial confinement or x-ray devices. Utilizing this novel concept, controlled thermonuclear fusion may be achievable within present or near term relativistic electron beam technology.

  8. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  9. Exotic hollow atom states pumped by relativistic laser plasma in a radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Woolsey, Nigel; Pikuz, S. A.; Faenov, A. Ya; Dance, R. J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Abdallah, J., Jr.; Colgan, J.

    2013-10-01

    In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from aluminium targets was observed at high laser contrast, for intensities of 3 × 1020 Wcm-2 and micron thick targets. These spectral observations are interpreted using detailed atomic kinetics calculations suggesting these exotic hollow atom states occur at near solid density and are driven by an intense polychromatic x-ray field. We estimate that this x-ray radiation field has energy in the kilovolt range and has an intensity exceeding 1018 Wcm-2. The field may arise through relativistic electron Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface.

  10. THz generation by self-focusing of hollow Gaussian laser beam in magnetised plasma

    NASA Astrophysics Data System (ADS)

    Hussain, Saba; Singh, Monika; Kishor Singh, Ram; Sharma, R. P.

    2014-09-01

    A scheme of terahertz (THz) generation is proposed by the self-focusing of a high-power laser beam having hollow Gaussian intensity profile in a collissionless magnetized plasma, where ponderomotive nonlinearity is operative. THz waves are resonantly excited at the difference frequency of laser and electron plasma wave (EPW) satisfying the proper phase matching conditions. In this paper first we have investigated the filamentation of the circularly polarized hollow Gaussian beam (HGB) propagating parallel to the direction of a static background magnetic field within the paraxial approximation, subsequently this filamented HG laser beam interplay with the electron plasma wave to generate a nonlinear current in the transverse direction, thereby producing THz radiations. The intensity of the emitted radiations are found to be highly sensitive to the order of the HGB. For the current scheme the power level of THz wave comes out to be ˜ 0.05 gigawatts.

  11. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Seol, Myeong-Lok; Kim, Moon-Seok; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-11-01

    Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon. After annealing in air, Cu nanoparticles are in situ oxidized and transformed into CuO, leading to the formation of hollow nanospheres because of the Kirkendall effect. The diameter size of as-prepared CuO hollow spheres anchored on porous Si nanowires is mainly around 30 nm. Finally, in order to illuminate the advantages of this novel hybrid nanostructure of nanosized hollow spheres supported on porous nanowires, its electrochemical sensing performance to hydrazine as an example has been further investigated. The results confirm that it is a good potential application to detect hydrazine.Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowires fabricated from heavily doped Si wafer are formed with a meso-porous structure by an Ag-assisted etching approach, and Cu nanoparticles are formed and uniformly decorated on the Si nanowires through a reaction of copper ions reduced by silicon. After annealing in air, Cu nanoparticles are in situ oxidized and transformed into CuO, leading to the

  12. Characteristics of Ozone Generation using a Micro Hollow Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Endo, Yasunobu; Yasuoka, Koichi; Ishii, Shozo

    A new type of ozone generator using a micro hollow cathode discharge has been developed and evaluated on its operating characteristics. The electrode system consists of two thin metal cathodes and a ceramic spacer with a center hole of a few 100 µm diameter. By feeding high- pressure oxygen gas through the center hole, the residence time of the oxygen gas within the discharge space decreases to the order of micro second. The ozone generation efficiency increases up to 45 g/kWh at the ozone concentration of 7.6 g/Nm3 without any cooling systems. In this ozone generating system, the ozone decomposition mechanisms such as electron impacts and the heat rise of oxygen gas are effectively removed by decreasing the gas-residence time.

  13. High-pressure dc glow discharges in hollow diamond cathodes

    NASA Astrophysics Data System (ADS)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  14. Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers.

    PubMed

    Ren, H; Nazarkin, A; Nold, J; Russell, P St J

    2008-10-13

    The potential of hollow core photonic crystal fiber as a nonlinear gas cell for efficient high harmonic generation is discussed. The feasibility of phase-matching this process by modulating the phase of ionization electrons using a counter-propagating laser field is shown. In this way, harmonics with energies of several hundreds of eV can be produced using fs-laser pump pulses of microJ energy.

  15. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    NASA Astrophysics Data System (ADS)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields. Electronic supplementary information (ESI) available: SXS data analysis, GIXS data analysis, GPC data, SXS data and GIXS data are available. See DOI: 10.1039/c5nr03800f

  16. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S. G.; Ramakrishna, Seeram

    2012-02-01

    Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO2 nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO2 nanofibers possess a high surface area of 118 m2 g-1 with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO2 nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (Jsc) are measured as 5.6% and 10.38 mA cm-2 respectively, which are higher than those of DSSC made using regular TiO2 nanofibers under identical conditions (η = 4.2%, Jsc = 8.99 mA cm-2). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO2 nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO2 nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO2 nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO2 nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO2 nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO2 nanocatalysts.Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium

  17. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  18. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity

    SciTech Connect

    Lian Suoyuan; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Gao Lei; Wu Di; Song Yanli; Xu Lin

    2006-06-15

    Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl{sub 3}.H{sub 2}O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 {mu}m with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products' crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe{sub 2}O{sub 3} for the destruction of diethyl phthalate in water was carried out. The result proved that Fe{sub 2}O{sub 3} hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min.

  19. Anomalous acoustoelectric effect in semiconductor layered structures using separated medium configuration

    NASA Astrophysics Data System (ADS)

    Abedin, M. N.; Strashilov, V. L.; Das, P.

    1990-01-01

    An anomalous acoustoelectric effect is observed in semiconductor layered structures and bulk semiconductors due to semiconductor surface conditions. We report preliminary results of this effect in semiconductors using the nondestructive surface acoustic wave (SAW) technique. The magnitude and polarity of the acoustoelectric voltages in GaAs/AlAs superlattices exhibit strong SAW frequency dependencies, a phenomenon that is not observed in bulk semiconductors. The anomalous acoustoelectric voltage (AAV) is detected in high electron mobility transistor (HEMT) and also bulk semiconductors as a function of bias voltage.

  20. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Benedetti, Carlo; Leemans, Wim

    2013-08-06

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.

  1. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    SciTech Connect

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  2. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  3. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    SciTech Connect

    Umegaki, Tetsuo; Ohashi, Takato; Xu, Qiang; Kojima, Yoshiyuki

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  4. Precise quantization of anomalous Hall effect near zero magnetic field

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  5. Experimental demonstration of anomalous Floquet topological insulator for sound.

    PubMed

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-11

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  6. Experimental demonstration of anomalous Floquet topological insulator for sound

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  7. Anomalously large anisotropic magnetoresistance in a perovskite manganite.

    PubMed

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X Z; Matsui, Y; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E Ward; Zhang, Jiandi

    2009-08-25

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La(0.69)Ca(0.31)MnO(3), leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a "colossal" AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings.

  8. Anomalous aharonov-bohm gap oscillations in carbon nanotubes.

    PubMed

    Sangalli, Davide; Marini, Andrea

    2011-10-12

    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observations of the Aharonov-Bohm effect at the nanoscale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab initio approach based on density functional theory, we show that this assumption fails at the nanoscale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density that is spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semiconductive and metallic tubes and the existence of a large metallic phase in the low flux regime of multiwalled nanotubes, also suggesting possible experiments to validate our results.

  9. Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity.

    PubMed

    Xue, Mengmeng; Tan, Yiwei

    2014-11-07

    A unique methodology having access to Au nanorods (AuNRs)-based hollow alloy nanostructures has been developed. The syntheses and characterization of the hollow Pt-Au nanoalloys with ellipsoidal and cylindrical shapes together with a rattle-type hollow Cu-Au nanoheterostructure are described. Unlike the conventional nanoscale Kirkendall process, the formation of these AuNRs-based hollow nanostructures occurs under extremely mild conditions, indicating a distinctive underlying mechanism. The key step for this present synthesis method is the incubation of AuNRs with CuCl2 at 60 °C in the presence of hexadecyltrimethylammonium bromide (CTAB) or hexadecyltrimethylammonium chloride (CTAC). The selective etching of the tips of AuNRs caused by Cu(2+) ions combined with the dissolved molecular oxygen promotes the generation of defects and vacancies, leading to a facile alloying reaction by the crystal fusion of AuNRs. Particularly, the results of the formation of the hollow nanoalloys in conjunction with various control experiments demonstrate that the halide ions that are specifically adsorbed on the AuNR surface afford sinks for vacancy accumulation and condensation during the unbalanced interdiffusion of alloying atoms, presumably because of the disproportion in the equilibrium concentration of vacancies. Thus, the void formation becomes kinetically favorable. The Pt-Au nanocages can provide modified surface electronic structures, resulting from their non-uniform crystalline structures and the surface segregation of Pt in the nanocages. These characteristics enable them to exhibit excellent electrocatalytic performance for the oxygen reduction reaction (ORR).

  10. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    NASA Astrophysics Data System (ADS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  11. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  12. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    PubMed

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  13. Neoclassical Viscosities and Anomalous Flows in Stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  14. Drag suppression in anomalous chiral media

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less

  15. Drag suppression in anomalous chiral media

    SciTech Connect

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of a super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  16. Models of anomalous diffusion: the subdiffusive case

    NASA Astrophysics Data System (ADS)

    Piryatinska, A.; Saichev, A. I.; Woyczynski, W. A.

    2005-04-01

    The paper discusses a model for anomalous diffusion processes. Their one-point probability density functions (p.d.f.) are exact solutions of fractional diffusion equations. The model reflects the asymptotic behavior of a jump (anomalous random walk) process with random jump sizes and random inter-jump time intervals with infinite means (and variances) which do not satisfy the Law of Large Numbers. In the case when these intervals have a fractional exponential p.d.f., the fractional Komogorov-Feller equation for the corresponding anomalous diffusion is provided and methods of finding its solutions are discussed. Finally, some statistical properties of solutions of the related Langevin equation are studied. The subdiffusive case is explored in detail. The emphasis is on a rigorous presentation which, however, would be accessible to the physical sciences audience.

  17. One-step carbonization synthesis of hollow carbon nanococoons with multimodal pores and their enhanced electrochemical performance for supercapacitors.

    PubMed

    Zhang, Jianan; Wang, Kaixi; Guo, Shaojun; Wang, Shoupei; Liang, Zhiqiang; Chen, Zhimin; Fu, Jianwei; Xu, Qun

    2014-02-12

    Hollow carbon capsules with multimodal pores are highly promising for developing novel electrode materials for high-performance electrochemical devices due to their more active sites for ion and electron transfer. However, at present, most of the previous efforts are focused on the multistep process for the synthesis of hollow carbon nanostructures with individual pores. Herein, hollow carbon nanococoons (HCNCs) with non-spherical cavity and multimodal hierarchical pores have been facilely synthesized via a one-step carbonization of a Fe2O3/carbon precursor core/shell nanospindle at 850 °C. We interestingly found that during the carbonization, Fe2O3 was automatically "escaped" from the inside nanospindle, leading to the formation of new HCNCs. Most importantly, the spindle-shaped cavity of the obtained HCNCs with high conductivity can offer a multimodal ion diffusion pathway, which can facilitate the reaction kinetics in a supercapacitor. As a result, the HCNCs-based supacapacitor exhibits the capacitance of 220.0 F g(-1) at a given scan rate of 5 mV s(-1), 3.5 times higher than that of hollow carbon spheres, high stability with 98% of the initial capacity maintained even after 1000 cycles, and high rate capability. This work provides a new and facile avenue for enhancing performance of a HCNCs-based supercapacitor by using the non-spherical hollow structures with multimodal pores.

  18. Anomalous cross-B field transport and spokes in HiPIMS plasma

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.

    2016-05-01

    Localized light emission patterns observed during on time of a high power impulse magnetron sputtering (HiPIMS) discharge on a planar magnetron, known as spokes or ionization zones, have been identified as a potential source of anomalous cross-B field diffusion. In this paper experimental evidence is presented that anomalous diffusion is triggered by the appearance of spokes. The Hall parameter {ω\\text{ce}}{τ\\text{c}} , product of the electron cyclotron frequency and the classical collision time, reduces from Bohm diffusion values (∼ 16 and higher) down to the value of 3 as spokes appear, indicating anomalous cross-B field transport. A combination of intensified charge coupled device imaging and electric probe measurements reveals that the ions from the spokes are instantaneously diffusing away from the target. The ion diffusion coefficients calculated from a sideways image of the spoke are six times higher than Bohm diffusion coefficients, which is consistent with the reduction of the Hall parameter.

  19. Electrochemical Cell Design With A Hollow Gate

    DOEpatents

    Romero, Antonio; Oweis, Salah; Chagnon, Guy; Staniewicz, Robert; Briscoe, Douglas

    2000-02-01

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.

  20. Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries.

    PubMed

    Sun, Qiang; He, Bin; Zhang, Xiang-Qian; Lu, An-Hui

    2015-08-25

    We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C).

  1. The Hollow Cathode Phase of Pseudospark Operation

    DTIC Science & Technology

    1993-06-01

    THE HOLLOW CATHODE PHASE OF PSEUDOSPARK OPERATION L. Pitchford and J. P. Boeuf University Paul Sabatier, France V. Puech University De Paris-Sud...ORGANIZATION NAME(S) AND ADDRESS(ES) University Paul Sabatier, France 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME...Appl. Phys. 53, 1699 (1988). [9] A. Anders, S. Anders, and M. Gundersen, submitted to Phys. Rev. Lett. [10] J. P. Boeuf and L. Pitchford , IEEE

  2. A model of hollow cathode plasma chemistry

    NASA Technical Reports Server (NTRS)

    Katz, I.; Anderson, J. R.; Polk, J. E.; Brophy, J. R.

    2002-01-01

    We have developed a new model of hollow cathode plasma chemistry based on the observation that xenon ion mobility is diffusion limited due to resonant charge exchange reactions. The model shows that vapor phase barium atoms are ionized almost immediately and electric fields accelerate the ions upstream from the emission zone. We have also applied the model to the orifice region, where the resultant ion generation profile correlates with previously reported orifice erosion.

  3. Improved method for producing small hollow spheres

    DOEpatents

    Rosencwaig, A.; Koo, J.C.; Dressler, J.L.

    An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.

  4. Silicone-Rubber Tooling for Hollow Panels

    NASA Technical Reports Server (NTRS)

    Gallimore, F. H.

    1985-01-01

    Wave-free contour surface obtained by using flexible mold. Silicone-rubber layup tool, when used in conjunction with hard plastic laminating mold defining desired contour, produces panel with wave-free surface that accurately reproduces shape of mold. In addition to providing porous hollow-panel wing structure that acts as duct for transporting sucked boundary layer tooling, also used to fabricate high-strength lightweight door panels and any single-or compound-contour panel.

  5. Trapping of intense light in hollow shell

    SciTech Connect

    Luan, Shixia; Yu, Wei; Yu, M. Y.; Weng, Suming; Wang, Jingwei; Xu, Han; Zhuo, Hongbin; Wong, A. Y.

    2015-09-15

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated.

  6. C12A7 Electride Hollow Cathode

    DTIC Science & Technology

    2013-03-01

    those found in clathrate phases of ice and in zeolites , there is an important difference in that the unit cell of C12A7 is positively charged. In other...while Ba-W is heated above 1300 K (Goebel, Watkins & Jameson, 2007). These temperatures require well-made heaters and good thermal insulation. Ba-W...Chu, L. (2006, July 9-12). Characterization of Hollow Cathode Performance and Thermal Behavior. AIAA-2006-5150. Sacramento, California. 11

  7. Aminated hollow silica spheres for electrochemical DNA biosensor

    NASA Astrophysics Data System (ADS)

    Ariffin, Eda Yuhana; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2015-09-01

    An electrochemical DNA biosensor for e.coli determination based on aminated hollow silica was successfully developed. Aminated hollow silica spheres were prepared through the reaction of Tween 20 template and silica precursor. The template was removed by the thermal decomposition at 620°C. Hollow silica spheres were modified with (3-Aminopropyl) triethoxysilane (APTS) to form aminated hollow silica spheres.Aminated DNA probe were covalently immobilized on to the amine functionalized hollow silica spheres through glutaradehyde linkers. The formation hollow silica was characterized using FTIR and FESEM. A range of 50-300nm particle size obtained from FESEM micrograph. Meanwhile for the electrochemical study, a quasi-reversible system has been obtain via cyclic voltammetry (CV).

  8. Anomalous mass dimension in multiflavor QCD

    NASA Astrophysics Data System (ADS)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  9. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  10. Cardiovascular magnetic resonance of anomalous coronary arteries.

    PubMed

    Varghese, Anitha; Keegan, Jennifer; Pennell, Dudley J

    2005-09-01

    Cardiovascular magnetic resonance of anomalous coronary arteries is a class I indication. The term anomalous coronary artery encompasses those with an abnormal origin (from the incorrect sinus, too-high or too-low from the correct sinus, or from the pulmonary artery) and/or number of ostia. Their clinical significance results from the increased risk of myocardial infarction and sudden cardiac death associated with those traversing an interarterial course between the aorta and main pulmonary artery/right ventricular outflow tract. In this article, we review the role and practice of cardiovascular magnetic resonance in this field.

  11. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  12. Method for producing small hollow spheres

    DOEpatents

    Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.

    1981-01-01

    A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.

  13. Cam shaft with expanded hollow shaft

    SciTech Connect

    Hughes, R.W.; Brisson, R.H.; Brisson, G.R.

    1987-09-15

    This patent describes a camshaft having lobes with irregularly shaped apertures spaced along the longitudinal axis of a hollow tubular shaft. The lobes are orientated radially and axially in predetermined positions along the hollow tubular shaft. The camshaft is characterized by the walls of the hollow shaft expanded outwardly into aperture portions in irregular engagement with the interior of the apertures of the lobes and the walls expanded outwardly radially farther into ballooned portions between adjacent lobes to create corresponding outside and inside shoulders extending between the aperture and ballooned portions. The outside shoulders are disposed immediately adjacent and abutting each side of the lobes circumferentially about the apertures therein to secure the lobes axially upon the shaft, the inside shoulders disposed directly opposite the outside shoulders to that shoulder extend annularly about each end of each of the apertures and the ballooned portions extend between shoulders at adjacent lobes, the exterior circumferences of the lobes being furnished to closer tolerances than the interior apertures and the exterior surfaces of the lobes being positioned radially relative to the longitudinal axis with the radial positions of the interior apertures being offset among adjacent lobes.

  14. Scale-up of hollow fiber extractors

    SciTech Connect

    Seibert, A.F.; Fair, J.R.

    1997-01-01

    The performance of a commercial-scale hollow fiber extraction system was investigated by the Separations Research Program (SRP) at the University of Texas at Austin. In this work, hexanol was extracted from water into octanol using a large-scale extraction/distillation system. In the membrane extractor studies, the octanol-rich phase was fed on the tube-side while in the packed column studies, the octanol-rich phase was chosen as the dispersed phase. This chemical system was selected because of its high solute distribution coefficient. As a result, the required solvent to feed ratio was low which creates hydraulic problems for conventional dispersive extractors such as the packed column. Under identical operating conditions, the mass transfer performance of the hollow fiber extractor compared favorably with that of a commercial-scale type 2 structured packing. A height equivalent to a theoretical stage (HETS) of 1.5 meters was obtained with the membrane extractor as compared to 15 meters for the type 2 structured packing. A staged hollow fiber extraction mass transfer model for scale-up was developed and found to agree with data obtained in this work and with data obtained earlier using the n-butanol/succinic acid/water system.

  15. High-optical-quality cryogenic hollow retroreflectors

    NASA Astrophysics Data System (ADS)

    Lyons, James J.; Hayes, Patricia A.

    1995-09-01

    The Cassini mission to Saturn will contain the CIRS instrument which is currently being developed and assembled at the Goddard Space Flight Center. The CIRS instrument contains two science interferometers that operate in the mid and far infrared regions of the spectrum and one reference interferometer which operates in the visible. The heart of each of the interferometers is a series of hollow glass retroreflectors (cube corners) and hollow dihedrals. The hollow retroreflectors are constructed of individual facets of zerodur glass which are bonded 90 degrees to each other to sub arc-second accuracies. They are then coated with a reflective overcoat to meet the wavelength requirements. The effort at Goddard resulted in the development of retroreflectors that not only performed well at ambient temperatures, but also retained a wavefront error of approximately 2 waves p-v with a maximum beam deviation of 15 arc seconds at a temperature of 170 degrees kelvin or below. Also developed at GSFC is a successful means of mounting the retroreflectors on a fixed zerodur mount to allow cooling them down to these temperatures without introducing any added stresses that are not already present in the unmounted retroreflectors.

  16. Anomalous spin precession and spin Hall effect in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Bi, Xintao; He, Peiru; Hankiewicz, E. M.; Winkler, R.; Vignale, Giovanni; Culcer, Dimitrie

    2013-07-01

    Spin-orbit (SO) interactions give a spin-dependent correction r̂so to the position operator, referred to as the anomalous position operator. We study the contributions of r̂so to the spin Hall effect (SHE) in quasi-two-dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r̂so, which have not been considered in the literature so far. One term reflects the modification of spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r̂so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish identically.

  17. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    SciTech Connect

    Barker, Madeline T.

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  18. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    PubMed

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications.

  19. Hydrothermal synthesis of hollow silica spheres under acidic conditions.

    PubMed

    Yu, Qiyu; Wang, Pengpeng; Hu, Shi; Hui, Junfeng; Zhuang, Jing; Wang, Xun

    2011-06-07

    It is well-known that silica can be etched in alkaline media or in a unique hydrofluoric acid (HF) solution, which is widely used to prepare various kinds of hollow nanostructures (including silica hollow structures) via silica-templating methods. In our experiments, we found that stöber silica spheres could be etched in generic acidic media in a well-controlled way under hydrothermal conditions, forming well-defined hollow/rattle-type silica spheres. Furthermore, some salts such as NaCl and Na(2)SO(4) were found to be favorable for the formation of hollow/rattle-type silica spheres.

  20. A facile approach to synthesize SiO2 · Re2O3 (Re = Y, Eu, La, Sm, Tb, Pr) hollow sphere and its application in drug release

    NASA Astrophysics Data System (ADS)

    Li, Zhihua; Zhu, Lin; Liu, Qian; Du, Yu; Wang, Feng

    2013-10-01

    Multifunctional SiO2 · Re2O3 (Re = Y, Eu, La, Sm, Tb, Pr) hollow spheres (HSs) have been fabricated using an acidic Re3+ ion solution. Under ultraviolet radiation, functional HSs emit different colors of light according to the different rare-earth ions embedded into the shell of SiO2 hollow spheres. The as-prepared hollow capsules were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and energy-dispersive spectrometry. Drug loading and release experiments have been carried out using SiO2 · Eu2O3 HSs that acted as drug carriers. The results demonstrate that the multifunctional HSs exhibit a high storage capacity and the ability of retaining drug stability and activity, which indicates that the as-synthesized fluorescent hollow capsules are a potential candidate as drug delivery materials.

  1. Photoexcitation of K-shell and L-shell Hollow Beryllium

    SciTech Connect

    Hasegawa, Shuichi; Yoshida, Fumiko; Matsuoka, Leo; Koike, Fumihiro; Fritzsche, Stephan; Obara, Satoshi; Azuma, Yoshiro; Nagata, Tetsuo

    2006-07-14

    We have observed K-shell and L-shell hollow beryllium atoms (2s{sup 2}2p3s and 1s3s{sup 2}3p) created by photoexcitation using synchrotron radiation. Resonance shapes were fitted to the Fano profile and the parameters were deduced. A Dirac-Fock calculation was performed to identify the configuration of the peaks and to predict other hollow atomic peaks. The results of the calculation were in good agreement with the experimental data. The comparison of the transition strength has revealed that the three-electron photoexcitation to the 1s3s{sup 2}3p configuration is stronger than the two-electron photoexcitation to the 2s{sup 2}2p3s configuration. This is attributed to the large overlap between the 2s orbital of the ground state (1s{sup 2}2s{sup 2}) with the 3s orbital of the L-shell hollow state (1s3s{sup 2}3p)

  2. Sacrificial template method for fabrication of submicrometer-sized YPO(4):Eu(3+) hierarchical hollow spheres.

    PubMed

    Zhang, Lihui; Jia, Guang; You, Hongpeng; Liu, Kai; Yang, Mei; Song, Yanhua; Zheng, Yuhua; Huang, Yeju; Guo, Ning; Zhang, Hongjie

    2010-04-05

    Large-scale good-quality submicrometer-sized YPO(4):Eu(3+) hollow spheres were synthesized by utilizing the colloidal spheres of Y(OH)CO(3):Eu(3+) as a sacrificial template and NH(4)H(2)PO(4) as a phosphorus source, for the first time. The whole process mainly consists of the hydrothermal reaction and acid erosion. The YPO(4):Eu(3+)@Y(OH)CO(3):Eu(3+) core-shell structures were first obtained after the hydrothermal process. Then, the remaining Y(OH)CO(3):Eu(3+) was removed by selective dissolution in a dilute nitric acid solution. The YPO(4):Eu(3+) hollow spheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL). The formation mechanism was also investigated. The obtained YPO(4):Eu(3+) hollow spheres may have potential applications in cell biology, drug release, and diagnosis, due to high chemical stability and luminescence functionality.

  3. Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers

    NASA Astrophysics Data System (ADS)

    Wei, Bin-bin; Wu, Yan-bo; Yu, Fang-yuan; Zhou, Ya-nan

    2016-04-01

    Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5-4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge-discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.

  4. Thermo-responsive hollow silica microgels with controlled drug release properties.

    PubMed

    Liu, Guoqiang; Zhu, Changling; Xu, Jun; Xin, Yan; Yang, Tingting; Li, Jing; Shi, Lei; Guo, Zhiguang; Liu, Weimin

    2013-11-01

    Thermo-responsive hollow silica microgels (THSMGs) consisting of a hollow core, an intermediate silica supporting layer and a smart polymer gel corona were fabricated via organic-inorganic hybridization. Hollow silica particles and PNIPAAm microgels were successfully combined by utilizing the cross-linking reaction between 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) and silanol groups on the silica surface, and then the copolymerization of TMSPMA and N-isopropylacrylamide (NIPAAm). The morphology and chemical composition were systematically examined by field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS) and the Brunauer-Emmett-Teller (BET) measurement. The thermo-responsive phase transition behavior was investigated by the determination of the lower critical solution temperature (LCST), and particle size measurement using dynamic light scattering. THSMGs remain porous even after the coverage of PNIPAAm gels, and also have obvious hydrophilic/hydrophobic transition property and good swelling/collapse capability in spite of the rigid silica layer. The results of in vitro cytotoxicity evaluation and Rhodamine B (RHB) release study demonstrated that THSMGs have good biocompatibility, and achieve a thermo-responsive controlled-release behavior. The prepared THSMGs show considerable potential for applications as targeted and ambient temperature responsive drug delivery system.

  5. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.

    PubMed

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing; Li, Jia-Xin; Ye, Chen; Wang, Jiu-Ju; Yu, Shan; Li, Cheng-Bo; Gao, Yu-Ji; Meng, Qing-Yuan; Tung, Chen-Ho; Wu, Li-Zhu

    2014-06-11

    Hollow spheres are one of the most promising micro-/nanostructures because of their unique performance in diverse applications. Templates, surfactants, and structure-directing agents are often used to control the sizes and morphologies of hollow spheres. In this Article, we describe a simple method based on visible light catalysis for preparing hollow nanospheres from CdE (E = Te, Se, and S) quantum dots (QDs) and nickel (Ni(2+)) salts in aqueous media. In contrast to the well-developed traditional approaches, the hollow nanospheres of QDs are formed in situ by the photogeneration of hydrogen (H2) gas bubbles at room temperature. Each component, that is, the QDs, metal ions, ascorbic acid (H2A), and visible light, is essential for the formation of hollow nanospheres. The quality of the hollow nanospheres depends on the pH, metal ions, and wavelength and intensity of visible light used. Of the various metal ions investigated, including Cu(+), Cu(2+), Fe(2+), Fe(3+), Ni(2+), Mn(2+), RuCl5(2-), Ag(+), and PtCl4(2-), Ni(2+) ions showed the best ability to generate H2 and hollow-structured nanospheres under visible light irradiation. The average diameter and shell thickness of the nanospheres ranged from 10 to 20 nm and from 3 to 6 nm, respectively, which are values rarely reported in the literature. Studies using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-AES), and steady-state and time-resolved spectroscopy revealed the chemical nature of the hollow nanospheres. Additionally, the hollow-structured nanospheres exhibit excellent photocatalytic activity and stability for the generation of H2 with a rate constant of 21 μmol h(-1) mg(-1) and a turnover number (TON) of 137,500 or 30,250 for CdTe QDs or nickel, respectively, under visible light irradiation for 42 h.

  6. Development and Characterization of Novel Site Specific Hollow Floating Microspheres Bearing 5-Fu for Stomach Targeting

    PubMed Central

    Bhardwaj, Peeyush; Singh, Ranjit; Swarup, Anoop

    2014-01-01

    Multiple-unit-type oral floating hollow microspheres of 5-fluorouracil (5-Fu) were developed using modified solvent evaporation technique to prolong gastric residence time, to target stomach cancer, and to increase drug bioavailability. The prepared microspheres were characterized for micromeritic properties, floating behavior, entrapment efficiency, and scanning electron microscopy (SEM). The in vitro drug release and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. The yield of microspheres was obtained up to 84.46 ± 6.47%. Microspheres showed passable flow properties. Based on optical microscopy, particle size was found to be ranging from 158.65 ± 12.02 to 198.67 ± 17.45 μm. SEM confirmed spherical size, perforated smooth surface, and a hollow cavity inside the microspheres. Different kinetic models for drug release were also applied on selected batches. PMID:25383377

  7. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    SciTech Connect

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O’Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  8. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments.

    PubMed

    Wang, Meng; Zhang, Weimin; Wang, Jiazhao; Wexler, David; Poynton, Simon D; Slade, Robert C T; Liu, Huakun; Winther-Jensen, Bjorn; Kerr, Robert; Shi, Dongqi; Chen, Jun

    2013-12-11

    Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries. The electrocatalyst is finally examined in a H2/O2 alkaline anion exchange membrane fuel cell; the results show that such electrocatalysts could work in a real fuel cell application as a more efficient catalyst than state-of-the-art commercially available Pt/C.

  9. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  10. Preparation and properties of hollow fiber membranes for removing virus and bacteria.

    PubMed

    Woo, Seung Moon; Chung, Youn Suk; Lee, Sun Yong; Nam, Sang Yong

    2014-12-01

    In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 800 L/mh, 0.03 μm at 1.0 kgf/cm2. The bacteria removal performance of prepared UF membranes was over 6 logs

  11. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  12. Cu20Si12: A Hollow Cage Constituted of a Copper Dodecahedron and a Silicon Icosahedron.

    PubMed

    Zhao, Hui-Yan; Wang, Jing; Ai, Ling-Yan; Liu, Ying

    2016-08-11

    A stable hollow copper silicide cage with Ih symmetry, Cu20Si12, constituted of a copper dodecahedron and a silicon icosahedron, was investigated using density functional theory. Molecular dynamics simulations show that Cu20Si12 retains its geometric topology up to an effective temperature of about 962 K. The molecule has a HOMO-LUMO gap of 1.099 eV, indicating its relatively high chemical stability. These frontier molecular orbitals show clear characteristics of hybridization between Si 3p and Cu 3d electrons. This proposed structure helps to extend the range of high-symmetry molecular polyhedral species. The hollow space within Cu20Si12 can be used to accommodate other atoms or molecules and emphasizes the benefit of studying endohedral fullerenes.

  13. Polysaccharide-based polyelectrolytes hollow microcapsules constructed by layer-by-layer technique.

    PubMed

    Zhang, Yifeng; Chen, Cong; Wang, Jianguo; Zhang, Lina

    2013-07-25

    Two water-soluble polysaccharide derivatives, carboxymethylated and quarternized glucans (CMGP and QGP) were synthesized for the first time from water-insoluble polysaccharides (GP) extracted from Ganoderma lucidum. Hollow microspheres were constructed using electrostatic layer-by-layer (LbL) deposition of the CMGP and QGP polyelectrolytes onto colloidal ZnO particles followed by the core decomposition with an acid solution. The structures of the multilayered CMGP/QGP microspheres were investigated by transmission electron microscopy (TEM), zeta potential and dynamic light scattering (DLS). The results revealed that the multilayer thickness increased regularly from 48 to 145 nm as the number of deposited CMGP/QGP layers was increased from two to seven, and the mean increment of thickness was ∼25 nm per layer, reflecting the high regularity of the layer-by-layer assembly. This work provided an easy method to construct hollow microcapsules with biocompatibility and controlled dimensions.

  14. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  15. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; ...

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  16. A facile route to prepare boron nitride hollow particles at 450 °C

    NASA Astrophysics Data System (ADS)

    Sun, Changhui; Guo, Chunli; Ma, Xiaojian; Xu, Liqiang; Qian, Yitai

    2009-07-01

    Hexagonal boron nitride (h-BN) particles including hollow spheres (with a proportion of ~30-40%) and nanotubes (10%) have been synthesized by using sodium fluoroborate and sodium azide at 450 °C for 20 h. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) studies show that the as-obtained BN hollow particles are crystalline. The total specific surface area of the product calculated from Brunauer-Emmentt-Teller (BET) absorption measurement is 89.79 m 2/g, indicating that it may be utilized as a promising candidate for hydrogen storage container or catalyst. Thermal gravimetric analysis (TGA) result reveals its excellent thermal stability below 800 °C. Its possible growth mechanism and the effects of reaction parameters were also briefly discussed.

  17. Anomalous Cepheids in the Sculptor dwarf galaxy

    SciTech Connect

    Smith, H.A.; Stryker, L.L.

    1986-08-01

    The Sculptor dwarf galaxy contains at least three Cepheids (V25, V26, and V119), each with a period near 1 day and B magnitudes about 1.4 mag brighter than those of the Sculptor RR Lyrae stars. Low-resolution spectra of these so-called anomalous Cepheids were obtained. Metal abundances of the Cepheids have been determined by the Delta-S method and are found to be: Fe/H = -1.9 + or - 0.2, -1.8 + or - 0.2, and -2.2 + or - 0.3 for V25, V26, and V119, respectively. These values are consistent with the metal abundances of Sculptor red giants estimated from the color of the giant branch. Pulsational masses have been estimated for V25 and V26, but there is a need for improved photometry of these stars to obtain accurate results. It cannot be unambiguously established whether the Sculptor anomalous Cepheids are evolved single stars, aged about 3 Gyr, or whether they are created by mass transfer in older binary systems. The occurrence of anomalous Cepheids in other systems is discussed. There is some evidence that most anomalous Cepheids in the Small Magellanic Cloud are evolved single stars. 89 references.

  18. RSRM Nozzle Anomalous Throat Erosion Investigation Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Wendel, Gary M.

    1998-01-01

    In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.

  19. Total least squares for anomalous change detection

    SciTech Connect

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  20. Fan instability and limitation of the runaway-electron current

    SciTech Connect

    Mal'kov, M.A.; Sagdeev, R.Z.; Shapiro, V.D.

    1983-05-01

    The effect of the fan instability of the runaway-electron tail on the dynamics of the acceleration of these electrons by the electric field is analyzed. A system of equations describing the conversion of the electron energy from longitudinal to transverse and also describing the anomalous electron thermal conductivity is derived and solved. These effects result from the fan instability. The anomalous electrical conductivity of a plasma is calculated from the runaway-electron current.