Sample records for anomalous system behavior

  1. Multi-Sensor Information Integration and Automatic Understanding

    DTIC Science & Technology

    2008-11-01

    also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the

  2. Method and apparatus for analyzing error conditions in a massively parallel computer system by identifying anomalous nodes within a communicator set

    DOEpatents

    Gooding, Thomas Michael [Rochester, MN

    2011-04-19

    An analytical mechanism for a massively parallel computer system automatically analyzes data retrieved from the system, and identifies nodes which exhibit anomalous behavior in comparison to their immediate neighbors. Preferably, anomalous behavior is determined by comparing call-return stack tracebacks for each node, grouping like nodes together, and identifying neighboring nodes which do not themselves belong to the group. A node, not itself in the group, having a large number of neighbors in the group, is a likely locality of error. The analyzer preferably presents this information to the user by sorting the neighbors according to number of adjoining members of the group.

  3. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalousmore » behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.« less

  4. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    PubMed

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  5. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    USGS Publications Warehouse

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  6. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  7. Identification and detection of anomalies through SSME data analysis

    NASA Technical Reports Server (NTRS)

    Pereira, Lisa; Ali, Moonis

    1990-01-01

    The goal of the ongoing research described in this paper is to analyze real-time ground test data in order to identify patterns associated with the anomalous engine behavior, and on the basis of this analysis to develop an expert system which detects anomalous engine behavior in the early stages of fault development. A prototype of the expert system has been developed and tested on the high frequency data of two SSME tests, namely Test #901-0516 and Test #904-044. The comparison of our results with the post-test analyses indicates that the expert system detected the presence of the anomalies in a significantly early stage of fault development.

  8. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  9. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  10. Model-based reasoning for power system management using KATE and the SSM/PMAD

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian

    1993-01-01

    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.

  11. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  12. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  13. Machine intelligence-based decision-making (MIND) for automatic anomaly detection

    NASA Astrophysics Data System (ADS)

    Prasad, Nadipuram R.; King, Jason C.; Lu, Thomas

    2007-04-01

    Any event deemed as being out-of-the-ordinary may be called an anomaly. Anomalies by virtue of their definition are events that occur spontaneously with no prior indication of their existence or appearance. Effects of anomalies are typically unknown until they actually occur, and their effects aggregate in time to show noticeable change from the original behavior. An evolved behavior would in general be very difficult to correct unless the anomalous event that caused such behavior can be detected early, and any consequence attributed to the specific anomaly. Substantial time and effort is required to back-track the cause for abnormal behavior and to recreate the event sequence leading to abnormal behavior. There is a critical need therefore to automatically detect anomalous behavior as and when they may occur, and to do so with the operator in the loop. Human-machine interaction results in better machine learning and a better decision-support mechanism. This is the fundamental concept of intelligent control where machine learning is enhanced by interaction with human operators, and vice versa. The paper discusses a revolutionary framework for the characterization, detection, identification, learning, and modeling of anomalous behavior in observed phenomena arising from a large class of unknown and uncertain dynamical systems.

  14. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  15. Anomalous behaviors during infiltration into heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.

    2018-03-01

    Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n < 1/2) and super (n > 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.

  16. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  17. Cooper Pair-Like Systems at High Temperature and their Role on Fluctuations Near the Critical Temperature

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Dorbolo, S.

    A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.

  18. Anomalous Faraday effect of a system with extraordinary optical transmittance.

    PubMed

    Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru

    2007-05-28

    It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

  19. Anomalous law of cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapas, Luciano C., E-mail: luciano.lapas@unila.edu.br; Ferreira, Rogelma M. S., E-mail: rogelma.maria@gmail.com; Rubí, J. Miguel, E-mail: mrubi@ub.edu

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law ofmore » thermodynamics.« less

  20. A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao

    2018-04-01

    NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.

  1. Normal and anomalous nuclear spin-lattice relaxation at high temperatures in Sc-H(D), Y-H, and Lu-H solid solutions

    NASA Astrophysics Data System (ADS)

    Barnes, R. G.; Han, J.-W.; Torgeson, D. R.; Baker, D. B.; Conradi, M. S.; Norberg, R. E.

    1995-02-01

    We report the results of measurements of the proton (1H) spin-lattice relaxation rate R1 at high temperatures (to ~1400 K) in the hcp (α) solid-solution phases of the Sc-H, Y-H, and Lu-H systems, and of R1(45Sc) in Sc-H and Sc-D solid solutions. The latter measurements show unambiguous evidence of an anomalous increase at ~1000 K, whereas R1(1H) shows no such increase at any temperature. This behavior of R1(1H) contrasts with that in the bcc V-H, etc., solid solutions where anomalous relaxation occurs below ~1000 K, and in all investigated metal dihydride phases, MH2-x. The anomalous R1(1H) behavior in α-VHx, α-NbHx, etc., may be understood in terms of fast spin relaxation in the H2 gas in equilibrium with the solid, mediated by fast gas-solid exchange of hydrogen. However, in the present systems, α-ScHx, α-YHx, etc., the H2 gas pressure in equilibrium with the hcp systems is extremely low, resulting in negligible H2 concentration in the gas phase, and consequently a negligible contribution to R1(1H). In contrast, some of the present measurements indicate that the R1(45Sc) anomaly does result from the hydrogen content of the metal, but the mechanism remains unexplained.

  2. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less

  3. Resonant behavior of the generalized Langevin system with tempered Mittag–Leffler memory kernel

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2018-05-01

    The generalized Langevin equation describes anomalous dynamics. Noise is not only the origin of uncertainty but also plays a positive role in helping to detect signals with information, termed stochastic resonance (SR). This paper analyzes the anomalous resonant behaviors of the generalized Langevin system with a multiplicative dichotomous noise and an internal tempered Mittag–Leffler noise. For a system with a fluctuating harmonic potential, we obtain the exact expressions of several types of SR such as the first moment, the amplitude and autocorrelation function for the output signal as well as the signal–noise ratio. We analyze the influence of the tempering parameter and memory exponent on the bona fide SR and the general SR. Moreover, it is detected that the critical memory exponent changes regularly with the increase of the tempering parameter. Almost all the theoretical results are validated by numerical simulations.

  4. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egid, Adin Ezra

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides amore » useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network. Additionally, we study indicators related to the speed of movement of a user based on the physical location of their current and previous logins. This data can be ascertained from the IP addresses of the users, and is likely very similar to the fraud detection schemes regularly utilized by credit card networks to detect anomalous activity. In future work we would look to nd a way to combine these indicators for use as an internal fraud detection system.« less

  5. Survey of Anomaly Detection Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview ofmore » popular techniques and provide references to state-of-the-art applications.« less

  6. Effect of rare-earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride hafnium pentatelluride

    NASA Astrophysics Data System (ADS)

    Lowhorn, Nathan Dane

    The transition metal pentatellurides HfTe5 and ZrTe5 have been observed to possess interesting electrical transport properties. High thermopower and low resistivity values result in high thermoelectric power factors. In addition, they possess anomalous transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe5 and 145 K for ZrTe5. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. This behavior has been found to be extremely sensitive to changes in the energetics of the system through influences such as magnetic field, stress, pressure, microwave radiation, and substitutional doping. This behavior has yet to be fully explained. Previous doping studies have shown profound and varied effects on the anomalous transport behavior. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe5 with rare-earth elements. We have grown single crystals of nominal Hf0.75RE 0.25Te5 where RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy, and Ho. Electrical resistivity and thermopower data from about 10 K to room temperature are presented and discussed in terms of the thermoelectric properties. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over that of previously studied pentatellurides and the commonly used thermoelectric material Bi2Te3. For nominal Hf0.75Nd0.25Te5 and Hf0.75 Sm0.25Te5, values more than a factor of 2 larger than that Bi2Te3 are observed. In addition, suppression of the anomalous transport behavior leads to a suppression of the large magnetoresistive effect observed in the parent compounds. Rare-earth doping of HfTe5 has a profound impact on the anomalous electrical transport properties of the parent pentatellurides and produces enhanced thermoelectric properties.

  7. Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs

    PubMed Central

    Chen, You; Malin, Bradley

    2014-01-01

    Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309

  8. Anomalous temperature-dependent heat transport in one-dimensional momentum-conserving systems with soft-type interparticle interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2017-04-01

    We numerically investigate the heat transport problem in a one-dimensional momentum-conserving lattice with a soft-type (ST) anharmonic interparticle interaction. It is found that with the increase of the system's temperature, while the introduction of ST anharmonicity softens phonons and decreases their velocities, this type of nonlinearity like its hard type (HT) counterpart, can still not be able to fully damp the longest wavelength phonons. Therefore, a usual anomalous temperature dependence of heat transport with certain scaling properties similarly to those shown in the Fermi-Pasta-Ulam-β -like systems with HT interactions can be seen. Our detailed examination from simulations verifies this temperature-dependent behavior well.

  9. Anomalous Coulomb oscillation in crossed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baek, Seung Jae; Lee, Dongsu; Park, Seung Joo; Park, Yung Woo; Svensson, Johannes; Jonson, Mats; Campbell, Eleanor E. B.

    2008-03-01

    Single-walled carbon nanotube (SWCNT) crossed junctions separated by an insulating layer were fabricated to investigate the double quantum dot modulated by a single gate (DQD-sG). Anomalous Coulomb oscillations were observed on the lower CNT at low temperature, where the behavior was interpreted by the concept of a double quantum dot (DQD) system http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id =APPLAB000089000023233107000001&idtype=cvips&gifs=yes [1]. To understand it more clearly, we have intentionally fabricated crossed CNTs without oxide layer in between. The observed anomalous Coulomb oscillations indicate that the contact resistance between the two tubes becomes a potential barrier splitting the initial single QD into the DQD, and the back-gate modulates the energy levels of the DQD.

  10. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)more » based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.« less

  11. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  12. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    PubMed

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  13. Anomalous single-electron transfer in common-gate quadruple-dot single-electron devices with asymmetric junction capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Ito, Masato

    2018-06-01

    In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.

  14. Systematic Serendipity: A Method to Discover the Anomalous

    NASA Astrophysics Data System (ADS)

    Giles, Daniel; Walkowicz, Lucianne

    2018-01-01

    One of the challenges in the era of big data astronomical surveys is identifying anomalous data, data that exhibits as-of-yet unobserved behavior. These data may result from systematic errors, extreme (or rare) forms of known phenomena, or, most interestingly, truly novel phenomena that has historically required a trained eye and often fortuitous circumstance to identify. We describe a method that uses machine clustering techniques to discover anomalous data in Kepler lightcurves, as a step towards systematizing the detection of novel phenomena in the era of LSST. As a proof of concept, we apply our anomaly detection method to Kepler data including Boyajian's Star (KIC 8462852). We examine quarters 4, 8, 11, and 16 of the Kepler data which contain Boyajian’s Star acting normally (quarters 4 and 11) and anomalously (quarters 8 and 16). We demonstrate that our method is capable of identifying Boyajian’s Star’s anomalous behavior in quarters of interest, and we further identify other anomalous light curves that exhibit a range of interesting variability.

  15. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Amin Bacha, Bakht; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-10-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of -37.50 m s-1 with a negative time delay of -8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups.

  16. Anomalous diffusion analysis of the lifting events in the event-chain Monte Carlo for the classical XY models

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2017-11-01

    We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.

  17. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    NASA Astrophysics Data System (ADS)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  18. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  19. Anomalous behavior of 1/f noise in graphene near the charge neutrality point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Shunpei; Tanaka, Takahiro; Arakawa, Tomonori

    2016-03-07

    We investigate the noise in single layer graphene devices from equilibrium to far-from equilibrium and found that the 1/f noise shows an anomalous dependence on the source-drain bias voltage (V{sub SD}). While the Hooge's relation is not the case around the charge neutrality point, we found that it is recovered at very low V{sub SD} region. We propose that the depinning of the electron-hole puddles is induced at finite V{sub SD}, which may explain this anomalous noise behavior.

  20. Anomalous thermomechanical properties of a self-propelled colloidal fluid

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Šarić, A.; Valeriani, C.; Cacciuto, A.

    2014-05-01

    We use numerical simulations to compute the equation of state of a suspension of spherical self-propelled nanoparticles in two and three dimensions. We study in detail the effect of excluded volume interactions and confinement as a function of the system's temperature, concentration, and strength of the propulsion. We find a striking nonmonotonic dependence of the pressure on the temperature and provide simple scaling arguments to predict and explain the occurrence of such anomalous behavior. We explicitly show how our results have important implications for the effective forces on passive components suspended in a bath of active particles.

  1. Waterlike anomalies in a two-dimensional core-softened potential

    NASA Astrophysics Data System (ADS)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  2. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  3. Anomalous behavior in the third harmonic generation z response through dispersion induced shape changes and matching χ(3)

    NASA Astrophysics Data System (ADS)

    Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.

    2006-09-01

    The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.

  4. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  5. Critical behavior in graphene with Coulomb interactions.

    PubMed

    Wang, Jianhui; Fertig, H A; Murthy, Ganpathy

    2010-05-07

    We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

  6. Attention focusing and anomaly detection in systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. The focus of this paper is a new technique for attention focusing. The technique involves reasoning about the distance between two frequency distributions, and is used to detect both anomalous system parameters and 'broken' causal dependencies. These two forms of information together isolate the locus of anomalous behavior in the system being monitored.

  7. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    NASA Astrophysics Data System (ADS)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  8. Anomalous finite-size effects in the Battle of the Sexes

    NASA Astrophysics Data System (ADS)

    Cremer, J.; Reichenbach, T.; Frey, E.

    2008-06-01

    The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the emerging time window, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.

  9. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an asymptotic free part (Lennard-Jones model). We compare our findings with recent predictions obtained from nonlinear fluctuating hydrodynamics theory.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Achintya K.; Nandy, Nilmadhab; Bari, Md. Washimul

    The anomalous behavior of D-layer preparation time of the ionosphere are observed only before, during and after the earthquakes, which took place in the neighbouring region by monitoring the Very Low Frequency (VLF) signal using Gyrator II loop antenna. The anomalies were also observed in the sunrise terminator times during seismically active days. These anomalous behavior may be due to the Lithosphere-Ionosphere coupling. These anomalies may be a precursor of earthquake.

  11. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  12. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    PubMed Central

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  13. The Anomalous Low State of LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, A. P.; Boyd, P. T.; Markwardt, C. B.

    2009-01-01

    Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.

  14. Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Ni, Feixiang; Lin, Lifeng; Lv, Wangyong; Zhu, Hongqiang

    2018-09-01

    In some complex viscoelastic mediums, it is ubiquitous that absorbing and desorbing surrounding Brownian particles randomly occur in coupled systems. The conventional method is to model a variable-mass system driven by both multiplicative and additive noises. In this paper, an improved mathematical model is created based on generalized Langevin equations (GLE) to characterize the random interaction with locally fluctuating number of coupled particles in the elastically coupled factional Brownian motors (FBM). By the numerical simulations, the effect of fluctuating interactions on collective transport behaviors is investigated, and some abnormal phenomena, such as cooperative behaviors, stochastic resonance (SR) and anomalous transport, are observed in the regime of sub-diffusion.

  15. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  16. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media

    NASA Astrophysics Data System (ADS)

    Toner, John; Löwen, Hartmut; Wensink, Henricus H.

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.

  17. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egid, Adin

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides amore » useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network.« less

  18. Collective magnetic response of inhomogeneous nanoisland FeNi films around the percolation transition

    NASA Astrophysics Data System (ADS)

    Kovaleva, Natalia N.; Bagdinov, Anton V.; Stupakov, Alexandr; Dejneka, Alexandr; Demikhov, Evgenii I.; Gorbatsevich, Alexandr A.; Pudonin, Fedor A.; Kugel, Kliment I.; Kusmartsev, Feodor V.

    2018-04-01

    By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field ( H ≲ 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d c ≃ 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic- and diamagnetic-like contributions.

  19. Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013

    PubMed Central

    Duan, Yongliang; Liu, Lin; Han, Guoqing; Liu, Hongwei; Yu, Weidong; Yang, Guang; Wang, Huiwu; Wang, Haiyuan; Liu, Yanliang; Zahid; Waheed, Hussain

    2016-01-01

    In-situ measurement of the upper ocean velocity discloses significant abnormal behaviors of two Wyrtki Jets (WJs) respectively in boreal spring and fall, over the tropical Indian Ocean in 2013. The two WJs both occurred within upper 130 m depth and persisted more than one month. The exceptional spring jet in May was unusually stronger than its counterpart in fall, which is clearly against the previous understanding. Furthermore, the fall WJ in 2013 unexpectedly peaked in December, one month later than its climatology. Data analysis and numerical experiments illustrate that the anomalous changes in the equatorial zonal wind, associated with the strong intra-seasonal oscillation events, are most likely the primary reason for such anomalous WJs activities. PMID:27436723

  20. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.

    PubMed

    Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang

    2005-03-01

    We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (01) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.

  1. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  2. The curious case of exploding quantum dots: anomalous migration and growth behaviors of Ge under Si oxidation

    PubMed Central

    2013-01-01

    We have previously demonstrated the unique migration behavior of Ge quantum dots (QDs) through Si3N4 layers during high-temperature oxidation. Penetration of these QDs into the underlying Si substrate however, leads to a completely different behavior: the Ge QDs ‘explode,’ regressing back almost to their origins as individual Ge nuclei as formed during the oxidation of the original nanopatterned SiGe structures used for their generation. A kinetics-based model is proposed to explain the anomalous migration behavior and morphology changes of the Ge QDs based on the Si flux generated during the oxidation of Si-containing layers. PMID:23618165

  3. "To everything there is a season": some Shakespearean models of normal and anomalous aging.

    PubMed

    Donow, H S

    1992-12-01

    Shakespeare perceived aging characters as falling broadly into two categories: normal and anomalous. The former age in conformity to societal expectations, often displaying an inability to affect the outcome of events; the latter (e.g., Lear and Falstaff), deviating from these behavioral norms, dominate the action of their respective plays. Falstaff, a prime example of the anomalous ager, suffers rejection by King Henry V, his former boon companion, a consequence of ageism.

  4. Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; McDonald, F. B.

    2003-01-01

    We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.

  5. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  6. Size dependent anomalous dielectric behavior in nanoparticle Gd2 O 3 : SiO2 glass composite system

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Lin, Yu-Hsing; Kao, Ting-Hui; Chou, C. C.; Yang, H. D.

    2011-03-01

    Gd 2 O3 (0.5 mol%) nanoparticles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700& circ; C and above. Compared with the parent material Si O2 , this nano-glass composite system shows enhancement of dielectric constant and diffuse phase transition along with magnetodielectric effect around room temperature. Observed conduction mechanism is found to be closely related to the thermally activated oxygen vacancies. Magnetodielectric behavior is strongly associated with magnetoresistance changes, depending on the nanoparticle size and separation. Such a material might be treated as a potential candidate for device miniaturization.

  7. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  8. Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure

    DOE PAGES

    Yu, Cun; Ren, Yang; Cui, Lishan; ...

    2016-10-17

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less

  9. A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.

    2018-07-01

    We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.

  10. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    NASA Astrophysics Data System (ADS)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  11. Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures

    NASA Astrophysics Data System (ADS)

    Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel

    2014-12-01

    One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.

  12. The Anomalous Hall Effect and Non-Equilibrium Transport

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    1995-01-01

    This thesis contains three relatively independent research areas. In the first part of this thesis, the anomalous Hall effect of amorphous, high-resistance, Fe films (2 -10 monolayers thick) is investigated as a function of temperature. We find a logarithmic temperature dependence of the anomalous Hall resistance similar to the Coulomb anomaly of the resistance but twice its magnitude. The measurements are in excellent agreement with a theoretical calculation and provide us with an independent confirmation of the influence of the enhanced Coulomb interaction in disordered electron systems on transport properties. In the second part of the thesis, the nonequilibrium transport properties of metallic microstructures are studied. An electron beam lithography technique is used in making small structures. The electron temperature and phonon temperature are calculated. It is confirmed that the electron temperatures obtained from both thermometers (weak localization and the Coulomb anomaly) are consistent. It is also found that the phonon temperature in the film is considerably higher than the substrate temperature in the experiments. In addition, the dimensionality of the phonon system in the film is discussed, as well as the phonon escape time. In the third part, the magnetic behavior of V on Au films is studied. Weak localization and the anomalous Hall effect are used to investigate the magnetic properties of sub-mono, mono-, and multilayers of Vanadium on the surface of an Au film. Dilute V atoms possess a strong magnetic moment. For a monolayer the magnetic scattering is reduced by a factor of about 40. This suggests a strongly reduced moment of V compared with the dilute V coverage. From the anomalous Hall effect, it is concluded that the magnetic structure is anti-ferromagnetic; the moment per V atom in multilayers progressively diminishes but is still finite for 16 atomic layers of V. In Appendix A, the nonequilibrium distribution of the phonon system in a metal film is evaluated. The phonon escape time and the effective phonon temperature are calculated.

  13. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment"

    NASA Astrophysics Data System (ADS)

    Oikonomou, Thomas; Bagci, G. Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016), 10.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  14. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  15. Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water.

    PubMed

    Strekalova, Elena G; Corradini, Dario; Mazza, Marco G; Buldyrev, Sergey V; Gallo, Paola; Franzese, Giancarlo; Stanley, H Eugene

    2012-01-01

    The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid-liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid-liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.

  16. Anomalous thermal hysteresis in dielectric permittivity of CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Zhang, L. W.

    2008-03-01

    We herein report an anomalous thermal hysteresis in dielectric permittivity in CaCu3Ti4O12. The anomalous behavior was well explained in terms of the low-temperature Maxwell-Wagner relaxation induced by frozen carriers. A multirelaxation mechanism, i.e., the coupling of the dipole relaxation to the frozen carrier-induced and blocked carrier-induced Maxwell-Wagner relaxations in the low-temperature and high-temperature regions, respectively, is proposed to be the origin of the colossal dielectric constant.

  17. WFC3 UVIS Pixel-to-Pixel QE Variations via Internal Flats Monitor

    NASA Astrophysics Data System (ADS)

    Bajaj, Varun

    2016-10-01

    The UVIS detector has a population of pixels that exhibit anomalous QE variations between anneals, characterized by a sensitivity loss that is greater in the blue than in the red. This population is randomly distributed, with evidence of clustering behavior in the UV, and is seemingly unique for each anneal cycle. This program, a continuation of cycle 23 program 14389, will aim to constrain the maximum low-sensitivity population existing before an anneal in both the UV and Visible filters. To monitor the UV behavior, internal flats with the D2 lamp will be taken through F225W and F336W. To monitor the behavior in the Visible filters, internal flats with the tungsten lamp will be taken a week before the anneal, when the population of anomalous pixels is the greatest. Internal flats with the Tungsten lamp will be taken to monitor the population in the visible filters, with data taken the week before the anneal to sample the maximum population of anomalous pixels.

  18. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    PubMed Central

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  19. Analog of small Holstein polaron in hydrogen-bonded amide systems

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.

    1985-01-01

    A class of amide-I (C = O stretch) related excitations and their contribution to the spectral function for infrared absorption is determined by use of the Davydov Hamiltonian. The treatment is a fully quantum, finite-temperature one. A consistent picture and a quantitative fit to the absorption data for crystalline acetanilide confirms that the model adequately explains the anomalous behavior cited by Careri et al. The localized excitation responsible for this behavior is the vibronic analog of the small Holstein polaron. The possible extension to other modes and biological relevance is examined.

  20. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  1. Unusual behavior of quiet-time zonal and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008

    NASA Astrophysics Data System (ADS)

    Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.

    2017-11-01

    The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.

  2. Anomalous behavior of poly(ethylene glycol) p-tert-octylphenyl ether (Triton X-100) in the water-cyclohexane system

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. G.; Tyasto, Z. A.; Badun, G. A.

    2009-02-01

    The distribution of Triton X-100 nonionic surfactant in the water-cyclohexane system was investigated by the scintillating phase method. It was shown that an increase in the distribution coefficient as the volume ratio between the aqueous and organic phases grew was explained by the presence in Triton X-100 of homologues with different numbers of ethoxyethyl groups and with the distribution coefficients between the phases different by many times. For the real composition of Triton X-100, distribution coefficients of components of the surfactant were estimated, and the behavior of the surfactant in the system under consideration was simulated; the results were in close agreement with the experimental data.

  3. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.

    PubMed Central

    Saxton, M J

    2001-01-01

    Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster. PMID:11566793

  4. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment".

    PubMed

    Oikonomou, Thomas; Bagci, G Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016)1539-375510.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  5. Anomalous photoconductive behavior of a single InAs nanowire photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junshuai; Yan, Xin; Sun, Fukuan

    2015-12-28

    We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.

  6. Anomalous electrical conductivity of a gold thin film percolation system

    NASA Astrophysics Data System (ADS)

    Tao, Xiang-Ming; Ye, Gao-Xiang; Ye, Quan-Lin; Jin, Jin-Sheng; Lao, Yan-Feng; Jiao, Zheng-Kuan

    2002-09-01

    A gold thin film percolation system, deposited on a glass surface by the vapor deposition method, has been fabricated. By using the expansive and mobile properties of the silicone oil drop, a characteristic wedge-shaped film system with a slope of ~10-5 naturally forms during deposition. The electrical conductivity of the bandlike film, i.e., the uniform part of the wedge-shaped film with a fixed thickness, is measured with the four-probe method. It is found that the hopping and tunneling effects of the films are stronger than those of the other films. The dependence between the dc sheet resistance R0 and temperature T shows that the samples exhibit a negative coefficient dR0/dT below the temperature T*. According to our experiment, it is suggested that all the anomalous behaviors of the system should be related to the characteristic microstructure of the samples, which results from the immediate quench processes by the oil drop during deposition. The experiment indicates that the relaxation period of the microstructure of the samples may be longer than 30 min.

  7. Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2003-01-01

    We previously reported on a thermal regime where pure, polycrystalline methane hydrate is preserved metastably in bulk at up to 75 K above its nominal temperature stability limit of 193 K at 0.1 MPa, following rapid release of the sample pore pressure. Large fractions (>50 vol.%) of methane hydrate can be preserved for 2-3 weeks by this method, reflecting the greatly suppressed rates of dissociation that characterize this "anomalous preservation" regime. This behavior contrasts that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) isothermal test conditions, where dissociation rates increase monotonically with increasing temperature. Here, we report on recent experiments that further investigate the effects of temperature, pressure, and composition on anomalous preservation behavior. All tests conducted on sI methane hydrate yielded self-consistent results that confirm the highly temperature-sensitive but reproducible nature of anomalous preservation behavior. Temperature-stepping experiments conducted between 250 and 268 K corroborate the relative rates measured previously in isothermal preservation tests, and elevated pore-pressure tests showed that, as expected, dissociation rates are further reduced with increasing pressure. Surprisingly, sII methane-ethane hydrate was found to exhibit no comparable preservation effect when rapidly depressurized at 268 K, even though it is thermodynamically stable at higher temperatures and lower pressures than sI methane hydrate. These results, coupled with SEM imaging of quenched sample material from a variety of dissociation tests, strongly support our earlier arguments that ice-"shielding" effects provided by partial dissociation along hydrate grain surfaces do not serve as the primary mechanism for anomalous preservation. The underlying physical-chemistry mechanism(s) of anomalous preservation remains elusive, but appears to be based more on textural or morphological changes within the hydrate material itself, rather than on compositional zoning or ice-rind development.

  8. Wanted: A Positive Control for Anomalous Subdiffusion

    PubMed Central

    Saxton, Michael J.

    2012-01-01

    Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories. PMID:23260043

  9. Anomalous dielectric behavior in nanoparticle Eu2O3 : SiO2 glass composite system

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chen, C. H.; Chou, C. C.; Yang, H. D.

    2010-12-01

    Eu2O3 (0.5 mol%) nanoparticles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700 °C and above. Compared with the parent material SiO2, this nano-glass composite system shows enhancement of dielectric constant and diffuse phase transition along with magnetodielectric effect around room temperature (~270 K). The observed conduction mechanism is found to be closely related to the thermally activated oxygen vacancies. Magnetodielectric behavior is strongly associated with magnetoresistance changes, depending on the nanoparticle size and separation. Such a material might be treated as a potential candidate for device miniaturization.

  10. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    NASA Technical Reports Server (NTRS)

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  11. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  12. System for solving diagnosis and hitting set problems

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh (Inventor); Fijany, Amir (Inventor)

    2007-01-01

    The diagnosis problem arises when a system's actual behavior contradicts the expected behavior, thereby exhibiting symptoms (a collection of conflict sets). System diagnosis is then the task of identifying faulty components that are responsible for anomalous behavior. To solve the diagnosis problem, the present invention describes a method for finding the minimal set of faulty components (minimal diagnosis set) that explain the conflict sets. The method includes acts of creating a matrix of the collection of conflict sets, and then creating nodes from the matrix such that each node is a node in a search tree. A determination is made as to whether each node is a leaf node or has any children nodes. If any given node has children nodes, then the node is split until all nodes are leaf nodes. Information gathered from the leaf nodes is used to determine the minimal diagnosis set.

  13. Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data

    PubMed Central

    Dobra, Adrian; Williams, Nathalie E.; Eagle, Nathan

    2015-01-01

    With the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end. PMID:25806954

  14. The neuroscience of investing: fMRI of the reward system.

    PubMed

    Peterson, Richard L

    2005-11-15

    Functional magnetic resonance imaging (fMRI) has proven a useful tool for observing neural BOLD signal changes during complex cognitive and emotional tasks. Yet the meaning and applicability of the fMRI data being gathered is still largely unknown. The brain's reward system underlies the fundamental neural processes of goal evaluation, preference formation, positive motivation, and choice behavior. fMRI technology allows researchers to dynamically visualize reward system processes. Experimenters can then correlate reward system BOLD activations with experimental behavior from carefully controlled experiments. In the SPAN lab at Stanford University, directed by Brian Knutson Ph.D., researchers have been using financial tasks during fMRI scanning to correlate emotion, behavior, and cognition with the reward system's fundamental neural activations. One goal of the SPAN lab is the development of predictive models of behavior. In this paper we extrapolate our fMRI results toward understanding and predicting individual behavior in the uncertain and high-risk environment of the financial markets. The financial market price anomalies of "value versus glamour" and "momentum" may be real-world examples of reward system activation biasing collective behavior. On the individual level, the investor's bias of overconfidence may similarly be related to reward system activation. We attempt to understand selected "irrational" investor behaviors and anomalous financial market price patterns through correlations with findings from fMRI research of the reward system.

  15. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    NASA Technical Reports Server (NTRS)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  16. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  17. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  18. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  19. Anomalous frequency and temperature-dependent scattering and Hund's coupling in the almost quantum critical heavy-fermion system CeFe2Ge2

    NASA Astrophysics Data System (ADS)

    Bossé, G.; Pan, LiDong; Li, Yize S.; Greene, L. H.; Eckstein, J.; Armitage, N. P.

    2016-02-01

    We present THz range optical conductivity data of a thin film of the near quantum critical heavy-fermion compound CeFe2Ge2 . Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency-dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature-dependent power law ωn (T ), where n (T ) approaches ˜1.0 ±0.2 at 1.5 K. This is compared to the ρ ˜T1.5 behavior claimed in dc resistivity data and the ρ ˜T2 expected from Fermi-liquid theory. In addition to a low-temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hund's coupling in the Fe states in a manner similar to that recently proposed in the ferropnictides. CeFe2Ge2 appears to be a very interesting system where one may study the interplay between the usual 4 f lattice Kondo effect and this Hund's enhanced Kondo effect in the 3 d states.

  20. Investigation of an Anomaly Observed in Impedance Eduction Techniques

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2008-01-01

    An intensive investigation into the cause of anomalous behavior commonly observed in impedance eduction techniques is performed. The investigation consists of grid refinement studies, detailed evaluation of results at and near anti-resonance frequencies, comparisons of different model results with synthesized and measured data, assessment or optimization techniques, and evaluation or boundary condition effects. Results show that the root cause of the anomalous behavior is the sensitivity of the educed impedance to small errors in the measured termination resistance at frequencies near anti-resonance or cut-on of a higher-order mode. Evidence is presented to show that the common usage of an anechoic, plane wave termination boundary condition in ducts where the "true" termination is reflective may act as a trigger for these anomalies. Replacing the exit impedance boundary condition by an exit pressure condition is shown to reduce the anomalous results.

  1. Physiological Environment Induces Quick Response – Slow Exhaustion Reactions

    PubMed Central

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (ds), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension ds to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  2. Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

    PubMed Central

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-01-01

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851

  3. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  4. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  5. DSCS II. Battery Anomaly Investigation Satellites 9437 and 9438.

    DTIC Science & Technology

    1980-04-25

    Chronology Prior to Identifying the Anomaly 2-1 3 . ANOMALY OBSERVATIONS 3 -1 3.1 Satellite 9437 3 -1 3.1.1 State of the Batteries Prior to the Anomaly...Observation 3 -1 3.1.2 Anomalous Behavior 3 -1 3.2 Satellite 9438 3 -6 3.2.1 State of the Batteries Prior to the Anomaly Observation 3 -6 3.2.2 Anomalous...Behavior 3 -6 4. ANOMALY INVESTIGATIONS 4-1 4.1 Scope 4-1 4.2 Postulated Causes of the Anomaly 4-1 4.3 Cell Short Circuits 4-2 4.3.1 Evidence in Support of

  6. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    PubMed

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  7. True Anomalous Osmosis in Multi-Solute Model Membrane Systems

    PubMed Central

    Grim, Eugene; Sollner, Karl

    1960-01-01

    The transport of liquid across charged porous membranes separating two electrolytic solutions of different composition consists of both a normal and an anomalous osmotic component. Anomalous osmosis does not occur with electroneutral membranes. Thus, with membranes which can be charged and discharged reversibly, normal osmosis can be measured with the membrane in the electroneutral state, and normal together with anomalous osmosis with the membrane in a charged state, the difference between these two effects being the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, in multi-solute systems with 0.2 and 0.4 osmolar solutions of a variety of electrolytes and of glucose against solutions of other solutes of the same, one-half, and twice these osmolarities. In the simpler systems the magnitude of the true anomalous osmosis can be predicted semiquantitatively by reference to appropriate single-solute systems. In isoosmolar systems with two electrolytic solutions the anomalous osmotic flow rates may reach 300 µl./cm.2 hr. and more; systems with electrolytic solutions against solutions of glucose can produce twice this rate. These fluxes are of the same order of magnitude as the liquid transport rates across such living structures as the mucosa of dog gall bladder, ileum, and urinary bladder. PMID:13708691

  8. Nonperturbative evaluation for anomalous dimension in 2-dimensional O (3 ) sigma model

    NASA Astrophysics Data System (ADS)

    Calle Jimenez, Sergio; Oka, Makoto; Sasaki, Kiyoshi

    2018-06-01

    We nonperturbatively calculate the wave-function renormalization in the two-dimensional O (3 ) sigma model. It is evaluated in a box with a finite spatial extent. We determine the anomalous dimension in the finite-volume scheme through an analysis of the step-scaling function. Results are compared with a perturbative evaluation, and reasonable behavior is observed.

  9. Adaptive Gaussian mixture models for pre-screening in GPR data

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Due to the large amount of data generated by vehicle-mounted ground penetrating radar (GPR) antennae arrays, advanced feature extraction and classification can only be performed on a small subset of data during real-time operation. As a result, most GPR based landmine detection systems implement "pre-screening" algorithms to processes all of the data generated by the antennae array and identify locations with anomalous signatures for more advanced processing. These pre-screening algorithms must be computationally efficient and obtain high probability of detection, but can permit a false alarm rate which might be higher than the total system requirements. Many approaches to prescreening have previously been proposed, including linear prediction coefficients, the LMS algorithm, and CFAR-based approaches. Similar pre-screening techniques have also been developed in the field of video processing to identify anomalous behavior or anomalous objects. One such algorithm, an online k-means approximation to an adaptive Gaussian mixture model (GMM), is particularly well-suited to application for pre-screening in GPR data due to its computational efficiency, non-linear nature, and relevance of the logic underlying the algorithm to GPR processing. In this work we explore the application of an adaptive GMM-based approach for anomaly detection from the video processing literature to pre-screening in GPR data. Results with the ARA Nemesis landmine detection system demonstrate significant pre-screening performance improvements compared to alternative approaches, and indicate that the proposed algorithm is a complimentary technique to existing methods.

  10. Exorcising Maxwell's Demon from Liboff's Three-Channel Conundrum

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Mišáková, Zuzana

    2011-02-01

    We study a model proposed by Liboff (Found. Phys. Lett. 10:89, 1997) to violate the second law of thermodynamics. Discs are moving without friction in three connected channels inclined by π/3 with respect to each other. Based on the geometry considerations, it was argued that eventually all the discs end up in the middle channel regardless of their initial positions. This would mean a decrease of the entropy of the system and violation of the second law. We argue that no such anomalous behavior occurs in the system.

  11. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    NASA Astrophysics Data System (ADS)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

  12. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  13. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.

    PubMed

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-11-05

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Crossover from ballistic to normal heat transport in the ϕ4 lattice: If nonconservation of momentum is the reason, what is the mechanism?

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing; Saadatmand, Danial; Dmitriev, Sergey V.

    2017-10-01

    Anomalous (non-Fourier) heat transport is no longer just a theoretical issue since it has been observed experimentally in a number of low-dimensional nanomaterials, such as SiGe nanowires, carbon nanotubes, and others. To understand these anomalous behaviors, exploring the microscopic origin of normal (Fourier) heat transport is a fascinating theoretical topic. However, this issue has not yet been fully understood even for one-dimensional (1D) model chains, in spite of a great amount of thorough studies done to date. From those studies, it has been widely accepted that the conservation of momentum is a key ingredient to induce anomalous heat transport, while momentum-nonconserving systems usually support normal heat transport where Fourier's law is valid. But if the nonconservation of momentum is the reason, what is the underlying microscopic mechanism for the observed normal heat transport? Here we carefully revisit a typical 1D momentum-nonconserving ϕ4 model, and we present evidence that the mobile discrete breathers, or, in other words, the moving intrinsic localized modes with frequency components above the linear phonon band, can be responsible for that.

  15. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.

    PubMed

    Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav

    2018-05-14

    Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

  16. Composition-dependent magnetic response properties of Mn1 -xFexGe alloys

    NASA Astrophysics Data System (ADS)

    Mankovsky, S.; Wimmer, S.; Polesya, S.; Ebert, H.

    2018-01-01

    The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn1 -xFexGe alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈0.85 in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at x ≈0.8 . A corresponding behavior with a sign change at x ≈0.5 is predicted also for the Fermi-sea contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall effect and the sign change of the spin Hall effect conductivities.

  17. Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2009-03-28

    Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.

  18. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE PAGES

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    2018-05-31

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  19. Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Wei, Jiandong; Wang, Xinqiang; Wang, Ping; Li, Shunfeng; Waag, Andreas; Li, Mo; Zhang, Jian; Ge, Weikun; Shen, Bo

    2017-05-01

    Lattice-polarity dependence of InN surface photovoltage has been identified by an anomalous surface potential behavior observed via photoassisted Kelvin probe force microscopy. Upon above bandgap light illumination in the ambient atmosphere, the surface photovoltage of the In-polar InN shows a pronounced decrease, while that of the N-polar one keeps almost constant. Those different behaviors between N-polar and In-polar surfaces are attributed to a polarity-related surface reactivity, which is found not to be influenced by Mg-doping. These findings provide a simple and non-destructive approach to determine the lattice polarity and allow us to suggest that the In-polar InN, especially that with buried p-type conduction, should be chosen for sensing application.

  20. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  1. Total anomalous systemic with partial anomalous pulmonary venous connections.

    PubMed

    Vallath, Gopakumar; Gajjar, Trushar; Desai, Neelam

    2013-12-01

    A 9-year-old girl with cyanosis, dyspnea, and grade II clubbing was diagnosed by contrast transthoracic echocardiography and angiocardiography to have an anomalous connection of the venae cavae to the physiologic left atrium with partial anomalous pulmonary venous connection. Successful surgical correction was achieved, and the patient's recovery was uneventful.

  2. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  3. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    PubMed

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity

    NASA Astrophysics Data System (ADS)

    Manzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, Maria F.

    2015-01-01

    Molecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single-particle tracking to demonstrate that the motion of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a receptor with unique pathogen-recognition capabilities, reveals nonergodic subdiffusion on living-cell membranes In contrast to previous studies, this behavior is incompatible with transient immobilization, and, therefore, it cannot be interpreted according to continuous-time random-walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of an ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Because of its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology, and ecology.

  5. Anomalous magnon Nernst effect of topological magnonic materials

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Wang, X. R.

    2018-05-01

    The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.

  6. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  7. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  8. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick; A.H. Boozer

    We study the effect on neoclassical transport of applying a fluctuating electrostatic spectrum, such as produced either by plasma turbulence, or imposed externally. For tokamaks, it is usually assumed that the neoclassical and ''anomalous'' contributions to the transport roughly superpose, D = D{sub nc} + D{sub an}, an intuition also used in modeling stellarators. An alternate intuition, however, is one where it is the collisional and anomalous scattering frequencies which superpose, {nu}{sub ef} = {nu} + {nu}{sub an}. For nonaxisymmetric systems, in regimes where {partial_derivative}D/{partial_derivative}{nu} < 0, this ''{nu}{sub ef} picture'' implies that turning on the fluctuations can decrease themore » total radial transport. Using numerical and analytic means, it is found that the total transport has contributions conforming to each of these intuitions, either of which can dominate. In particular, for stellarators, the {nu}{sub ef} picture is often valid, producing transport behavior differing from tokamaks.« less

  10. Anomalous Dynamics of Water Confined in Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2016-10-06

    Confined water often exhibits anomalous properties not observable in the bulk phase. Although water in hydrophobic confinement has been the focus of intense investigation, the behavior of water confined between hydrophilic surfaces, which are more frequently found in biological systems, has not been fully explored. Here, we investigate using molecular dynamics simulations dynamical properties of the water confined in hydrophilic protein-protein and protein-DNA interfaces. We find that the interfacial water exhibits glassy slow relaxations even at 300 K. In particular, the rotational dynamics show a logarithmic decay that was observed in glass-forming liquids at deeply supercooled states. We argue that such slow water dynamics are indeed induced by the hydrophilic binding surfaces, which is in opposition to the picture that the hydration water slaves protein motions. Our results will significantly impact the view on the role of water in biomolecular interactions.

  11. Anomalous spectral correlations between SERS enhancement and far-field optical responses in roughened Au mesoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Chen, Yun; Gao, Weixiang; Yang, Zhengxuan; Wang, Lingling

    2018-04-01

    Depending on the experimental conditions and plasmonic systems, the correlations between near-field surface enhanced Raman scattering (SERS) behaviors and far-field optical responses have sometimes been accepted directly, or argued, or explored. In this work, we have numerically demonstrated the anomalous spectral correlations between the near- and far-field properties for roughened Au mesoparticles. As a counterexample, it is witnessed that the dipole extinction peak of the mesoparticles may mislead us in seeking favorable SERS performance. The simple Rayleigh scattering spectra can also be misguided in the presence of dark modes. For roughened mesoparticles with a moderate size here, the huge near-field enhancement is a synergistic result of the overall dark quadrupole mode and the substructural bonding dipole coupling. The conclusions demonstrated here would be of general interest to the field of plasmonics, especially the optimization of single-particle SERS substrates.

  12. Anomaly-Induced Dynamical Refringence in Strong-Field QED

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Hebenstreit, F.; Berges, J.

    2016-08-01

    We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.

  13. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    PubMed

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.

  14. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  15. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  16. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.

  17. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  18. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  19. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    NASA Astrophysics Data System (ADS)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly show anomalous acceleration or deceleration of U in the polar region, accompanied by anomalies of the opposite sign in the subtropics throughout the troposphere and stratosphere. The anomalies are conspicuously large in the polar stratosphere. The composited anomalous Z and U in the preceding and following months indicate that these large anomalies in dZ and dU occur when the polar troposphere and stratosphere are relaxing back toward the climatology from strongly anomalous states that closely resemble the positive and negative phases of the NAM. In this process of relaxation, the atmosphere actually overshoots the climatology and develops anomalies of the sign opposite to those existed initially. The anomalous wave activity flux exhibit strong signals of anomalous upward (downward) propagation of high-frequency waves in the North Atlantic storm track from the bottom of the atmosphere, penetrating up to the stratosphere, when the polar jet is anomalously strong (weak) in the preceding month. The anomalous horizontal wave activity flux shows anomalous eastward (westward) flux emanating from the North Atlantic storm track when the polar jet is anomalously strong (weak) in the preceding month. These patterns suggest that anomalous high-frequency waves originating from the North Atlantic storm track in the lower troposphere contribute to the destruction of both phases of the NAM. However, the anomalous flux divergence is very noisy everywhere due to the noisiness of the advective horizontal flux, making it difficult to ascertain the role of the high-frequency transients in the destruction of the NAM.

  20. Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.

    2012-11-01

    Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.

  1. The Frozen Lake: A Physical Model Using Calculator-Based Laboratory Technology

    NASA Astrophysics Data System (ADS)

    Soletta, Isabella; Branca, Mario

    2005-04-01

    We have created laboratory conditions similar to those present in a lake when the external temperature falls below 0°C. Glaciation in lakes is described in school textbooks and classroom demonstrations.1,2 It is pointed out how the anomalous behavior of water, which reaches maximum density at about 4°C,3 makes life possible on Earth. The proposed model thus describes a physical system that, apart from being of interest in itself, is relevant to the study of biological mechanisms.

  2. Wide gap Chern Mott insulating phases achieved by design

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  3. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  4. Deficient Behavioral Inhibition and Anomalous Selective Attention in a Community Sample of Adolescents with Psychopathic Traits and Low-Anxiety Traits

    ERIC Educational Resources Information Center

    Vitale, Jennifer E.; Newman, Joseph P.; Bates, John E.; Goodnight, Jackson; Dodge, Kenneth A.; Pettit, Gregory S.

    2005-01-01

    Socialization is the important process by which individuals learn and then effectively apply the rules of appropriate societal behavior. Response modulation is a psychobiological process theorized to aid in socialization by allowing individuals to utilize contextual information to modify ongoing behavior appropriately. Using Hare's (1991)…

  5. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

    PubMed

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  6. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm

    NASA Astrophysics Data System (ADS)

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  7. Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian; Parsons, James D.

    1996-01-01

    SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.

  8. Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells.

    PubMed

    Daddysman, Matthew K; Fecko, Christopher J

    2013-02-07

    Fluorescence recovery after photobleaching (FRAP) is widely used to interrogate diffusion and binding of proteins in live cells. Herein, we apply two-photon excited FRAP with a diffraction limited bleaching and observation volume to study anomalous diffusion of unconjugated green fluorescence protein (GFP) in vitro and in cells. Experiments performed on dilute solutions of GFP reveal that reversible fluorophore bleaching can be mistakenly interpreted as anomalous diffusion. We derive a reaction-diffusion FRAP model that includes reversible photobleaching, and demonstrate that it properly accounts for these photophysics. We then apply this model to investigate the diffusion of GFP in HeLa cells and polytene cells of Drosophila larval salivary glands. GFP exhibits anomalous diffusion in the cytoplasm of both cell types and in HeLa nuclei. Polytene nuclei contain optically resolvable chromosomes, permitting FRAP experiments that focus separately on chromosomal or interchrosomal regions. We find that GFP exhibits anomalous diffusion in chromosomal regions but diffuses normally in regions devoid of chromatin. This observation indicates that obstructed transport through chromatin and not crowding by macromolecules is a source of anomalous diffusion in polytene nuclei. This behavior is likely true in other cells, so it will be important to account for this type of transport physics and for reversible photobleaching to properly interpret future FRAP experiments on DNA-binding proteins.

  9. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  10. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing

    2018-02-01

    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.

  11. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  12. Anomaly Detection in Dynamic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less

  13. WFC3 UVIS Pixel-to-Pixel QE Variations via Internal Flats Monitor

    NASA Astrophysics Data System (ADS)

    Mckay, Myles

    2017-08-01

    The UVIS detector has a population of pixels that exhibit anomalous QE variations between anneals, characterized by a sensitivity loss that is greater in the shorter wavelengths(blue) than in the longer wavelengths(red). This population is distributed randomly, with evidence of grouping behavior in the UV, and is seemingly different for each anneal cycle. This program, a continuation of cycle 24 program 14546, will aim to constrain the maximum low-sensitivity population existing before an anneal in both the UV and Visible filters. To monitor the UV behavior, internal flats with the Deuterium D2 lamp will be taken through the filters, F225W and F336W. To monitor the behavior in the Visible filters, internal flats with the tungsten lamp will be taken through F814W and F438W a week before the anneal, when the population of anomalous pixels is the greatest.

  14. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fieldsmore » (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.« less

  15. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  16. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  17. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  18. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  19. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2010-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO12, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  20. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2008-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A10, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  1. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2009-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A11, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  2. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  3. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath

    2015-11-30

    X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less

  4. Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.

    PubMed

    Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong

    2017-05-09

    This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Causal simulation and sensor planning in predictive monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    1989-01-01

    Two issues are addressed which arise in the task of detecting anomalous behavior in complex systems with numerous sensor channels: how to adjust alarm thresholds dynamically, within the changing operating context of the system, and how to utilize sensors selectively, so that nominal operation can be verified reliably without processing a prohibitive amount of sensor data. The approach involves simulation of a causal model of the system, which provides information on expected sensor values, and on dependencies between predicted events, useful in assessing the relative importance of events so that sensor resources can be allocated effectively. The potential applicability of this work to the execution monitoring of robot task plans is briefly discussed.

  6. Anomalous Dynamical Behavior of Freestanding Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Ackerman, M. L.; Kumar, P.; Neek-Amal, M.; Thibado, P. M.; Peeters, F. M.; Singh, Surendra

    2016-09-01

    We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.

  7. Spectral Definition of the Characteristic Times for Anomalous Diffusion in a Potential

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Coffey, William T.; Titov, Serguey V.

    Characteristic times of the noninertial fractional diffusion of a particle in a potential are defined in terms of three time constants, viz., the integral, effective, and longest relaxation times. These times are described using the eigenvalues of the corresponding Fokker-Planck operator for the normal diffusion. Knowledge of them is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest. As a particular example, we consider the subdiffusion of a planar rotor in a double-well potential.

  8. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    PubMed

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  9. Quantum anomalous Bloch-Siegert shift in Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-05-01

    A periodic exchange of energy between the light field and two level system is known as Rabi oscillations. The Bloch-Siegert shift (BSS) is a shift in Rabi oscillation resonance condition, when the driving field is sufficiently strong. There are new type of oscillations exhibit in Weyl semimetal at far from resonance, known as anomalous Rabi oscillation. In this work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal at far from resonance called anomalous Bloch-Siegert shift (ABSS) by purely quantum mechanical treatment and describe it's anisotropic nature. A fully numerical solution of the Floquet-Bloch equations unequivocally establishes the presence of not only anomalous Rabi oscillations in these systems but also their massless character.

  10. Visualization Component of Vehicle Health Decision Support System

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy

    2008-01-01

    The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a tool for NASA's flight controllers to monitor the International Space Station and a future Crew Exploration Vehicle.

  11. Topological characteristics underpin intermittency and anomalous transport behavior in soil-like porous media

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Morales, V.; Willmann, M.; Jerjen, I.; Kaufmann, R.; Dentz, M.

    2016-12-01

    Continuum models of porous media are based on the validity of the Darcy equation for fluid and Fick's law for scalar fluxes on a representative elementary volume. Fluctuations of pore-scale flow and scalar transport are averaged out and represented in terms of effective parameters such as hydrodynamic dispersion. However, the intermittent behavior of pore-scale flow impacts on the nature of particle and scalar transport, and it determines the way dissolved substances mix and react. The understanding of the origin of these processes is of both fundamental and practical importance in applications ranging from reactive transport in groundwater flow to diffusion in fuel cells or biological systems. A central issue in porous medium flow is therefore to relate intermittent behavior of Lagrangian velocity at pore scale imposed by the complex pore network geometry to transport properties at larger scales. Lagrangian measurements in porous systems are nonetheless scarce and most experimental techniques do not provide access to all three velocity components. In this contribution we report 3D measurements of Lagrangian velocity in soil-like porous media. We complement these measurements with detailed X-ray scans of the pore network. We find sharp velocity transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity and a superlinear evolution of particle dispersion. We demonstrate that porosity and pore size distribution alone cannot explain the observed features of the flow. Rather, anomalous transport is better interpreted in terms of how pores of various geometries are interconnected. We reproduce the main observations using a continuous-time random walk (CTRW) model revealing the main features that control the system and showing the potential of this simple model to capture transport in complex geometries.

  12. Dynamics of zonal flows in helical systems.

    PubMed

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  13. Degree-strength correlation reveals anomalous trading behavior.

    PubMed

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  14. On the quantum mechanics of consciousness, with application to anomalous phenomena

    NASA Astrophysics Data System (ADS)

    Jahn, Robert G.; Dunne, Brenda J.

    1986-08-01

    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.

  15. Surgical management of tricuspid atresia and anomalous left brachiocephalic vein.

    PubMed

    Koutlas, T C; Wernovsky, G; Slack, M C; Weinberg, P M; Spray, T L

    1998-06-01

    An anomalous left brachiocephalic vein is an uncommon systemic venous anomaly, which usually has no clinical significance. We describe a case of tricuspid atresia with such an anomalous left brachiocephalic vein. The presence of this unusual venous anomaly had a number of implications in the surgical management of the tricuspid atresia.

  16. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  17. Coarse-grained theory of a realistic tetrahedral liquid model

    NASA Astrophysics Data System (ADS)

    Procaccia, I.; Regev, I.

    2012-02-01

    Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquesta, Erin C.S.; Valicka, Christopher G.; Hinga, Mark B.

    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods usedmore » by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.« less

  19. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  20. An alternative theoretical model for an anomalous hollow beam.

    PubMed

    Cai, Yangjian; Wang, Zhaoying; Lin, Qiang

    2008-09-15

    An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.

  1. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru

    2017-01-15

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less

  2. Negative thermal expansion near two structural quantum phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K formore » dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion« less

  3. Negative thermal expansion near two structural quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions. We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of new materials exhibiting negative thermal expansion.

  4. Anomalous current in diffusive ferromagnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.

    2017-05-01

    We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.

  5. Anomalous CO2 Emissions in Different Ecosystems Around the World

    NASA Astrophysics Data System (ADS)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  6. Floquet Topological Order in Interacting Systems of Bosons and Fermions

    NASA Astrophysics Data System (ADS)

    Harper, Fenner; Roy, Rahul

    2017-03-01

    Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous unitary operator that acts at the edge of an open system. We find that these operators are robust to all local perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical topological order that may be applied to general time-dependent systems, including many-body localized phases or time crystals.

  7. First order transitions by conduction calorimetry: Application to deuterated potassium dihydrogen phosphate ferroelastic crystal under uniaxial pressure

    NASA Astrophysics Data System (ADS)

    Gallardo, M. C.; Jiménez, J.; Koralewski, M.; del Cerro, J.

    1997-03-01

    The specific heat c and the heat power W exchanged by a Deuterated Potassium Dihydrogen Phosphate ferroelectric-ferroelastic crystal have been measured simultaneously for both decreasing and increasing temperature at a low constant rate (0.06 K/h) between 175 and 240 K. The measurements were carried out under controlled uniaxial stresses of 0.3 and 4.5±0.1 bar applied to face (110). At Tt=207.9 K, a first order transition is produced with anomalous specific heat behavior in the interval where the transition heat appears. This anomalous behavior is explained in terms of the temperature variation of the heat power during the transition. During cooling, the transition occurs with coexistence of phases, while during heating it seems that metastable states are reached. Excluding data affected by the transition heat, the specific heat behavior agrees with the predictions of a 2-4-6 Landau potential in the range of 4-15 K below Tt while logarithmic behavior is obtained in the range from Tt to 1 K below Tt. Data obtained under 0.3 and 4.5 bar uniaxial stresses exhibit the same behavior.

  8. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  9. Geochemical prospecting for Cu mineralization in an arid terrain-central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Fatehi, Moslem; Shahrestani, Shahed; Pournik, Peyman

    2014-12-01

    Geochemical sampling and data processing were implemented for prospecting Cu mineralization through catchment basin approach in central Iran, Yazd province, over drainage systems in order to determine areas of interest for the detailed exploration program. The target zone, inside an area called Kalout-e-Ashrafa in Yazd province-Iran, was characterized by the collection of 107 stream sediment samples. Catchment basin modeling was conducted based on digital elevation model (DEM) and geological map of the study area. Samples were studied by univariate and multivariate statistical techniques of exploratory data analysis, classical statistical analysis and cluster analysis. The results showed that only Cu had anomalous behavior and it did not exhibit a considerable correlation with other elements. Geochemical maps were prepared for Cu and anomalous zones and separated for potential copper mineralization. It was concluded that due to especial geomorphological and geographical characteristics (smooth topography, negligible annual precipitation and insufficient thickness of silicified Cu-bearing outcrops of the area), low concentrations of Cu would be expected for the delineation of promising zones in similar trains. Using cluster analysis showed that there was a strong correlation between Ag, Sr and S. Calcium and Pb present moderate correlation with Cu. Additionally, there was a strong correlation between Zn and Li, thereby indicating a meaningful correlation with Fe, P, Ti and Mg. Aluminum, Sc and V had a correlation with Be and K. Applying threshold value according to MAD (median absolute deviation) helped us to distinguish anomalous catchments more properly. Finally, there was a significant kind of conformity among anomalous catchment basins and silicified veins and veinlets (as validating index) at the central part of the area.

  10. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  11. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  12. Thermal conductivity of layered organic superconductor β-(BDA-TTP)2SbF6 in a parallel magnetic field: Anomalous effect of coreless vortices

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.

    2005-01-01

    Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.

  13. Logarithmic violation of scaling in anisotropic kinematic dynamo model

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.

  14. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar{sup +}-ion bombardment on Si: A case of initial wavelength selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Sandeep Kumar; Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067; Cuerno, Rodolfo

    We have studied the early stage dynamics of ripple patterns on Si surfaces, in the fluence range of 1–3 × 10{sup 18} ions cm{sup −2}, as induced by medium energy Ar{sup +}-ion irradiation at room temperature. Under our experimental conditions, the ripple evolution is found to be in the linear regime, while a clear decreasing trend in the ripple wavelength is observed up to a certain time (fluence). Numerical simulations of a continuum model of ion-sputtered surfaces suggest that this anomalous behavior is due to the relaxation of the surface features of the experimental pristine surface during the initial stage of patternmore » formation. The observation of this hitherto unobserved behavior of the ripple wavelength seems to have been enabled by the use of medium energy ions, where the ripple wavelengths are found to be order(s) of magnitude larger than those at lower ion energies.« less

  15. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2017-12-20

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  16. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  17. Quantum effects in the dynamics of deeply supercooled water

    DOE PAGES

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature T g~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  18. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.

  19. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.

    PubMed

    Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf

    2016-07-27

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

  20. Drag suppression in anomalous chiral media

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less

  1. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion.

    PubMed

    López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  2. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.

    PubMed

    Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L

    2005-01-01

    The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.

  3. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  4. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    NASA Technical Reports Server (NTRS)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  5. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  6. Anomalous postcritical refraction behavior for certain transversely isotropic media

    USGS Publications Warehouse

    Fa, L.; Brown, R.L.; Castagna, J.P.

    2006-01-01

    Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.

  7. Phonons and elasticity of cementite through the Curie temperature

    NASA Astrophysics Data System (ADS)

    Mauger, L.; Herriman, J. E.; Hellman, O.; Tracy, S. J.; Lucas, M. S.; Muñoz, J. A.; Xiao, Yuming; Li, J.; Fultz, B.

    2017-01-01

    Phonon partial densities of states (pDOS) of Fe573C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the FeII site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening.

  8. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  9. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  10. Degree-Strength Correlation Reveals Anomalous Trading Behavior

    PubMed Central

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders. PMID:23082114

  11. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  12. Anomalous scaling of Δ C versus T c in the Fe-based superconductors: the $${S}_{\\pm }$$-wave pairing state model

    DOE PAGES

    Bang, Yunkyu; Stewart, G. R.

    2016-02-01

    The strong power law behavior of the specific heat jumpmore » $${\\rm{\\Delta }}C\\;$$ versus T c $$({\\rm{\\Delta }}C/{T}_{{\\rm{c}}}\\sim {T}_{{\\rm{c}}}^{\\alpha },\\alpha \\approx 2)$$, first observed by Bud'ko et al (2009 Phys. Rev. B 79 220516), has been confirmed with several families of the Fe-based superconducting compounds with various dopings. We tested a minimal two band BCS model to understand this anomalous behavior and showed that this non-BCS relation between $${\\rm{\\Delta }}C\\;$$ versus T c is a generic property of the multiband superconducting state paired by a dominant interband interaction ($${V}_{\\mathrm{inter}}\\gt {V}_{\\mathrm{intra}}$$) reflecting the relation $$\\frac{{{\\rm{\\Delta }}}_{{\\rm{h}}}}{{{\\rm{\\Delta }}}_{{\\rm{e}}}}\\sim \\sqrt{\\frac{{N}_{{\\rm{e}}}}{{N}_{{\\rm{h}}}}}$$ near T c, as in the $${S}_{\\pm }$$-wave pairing state. We also found that this $${\\rm{\\Delta }}C\\;$$ versus T c power law can continuously change from the ideal BNC scaling to a considerable deviation by a moderate variation of the impurity scattering rate $${{\\rm{\\Gamma }}}_{0}$$ (non-pair-breaking). Finally, as a result, our model provides a consistent explanation why the electron-doped Fe-based superconductors follow the ideal BNC scaling very well while the hole-doped systems often show varying degree of deviations.« less

  13. Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event

    NASA Astrophysics Data System (ADS)

    Logan, Timothy

    2018-02-01

    Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.

  14. Phonon thermodynamics of iron and cementite

    NASA Astrophysics Data System (ADS)

    Mauger, Lisa Mary

    The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.

  15. Evidences from Rewarding System, FRN and P300 Effect in Internet-Addiction in Young People SHORT TITLE: Rewarding System and EEG in Internet-Addiction

    PubMed Central

    Venturella, Irene; Finocchiaro, Roberta

    2017-01-01

    The present research explored rewarding bias and attentional deficits in Internet addiction (IA) based on the IAT (Internet Addiction Test) construct, during an attentional inhibitory task (Go/NoGo task). Event-related Potentials (ERPs) effects (Feedback Related Negativity (FRN) and P300) were monitored in concomitance with Behavioral Activation System (BAS) modulation. High-IAT young participants showed specific responses to IA-related cues (videos representing online gambling and videogames) in terms of cognitive performance (decreased Response Times, RTs; and Error Rates, ERs) and ERPs modulation (decreased FRN and increased P300). Consistent reward and attentional biases was adduced to explain the cognitive “gain” effect and the anomalous response in terms of both feedback behavior (FRN) and attentional (P300) mechanisms in high-IAT. In addition, BAS and BAS-Reward subscales measures were correlated with both IAT and ERPs variations. Therefore, high sensitivity to IAT may be considered as a marker of dysfunctional reward processing (reduction of monitoring) and cognitive control (higher attentional values) for specific IA-related cues. More generally, a direct relationship among reward-related behavior, Internet addiction and BAS attitude was suggested. PMID:28704978

  16. Creep of Ni(3)Al in the temperature regime of anomalous flow behavior

    NASA Astrophysics Data System (ADS)

    Uchic, Michael David

    Much attention has been paid to understanding the dynamics of dislocation motion and substructure formation in Ni3Al in the anomalous flow regime. However, most of the experimental work that has been performed in the lowest temperatures of the anomalous flow regime has been under constant-strain-rate conditions. An alternative and perhaps more fundamental way to probe the plastic behavior of materials is a monotonic creep test, in which the stress and temperature are held constant while the time-dependent strain is measured. The aim of this study is to use constant-stress experiments to further explore the plastic flow anomaly in L12 alloys at low temperatures. Tension creep experiments have been carried out on <123> oriented single crystals of Ni75Al24Ta1 at temperatures between 293 and 473 K. We have observed primary creep leading to exhaustion at all temperatures and stresses, with creep rates declining faster than predicted by the logarithmic creep law. The total strain and creep strain have an anomalous dependence on temperature, which is consistent with the flow stress anomaly. We have also observed other unusual behavior in our creep experiments; for example, the reinitiation of plastic flow at low temperatures after a modest increment in applied stress shows a sigmoidal response, i.e., there is a significant time delay before the plastic strain rate accelerates to a maximum value. We also examined the ability to reinitiate plastic flow in samples that have been crept to exhaustion by simply lowering the test temperature. In addition, we have also performed conventional constant-displacement-rate experiments in the same temperature range. From these experiments, we have discovered that unlike most metals, Ni3Al displays a negative dependence of the work hardening rate (WHR) with increasing strain rate. For tests at intermediate temperatures (373 and 423 K), the WHRs of crystals tested at moderately high strain rates (10-2 s-1) are half the WHRs of crystals tested at conventional strain rates (10 -5 s-1), and this anomalous dependence has also been shown to be reversible with changes in strain rate. The implications of all results are discussed in light of our efforts to model plastic deformation in these alloys.

  17. A general framework for the solvatochromism of pyridinium phenolate betaine dyes

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos Caroli; Aracena, Andrés

    2013-02-01

    A general framework for the solvatochromic behavior of pyridinium phenolate betaine dyes is presented, based on the variations with the medium of the electrophilic Fukui functions of their electron-pair donor and acceptor moieties. The model explains the ‘anomalous' solvatochromic behavior of large betaines, which change their behavior from negative to inverted, when electron-pair donor and acceptor groups are separated by a conjugated chain of variable size.

  18. Center for Dielectric Studies at the Pennsylvania State University,

    DTIC Science & Technology

    1983-05-01

    microstructure. The permittivity shows a weak peak near 100K which also has clear relaxation character and closely duplicates the behavior of higA purity...departures from the expected Curie-Weiss made by Demurov and Venevtsev.1 both hysteresis loops in P(E) behavior . Clearly. from the frequency response and...dielectric measurements, an powderl had second phase KzTa.O,,; powder II was completely anomalous behavior was observed by inelastic neutron scattering

  19. Graph Learning for Anomaly Detection using Psychological Context GLAD-PC

    DTIC Science & Technology

    2015-08-03

    comparison study of user behavior on Facebook and Gmail, ArXiv: 1305.6082, (11 2013): 0. doi: 10.1016/j.chb.2013.06.043 TOTAL: 1 Received Paper...Fournelle, Steve Gaffigan, Oliver Brdiczka, Jianqiang Shen, Juan Liu, Kendra E. Moore. Characterizing user behavior and information propagation on a...media data; and c) detecting unusual and anomalous behavior from on-line activities. (5) Summary of the most important results With regard to

  20. Anomalous pulmonary venous connection: An underestimated entity.

    PubMed

    Magalhães, Sara P; Moreno, Nuno; Loureiro, Marília; França, Manuela; Reis, Fernanda; Alvares, Sílvia; Ribeiro, Manuel

    2016-12-01

    Anomalous pulmonary venous connection is an uncommon congenital anomaly in which all (total form) or some (partial form) pulmonary veins drain into a systemic vein or into the right atrium rather than into the left atrium. The authors present one case of total anomalous pulmonary venous connection and two cases of partial anomalous pulmonary venous connection, one of supracardiac drainage into the brachiocephalic vein, and the other of infracardiac anomalous venous drainage (scimitar syndrome). Through the presentation of these cases, this article aims to review the main pulmonary venous developmental defects, highlighting the role of imaging techniques in the assessment of these anomalies. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. 2060 Chiron - Colorimetry and cometary behavior

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.; Meech, Karen J.; Cruikshank, Dale P.

    1990-01-01

    Ambiguities concerning the fit of the 2060 Chiron's visible spectrum to its IR spectrum have been resolved by resort to VRIJHK colorimetry obtained in 1988, which also confirms the neutrality of Chiron's taxonomic class C spectrum and indicates that Chiron has anomalously brightened since 1980-1983. This brightening, and one reported in 1978, are consistent with the hypothesis that Chiron sporadically undergoes weak cometary outbursts similar to those of comet P/Schwassmann-Wachmann 1; Chiron is further speculated to be an ice-rich object darkened by C-class carbonaceous soil, and may have been scattered from the Oort cloud in recent solar system history.

  2. Total anomalous systemic venous drainage in left heterotaxy syndrome.

    PubMed

    Khandenahally, Ravindranath S; Deora, Surender; Math, Ravi S

    2013-04-01

    Total anomalous systemic venous drainage is an extremely rare congenital heart defect. In this study we describe an 11-year-old girl who presented with a history of fatigue and central cyanosis that she had had since early childhood with unremarkable precordial examination results. Investigations revealed left heterotaxy with all systemic venous drainage to the left-sided atrium with non-compaction of the left ventricle.

  3. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  4. Multi-Level Modeling of Complex Socio-Technical Systems - Phase 1

    DTIC Science & Technology

    2013-06-06

    is to detect anomalous organizational outcomes, diagnose the causes of these anomalies , and decide upon appropriate compensation schemes. All of...monitor process outcomes. The purpose of this monitoring is to detect anomalous process outcomes, diagnose the causes of these anomalies , and decide upon...monitor work outcomes in terms of performance. The purpose of this monitoring is to detect anomalous work outcomes, diagnose the causes of these anomalies

  5. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  6. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  7. Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Naruemon, Rueangkham; Charin, Modchang

    2016-04-01

    Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.

  8. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

    PubMed Central

    Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf

    2016-01-01

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. PMID:27462008

  9. Nernst effect in electron-doped Pr2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Balci, Hamza; Hill, C. P.; Qazilbash, M. M.; Greene, R. L.

    2003-08-01

    The Nernst effect of Pr2-xCexCuO4 (x=0.13, 0.15, and 0.17) has been measured on thin film samples between 5 120 K and 0 14 T. In comparison to recent measurements on hole-doped cuprates that showed an anomalously large Nernst effect above the resistive Tc and Hc2 [Z. A. Xu et al., Nature (London) 406, 486 (2000); Yayu Wang et al., Phys. Rev. B 64, 224519 (2001); Yayu Wang et al., Phys. Rev. Lett. 88, 257003 (2002); C. Caplan et al., ibid 88, 056601 (2002)], we find a normal Nernst effect above Tc and Hc2 for all dopings. The lack of an anomalous Nernst effect in the electron-doped compounds supports the models that explain this effect in terms of amplitude and phase fluctuations in the hole-doped cuprates. In addition, the Hc2(T) determined from the Nernst effect shows a conventional behavior for all dopings. The energy gap determined from Hc2(0) decreases as the system goes from underdoping to overdoping in agreement with the recent tunneling experiments.

  10. Anomalous diffusion of water molecules at grain boundaries in ice Ih.

    PubMed

    Moreira, Pedro Augusto Franco Pinheiro; Veiga, Roberto Gomes de Aguiar; Ribeiro, Ingrid de Almeida; Freitas, Rodrigo; Helfferich, Julian; de Koning, Maurice

    2018-05-23

    Using ab initio and classical molecular dynamics simulations, we study pre-melting phenomena in pristine coincident-site-lattice grain boundaries (GBs) in proton-disordered hexagonal ice Ih at temperatures just below the melting point Tm. Concerning pre-melt-layer thicknesses, the results are consistent with the available experimental estimates for low-disorder impurity-free GBs. With regard to molecular mobility, the simulations provide a key new insight: the translational motion of the water molecules is found to be subdiffusive for time scales from ∼10 ns up to at least 0.1 μs. Moreover, the fact that the anomalous diffusion occurs even at temperatures just below Tm where the bulk supercooled liquid still diffuses normally suggests that it is related to the confinement of the GB pre-melt layers by the surrounding crystalline environment. Furthermore, we show that this behavior can be characterized by continuous-time random walk models in which the waiting-time distributions decay according to power-laws that are very similar to those describing dynamics in glass-forming systems.

  11. Anomalous Hall effect in two-dimensional non-collinear antiferromagnetic semiconductor Cr0.68Se

    NASA Astrophysics Data System (ADS)

    Yan, J.; Luo, X.; Chen, F. C.; Pei, Q. L.; Lin, G. T.; Han, Y. Y.; Hu, L.; Tong, P.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2017-07-01

    Cr0.68Se single crystals with two-dimensional (2D) character have been grown, and the detailed magnetization M(T), electrical transport properties (including longitudinal resistivity ρxx and Hall resistivity ρxy), and thermal transport properties [including heat capacity Cp(T) and thermoelectric power S(T)] have been measured. There are some interesting phenomena: (i) Cr0.68Se presents a non-collinear antiferromagnetic (AFM) semiconducting behavior at the Néel temperature of TN = 42 K and with the activated energy of Eg = 3.9 meV; (ii) it exhibits the anomalous Hall effect (AHE) below TN and large negative magnetoresistance about 83.7% (2 K, 8.5 T). The AHE coefficient RS is 0.385 cm-3/C at T = 2 K, and the AHE conductivity σH is about 1 Ω-1 cm-1 at T = 40 K; (iii) the scaling behavior between the anomalous Hall resistivity ρxy A and the longitudinal resistivity ρxx is linear, and further analysis implies that the origin of the AHE in Cr0.68Se is dominated by the skew-scattering mechanism. Our results may be helpful for exploring the potential application of these kinds of 2D AFM semiconductors.

  12. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  13. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  14. Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments

    PubMed Central

    Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697

  15. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  16. Anomalous Structural Disorder in Supported Pt Nanoparticles

    DOE PAGES

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.; ...

    2017-07-02

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  17. Differences in feminine and masculine characteristics in women as a function of handedness: support for the Geschwind/Galaburda theory of brain organization.

    PubMed

    Casey, M B; Nuttall, R L

    1990-01-01

    The Geschwind/Galaburda testosterone theory successfully predicted differences in feminine sex role identification and behavior between women with anomalous dominance and standard dominance. The women with anomalous dominance (consisting of left-handed and ambidextrous as well as right-handed women with first-degree non-right-handed relatives) were compared to women with standard dominance (right-handed women with all right-handed first-degree relatives) on the Bem Test of Sex Role Identity and a tomboy scale. Across three samples, handedness classifications were related to both tomboy characteristics and sex role identification. In addition, the study showed that the anomalous dominance women had a higher masculine sex role identification as compared to the college normative sample for the Bem, while the standard dominance women had a higher feminine identification than the normative sample.

  18. Mono Lake excursion recorded in sediment of the Santa Clara Valley, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2004-01-01

    Two intervals recording anomalous paleomagnetic inclinations were encountered in the top 40 meters of research drill hole CCOC in the Santa Clara Valley, California. The younger of these two intervals has an age of 28,090 ± 330 radiocarbon years B.P. (calibrated age ∼32.8 ka). This age is in excellent agreement with the latest estimate for the Mono Lake excursion at the type locality and confirms that the excursion has been recorded by sediment in the San Francisco Bay region. The age of an anomalous inclination change below the Mono Lake excursion was not directly determined, but estimates of sedimentation rates indicate that the geomagnetic behavior it represents most likely occurred during the Mono Lake/Laschamp time interval (∼45–28 ka). If true, it may represent one of several recurring fluctuations of magnetic inclination during an interval of a weak geomagnetic dipole, behavior noted in other studies in the region.

  19. Anomalous bulk behavior in the free parafermion Z (N ) spin chain

    NASA Astrophysics Data System (ADS)

    Alcaraz, Francisco C.; Batchelor, Murray T.

    2018-06-01

    We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple Z (N ) model for N ≥3 for which the model Hamiltonian is non-Hermitian. For N =2 the model reduces to the well-known quantum Ising model in a transverse field. For open boundary conditions, the Z (N ) model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a topological effect.

  20. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  1. Anomalous Systemic Artery to the Left Lower Lobe: Literature Review and a New Surgical Technique.

    PubMed

    Miller, Jacob R; Lancaster, Timothy S; Abarbanell, Aaron M; Manning, Peter B; Eghtesady, Pirooz

    2018-05-01

    Anomalous systemic arterial supply to the basal segments of the left lower lobe without coexisting pulmonary artery connection is a rare anomaly. Most feel treatment is necessary; however, the ideal strategy is unclear. Treatments described include embolization, pulmonary resection, or anastomosis to the native pulmonary artery. We recently encountered an infant with this anomaly and present a literature review summarizing all recent reports. Additionally, we describe a novel surgical technique to create a tension-free anastomosis utilizing segmental aortic translocation that we employed in our patient due to a large distance between the anomalous vessel and native left pulmonary artery.

  2. Singularity-free interpretation of the thermodynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth; Debenedetti, Pablo G.; Sciortino, Francesco; Stanley, H. E.

    1996-06-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water.

  3. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  4. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  5. Unfolding the physics of URu 2Si 2 through silicon to phosphorus substitution

    DOE PAGES

    Gallagher, A.; Chen, K. -W.; Moir, C. M.; ...

    2016-02-19

    The heavy fermion intermetallic compound URu 2Si 2 exhibits a hidden-order phase below the temperature of 17.5 K, which supports both anomalous metallic behavior and unconventional superconductivity. While these individual phenomena have been investigated in detail, it remains unclear how they are related to each other and to what extent uranium f-electron valence fluctuations influence each one. Here we use ligand site substituted URu 2Si 2-xP x to establish their evolution under electronic tuning. We find that while hidden order is monotonically suppressed and destroyed for x ≤ 0.035, the superconducting strength evolves non-monotonically with a maximum near x ≈more » 0.01 and that superconductivity is destroyed near x ≈ 0.028. This behavior reveals that hidden order depends strongly on tuning outside of the U f-electron shells. Furthermore, it also suggests that while hidden order provides an environment for superconductivity and anomalous metallic behavior, it’s fluctuations may not be solely responsible for their progression.« less

  6. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    DOE PAGES

    Haugh, M. J.; Jacoby, K. D.; Barrios, M. A.; ...

    2016-08-23

    Here, we present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as amore » guide and corrections were applied to the model based upon measurements. But, the measurement of RI at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous RI behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting RI for this range of curvature and spectral energies.« less

  7. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Jacoby, K. D.; Barrios, M. A.; Thorn, D.; Emig, J. A.; Schneider, M. B.

    2016-11-01

    We present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as a guide and corrections were applied to the model based upon measurements. But, the measurement of RI at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous RI behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting RI for this range of curvature and spectral energies.

  8. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.

    PubMed

    Jamali, Tayeb; Naji, Ali

    2018-06-13

    We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.

  9. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  10. A Dynamical Systems Explanation of the Hurst Effect and Atmospheric Low-Frequency Variability

    PubMed Central

    Franzke, Christian L. E.; Osprey, Scott M.; Davini, Paolo; Watkins, Nicholas W.

    2015-01-01

    The Hurst effect plays an important role in many areas such as physics, climate and finance. It describes the anomalous growth of range and constrains the behavior and predictability of these systems. The Hurst effect is frequently taken to be synonymous with Long-Range Dependence (LRD) and is typically assumed to be produced by a stationary stochastic process which has infinite memory. However, infinite memory appears to be at odds with the Markovian nature of most physical laws while the stationarity assumption lacks robustness. Here we use Lorenz's paradigmatic chaotic model to show that regime behavior can also cause the Hurst effect. By giving an alternative, parsimonious, explanation using nonstationary Markovian dynamics, our results question the common belief that the Hurst effect necessarily implies a stationary infinite memory process. We also demonstrate that our results can explain atmospheric variability without the infinite memory previously thought necessary and are consistent with climate model simulations. PMID:25765880

  11. Mariner Jupiter/Saturn 1977 - The mission frame.

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.

    1972-01-01

    Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.

  12. Suppressing Anomalous Localized Waffle Behavior in Least Squares Wavefront Reconstructors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D

    2002-10-08

    A major difficulty with wavefront slope sensors is their insensitivity to certain phase aberration patterns, the classic example being the waffle pattern in the Fried sampling geometry. As the number of degrees of freedom in AO systems grows larger, the possibility of troublesome waffle-like behavior over localized portions of the aperture is becoming evident. Reconstructor matrices have associated with them, either explicitly or implicitly, an orthogonal mode space over which they operate, called the singular mode space. If not properly preconditioned, the reconstructor's mode set can consist almost entirely of modes that each have some localized waffle-like behavior. In thismore » paper we analyze the behavior of least-squares reconstructors with regard to their mode spaces. We introduce a new technique that is successful in producing a mode space that segregates the waffle-like behavior into a few ''high order'' modes, which can then be projected out of the reconstructor matrix. This technique can be adapted so as to remove any specific modes that are undesirable in the final reconstructor (such as piston, tip, and tilt for example) as well as suppress (the more nebulously defined) localized waffle behavior.« less

  13. The properties of electrodeposited Zn-Co coatings

    NASA Astrophysics Data System (ADS)

    Mahieu, J.; de Wit, K.; de Cooman, B. C.; de Boeck, A.

    1999-10-01

    The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.

  14. Behavior of hydrogen in alpha-iron at lower temperatures

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1973-01-01

    Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.

  15. Nonlinear dynamics and damage induced properties of soft matter with application in oncology

    NASA Astrophysics Data System (ADS)

    Naimark, O.

    2017-09-01

    Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.

  16. FN-DFE: Fuzzy-Neural Data Fusion Engine for Enhanced State-Awareness of Resilient Hybrid Energy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Dumidu Wijayasekara; Milos Manic

    Resiliency and improved state-awareness of modern critical infrastructures, such as energy production and industrial systems, is becoming increasingly important. As control systems become increasingly complex, the number of inputs and outputs increase. Therefore, in order to maintain sufficient levels of state-awareness, a robust system state monitoring must be implemented that correctly identifies system behavior even when one or more sensors are faulty. Furthermore, as intelligent cyber adversaries become more capable, incorrect values may be fed to the operators. To address these needs, this paper proposes a Fuzzy-Neural Data Fusion Engine (FN-DFE) for resilient state-awareness of control systems. The designed FN-DFEmore » is composed of a three-layered system consisting of: 1) traditional threshold based alarms, 2) anomalous behavior detector using self-organizing fuzzy logic system, and 3) artificial neural network based system modeling and prediction. The improved control system state-awareness is achieved via fusing input data from multiple sources and combining them into robust anomaly indicators. In addition, the neural network based signal predictions are used to augment the resiliency of the system and provide coherent state-awareness despite temporary unavailability of sensory data. The proposed system was integrated and tested with a model of the Idaho National Laboratory’s (INL) hybrid energy system facility know as HYTEST. Experimental results demonstrate that the proposed FN-DFE provides timely plant performance monitoring and anomaly detection capabilities. It was shown that the system is capable of identifying intrusive behavior significantly earlier than conventional threshold based alarm systems.« less

  17. Aneurysm of an Anomalous Systemic Artery Supplying the Normal Basal Segments of the Left Lower Lobe: Endovascular Treatment with the Amplatzer Vascular Plug II and Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canyigit, Murat, E-mail: mcanyigit@yahoo.com; Gumus, Mehmet; Kilic, Evrim

    2011-02-15

    An anomalous systemic artery originating from the descending thoracic aorta supplying the normal basal segments of the lower lobe of the left lung without sequestration is a rare congenital anomaly. The published surgical treatments include lobectomy, segmentectomy, anastomosis, and ligation. In addition, endovascular treatment with coils has been reported. A second-generation occluder, the Amplatzer Vascular Plug II (AVP II), has a central plug and two occlusion disks and a finer, more densely woven nitinol wire, thus enabling faster embolization. This published case is the first successful occlusion of an aneurysm of an anomalous systemic artery with the AVP II andmore » fibered coils, with 10 months of follow-up.« less

  18. Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces

    NASA Astrophysics Data System (ADS)

    Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.

    2018-04-01

    Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.

  19. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  20. Model Based Autonomy for Robust Mars Operations

    NASA Technical Reports Server (NTRS)

    Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.

  1. Relation between boundary slip mechanisms and waterlike fluid behavior.

    PubMed

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  2. Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettige, Jeevapani J.; Araque, Juan C.; Margulis, Claudio J., E-mail: claudio-margulis@uiowa.edu

    In a recent communication [J. J. Hettige et al., J. Chem. Phys. 140, 111102 (2014)], we investigated the anomalous temperature dependence of the X-ray first sharp diffraction peak (or prepeak) in the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid. Contrary to what was expected and often observed, the first sharp diffraction peak in this system was shown to increase in intensity with increasing temperature. This implies higher intermediate-range periodicity at a higher temperature. Is this counter-intuitive behavior specific to the combination of cation and anion? The current work analyzes the structural behavior of the same cation coupled with six different anions ranging frommore » the small and spherically symmetric Cl{sup −} to the more structurally complex and charge-diffuse NTf{sub 2}{sup −}. In all cases, the same temperature behavior trend for the prepeak is observed independent of anionic nature. We will show that the intensity increase in the prepeak region is associated with the structural behavior of charged liquid subcomponents. Instead, upon a temperature increase, the apolar subcomponents contribute to what would be an expected decrease of prepeak intensity.« less

  3. Left isomerism syndrome with total anomalous systemic connection.

    PubMed

    Vo, Anh Tuan; Cao, Khang Dang; Le, Khoi Minh; Nguyen, Dinh Hoang

    2017-01-01

    We present a case of left isomerism with total anomalous systemic venous connection where the inferior vena cava was absent and all other systemic veins connected abnormally to the left atrium. The right atrium was hypoplastic with an intact atrial septum. Blood flow to the lungs was through a large ventricular septal defect. The diagnosis was made with echocardiography, angiography, and computed tomography. Complete repair was performed successfully, and the 7-year-old patient had an uneventful recovery.

  4. INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2005-01-01

    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system.

  5. WENESSA, Wide Eye-Narrow Eye Space Simulation fo Situational Awareness

    NASA Astrophysics Data System (ADS)

    Albarait, O.; Payne, D. M.; LeVan, P. D.; Luu, K. K.; Spillar, E.; Freiwald, W.; Hamada, K.; Houchard, J.

    In an effort to achieve timelier indications of anomalous object behaviors in geosynchronous earth orbit, a Planning Capability Concept (PCC) for a “Wide Eye-Narrow Eye” (WE-NE) telescope network has been established. The PCC addresses the problem of providing continuous and operationally robust, layered and cost-effective, Space Situational Awareness (SSA) that is focused on monitoring deep space for anomalous behaviors. It does this by first detecting the anomalies with wide field of regard systems, and then providing reliable handovers for detailed observational follow-up by another optical asset. WENESSA will explore the added value of such a system to the existing Space Surveillance Network (SSN). The study will assess and quantify the degree to which the PCC completely fulfills, or improves or augments, these deep space knowledge deficiencies relative to current operational systems. In order to improve organic simulation capabilities, we will explore options for the federation of diverse community simulation approaches, while evaluating the efficiencies offered by a network of small and larger aperture, ground-based telescopes. Existing Space Modeling and Simulation (M&S) tools designed for evaluating WENESSA-like problems will be taken into consideration as we proceed in defining and developing the tools needed to perform this study, leading to the creation of a unified Space M&S environment for the rapid assessment of new capabilities. The primary goal of this effort is to perform a utility assessment of the WE-NE concept. The assessment will explore the mission utility of various WE-NE concepts in discovering deep space anomalies in concert with the SSN. The secondary goal is to generate an enduring modeling and simulation environment to explore the utility of future proposed concepts and supporting technologies. Ultimately, our validated simulation framework would support the inclusion of other ground- and space-based SSA assets through integrated analysis. Options will be explored using at least two competing simulation capabilities, but emphasis will be placed on reasoned analyses as supported by the simulations.

  6. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  7. [Developmental anatomy of anomalous structure and investigation of medicinal parts Sophora flavescens].

    PubMed

    Wang, Jun; Xie, Xiaomei; Peng, Huasheng

    2012-06-01

    To elucidate the composition structure of "annual rings" and the formation process of anomalous structures in Sophora flavescens, and further discuss the medicinal parts of S. flavescens. Based on investigation on S. flavescens in its producing areas, the morphology of root systems was observed, and the developmental anatomy of roots was researched. Creeping underground rhizomes of S. flavescen existed in some parts of the north place, there were many differences in appearance characters and microscopic features between these roots and rhizomes. Parenchyma cells in secondary xylem regained meristematic ability, became into anomalous cambia, and then developed into anomalous structures. "Annual rings" in transverse section of S. flavescens were not actually growth rings, they were made up of anomalous parenchyma girdle in secondary xylem and normal secondary structure. Roots are the medicinal parts of S. flavescens. This paper suggests that "annual rings" in the decoction pieces of S. flavescens should be called "annular structure".

  8. Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments

    PubMed Central

    Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal

    2007-01-01

    One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979

  9. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.

    PubMed

    Tsekouras, Konstantinos; Siegel, Amanda P; Day, Richard N; Pressé, Steve

    2015-07-07

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state

    NASA Astrophysics Data System (ADS)

    Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit

    2018-06-01

    We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.

  11. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    PubMed

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  12. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  13. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  14. Toward Exposing Timing-Based Probing Attacks in Web Applications †

    PubMed Central

    Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai

    2017-01-01

    Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users’ browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach. PMID:28245610

  15. Toward Exposing Timing-Based Probing Attacks in Web Applications.

    PubMed

    Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai

    2017-02-25

    Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users' browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach.

  16. Detecting anomalous traders using multi-slice network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing

    2017-05-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.

  17. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  18. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  19. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less

  20. Pre-seismic anomalous geomagnetic signature related to M8.3 earthquake occurred in Chile on September 16-th, 2015

    NASA Astrophysics Data System (ADS)

    Armand Stanica, Dragos, ,, Dr.; Stanica, Dumitru, ,, Dr.; Vladimirescu, Nicoleta

    2016-04-01

    In this paper, we retrospectively analyzed the geomagnetic data collected, via internet (www.intermagnet.com), on the interval 01 July-30 September 2015 at the observatories Easter Island (IMP) and Pilar (PIL), placed in Chile and Argentina, respectively, to emphasize a possible relationship between the pre-seismic anomalous behavior of the normalized function Bzn and M8.3 earthquake, that occurred in Offshore Coquimbo (Chile) on September 16-th, 2015. The daily mean distributions of the normalized function Bzn=Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectrical strike) and its standard deviation (STDEV) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using the FFT band-pass filter analysis. It was demonstrated that in pre-seismic conditions the Bzn has a significant enhancement due to the crustal electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting system developed inside the foci and its neighboring area. After analyzing the anomalous values of the normalized function Bzn obtained at Easter Island and Pilar observatories, the second one taken as reference, we used a statistical analysis, based on a standardized random variable equation, to identify on 1-2 September 2015 a pre-seismic signature related to the M8.3 earthquake. The lead time was 14 days before the M8.3 earthquake occurrence. The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme earthquake hazard assessment.

  1. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Baumgaertner, A.

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.

  2. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    NASA Astrophysics Data System (ADS)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  3. Anomalous dimension in a two-species reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  4. SeeCoast: persistent surveillance and automated scene understanding for ports and coastal areas

    NASA Astrophysics Data System (ADS)

    Rhodes, Bradley J.; Bomberger, Neil A.; Freyman, Todd M.; Kreamer, William; Kirschner, Linda; L'Italien, Adam C.; Mungovan, Wendy; Stauffer, Chris; Stolzar, Lauren; Waxman, Allen M.; Seibert, Michael

    2007-04-01

    SeeCoast is a prototype US Coast Guard port and coastal area surveillance system that aims to reduce operator workload while maintaining optimal domain awareness by shifting their focus from having to detect events to being able to analyze and act upon the knowledge derived from automatically detected anomalous activities. The automated scene understanding capability provided by the baseline SeeCoast system (as currently installed at the Joint Harbor Operations Center at Hampton Roads, VA) results from the integration of several components. Machine vision technology processes the real-time video streams provided by USCG cameras to generate vessel track and classification (based on vessel length) information. A multi-INT fusion component generates a single, coherent track picture by combining information available from the video processor with that from surface surveillance radars and AIS reports. Based on this track picture, vessel activity is analyzed by SeeCoast to detect user-defined unsafe, illegal, and threatening vessel activities using a rule-based pattern recognizer and to detect anomalous vessel activities on the basis of automatically learned behavior normalcy models. Operators can optionally guide the learning system in the form of examples and counter-examples of activities of interest, and refine the performance of the learning system by confirming alerts or indicating examples of false alarms. The fused track picture also provides a basis for automated control and tasking of cameras to detect vessels in motion. Real-time visualization combining the products of all SeeCoast components in a common operating picture is provided by a thin web-based client.

  5. Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles

    PubMed Central

    Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H.; Wagner, Michael J.; Torre, Edward Della; Bennett, Lawrence H.

    2014-01-01

    The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations. PMID:25183061

  6. Anomalous transport in cellular flows: The role of initial conditions and aging

    NASA Astrophysics Data System (ADS)

    Pöschke, Patrick; Sokolov, Igor M.; Nepomnyashchy, Alexander A.; Zaks, Michael A.

    2016-09-01

    We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.

  7. Competing spin phases in geometrically frustrated magnetic molecules.

    PubMed

    Schröder, Christian; Nojiri, Hiroyuki; Schnack, Jürgen; Hage, Peter; Luban, Marshall; Kögerler, Paul

    2005-01-14

    We identify a class of zero-dimensional classical and quantum Heisenberg spin systems exhibiting anomalous behavior in an external magnetic field B similar to that found for the geometrically frustrated kagome lattice of classical spins. Our calculations for the isotropic Heisenberg model show the emergence of a pronounced minimum in the differential susceptibility dM/dB at B(sat)/3 as the temperature T is raised from 0 K for structures based on corner-sharing triangles, specifically the octahedron, cuboctahedron, and icosidodecahedron. As the first experimental evidence we note that the giant Keplerate magnetic molecule {Mo(72)Fe(30)} (Fe(3+) ions on the 30 vertices of an icosidodecahedron) exhibits this behavior. For low T when B approximately B(sat)/3 two competing families of spin configurations exist of which one behaves magnetically "stiff" leading to a reduction of dM/dB.

  8. Diffusive behavior of a greedy traveling salesman.

    PubMed

    Lipowski, Adam; Lipowska, Dorota

    2011-06-01

    Using Monte Carlo simulations we examine the diffusive properties of the greedy algorithm in the d-dimensional traveling salesman problem. Our results show that for d=3 and 4 the average squared distance from the origin (r(2)) is proportional to the number of steps t. In the d=2 case such a scaling is modified with some logarithmic corrections, which might suggest that d=2 is the critical dimension of the problem. The distribution of lengths also shows marked differences between d=2 and d>2 versions. A simple strategy adopted by the salesman might resemble strategies chosen by some foraging and hunting animals, for which anomalous diffusive behavior has recently been reported and interpreted in terms of Lévy flights. Our results suggest that broad and Lévy-like distributions in such systems might appear due to dimension-dependent properties of a search space.

  9. Attachment Disorganization.

    ERIC Educational Resources Information Center

    Solomon, Judith, Ed.; George, Carol, Ed.

    Disorganized attachment relationships were first formally identified on the basis of the anomalous behavior of some infants during laboratory separations and reunions with the parent. This book presents new research and theory on the topic of attachment disorganization, an area of investigation that is of increasing importance in the study of…

  10. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    USDA-ARS?s Scientific Manuscript database

    Expressions were presented to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binary nanoscale roughness and chemical heterogeneity. The influence of heterogeneity type, roughness para...

  11. The role of fractional time-derivative operators on anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Tateishi, Angel A.; Ribeiro, Haroldo V.; Lenzi, Ervin K.

    2017-10-01

    The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating anomalous diffusive processes.

  12. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  13. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  14. Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.

    2017-11-01

    Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.

  15. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  16. Anomalous behavior of the ionosphere before strong earthquakes

    NASA Astrophysics Data System (ADS)

    Peddi Naidu, P.; Madhavi Latha, T.; Madhusudhana Rao, D. N.; Indira Devi, M.

    2017-12-01

    In the recent years, the seismo-ionospheric coupling has been studied using various ionospheric parameters like Total Electron Content, Critical frequencies, Electron density and Phase and amplitude of Very Low Frequency waves. The present study deals with the behavior of the ionosphere in the pre-earthquake period of 3-4 days at various stations adopting the critical frequencies of Es and F2 layers. The relative phase measurements of 16 kHz VLF wave transmissions from Rugby (UK), received at Visakhapatnam (India) are utilized to study the D-region during the seismically active periods. The results show that, f0Es increases a few hours before the time of occurrence of the earthquake and day time values f0F2 are found to be high during the sunlit hours in the pre-earthquake period of 2-3 days. Anomalous VLF phase fluctuations are observed during the sunset hours before the earthquake event. The results are discussed in the light of the probable mechanism proposed by previous investigators.

  17. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    NASA Astrophysics Data System (ADS)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  18. Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: Unusual atmospheric blocking?

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Bradley, Russell W.; Warzybok, Pete; Abraham, Christine L.; Jahncke, Jaime; Hyrenbach, K. David; Kousky, Vernon; Hipfner, J. Mark; Ohman, Mark D.

    2006-10-01

    In spring-summer 2005, anomalous atmospheric-oceanographic coupling caused unprecedented reproductive failures and redistribution of a planktivorous marine bird in both central California (37°N) and southern British Columbia (50°N). At SE Farallon Island, CA, the birds abandoned the breeding colony en masse between 10-20 May, a unique behavioral response; for the first time in 35 years, reproductive success was zero. At Triangle Island, B.C., only 8% of the nesting pairs were successful, the worst year on record. Surveys of birds at sea revealed a peak in relative abundance south of Point Conception (34°N) in summer and fall, suggestive of emigration from the north. Prey (euphausiid crustacean) biomass in the Gulf of the Farallones was reduced, but remained high south of Point Conception. Change in predator and prey may be explained, in part, by unusual atmospheric blocking in the Gulf of Alaska in May, which caused the jet stream to shift southwards resulting in poor upwelling-favorable winds and anomalously warm SST. This study demonstrates the deleterious consequences of this climate event for a top marine predator in the central-northern California Current System.

  19. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  20. Anomalous magnetotransport properties of high-quality single crystals of Weyl semimetal WTe2: Sign change of Hall resistivity

    NASA Astrophysics Data System (ADS)

    Jha, Rajveer; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Ribeiro, Raquel A.; Aoki, Yuji

    2018-05-01

    We report on a systematic study of Hall effect using high quality single crystals of type-II Weyl semimetal WTe2 with the applied magnetic field B//c. The residual resistivity ratio of 1330 and the large magnetoresistance of 1.5 × 106 % in 9 T at 2 K, being in the highest class in the literature, attest to their high quality. Based on a simple two-carrier model, the densities (ne and nh) and mobilities (μe and μh) for electron and hole carriers have been uniquely determined combining both Hall- and electrical-resistivity data. The difference between ne and nh is 1% at 2 K, indicating that the system is in an compensated condition. The negative Hall resistivity growing rapidly below 20 K is due to a rapidly increasing μh/μe approaching one. Below 3 K in a low field region, we found the Hall resistivity becomes positive, reflecting that μh/μe finally exceeds one in this region. These anomalous behaviors of the carrier densities and mobilities might be associated with the existence of a Lifshitz transition and/or the spin texture on the Fermi surface.

  1. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  2. Anomalous compression behavior of ˜12 nm nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Li, Shourui; Peng, Fang; Lei, Li; Hu, Qiwei; Wang, Pei; Nan, Xiaolong; Liu, Jing; Zhu, Wenjun; He, Duanwei

    2017-06-01

    When the grain size decreases, there inevitably exists a critical size (dc) where the contribution of surface atoms to the physical properties is competitive with that of the interior atoms, giving rise to a wide variety of new phenomena. The behavior of granular materials near dc is particularly interesting because of the crossover, a continuous transition from one type of mechanism to another. In situ high-pressure x-ray diffraction experiments showed that the compression curve of nanocrystalline anatase TiO2 with grain size near dc reached a platform after about 5%-6% of deformation under hydrostatic compression. Eventually, the unit cell volume of anatase expanded at ˜14-16 GPa. We propose that the anomalous compression behavior is attributed to the formation and thickening of the stiff high density amorphous shell under high pressure, giving rise to a great arching effect at the grain boundary at the nanolevel. This process results in a remarkable difference in stress between inside and outside of the shell, generating the illusions of the hardening and the negative compressibility. This study offers a new insight into the mechanical properties of nanomaterials under extreme conditions.

  3. Structural controls on anomalous transport in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  4. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  5. Anomalous meridional thermospheric neutral winds in the AE-E NATE data: Effects of the equatorial nighttime pressure bulge

    NASA Technical Reports Server (NTRS)

    Goembel, L.; Herrero, F. A.

    1995-01-01

    The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.

  6. The Rb 780-nanometer Faraday anomalous dispersion optical filter: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Yin, B.; Alvarez, L. S.; Shay, T. M.

    1994-01-01

    The Faraday anomalous dispersion optical filter may provide ultra-high background noise rejection for free-space laser communications systems. The theoretical model for the filter is reported. The experimental measurements and their comparison with theoretical results are discussed. The results show that the filter can provide a 56-dB solar background noise rejection with about a 2-GHz transmission bandwidth and no image degradation. To further increase the background noise rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is designed and experimentally demonstrated.

  7. Anomalous Hall Resistance in Bilayer Electron Systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-04-01

    Interlayer phase coherence has revealed various novel features in bilayer quantum Hall (QH) systems. It is shown to make the QH resistance vanish instead of developing a Hall plateau in a bilayer counterflow geometry. It also induces another anomalous QH resistance discovered in a drag experiment. These theoretical results explain recent experimental data due to Kellogg et al. [PRL 93 (2004) 036801;PRL 88 (2002) 126804] and Tutuc et al.[PRL 93 (2004) 036802].

  8. Irradiate-anneal screening of total dose effects in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    Judicious choice of radiation dose and parameter change acceptance criteria, absence of anomalous anneal phenomena, and absence of anomalous reirradiation effects are recognized as essential for a successful irradiation-anneal (IRAN) screening procedure to ensure that no device will fall, upon reirradiation, above parametric limits assigned for the worst case application. Reirradiation and irradiation-anneal behavior of various semiconductor devices are compared and those that do not lend themselves to IRAN screening are singled out. Information needed to judge the suitability of an IRAN type screening program is detailed. Reasons for success of the limited IRAN screening of flight parts for the Mariner Jupiter/Saturn (MJS '77) spacecraft are indicated.

  9. Anomalous reversal of transverse thermoelectric voltage in CoδFe100-δ /YIG junction

    NASA Astrophysics Data System (ADS)

    Ramos, R.; Wongjom, P.; Iguchi, R.; Yagmur, A.; Qiu, Z.; Pinitsoontorn, S.; Uchida, K.; Saitoh, E.

    2018-02-01

    We have studied thermoelectric conversion in all-ferromagnetic CoδFe100-δ /YIG bilayer junctions as a function of the chemical composition δ . We performed measurements of the transverse thermoelectric voltage upon application of a magnetic field. The voltage measured in the longitudinal spin Seebeck effect configuration shows a sign reversal at δ = 40%, which cannot be explained by the conventional electronic transport, such as the anomalous Nernst and Hall effects in the CoδFe100-δ layer. Our results suggest a possible role of the sd-type exchange interaction between Co40Fe60 and YIG at the interface as a possible origin for the observed behavior.

  10. Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source

    NASA Astrophysics Data System (ADS)

    Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.

    2017-12-01

    Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively invariant 143Nd signature that is a hallmark of Réunion hotspot lavas. Given growing evidence that the Réunion hotspot source represents an unusually ancient, primitive mantle domain, these new data argue that Réunion is a critical source of information regarding the formation and preservation of ancient heterogeneities in Earth's deep interior.

  11. Anomalous event diagnosis for environmental satellite systems

    NASA Technical Reports Server (NTRS)

    Ramsay, Bruce H.

    1993-01-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) is responsible for the operation of the NOAA geostationary and polar orbiting satellites. NESDIS provides a wide array of operational meteorological and oceanographic products and services and operates various computer and communication systems on a 24-hour, seven days per week schedule. The Anomaly Reporting System contains a database of anomalous events regarding the operations of the Geostationary Operational Environmental Satellite (GOES), communication, or computer systems that have degraded or caused the loss of GOES imagery. Data is currently entered manually via an automated query user interface. There are 21 possible symptoms (e.g., No Data), and 73 possible causes (e.g., Sectorizer - World Weather Building) of an anomalous event. The determination of an event's cause(s) is made by the on-duty computer operator, who enters the event in a paper based daily log, and by the analyst entering the data into the reporting system. The determination of the event's cause(s) impacts both the operational status of these systems, and the performance evaluation of the on-site computer and communication operations contractor.

  12. Applicability of Visual Analytics to Defence and Security Operations

    DTIC Science & Technology

    2011-06-01

    It shows the events importance in the news over time. Topics are extracted from fused video, audio and closed captions. Since viewing video...Detection of Anomalous Maritime Behavior, In Banissi, E. et al. (Eds.) Proceedings of the 12th IEEE International Conference on Information Visualisation

  13. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    USDA-ARS?s Scientific Manuscript database

    All natural surfaces exhibit nanoscale roughness (NR) and chemical heterogeneity (CH) to some extent. Expressions were developed to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binar...

  14. Faraday anomalous dispersion optical tuners

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  15. Change in the tropical cyclone activity around Korea by the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Won; Cha, Yumi; Kim, Jeoung-Yun

    2017-12-01

    Correlation between the frequency of summer tropical cyclones (TCs) affecting Korea and the East Asian summer monsoon index (EASMI) was analyzed over the last 37 years. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Niño-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between the two variables in non-ENSO years, after the 8 years with the highest EASMI (high EASMI years) and the 8 years with the lowest EASMI (low EASMI years) were selected, and the average difference between the two phases was analyzed. In high EASMI years, in the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. In addition, a monsoon trough strengthened more eastward, and TCs in high EASMI years occurred more in east ward over the western North Pacific.

  16. Efficient Energy Conversion by Grafting Nanochannels with End-charged Stimuli-responsive Polyelectrolyte Brush

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Das, Siddhartha

    2017-11-01

    Polyelectrolyte (PE) brushes have aroused increasing attention in applications in energy conversion and chemical sensing due to the environmentally-responsive and designable nature. PE brushes are charged polymer chains densely grafted on solid-liquid interfaces. By designing copolymeric systems, one can localize the ionizable sites at the brush tip in order to get end-charged PE brushes. Such brushes demonstrate anomalous shrinking/swelling behaviors with tunable environmental parameters such as pH and salt concentration. In this study, we probe the conformation and electrostatics of such PE brush systems with various size, grafting density and charge distribution, and exploit the electrochemomechanical energy conversion capabilities of nanochannels grafted with such PE brush systems. Our results indicate that the presence of the end-charged PE brush layer can massively enhance the streaming potential mediated energy conversion efficiency, and the improvement is more significant in strongly ionic solution.

  17. Computation of molecular vibrational frequencies using anomalous harmoniclike potentials.

    PubMed

    Li, Xiangzhu; Paldus, Josef

    2009-07-28

    The instabilities of Hartree-Fock (HF) solutions at or near the equilibrium geometry of symmetric molecular species imply the existence of broken-symmetry solutions having a lower energy than the corresponding symmetry-adapted ones. Moreover, the distortion of the nuclear framework along the normal modes that are implied by such broken-symmetry solutions results in an anomalous or even singular behavior in the corresponding cuts of the potential energy surface (PES). Using such HF solutions as a reference, these anomalies propagate to a post-HF level and make it impossible to determine reliable harmonic or fundamental vibrational frequencies for such modes by relying on either numerical or analytical differentiation of the PES, requiring instead a numerical integration of the Schrodinger equation for the nuclear motion. This, in turn, requires a detailed knowledge on the PES in a wide range of geometries, necessitating a computation of the potential energy function in a large number of points. We present an alternative approach to this problem, referred to as the integral averaging method (IAM), which facilitates this task by significantly reducing the number of geometries for which one has to compute the potential energy while yielding results of practically the same accuracy as the solution of the Schrodinger equation. The IAM is applied to several ABA-type triatomics and to the allyl radical, whose asymmetric stretching mode potential suffers from an anomalous behavior due to the spin-preserving instabilities in restricted open-shell HF solutions.

  18. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  19. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.

  20. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    PubMed

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  1. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE PAGES

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; ...

    2016-12-06

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  2. Discriminating bot accounts based solely on temporal features of microblog behavior

    NASA Astrophysics Data System (ADS)

    Pan, Junshan; Liu, Ying; Liu, Xiang; Hu, Hanping

    2016-05-01

    As the largest microblog service in China, Sina Weibo has attracted numerous automated applications (known as bots) due to its popularity and open architecture. We classify the active users from Sina Weibo into human, bot-based and hybrid groups based solely on the study of temporal features of their posting behavior. The anomalous burstiness parameter and time-interval entropy value are exploited to characterize automation. We also reveal different behavior patterns among the three types of users regarding their reposting ratio, daily rhythm and active days. Our findings may help Sina Weibo manage a better community and should be considered for dynamic models of microblog behaviors.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cun; Ren, Yang; Cui, Lishan

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less

  4. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Gregory J; Gout, Delphine J; Zarestky, Jerel L

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, theremore » is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.« less

  5. Transport in the barrier billiard

    NASA Astrophysics Data System (ADS)

    Saberi Fathi, S. M.; Ettoumi, W.; Courbage, M.

    2016-06-01

    We investigate transport properties of an ensemble of particles moving inside an infinite periodic horizontal planar barrier billiard. A particle moves among bars and elastically reflects on them. The motion is a uniform translation along the bars' axis. When the tangent of the incidence angle, α , is fixed and rational, the second moment of the displacement along the orthogonal axis at time n , , is either bounded or asymptotic to K n2 , when n →∞ . For irrational α , the collision map is ergodic and has a family of weakly mixing observables, the transport is not ballistic, and autocorrelation functions decay only in time average, but may not decay for a family of irrational α 's. An exhaustive numerical computation shows that the transport may be superdiffusive or subdiffusive with various rates or bounded strongly depending on the values of α . The variety of transport behaviors sounds reminiscent of well-known behavior of conservative systems. Considering then an ensemble of particles with nonfixed α , the system is nonergodic and certainly not mixing and has anomalous diffusion with self-similar space-time properties. However, we verified that such a system decomposes into ergodic subdynamics breaking self-similarity.

  6. Glasslike dynamical behavior of the plastocyanin hydration water

    NASA Astrophysics Data System (ADS)

    Bizzarri, Anna Rita; Paciaroni, Alessandro; Cannistraro, Salvatore

    2000-09-01

    The dynamical behavior of water around plastocyanin has been investigated in a wide temperature range by molecular dynamics simulation. The mean square displacements of water oxygen atoms show, at long times, a tα trend for all temperatures. Below 150 K, α is constant and equal to 1; at higher temperatures it drops to a value significantly smaller than 1, and thereafter decreases with increasing temperature. The occurrence of such an anomalous diffusion matches the onset of the dynamical transition observed in the protein. The intermediate scattering function of water is characterized, at high temperature, by a stretched exponential decay evolving, at low temperature, toward a two step relaxation behavior, which becomes more evident on increasing the exchanged wave vector q. Both the mean square displacements and the intermediate scattering functions show, beyond the ballistic regime, a plateau, which progressively extends for longer times as long as the temperature is lowered, such behavior reflecting trapping of water molecules within a cage formed by the nearest neighbors. At low temperature, a low frequency broad inelastic peak is observed in the dynamical structure factor of hydration water; such an excess of vibrational modes being reminiscent of the boson peak, characteristic of disordered, amorphous systems. All these features, which are typical of complex systems, can be traced back to the glassy character of the hydration water and suggest a dynamical coupling occurring at the macromolecule-solvent interface.

  7. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  8. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.

  9. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    PubMed

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  10. Identifying Anomalous Behaviour in AIS Data: Loitering and Gaps in Transmission as Indicators of IUU Associated Behaviour.

    NASA Astrophysics Data System (ADS)

    Ford, J.; Peel, D.; Wilcox, C.; Kroodsma, D.

    2016-12-01

    Identifying anomalous behaviour associated with Illegal, Unreported and Unregulated (IUU) fishing including supportive activities such as transshipment, is a key step to combating IUU fishing. We use spatial statistical models and Automatic Identification System (AIS) data to identify anomalous activity, specifically various indicators of loitering behaviours (for example, vessels travelling slower than expected, perhaps rendezvousing for transshipment), and gaps in AIS transmissions. Gaps occur for three basic reasons: saturation of the system in locations with high vessel density; poor quality transmissions due to equipment on the vessel or receiver; and intentional disabling of AIS transmitters. Resolving which of these mechanisms is generating gaps in transmissions from a given vessel is a critical task in using AIS to monitor vessels. Moreover, separating saturation and equipment issues from intentional disabling is a useful task in risk identification of IUU associated behaviour. Using this information on loitering behaviour and gaps in transmission, we identify and rank vessels which appear to be acting anomalously, with a focus on identifying potential IUU related activities. This information, combined with other sources of data, could help support enforcement agencies to implement international strategies such as the Port State Measures Agreement. A global list of such vessels and historical evidence of anomalous behaviour, would increase local powers of protection and provide one more step toward transparency within global fisheries.

  11. Could quantum gravity phenomenology be tested with high intensity lasers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magueijo, Joao; Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto M5S 3H8; Theoretical Physics Group, Imperial College, Prince Consort Road, London SW7 2BZ

    2006-06-15

    In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E{sub P}, but it is also possible that anomalous behavior strikes systems of particles with total energy near E{sub P}. This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E{sub P} do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) specialmore » relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest.« less

  12. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  13. Strongly anomalous diffusion in sheared magnetic configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Eijnden, E.; Balescu, R.

    1996-03-01

    The statistical behavior of magnetic lines in a sheared magnetic configuration with reference surface {ital x}=0 is investigated within the framework of the kinetic theory. A Liouville equation is associated with the equations of motion of the stochastic magnetic lines. After averaging over an ensemble of realizations, it yields a convection-diffusion equation within the quasilinear approximation. The diffusion coefficients are space dependent and peaked around the reference surface {ital x}=0. Due to the shear, the diffusion of lines away from the reference surface is slowed down. The behavior of the lines is asymptotically strongly non-Gaussian. The reference surface acts likemore » an attractor around which the magnetic lines spread with an effective subdiffusive behavior. Comparison is also made with more usual treatments based on the study of the first two moments equations. For sheared systems, it is explicitly shown that the Corrsin approximation assumed in the latter approach is no longer valid. It is also concluded that the diffusion coefficients cannot be derived from the mean square displacement of the magnetic lines in an inhomogeneous medium. {copyright} {ital 1996 American Institute of Physics.}« less

  14. Scaled equation of state parameters for gases in the critical region

    NASA Technical Reports Server (NTRS)

    Sengers, J. M. H. L.; Greer, W. L.; Sengers, J. V.

    1976-01-01

    In the light of recent theoretical developments, the paper presents an accurate characterization of anomalous thermodynamic behavior of xenon, helium 4, helium 3, carbon dioxide, steam and oxygen in the critical region. This behavior is associated with long range fluctuations in the system and the physical properties depend primarily on a single variable, namely, the correlation length. A description of the thermodynamic behavior of fluids in terms of scaling laws is formulated, and the two successfully used scaled equations of state (NBS equation and Linear Model parametric equation) are compared. Methods for fitting both equations to experimental equation of state data are developed and formulated, and the optimum fit for each of the two scaled equations of the above gases are presented and the results are compared. By extending the experimental data for the above one-component fluids to partially miscible binary liquids, superfluid liquid helium, ferromagnets and solids exhibiting order-disorder transitions, the principle of universality is concluded. Finally by using this principle, the critical regions for nine additional fluids are described.

  15. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  16. Anomalous variations of lithosphere magnetic field before several earthquakes

    NASA Astrophysics Data System (ADS)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  17. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  18. Experimental evidence for the lattice instability of Bi-based superconducting systems

    NASA Astrophysics Data System (ADS)

    Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang

    1989-11-01

    Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.

  19. Overview of GSE as a multifunctional GUI

    NASA Astrophysics Data System (ADS)

    Kurtovich, Boyan; Malangone, Fabio; Voss, David L.; Carssow, Douglas B.; Fritz, Theodore A.; Mavretic, Anton

    2009-08-01

    Ground Support Equipment (GSE) [1] is a versatile and multifunctional graphical user interface (GUI) and a software/hardware platform. It is a custom-designed system executed in the LabVIEW programming language to serve as an instrument health monitor for the Loss Cone Imager (LCI) satellite project. GSE mimics the behavior of the onboard Experiment Computer System (ECS). Its functions comprise the measurement of voltage, current, and power, as well as acting as a safety mechanism in case of any anomalous condition (e.g., over-current and/or over-voltage situation). Individual log files record the sessions during which data is gathered and analyzed. Safety/warning alarm flags shall be 'visible' from any individual window/tab. Analog-to-Digital Conversion (ADC) particle group measurements will be displayed on six individual panels. GSE will be supplemented with a comprehensive user's manual for added clarity.

  20. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  1. Steam-deformed Judkins-left guiding catheter with use of the GuideLiner(®) catheter to deliver stents for anomalous right coronary artery.

    PubMed

    Kuno, Toshiki; Fujisawa, Taishi; Yamazaki, Hiroyuki; Motoda, Hiroyuki; Kodaira, Masaki; Numasawa, Yohei

    2015-01-01

    Percutaneous coronary intervention for anomalous right coronary artery (RCA) originating from the left coronary cusp is challenging because of our current inability to coaxially engage the guiding catheter. We report a case of an 88-year-old woman with non-ST segment elevation myocardial infarction, with an anomalous RCA origin. Using either the Judkins-Left catheter or Amplatz-Left catheter was difficult because of RCA ostium tortuosity. Thus, we used steam to deform the Judkins-Left catheter, but back-up support was insufficient to deliver the stent. We used GuideLiner®, a novel pediatric catheter with rapid exchange/monorail systems, to enhance back-up support. We were able to successfully stent with both the deformed Judkins-Left guiding catheter and GuideLiner® for an anomalous RCA origin.

  2. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    DOE PAGES

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...

    2016-03-09

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less

  3. Weakly anomalous diffusion with non-Gaussian propagators

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; Viswanathan, G. M.; Ferreira, A. S.; da Silva, M. A. A.

    2012-08-01

    A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H≈1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H=1/2 but with a non-Gaussian propagator.

  4. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  5. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  6. Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.

    1994-01-01

    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.

  7. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  8. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    PubMed

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent α<1 (subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  9. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  10. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+)

    PubMed Central

    Liu, Xiao; Fan, Huiqing; Shi, Jing; Li, Qiang

    2015-01-01

    Dielectric properties and dielectric relaxation behaviors of A/B sites co-substituted Bi0.5Na0.5TiO3 perovskite-type ferroelectrics are reported. The Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+) exhibits anomalous giant dielectric permittivity (ε’) of ~105 under a heterogeneous constitution with easily discernible grain and grain boundary conductivity. The lone pairs substitution theory as well as extrinsic disorders are used to clarify the significant structural evolution and the origin of the dielectric performance. A bigger free volume promotes the anomalous relaxation between oxygen sites, and the polarization direction on the nanoscale deviates from the average polarization direction at its ferroelectric state. Furthermore, no obvious phase transition indicates the considerable static substitutional disorder at the Bi/Na sites, which facilitates delocalized conduction of oxygen ions in the intermediate temperature range. PMID:26239525

  11. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  12. Feynman-Kac equation for anomalous processes with space- and time-dependent forces

    NASA Astrophysics Data System (ADS)

    Cairoli, Andrea; Baule, Adrian

    2017-04-01

    Functionals of a stochastic process Y(t) model many physical time-extensive observables, for instance particle positions, local and occupation times or accumulated mechanical work. When Y(t) is a normal diffusive process, their statistics are obtained as the solution of the celebrated Feynman-Kac equation. This equation provides the crucial link between the expected values of diffusion processes and the solutions of deterministic second-order partial differential equations. When Y(t) is non-Brownian, e.g. an anomalous diffusive process, generalizations of the Feynman-Kac equation that incorporate power-law or more general waiting time distributions of the underlying random walk have recently been derived. A general representation of such waiting times is provided in terms of a Lévy process whose Laplace exponent is directly related to the memory kernel appearing in the generalized Feynman-Kac equation. The corresponding anomalous processes have been shown to capture nonlinear mean square displacements exhibiting crossovers between different scaling regimes, which have been observed in numerous experiments on biological systems like migrating cells or diffusing macromolecules in intracellular environments. However, the case where both space- and time-dependent forces drive the dynamics of the generalized anomalous process has not been solved yet. Here, we present the missing derivation of the Feynman-Kac equation in such general case by using the subordination technique. Furthermore, we discuss its extension to functionals explicitly depending on time, which are of particular relevance for the stochastic thermodynamics of anomalous diffusive systems. Exact results on the work fluctuations of a simple non-equilibrium model are obtained. An additional aim of this paper is to provide a pedagogical introduction to Lévy processes, semimartingales and their associated stochastic calculus, which underlie the mathematical formulation of anomalous diffusion as a subordinated process.

  13. Low-temperature dependence of the thermomagnetic transport properties of the SrTiO3/LaAlO3 interface

    NASA Astrophysics Data System (ADS)

    Lerer, S.; Ben Shalom, M.; Deutscher, G.; Dagan, Y.

    2011-08-01

    Transport measurements are reported, including Hall, Seebeck, and Nernst effects. All of these transport properties exhibit anomalous field and temperature dependencies, with a change of behavior observed at H˜1.5 T and T˜15 K. The low-temperature, low-field behaviors of all transport properties were reconciled using a simple two-band analysis. A more detailed model is required in order to explain the high-magnetic-field regime.

  14. Interaction of antimicrobial preservatives with blow-fill-seal packs: correlating sorption with solubility parameters.

    PubMed

    Amin, Aeshna; Dare, Manish; Sangamwar, Abhay; Bansal, Arvind Kumar

    2012-01-01

    The aim of this work was to study the interaction of four commonly used ophthalmic antimicrobial preservatives [benzyl alcohol (BA), chlorbutol (CBL), benzalkonium chloride (BKC), and chlorhexidine gluconate (CG)] with Blow-Fill-Seal (BFS) packs. Effect of packaging material [low-density polyethylene (LDPE), polypropylene (PP)], humidity (25% RH, 75% RH) and concentration (0.5, 1.0, 2.0 mM BA/CBL in LDPE) was studied. BKC and CG gave negligible loss (<4%) in BFS packs over a period of 3 months. BA and CBL, however, gave marked losses in LDPE (ca. 70-90%) and PP (ca. 7-25%) packs. Humidity did not have any effect on the sorption loss of any preservative. Loss of BA switched from Case II to anomalous behavior with increasing initial concentration. A two-stage sorption behavior was inherent at all concentrations. Loss of CBL followed anomalous behavior with biphasic kinetics of loss. It was concluded that all the four preservatives were appropriate for use in PP BFS packs. However, only BKC and CG were amenable to be used in LDPE BFS packs. Lastly, an empirical expression consisting of the "solubility parameter distance" and "molar volume" of preservatives was developed to correlate the preservative loss in LDPE with the physicochemical properties of the preservatives.

  15. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .

  16. Search for anomalous electroweak production of W W /W Z in association with a high-mass dijet system in p p collisions at √{s }=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-02-01

    A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to 20.2 fb-1 of √{s }=8 TeV p p collisions and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of W W or W Z boson pairs accompanied by a high-mass dijet system, with one W decaying leptonically and a W or Z decaying hadronically. The hadronically decaying W /Z is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters α4 and α5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are -0.024 <α4<0.030 and -0.028 <α5<0.033 .

  17. Numerical Test of the Additivity Principle in Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Tamaki, Shuji

    2017-10-01

    The additivity principle (AP) is one of the remarkable predictions that systematically generates all information on current fluctuations once the value of average current in the linear response regime is input. However, conditions to justify the AP are still ambiguous. We hence consider three tractable models, and discuss possible conditions. The models include the harmonic chain (HC), momentum exchange (ME) model, and momentum flip (MF) model, which respectively show ballistic, anomalous, and diffusive transport. We compare the heat current cumulants predicted by the AP with exact numerical data obtained for these models. The HC does not show the AP, whereas the MF model satisfies it, as expected, since the AP was originally proposed for diffusive systems. Surprisingly, the ME model also shows the AP. The ME model is known to show the anomalous transport similar to that shown in nonlinear systems such as the Fermi-Pasta-Ulam model. Our finding indicates that general nonlinear systems may satisfy the AP. Possible conditions for satisfying the AP are discussed.

  18. Search for anomalous electroweak production of W W / W Z in association with a high-mass dijet system in p p collisions at s = 8 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    2017-02-08

    A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. Here, the data for the analysis correspond to 20.2 fb -1 of √ s = 8 TeV pp collisions and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of WW or WZ boson pairs accompanied by a high-mass dijet system, with one W decaying leptonically and a W or Z decaying hadronically. The hadronically decaying W/Z is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quarticmore » gauge boson coupling parameters α 4 and α 5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are - 0.024 < α 4 < 0.030 and - 0.028 < α 5 < 0.033 .« less

  19. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  20. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  1. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    NASA Astrophysics Data System (ADS)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  2. "Alcohol Myopia," Expectations, Social Interests, and Sorority Pledge Status.

    ERIC Educational Resources Information Center

    Elias, Jeffrey W.; And Others

    1996-01-01

    Examines "alcohol myopia" (an increased use of alcohol in the face of increased negative consequences of use) in freshman college women with or without sorority pledge status. Increased alcohol use and alcohol myopia were present in the sorority pledge group. Both groups showed anomalous myopic behavior as alcohol use increased. (RJM)

  3. Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.

    The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.

  4. Anomalous swelling behavior of FM 5055 carbon phenolic composite

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    The swelling response of a typical carbon phenolic composite was measured in the three primary material directions. The data obtained sugrest that at low and high relative humidities the incremental increase in moisture absorption can be attributed primarily to the resin. At intermediate relative humidities, the water is moving largely into the carbonized fibers.

  5. New intrinsic mechanism on gum-like superelasticity of multifunctional alloys

    PubMed Central

    Liu, Jia-Peng; Wang, Yan-Dong; Hao, Yu-Lin; Wang, Yunzhi; Nie, Zhi-Hua; Wang, Dong; Ren, Yang; Lu, Zhao-Ping; Wang, Jinguo; Wang, Haoliang; Hui, Xidong; Lu, Ning; Kim, Moon J.; Yang, Rui

    2013-01-01

    Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite. PMID:23831664

  6. High-field specific heats of A15 V3Si and Nb3Sn

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Brandt, B. L.

    1984-04-01

    In order to further understand the anomalous behavior of the specific heat of Nb3Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb

    [Phys. Rev. B 24, 3841 (1981)]
    , we have performed specific-heat measurements on a different sample of Nb3Sn at lower fields both in the normal and mixed states, as well as measurement to 19 T on both transforming and nontransforming V3Si. The high-field data for V3Si indicate that this material behaves quite normally, and that γtrans<γnontrans, in agreement with a recent analysis by Junod and Muller
    [Solid State Commun. 36, 721 (1980)]
    . Nb3Sn, however, remains anomalous, with both the same "kink" in the normal-state field data as observed by Stewart, Cort, and Webb (although at a slightly higher temperature) and unusual mixed-state behavior. The mixed-state specific heat of the V3Si samples is as expected, based on earlier work on the mixed-state specific heat of V and Nb.

  7. Elastic moduli of rock glasses under pressure to 8 kilobars and geophysical implications.

    USGS Publications Warehouse

    Meister, R.; Robertson, E.C.; Werke, R.W.; Raspet, R.

    1980-01-01

    Shear and longitudinal velocities were measured by the ultrasonic phase comparison method as a function of pressure to 8 kbar on synthetic glasses of basalt, andesite, rhyolite, and quartz composition and on natural obsidian. Velocities of most of the glasses decrease anomalously with pressure, but increasingly more-normal behavior occurs with decrease in SiO2 content. The pressure derivatives of rigidity and bulk modulus increase linearly, from -3.39 to -0.26 and from -5.91 to +2.09, respectively, with decrease in SiO2 content from 100 to 49%. The change from negative to positive in the pressure derivatives of both moduli and observed at Poisson's ratio of about 0.25 is consitent with the Smyth model for the anomalous elastic behavior of glass. If the temperature in the upper mantle is about 1500oC, tholeiitic basalt would be molten in accordance with the partial melt explanation for the low-velocity zone; at 1300oC and below, basalt would be in the glassy state, especially if more felsic than tholeiite. -Authors

  8. Comb model for the anomalous diffusion with dual-phase-lag constitutive relation

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zheng, Liancun; Fan, Yu; Chen, Yanping; Liu, Fawang

    2018-10-01

    As a development of the Fick's model, the dual-phase-lag constitutive relationship with macroscopic and microscopic relaxation characteristics is introduced to describe the anomalous diffusion in comb model. The Dirac delta function in the formulated governing equation represents the special spatial structure of comb model that the horizontal current only exists on the x axis. Solutions are obtained by analytical method with Laplace transform and Fourier transform. The dependence of concentration field and mean square displacement on different parameters are presented and discussed. Results show that the macroscopic and microscopic relaxation parameters have opposite effects on the particle distribution and mean square displacement. Furthermore, four significant results with constant 1/2 are concluded, namely the product of the particle number and the mean square displacement on the x axis equals to 1/2, the exponent of mean square displacement is 1/2 at the special case τq= τP, an asymptotic form of mean square displacement (MSD∼t1/2 as t→0, ∞) is obtained as well at the short time behavior and the long time behavior.

  9. Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki

    2018-05-01

    We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.

  10. Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong

    The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.

  11. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  12. The origin of anomalous transport in porous media - is it possible to make a priori predictions?

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Blunt, Martin

    2013-04-01

    Despite the range of significant applications of flow and solute transport in porous rock, including contaminant migration in subsurface hydrology, geological storage of carbon-dioxide and tracer studies and miscible displacement in oil recovery, even the qualitative behavior in the subsurface is uncertain. The non-Fickian nature of dispersive processes in heterogeneous porous media has been demonstrated experimentally from pore to field scales. However, the exact relationship between structure, velocity field and transport has not been fully understood. Advances in X ray imaging techniques made it possible to accurately describe structure of the pore space, helping predict flow and anomalous transport behaviour using direct simulation. This is demonstrated by simulating solute transport through 3D images of rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a sandstone, and a carbonate. A novel methodology is developed that predicts solute transport at the pore scale by using probability density functions of displacement (propagators) and probability density function of transit time between the image voxels, and relates it to probability density function of normalized local velocity. A key advantage is that full information on velocity and solute concentration is retained in the models. The methodology includes solving for Stokes flow by Open Foam, solving for advective transport by the novel streamline simulation method, and superimposing diffusive transport diffusion by the random walk method. It is shown how computed propagators for beadpack, sandstone and carbonate depend on the spread in the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behaviour where the propagators rapidly become Gaussian; the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed; in the carbonate with the widest velocity distribution the stagnant concentration peak is persistent, while the emergence of a smaller secondary mobile peak is observed, leading to a highly anomalous behavior. This defines different generic nature of non-Fickian transport in the three media and quantifies the effect of pore structure on transport. Moreover, the propagators obtained by the model are in a very good agreement with the propagators measured on beadpack, Bentheimer sandstone and Portland carbonate cores in nuclear magnetic resonance experiments. These findings demonstrate that it is possible to make a priori predictions of anomalous transport in porous media. The importance of these findings for transport in complex carbonate rock micro-CT images is discussed, classifying them in terms of degree of anomalous transport that can have an impact at the field scale. Extensions to reactive transport will be discussed.

  13. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  14. Anomalous decay and scattering processes of the meson

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Plenter, Judith

    2015-06-01

    We amend a recent dispersive analysis of the anomalous decay process by the effects of the tensor meson, the lowest-lying resonance that can contribute in the system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous decay. There are nonnegligible consequences for the transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process , which could be measured in Primakoff reactions in the future.

  15. Anomalous diffusion in a dynamical optical lattice

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  16. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  17. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  18. Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media.

    PubMed

    Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-An; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X; Xie, Xi

    2018-05-04

    Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.

  19. Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-an; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X.; Xie, Xi

    2018-05-01

    Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.

  20. Anomalous current diffusion and improved confinement in the HT-6M tohamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.

    1994-10-01

    Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.

  1. Steam-deformed Judkins-left guiding catheter with use of the GuideLiner® catheter to deliver stents for anomalous right coronary artery

    PubMed Central

    Kuno, Toshiki; Fujisawa, Taishi; Yamazaki, Hiroyuki; Motoda, Hiroyuki; Kodaira, Masaki; Numasawa, Yohei

    2015-01-01

    Objective: Percutaneous coronary intervention for anomalous right coronary artery (RCA) originating from the left coronary cusp is challenging because of our current inability to coaxially engage the guiding catheter. Methods: We report a case of an 88-year-old woman with non-ST segment elevation myocardial infarction, with an anomalous RCA origin. Using either the Judkins-Left catheter or Amplatz-Left catheter was difficult because of RCA ostium tortuosity. Thus, we used steam to deform the Judkins-Left catheter, but back-up support was insufficient to deliver the stent. Results: We used GuideLiner®, a novel pediatric catheter with rapid exchange/monorail systems, to enhance back-up support. Conclusions: We were able to successfully stent with both the deformed Judkins-Left guiding catheter and GuideLiner® for an anomalous RCA origin. PMID:27489700

  2. Observations of Anomalous Refraction with Co-housed Telescopes

    NASA Astrophysics Data System (ADS)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  3. Gambling behavior in Parkinson's Disease: Impulsivity, reward mechanism and cortical brain oscillations.

    PubMed

    Balconi, Michela; Angioletti, Laura; Siri, Chiara; Meucci, Nicoletta; Pezzoli, Gianni

    2018-03-20

    Psychopathological components, such as reward sensitivity and impulsivity, and dopaminergic treatment are crucial characteristics related to the development of Pathological Gambling (PG) in Parkinson's Disease (PD). The aim of the present study is to investigate the differences in decision-making in PD patients with or without PG considering both neurophysiological and behavioral aspects. The IOWA Gambling Task (IGT) and electroencephalographic (EEG) activity were considered to elucidate the decision and post-feedback processes in PG. The sample included fifty-two PD patients, divided in three groups: 17 PD patients with active gambling behavior (PD Gamblers, PDG); 15 PD patients who remitted from PG (PD Non-Gamblers, PDNG); and a Control Group (CG) composed by 20 patients with PD only. EEG and IGT performance were recorded during decision and post-feedback phase. Results showed worse performance and an increase of the low frequency bands in the frontal area for the PDG group compared to the other two groups. In addition, higher BAS (Behavioral Activation System) and BIS-11 (Barratt Impulsiveness Scale) personality components were correlated to groups' behavioral response. These results show an anomalous behavioral (IGT) and cortical response of PDG patients related to their inability to use adequate control mechanisms during a decision-making task where reward mechanisms (BAS) and impulsivity (BIS-11) are relevant. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    NASA Astrophysics Data System (ADS)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  5. The complexity of the CaF2:Yb system: evidence that CaF2:Yb2+ is not an impurity trapped exciton system

    NASA Astrophysics Data System (ADS)

    Mackeen, Cameron; Bridges, Frank; Kozina, Michael; Mehta, Apurva; Reid, M. F.; Wells, J.-P. R.; BarandiaráN, Zoila

    Fluorite crystal structures doped with rare-earth elements exhibit an anomalous redshifted luminescence upon UV excitation, generally attributed to the relaxation of impurity trapped excitons (ITE). We find that the intensity of this luminescence decreases as the total concentration of Yb 2+ increases in unexposed samples, which is in conflict with the currently accepted ITE model. Further, using x-ray absorption spectroscopy and UV-vis studies of CaF2:Yb, we find a large (but reversible) Yb valence reduction upon x-ray exposure at 200 K - from mostly 3+ to 2+. This valence reduction is stable for long time periods at low T < 50 K, but reverts to the initial state upon warming to 300 K. After reverting to the initial valence state of 3+ the anomalous luminescence does not reappear; only after annealing at 900 K do we again observe the anomalous emission below 150 K. To explore the mechanism at work, we employ extended x-ray fine-structure absorption spectroscopy (EXAFS) to probe local structure and its role in the anomalous luminescence. The x-ray and emission studies show that CaF2:Yb is not described by the ITE model; the data appear more consistent with an intervalence charge transfer (IVCT) model. It is likely that many similar ITE systems have also been misidentified.

  6. Pseudochaos and anomalous transport: A study on saw-tooth map

    NASA Astrophysics Data System (ADS)

    Fan, Rong

    The observation of chaotic dynamics in digital filter in late 1980s propelled the interest in piecewise linear map beyond the border of theoretical electrical engineering. Also, during last two decades, various physical models and phenomena, such as stochastic web and sticky orbits, not only broadened our knowledge of chaos but also urged us to further our understanding of meaning of chaos and randomness. In this dissertation, a piecewise linear kicked oscillator model: saw-tooth map, is studied as an example of pseudochaos. Physically, kicked oscillator model describes one-dimensional harmonic oscillator effected by delta-like kicks from external force source at certain fixed frequency. Starting from a special case of global periodicity, numerical investigations were carefully carried out in two cases that deviate from global periodicity. We observe the appearance of stochastic web structure and accompanying erratic dynamical behavior in the system that can't be fully explained by the classical Kolmogorov-Arnold-Moser theorem. Also anomalous transport occurs in both cases. We perform accurate analysis of Poincare recurrences and reconstruct the probability density function of Poincare recurrence times, which suggests a relation between the transport and the Poincare recurrence exponents. Saw-tooth map has non-uniform phase space, in which domains of regular dynamics and domains of chaotic dynamics are intertwined. The large-scale dynamics of the system is hugely impacted by the heterogeneity of the phase space, especially by the existence of hierarchy of periodic islands. We carefully study the characteristics of phase space and numerically compute fractal dimensions of the so-called exceptional set Delta in both cases. Our results suggest that the fractal dimension is strictly less than 2 and that the fractal structures are unifractal rather than multifractal. We present a phenomenological theoretical framework of Fractional Kinetic Equation (FKE) and Renormalization Group of Kinetics (RGK). FKE, which is fractional generalization of the Fokker-Planck-Kolmogorov equation, adopts the fractality of time and space and serves probabilistic description of chaos in Hamiltonian systems. RGK bridges the self-similar structure in phase space and large-scale behavior of the dynamics, and establishes relationships among fractality, transport and Poincare recurrences.

  7. Anomalous dynamics of intruders in a crowded environment of mobile obstacles

    PubMed Central

    Sentjabrskaja, Tatjana; Zaccarelli, Emanuela; De Michele, Cristiano; Sciortino, Francesco; Tartaglia, Piero; Voigtmann, Thomas; Egelhaaf, Stefan U.; Laurati, Marco

    2016-01-01

    Many natural and industrial processes rely on constrained transport, such as proteins moving through cells, particles confined in nanocomposite materials or gels, individuals in highly dense collectives and vehicular traffic conditions. These are examples of motion through crowded environments, in which the host matrix may retain some glass-like dynamics. Here we investigate constrained transport in a colloidal model system, in which dilute small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal differential dynamic microscopy and simulations, here we discover a critical size asymmetry, at which anomalous collective transport of the small particles appears, manifested as a logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix mobility is central for the observed anomalous behaviour. These results, crucially depending on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology. PMID:27041068

  8. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  9. Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander; Nestoklon, Mikhail; Goupalov, Serguei

    2012-02-01

    Atomistic sp^3d^5s^* tight-binding theory of PbSe and PbS nanocrystals is developed. It is demonstrated, that the valley splittings of confined electrons and holes strongly and peculiarly depend on the geometry of a nanocrystal. When the nanocrystal lacks a microscopic center of inversion and has Td symmetry, the splittings are strongly suppressed as compared to the more symmetric nanocrystals with Oh symmetry, having an inversion center. This effect is quite unusual because typically a higher symmetry of a physical system implies a higher degeneracy of its energy levels, while in our case the suppression of the splittings occurs in NCs having lower symmetry. Nevertheless, we were able to explain this puzzling behavior using mathematical apparatus of the group theory.

  10. Field-induced negative differential spin lifetime in silicon.

    PubMed

    Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian

    2012-04-13

    We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.

  11. Generation, propagation, and switching of orientational waves in photoexcited liquid-crystalline monolayers.

    PubMed

    Okuzono, Tohru; Tabe, Yuka; Yokoyama, Hiroshi

    2004-05-01

    Photoinduced orientational waves in illuminated liquid-crystalline monolayers is one of the most remarkable far-from-equilibrium phenomena that systems of soft condensed matter exhibit. We model this behavior from a phenomenological point of view, taking the anisotropic photoexcitation of molecules into account. Numerical simulations as well as theoretical analyses of the model reveal that the intricate interplay between the spontaneous splay deformation of the liquid-crystalline order and the anisotropy of the photoexcitation can lead to the generation and propagation of orientational waves. The model can explain all the salient features of the phenomenon-in particular, the anomalous reversal of the propagation direction upon 90 degrees rotation of the polarization direction of illumination, which evaded theoretical explanation for nearly a decade.

  12. Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.

    2000-04-03

    We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less

  13. Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions

    NASA Astrophysics Data System (ADS)

    Si, Qimiao

    2002-03-01

    Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).

  14. Long-Term Memory: A Natural Mechanism for the Clustering of Extreme Events and Anomalous Residual Times in Climate Records

    NASA Astrophysics Data System (ADS)

    Bunde, Armin; Eichner, Jan F.; Kantelhardt, Jan W.; Havlin, Shlomo

    2005-01-01

    We study the statistics of the return intervals between extreme events above a certain threshold in long-term persistent records. We find that the long-term memory leads (i)to a stretched exponential distribution of the return intervals, (ii)to a pronounced clustering of extreme events, and (iii)to an anomalous behavior of the mean residual time to the next event that depends on the history and increases with the elapsed time in a counterintuitive way. We present an analytical scaling approach and demonstrate that all these features can be seen in long climate records. The phenomena should also occur in heartbeat records, Internet traffic, and stock market volatility and have to be taken into account for an efficient risk evaluation.

  15. Two-dimensional lattice-fluid model with waterlike anomalies.

    PubMed

    Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  16. Anomalous behavior of curves of pseudo-elastic deformation of Ni-Fe-Ga-Co alloy crystals as a result of interphase stresses

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Averkin, A. I.; Zograf, A. P.

    2016-12-01

    The compression diagram of Ni49Fe18Ga27Co6 alloy crystals in the [011] direction was studied until full shape memory strain at various temperatures in the range of 259-340 K. It is found that all load curves are anomalously shaped and contain portions of sharp and gradual decreases in deformation stresses. Simulation of pseudo-elastic stress-strain curves within the theory of diffuse martensitic transitions, describing not only equilibrium of phases, but also the kinetics of the transition between them, shows that elastic interphase stresses during martensitic reactions Ll 2 → 14 M and 14 M → Ll 0 characteristic of this alloy can be responsible for the extraordinary shape of compression diagrams.

  17. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  18. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating.

    PubMed

    Yang, Liu; Kou, Pengfei; He, Nan; Dai, Hao; He, Sailing

    2017-06-26

    A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.

  19. Fractional Brownian motion with a reflecting wall

    NASA Astrophysics Data System (ADS)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α <1 , in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  20. How anomalous is the interstellar extinction in NGC 3372, the Carina Nebula?

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Roth, M.; Marraco, H.; Ruiz, M. T.

    Near-infrared JHKL photometry of more than 200 stars in the open clusters Tr 14, Tr 15, Tr 16, Cr 228, and Cr 232 in the Carina Nebula is presented. By comparing these results with the available visual photometry and spectroscopy, it is found that the intracluster reddening is characterized, except in Tr 15, by a 'normal' extinction law for lambda greater than 0.5 micron, but is highly anomalous and variable in the U and B bands. Provisional two-color visual polarimetry suggests that the wavelength of maximum polarization is similar to that in the general interstellar medium. This behavior may be explained by the presence of intracluster interstellar grains 'processed' by the passage of shock waves, presumably associated with the violent history of Eta Carinae.

  1. Anomalous Nonlocal Resistance and Spin-Charge Conversion Mechanisms in Two-Dimensional Metals

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2017-09-01

    We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. First, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Second, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (the Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin-diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and they may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.

  2. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in Shortwave Radiative Transfer: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.

    2001-12-01

    Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state-of-the-art observations that offer compelling empirical support for the Lévy/anomalous diffusion model in atmospheric radiation: (1) high-resolution spectroscopy of differential absorption in the O2 A-band from ground; (2) temporal transient records of lightning strokes transmitted through clouds to a sensitive detector in space; and (3) the Gamma-distributions of optical depths derived from Landsat cloud scenes at 30-m resolution. We will then introduce a rigorous analytical formulation of Lévy/anomalous transport through finite media based on fractional derivatives and Sonin calculus. A remarkable result from this new theoretical development is an extremal property of the α = 1+ case (divergent mean-free-path), as is observed in the cloudy atmosphere. Finally, we will discuss the implications of anomalous transport theory for bulk 3D effects on the current enhanced absorption problem as well as its role as the basis of a next-generation GCM radiation parameterization.

  3. Narrow log-periodic modulations in non-Markovian random walks

    NASA Astrophysics Data System (ADS)

    Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.

    2017-12-01

    What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.

  4. A Data Quality Filter for PMU Measurements: Description, Experience, and Examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follum, James D.; Amidan, Brett G.

    Networks of phasor measurement units (PMUs) continue to grow, and along with them, the amount of data available for analysis. With so much data, it is impractical to identify and remove poor quality data manually. The data quality filter described in this paper was developed for use with the Data Integrity and Situation Awareness Tool (DISAT), which analyzes PMU data to identify anomalous system behavior. The filter operates based only on the information included in the data files, without supervisory control and data acquisition (SCADA) data, state estimator values, or system topology information. Measurements are compared to preselected thresholds tomore » determine if they are reliable. Along with the filter's description, examples of data quality issues from application of the filter to nine months of archived PMU data are provided. The paper is intended to aid the reader in recognizing and properly addressing data quality issues in PMU data.« less

  5. Anomalous Gray Matter Patterns in Specific Reading Comprehension Deficit Are Independent of Dyslexia

    ERIC Educational Resources Information Center

    Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine; Cutting, Laurie

    2016-01-01

    Specific reading comprehension deficit (SRCD) affects up to 10 % of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive profile of SRCD. While its neuroanatomical…

  6. Anomalous creep in Sn-rich solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay

    2002-03-15

    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.

  7. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on themore » order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.« less

  8. Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-01

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.

  9. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobyshev, A.; Lamore, D.; Demar, P.

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has anmore » interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.« less

  10. Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model.

    PubMed

    Dean, David S; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb

    2016-09-01

    The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).

  11. Embolization of the Systemic Arterial Supply via a Detachable Silicon Balloon in a Child with Scimitar Syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahin, Sinan; Celebi, Ahmet; Yalcin, Yalim

    2005-04-15

    Scimitar syndrome is a rare congenital disorder. It is characterized by partial or total abnormal venous drainage of the right lung into the inferior vena cava, which is often associated with anomalous systemic arterial supply to the right lung, congenital cardiac anomalies, hypoplasia of the right lung and bronchial anomalies. Symptoms depend on the degree of the shunt and severity of the associated anomalies, which determine the treatment. We present a 6-year-old boy who was diagnosed as having the adult form of scimitar syndrome during evaluation for recurrent pulmonary infections, and underwent embolization with a detachable silicon balloon of themore » anomalous systemic arterial supply from the abdominal aorta to the right lower lung lobe. Successful elective surgery was performed 6 months later, in which right pulmonary veins were directed to the left atrium using a Gore-Tex patch by creating an intra-atrial tunnel. The patient has been symptom-free period during 6 months of follow-up, which supports the idea that recurrent pulmonary infections can be eliminated by embolization of the anomalous arterial supply.« less

  12. Search for anomalous electroweak production of W W / W Z in association with a high-mass dijet system in p p collisions at s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-02-08

    Here, a search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to 20.2 fb –1 of √s = 8 TeV pp collisions and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of WW or WZ boson pairs accompanied by a high-mass dijet system, with one W decaying leptonically and a W or Z decaying hadronically. The hadronically decaying W/Z is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gaugemore » boson coupling parameters α 4 and α 5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are –0.024 < α 4 < 0.030 and –0.028 < α 5 < 0.033.« less

  13. Preliminary paleomagnetic results from the Coyote Creek Outdoor Classroom drill hole, Santa Clara Valley, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2003-01-01

    Paleomagnetic samples were obtained from cores taken during the drilling of a research well along Coyote Creek in San Jose, California, in order to use the geomagnetic field behavior recorded in those samples to provide age constraints for the sediment encountered. The well reached a depth of 308 meters and material apparently was deposited largely (entirely?) during the Brunhes Normal Polarity Chron, which lasted from 780 ka to the present time. Three episodes of anomalous magnetic inclinations were recorded in parts of the sedimentary sequence; the uppermost two we correlate to the Mono Lake (~30 ka) geomagnetic excursion and 6 cm lower, tentatively to the Laschamp (~45 ka) excursion. The lowermost anomalous interval occurs at 305 m and consists of less than 10 cm of fully reversed inclinations underlain by 1.5 m of normal polarity sediment. This lower anomalous interval may represent either the Big Lost excursion (~565 ka) or the polarity transition at the end of the Matuyama Reversed Polarity Chron (780 ka). The average rates of deposition for the Pleistocene section in this well, based on these two alternatives, are approximately 52 or 37 cm/kyr, respectively.

  14. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature.

    PubMed

    Shamim, Nabila; McKenna, Gregory B

    2010-12-09

    The present paper reports the results of a systematic rheological study of the dynamic moduli of 1-butyl 3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl 3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-ethyl 3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) in the vicinity of their respective glass transition temperatures. The results show an anomalous aging in that the dynamic and the low shear rate viscosities decrease with time at temperatures near to, but above, the glass transition temperature, and this is described. The samples that are aged into equilibrium obey the time-temperature superposition principle, and the shift factors and the viscosities follow classic super-Arrhenius behaviors with intermediate fragility values as the glass transition is approached. Similar experiments using a high-purity [Bmim][BF(4)] show that using a higher purity of the ionic liquid, while changing absolute values of the properties, does not eliminate the anomalous aging response. The data are also analyzed in a fashion similar to that used for polymer melts, and we find that these ionic liquids do not follow, for example, the Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity.

  15. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  16. Creep properties of Pb-free solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalousmore » creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.« less

  17. Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.

  18. Glass transition of soft colloids

    NASA Astrophysics Data System (ADS)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  19. The unusual wet summer (July) of 2014 in Southern Europe

    NASA Astrophysics Data System (ADS)

    Ratna, Satyaban B.; Ratnam, J. V.; Behera, Swadhin K.; Cherchi, Annalisa; Wang, Wanqiu; Yamagata, Toshio

    2017-06-01

    Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The monthly rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982-2013 July climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea surface temperature (SST) and convective anomalies in the tropical Pacific through the atmospheric teleconnection. Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi-stationary Rossby wave from the Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic in nature and seen extending to lower atmospheric levels, weakening the seasonal high and causing heavy precipitation over the Southern Europe. The hypothesis is verified using the National Centers for Environmental Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.

  20. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  1. Cross-sectional echocardiographic diagnosis of systemic venous return.

    PubMed Central

    Huhta, J C; Smallhorn, J F; Macartney, F J; Anderson, R H; de Leval, M

    1982-01-01

    To determine the sensitivity and specificity of cross-sectional echocardiography in diagnosing anomalous systemic venous return we used the technique in 800 consecutive children with congenital heart disease and whom the diagnosis was ultimately confirmed by angiography. Cross-sectional echocardiography was performed without prior knowledge of the diagnosis in all but 11 patients, who were recalled because of a known abnormality of atrial situs. The sensitivity of cross-sectional echocardiographic detection of various structures was as follows: right superior vena cava 792/792 (100%); left superior vena cava 46/48 (96%); bilateral superior vena cava 38/40 (95%); bridging innominate vein with bilateral superior vena cava 13/18 (72%); connection of superior caval segment to heart (coronary sinus or either atrium) (100%); absence of suprarenal inferior vena cava 23/23 (100%); azygos continuation of the inferior vena cava 31/33 (91%); downstream connection of azygos continuation, once seen, 21/21 (100%); partial anomalous hepatic venous connection (one hepatic vein not connected to the inferior vena cava) 1/1 (100%); total anomalous hepatic venous connection (invariably associated with left isomerism) 23/23 (100%). The specificity of each above diagnoses was 100% except in one infant with exomphalos in whom absence of the suprarenal inferior vena cava was incorrectly diagnosed. Thus cross-sectional echocardiography is an extremely specific and highly sensitive method of recognizing anomalous systemic venous return. It is therefore of great value of planning both cardiac catheterisation and cannulation for open heart surgery. Images PMID:6751361

  2. Automated screening of propulsion system test data by neural networks, phase 1

    NASA Technical Reports Server (NTRS)

    Hoyt, W. Andes; Whitehead, Bruce A.

    1992-01-01

    The evaluation of propulsion system test and flight performance data involves reviewing an extremely large volume of sensor data generated by each test. An automated system that screens large volumes of data and identifies propulsion system parameters which appear unusual or anomalous will increase the productivity of data analysis. Data analysts may then focus on a smaller subset of anomalous data for further evaluation of propulsion system tests. Such an automated data screening system would give NASA the benefit of a reduction in the manpower and time required to complete a propulsion system data evaluation. A phase 1 effort to develop a prototype data screening system is reported. Neural networks will detect anomalies based on nominal propulsion system data only. It appears that a reasonable goal for an operational system would be to screen out 95 pct. of the nominal data, leaving less than 5 pct. needing further analysis by human experts.

  3. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Persistent mobility edges and anomalous quantum diffusion in order-disorder separated quantum films

    NASA Astrophysics Data System (ADS)

    Zhong, Jianxin; Stocks, G. Malcolm

    2007-01-01

    A concept of order-disorder separated quantum films is proposed for the design of ultrathin quantum films of a few atomic layers thick with unconventional transport properties. The concept is demonstrated through studying an atomic bilayer comprised of an ordered layer and a disordered layer. Without the disordered layer or the ordered layer, the system is a conducting two-dimensional (2D) crystal or an insulating disordered 2D electron system. Without the order-disorder phase separation, a disordered bilayer is insulating under large disorder. In an order-disorder separated atomic bilayer, however, we show that the system behaves remarkably different from conventional ordered or disordered electron systems, exhibiting metal-insulator transitions with persistent mobility edges and superdiffusive anomalous quantum diffusion.

  5. Aging scaled Brownian motion

    NASA Astrophysics Data System (ADS)

    Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  6. Aging scaled Brownian motion.

    PubMed

    Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  7. Anisotropic Light Scattering from Ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Naik, Ratna; Lawes, Gavin; Tackett, Ron; Sudakar, C.

    2008-03-01

    We have investigated the light scattering in DC magnetic fields from aqueous suspensions of Fe3O4 nanoparticles coated with tetra methyl ammonium hydroxide and γ-Fe2O3 nanoparticles embedded in alginate hydrogel. For Fe3O4 ferrofluid, anomalous light scattering behavior was observed when light propagated both parallel and perpendicular to the magnetic fields. This behavior is attributed to the alignment and aggregation of the nanoparticles in chain-like structures. A very different light scattering behavior was observed for γ-Fe2O3 alginate sample where, under the similar conditions, the application of the magnetic field produced no structured change in scattering. We attribute this difference to the absence of chain-like structures and constrained mobility of iron nanoparticles in the alginate sample. The observation is in agreement with our relaxation and dissipative heating results^1 where both samples exhibited Neel relaxation but only the Fe3O4 ferrofluid showed Brownian relaxation. The results suggest that Brownian relaxation and nanoparticle mobility are important for producing non-linear light scattering in such systems. ^1P.P. Vaishnava, R. Tackett, A. Dixit, C. Sudakar, R. Naik, and G. Lawes, J. Appl. Phys. 102, 063914 (2007).

  8. Real-time detection and classification of anomalous events in streaming data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.

    2016-04-19

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.

  9. Endovascular treatment of isolated systemic arterial supply to normal lung with coil and glue embolisation.

    PubMed

    Anil, G; Taneja, M; Tan, A-G-S

    2012-04-01

    Surgery is the standard treatment for the extremely rare pathology of isolated anomalous systemic arterial supply to normal lung (ISSNL). We describe our experience with this anomaly in a 29-year-old male presenting with recurrent haemoptysis that was successfully treated with a combination of metallic coils and cyanoacrylate glue. In addition to contributing to the extremely limited data on endovascular therapeutic options in ISSNL, we also intend to raise the awareness among endovascular therapists of the need to be cautious ofand preserve the radiculomedullary/pial branches arising from an anomalous artery before embolising it.

  10. Intraatrial baffle repair of anomalous systemic venous return without hepatic venous drainage in heterotaxy syndrome.

    PubMed

    Turkoz, Riza; Ayabakan, Canan; Vuran, Can; Omay, Oğuz

    2010-08-01

    A 7-month-old boy with heterotaxy syndrome had partial atrioventricular septal defect and interrupted inferior vena cava with hemiazygos continuation to a left superior vena cava. The left side of the common atrium receiving all the venous drainage was in connection with the left ventricle and the aorta. The small atrium and the proximity of the pulmonary and hepatic vein orifices precluded complete baffling. This report describes an intraatrial baffle repair of anomalous systemic venous return without hepatic venous drainage. This resulted in good oxygenation postoperatively, with oxygen saturation ranging from 93% to 98%.

  11. Unusual presentation of total anomalous systemic venous connection.

    PubMed

    Vaidyanathan, Swaminathan; Kothandam, Sivakumar; Kumar, Rajesh; Pradhan, Priya M; Agarwal, Ravi

    2017-07-01

    A 9-year-old girl who presented with dyspnea on exertion was diagnosed with total anomalous systemic venous connection to the left atrium (both venae cavae), no left superior vena cava, and a moderate-sized atrial septal defect with severe pulmonary arterial hypertension and ectopic atrial rhythm. She underwent septation of the common atrium using autologous pericardium, thereby rerouting the superior vena cava, inferior vena cava, and coronary sinus to the right atrium. Her postoperative course was uneventful. This case is reported for its rarity of presentation with severe pulmonary arterial hypertension and ectopic atrial rhythm.

  12. Use of contrast echocardiography in diagnosis of anomalous connection of right superior vena cava to left atrium.

    PubMed Central

    Truman, A T; Rao, P S; Kulangara, R J

    1980-01-01

    A 4-month-old infant with cyanosis but without other abnormal cardiac findings is presented in whom the diagnosis of anomalous systemic venous connection to the left atrium was made by contrast echocardiography. The diagnosis was later confirmed by cardiac catheterisation and selective cineangiography. When saline was injected into a vein on the dorsum of each hand while echocardiographically recording the cardiac structures, the left atrium, left ventricle, and aorta were opacified without visualisation of the right ventricle. Similar study with injection into the right foot produced opacification of the right ventricle without visualisation of the left-sided structures. These data suggested normal drainage of the inferior vena cava with anomalous connection of the superior vena cava to the left atrium. A review of the previously reported cases of anomalous connection of the right superior vena cava to the left atrium is presented together with the possible embryological origin of this anomaly. Images PMID:7459157

  13. Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins.

    PubMed

    Kong, Muwen; Van Houten, Bennett

    2017-08-01

    Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Short term load forecasting of anomalous load using hybrid soft computing methods

    NASA Astrophysics Data System (ADS)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  15. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  16. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.

  17. Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation

    NASA Astrophysics Data System (ADS)

    Yamaura, T.; Tomita, T.

    2011-12-01

    This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which shifts the axis of monsoon southwesterlies southward. Thus, the negative precipitation anomalies and the positive ones appear in Kyushu and to the southeast of Japan. In the opposite TBO phase, an anomalous anticyclone is set to the southeast of Japan and suppresses tropical cyclones there. The contribution of tropical cyclones is small in this case. As such, local tropical cyclones contribute to the interannual variation of the Baiu precipitation with larger atmospheric circulations in the western North Pacific.

  18. Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Marchetti, P. A.; Su, Z. B.; Yu, L.

    2017-09-01

    The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern-Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality. Dedicated to the memory of Mario Tonin.

  19. Thermal Expansion: Using Calculator-Based Laboratory Technology to Observe the Anomalous Behavior of Water

    ERIC Educational Resources Information Center

    Branco, Mario; Soletta, Isabella

    2005-01-01

    An experiment that consists of following the changes in temperature at different depths in a precooled liquid while the liquid slowly warms up to the temperature of the surrounding environment is presented. The experiment might be used in a course on temperature, on heat transmission, and in particular in the study of convection currents.

  20. The phase diagram of ammonium nitrate.

    PubMed

    Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-14

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  1. The phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-01

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  2. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels

    NASA Astrophysics Data System (ADS)

    Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua

    2018-03-01

    It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.

  3. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renzhong; Sun, Gang; Xu, Limei, E-mail: limei.xu@pku.edu.cn

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that,more » similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.« less

  5. Explanation of the conductivity minimum in tin- and tellurium-doped bismuth

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Banerjee, Dipali; Bhattacharya, Ramendranarayan

    1995-01-01

    The presence of a minimum observed in the variation of conductivity of bismuth with impurity concentrations at a constant temperature (4.2 K) has remained unexplained for a long time. An attempt to explain this anomalous behavior is reported here. In order to do so, a calculation has been made to find the change in the number of free carriers in bismuth with the addition of impurities (donors or acceptors). The calculation has been made using simple parabolic bands. It is known that when tin or tellurium atoms are added as impurities to bismuth all of the atoms are ionized. It has been found here that the number of free carriers initially shows a slow rate of decrease (for donors) or a slow rate of increase (for acceptors) as the impurity concentration is increased, as long as the impurity concentration is small, i.e., as long as the shift of the Fermi level is small. For a higher impurity concentration the number of carriers increases at a rate equal to that of the impurity concentration. This finding, combined with the scattering by impurity ions, could explain the anomalous behavior satisfactorily.

  6. Anomalous stress response of ultrahard WB n compounds

    DOE PAGES

    Li, Quan; Zhou, Dan; Zheng, Weitao; ...

    2015-10-29

    Boron-rich tungsten borides are premier prototypes of a new class of ultrahard compounds. Here, we show by first-principles calculations that their stress-strain relations display surprisingly diverse and anomalous behavior under a variety of loading conditions. Most remarkable is the dramatically changing bonding configurations and deformation modes with rising boron concentration in WB n (n=2, 3, 4), resulting in significantly different stress responses and unexpected indentation strength variations. This novel phenomenon stems from the peculiar structural arrangements in tungsten borides driven by boron’s ability to form unusually versatile bonding states. Our results elucidate the intriguing deformation mechanisms that define a distinctmore » type of ultrahard material. Here, these new insights underscore the need to explore unconventional structure-property relations in a broad range of transition-metal light-element compounds.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  8. Anomalous Change of Hall Coefficient in Overdoped La2-xSrxCu1-yZnyO4 around x = 0.2

    NASA Astrophysics Data System (ADS)

    Tonishi, Jun; Suzuki, Takao; Goto, Takayuki

    2006-09-01

    The Hall coefficient (RH) has been measured in 0.5% Zn-doped La2-xSrxCu0.995Zn0.005O4 under high magnetic fields up to 12 T. With decreasing temperature, RH increases and begins to decrease below a temperature TRH. This characteristic temperature TRH has the local maximum around x = 0.195, and this Sr-concentration coincides with that the superconducting transition temperature is slightly suppressed. This behavior is quite similar to the phenomena observed in the stripe phase in x ˜ 0.12. These results suggest that the anomalous decrease of RH around x = 0.195 observed in this study is responsible for the "1/4"-anomaly [as reported by Kakinuma et al., Phys. Rev. B 59, 1491 (1999).].

  9. Anomalous doping of a molecular crystal monitored with confocal fluorescence microscopy: Terrylene in a p-terphenyl crystal

    NASA Astrophysics Data System (ADS)

    Białkowska, Magda; Deperasińska, Irena; Makarewicz, Artur; Kozankiewicz, Bolesław

    2017-09-01

    Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.

  10. Two-dimensional lattice-fluid model with waterlike anomalies

    NASA Astrophysics Data System (ADS)

    Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  11. Fractional Brownian motion with a reflecting wall.

    PubMed

    Wada, Alexander H O; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior 〈x^{2}〉∼t^{α}, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α>1, the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α<1, in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  12. Anomalous critical slowdown at a first order phase transition in single polymer chains.

    PubMed

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I; Skvortsov, Alexander M; Yan, Dadong; Schmid, Friederike

    2017-08-14

    Using Brownian dynamics, we study the dynamical behavior of a polymer grafted onto an adhesive surface close to the mechanically induced adsorption-stretching transition. Even though the transition is first order (in the infinite chain length limit, the stretching degree of the chain jumps discontinuously), the characteristic relaxation time is found to grow according to a power law as the transition point is approached. We present a dynamic effective interface model which reproduces these observations and provides an excellent quantitative description of the simulation data. The generic nature of the theoretical model suggests that the unconventional mixing of features that are characteristic for first-order transitions (a jump in an order parameter) and features that are characteristic of critical points (an anomalous slowdown) may be a common phenomenon in force-driven phase transitions of macromolecules.

  13. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGES

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; ...

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  14. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    NASA Astrophysics Data System (ADS)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  15. High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1996-01-01

    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.

  16. The anomalous yield behavior of fused silica glass

    NASA Astrophysics Data System (ADS)

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  17. General pulsed-field gradient signal attenuation expression based on a fractional integral modified-Bloch equation

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-10-01

    Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

  18. Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min

    2013-09-01

    We study a two-dimensional fermionic square lattice, which supports the existence of a two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2π-flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2π-flux topological semimetal are protected by two distinct novel hidden symmetries, which both correspond to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry.

  19. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California Drought: ENSO Precursor and Anthropogenic Warming Footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S-Y; Hipps, Lawrence; Gillies, Robert R.

    2014-05-16

    The 2013-14 California drought was accompanied by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer, and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either ENSO or Pacific Decadal Oscillation; instead it is correlated with a typemore » of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased GHG loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-14, the associated drought and its intensity.« less

  20. Probable causes of the abnormal ridge accompanying the 2013-2014 California drought: ENSO precursor and anthropogenic warming footprint

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y.; Hipps, Lawrence; Gillies, Robert R.; Yoon, Jin-Ho

    2014-05-01

    The 2013-2014 California drought was initiated by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either El Niño-Southern Oscillation (ENSO) or Pacific Decadal Oscillation; instead, it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased greenhouse gas loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-2014 and the associated drought.

  1. Anomalous spin Josephson effect

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng

    2016-10-01

    We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.

  2. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin

    2018-02-01

    Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

  3. Dissipationless Hall current in dense quark matter in a magnetic field

    DOE PAGES

    Ferrer, Efrain J.; de la Incera, V.

    2017-03-29

    Here, we show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. This system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. This connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  4. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (Principal Investigator)

    1981-01-01

    An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.

  5. ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K

    NASA Astrophysics Data System (ADS)

    Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J. A.; Dressel, M.

    2015-03-01

    The organic conductor κ-(BEDT-TTF)2Cu2(CN)3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound.

  6. Evidence of an Improper Displacive Phase Transition in Cd2 Re2 O7 via Time-Resolved Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harter, J. W.; Kennes, D. M.; Chu, H.; de la Torre, A.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Millis, A. J.; Hsieh, D.

    2018-01-01

    We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200 K in the strongly spin-orbit coupled correlated metal Cd2 Re2 O7 . We establish that the structural distortion at Tc is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near Tc. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.

  7. Mechanisms of the Diffusion of Nonpolar Substances in a Hydrophilic Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Atamas', N. A.

    2018-01-01

    The structural-dynamic features of ionic liquid-nonpolar substance systems are studied by means of molecular dynamics using Frenkel's fundamental theory of a liquid and the phonon theory of the thermodynamics of a liquid, in combination with the DL_POLY_4.05 software package. Argon, methane, and benzene molecules serve as the dissolved substances. Model concepts are proposed and analyzed to describe the diffusion of molecules of a dissolved substance in an ionic liquid. It is shown that an increase in the mass of the molecules of a dissolved nonpolar substance correlates with their mobility in a hydrophilic ionic liquid (IL). This determines the diffusion of the components of dmim+/Cl- IL solutions and is responsible for the anomalous behavior of the solubility of nonpolar substances in them.

  8. The use of self-organising maps for anomalous behaviour detection in a digital investigation.

    PubMed

    Fei, B K L; Eloff, J H P; Olivier, M S; Venter, H S

    2006-10-16

    The dramatic increase in crime relating to the Internet and computers has caused a growing need for digital forensics. Digital forensic tools have been developed to assist investigators in conducting a proper investigation into digital crimes. In general, the bulk of the digital forensic tools available on the market permit investigators to analyse data that has been gathered from a computer system. However, current state-of-the-art digital forensic tools simply cannot handle large volumes of data in an efficient manner. With the advent of the Internet, many employees have been given access to new and more interesting possibilities via their desktop. Consequently, excessive Internet usage for non-job purposes and even blatant misuse of the Internet have become a problem in many organisations. Since storage media are steadily growing in size, the process of analysing multiple computer systems during a digital investigation can easily consume an enormous amount of time. Identifying a single suspicious computer from a set of candidates can therefore reduce human processing time and monetary costs involved in gathering evidence. The focus of this paper is to demonstrate how, in a digital investigation, digital forensic tools and the self-organising map (SOM)--an unsupervised neural network model--can aid investigators to determine anomalous behaviours (or activities) among employees (or computer systems) in a far more efficient manner. By analysing the different SOMs (one for each computer system), anomalous behaviours are identified and investigators are assisted to conduct the analysis more efficiently. The paper will demonstrate how the easy visualisation of the SOM enhances the ability of the investigators to interpret and explore the data generated by digital forensic tools so as to determine anomalous behaviours.

  9. Concentration-Encoded Subdiffusive Molecular Communication: Theory, Channel Characteristics, and Optimum Signal Detection.

    PubMed

    Mahfuz, Mohammad Upal; Makrakis, Dimitrios; Mouftah, Hussein T

    2016-09-01

    Unlike normal diffusion, in anomalous diffusion, the movement of a molecule is described by the correlated random walk model where the mean square displacement of a molecule depends on the power law of time. In molecular communication (MC), there are many scenarios when the propagation of molecules cannot be described by normal diffusion process, where anomalous diffusion is a better fit. In this paper, the effects of anomalous subdiffusion on concentration-encoded molecular communication (CEMC) are investigated. Although classical (i.e., normal) diffusion is a widely-used model of diffusion in molecular communication (MC) research, anomalous subdiffusion is quite common in biological media involving bio-nanomachines, yet inadequately addressed as a research issue so far. Using the fractional diffusion approach, the molecular propagation effects in the case of pure subdiffusion occurring in an unbounded three-dimensional propagation medium have been shown in detail in terms of temporal dispersion parameters of the impulse response of the subdiffusive channel. Correspondingly, the bit error rate (BER) performance of a CEMC system is investigated with sampling-based (SD) and strength (i.e., energy)-based (ED) signal detection methods. It is found that anomalous subdiffusion has distinctive time-dispersive properties that play a vital role in accurately designing a subdiffusive CEMC system. Unlike normal diffusion, to detect information symbols in subdiffusive CEMC, a receiver requires larger memory size to operate correctly and hence a more complex structure. An in-depth analysis has been made on the performances of SD and ED optimum receiver models under diffusion noise and intersymbol interference (ISI) scenarios when communication range, transmission data rate, and memory size vary. In subdiffusive CEMC, the SD method.

  10. The Navstar GPS master control station's Kalman filter experience

    NASA Technical Reports Server (NTRS)

    Scardera, Michael P.

    1990-01-01

    The Navstar Global Positioning System (GPS) is a highly accurate space based navigation system providing all weather, 24 hour a day service to both military and civilian users. The system provides a Gaussian position solution with four satellites, each providing its ephemeris and clock offset with respect to GPS time. The GPS Master Clock Station (MCS) is charged with tracking each Navstar spacecraft and precisely defining the ephemeris and clock parameters for upload into the vehicle's navigation message. Briefly described here are the Navstar system and the Kalman filter estimation process used by MCS to determine, predict, and ensure quality control for each of the satellite's ephemeris and clock states. Routine performance is shown. Kalman filter reaction and response is discussed for anomalous clock behavior and trajectory perturbations. Particular attention is given to MCS efforts to improve orbital adjust modeling. The satellite out of service time due to orbital maneuvering has been reduced in the past year from four days to under twelve hours. The planning, reference trajectory model, and Kalman filter management improvements are explained.

  11. Probing the magnetic behavior of single nanodots.

    PubMed

    Neumann, Alexander; Thönnissen, Carsten; Frauen, Axel; Hesse, Simon; Meyer, Andreas; Oepen, Hans Peter

    2013-05-08

    In this paper, a method is presented that has the sensitivity to measure magnetization behavior of single nanostructures. It is demonstrated that the technique gives the ability to separate different signals of single nanodots from a small ensemble of structures. Our method is based on the anomalous Hall-Effect and allows for resolving signals from spherical nanoparticles with diameter down to 3.5 nm. The method gives access to magnetic properties of particles in a wide thermal and dynamical range. The potential of the technique is demonstrated utilizing particles that are created from Co films sandwiched by Pt layers.

  12. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin

    2018-03-01

    We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈ [1,2]. We perform a linear stability analysis and derive the conditions for diffusion-driven wave instabilities. Emphasis is placed on the effect of the superdiffusion exponent α , the diffusion ratio d , and the inertial time τ . As the superdiffusive exponent increases, so does the wave number of the Turing instability. Opposite to the requirement for Turing instability, the activator needs to diffuse sufficiently faster than the inhibitor in order for the wave instability to occur. The critical wave number for wave instability decreases with the superdiffusive exponent and increases with the inertial time. The maximum value of the inertial time for a wave instability to occur in the system is τmax=3.6 . As one of the main results of this work, we conclude that both anomalous diffusion and inertial time influence strongly the conditions for wave instabilities in hyperbolic fractional reaction-diffusion systems. Some numerical simulations are conducted as evidence of the analytical predictions derived in this work.

  13. The notion of the motion: the neurocognition of motion lines in visual narratives.

    PubMed

    Cohn, Neil; Maher, Stephen

    2015-03-19

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Anomalous Nernst effect in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  15. The notion of the motion: The neurocognition of motion lines in visual narratives

    PubMed Central

    Cohn, Neil; Maher, Stephen

    2015-01-01

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the “streaks” appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the “vocabulary” of the visual language of comics. PMID:25601006

  16. Structural behavior and dynamics of an anomalous fluid between attractive and repulsive walls: Templating, molding, and superdiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leoni, Fabio; Franzese, Giancarlo

    2014-11-07

    Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer (“templating” effect). In turn, the first layer inducesmore » a “molding” effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.« less

  17. Structural behavior and dynamics of an anomalous fluid between attractive and repulsive walls: templating, molding, and superdiffusion.

    PubMed

    Leoni, Fabio; Franzese, Giancarlo

    2014-11-07

    Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer ("templating" effect). In turn, the first layer induces a "molding" effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.

  18. Spectral decomposition of nonlinear systems with memory

    NASA Astrophysics Data System (ADS)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  19. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing

    DOE PAGES

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less

  20. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.

    PubMed

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.

  1. Endovascular treatment of isolated systemic arterial supply to normal lung with coil and glue embolisation

    PubMed Central

    Anil, G; Taneja, M; Tan, A-G-S

    2012-01-01

    Surgery is the standard treatment for the extremely rare pathology of isolated anomalous systemic arterial supply to normal lung (ISSNL). We describe our experience with this anomaly in a 29-year-old male presenting with recurrent haemoptysis that was successfully treated with a combination of metallic coils and cyanoacrylate glue. In addition to contributing to the extremely limited data on endovascular therapeutic options in ISSNL, we also intend to raise the awareness among endovascular therapists of the need to be cautious ofand preserve the radiculomedullary/pial branches arising from an anomalous artery before embolising it. PMID:22457413

  2. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  3. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  4. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  5. Coherent wave transmission in quasi-one-dimensional systems with Lévy disorder

    NASA Astrophysics Data System (ADS)

    Amanatidis, Ilias; Kleftogiannis, Ioannis; Falceto, Fernando; Gopar, Víctor A.

    2017-12-01

    We study the random fluctuations of the transmission in disordered quasi-one-dimensional systems such as disordered waveguides and/or quantum wires whose random configurations of disorder are characterized by density distributions with a long tail known as Lévy distributions. The presence of Lévy disorder leads to large fluctuations of the transmission and anomalous localization, in relation to the standard exponential localization (Anderson localization). We calculate the complete distribution of the transmission fluctuations for a different number of transmission channels in the presence and absence of time-reversal symmetry. Significant differences in the transmission statistics between disordered systems with Anderson and anomalous localizations are revealed. The theoretical predictions are independently confirmed by tight-binding numerical simulations.

  6. The Fermilab Muon g-2 experiment: laser calibration system

    DOE PAGES

    Karuza, M.; Anastasi, A.; Basti, A.; ...

    2017-08-17

    The anomalous muon dipole magnetic moment can be measured (and calculated) with great precision thus providing insight on the Standard Model and new physics. Currently an experiment is under construction at Fermilab (U.S.A.) which is expected to measure the anomalous muon dipole magnetic moment with unprecedented precision. One of the improvements with respect to the previous experiments is expected to come from the laser calibration system which has been designed and constructed by the Italian part of the collaboration (INFN). Furthermore, an emphasis of this paper will be on the calibration system that is in the final stages of constructionmore » as well as the experiment which is expected to start data taking this year.« less

  7. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    NASA Astrophysics Data System (ADS)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  8. Anomalous Hall effect in epitaxial permalloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. Q.; Sun, N. Y.; Shan, R.

    2013-10-28

    Anomalous Hall effect (AHE) of epitaxial permalloy thin films grown on MgO (001) substrates is investigated. The longitudinal conductivity independent term (i.e., the sum of intrinsic and side-jump contributions) of the anomalous Hall conductivity (AHC) is found to be much smaller than those of Fe and Ni films. Band theoretical calculations of the intrinsic AHC as a function of the number of valence electrons (band filling) indicate that the AHC of the permalloy is in the vicinity of sign change, thus resulting in the smallness of the intrinsic AHC. The contribution of the phonon scattering is found to be comparablemore » to that of the impurity scattering. This work suggests that the permalloy films are ideal systems to understand the AHE mechanisms induced by impurity scattering.« less

  9. Transport properties of correlated metals: A dynamical mean field theory perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu

    Strongly correlated metals, including many transition metal oxides, are characterized by unconventional transport properties with anomalous temperature dependence. For example, in many systems Fermi liquid behavior holds only below an extremely low temperature while at high temperature these bad metals have large resistivity which exceeds the Mott-Ioffe-Regel (MIR) limit. Material specific calculation of these anomalous transport properties is an outstanding challenge. Recent advances enabled us to study the transport and optical properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA +DMFT method. In V2O3, the prototypical Mott system, our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called ''hidden Fermi liquid'' [1, 2, 3] behavior, in both the computed and measured optical response of V2O3. This paradigm explains the optics and transport in other materials such as NdNiO3 film and CaRuO3. In the ruthenates family, we carried out a systematical theoretical study on the transport properties of four metallic members, Sr2RuO4, Sr3Ru2O7, SrRuO3 and CaRuO3, which generally encapsulates the gradually structure evolution from two-dimension to three dimension. With a unified computational scheme, we are able to obtain the electronic structure and transport properties of all these materials. The computed effective mass enhancement, resistivity and optical conductivity are good agreement with experimental measurements, which indicates that electron-electron scattering dominates the transport of ruthenates. We explain why the single layered compound Sr2RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. Comparing our results with experimental data, benchmarks the capability as well as the limitations of existing methodologies for describing transport properties of realistic correlated materials. Supported by NSF DMR-1308141.

  10. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  11. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  12. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  13. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  14. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  15. Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors

    NASA Astrophysics Data System (ADS)

    Klein, T.; Harneit, W.; Joumard, I.; Marcus, J.; Escribe-Filippini, C.; Feinberg, D.

    1998-04-01

    Ac shielding and classical dc relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ~ 30 K). The relaxation rate is found to be constant (S ~ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0·ln (1/ωτ)]μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (Phys. Rev. Lett., 77 (1996) 1597) on YBaCuO single crystals.

  16. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  17. Record high magnetic ordering temperature in a lanthanide at extreme pressure

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2017-11-07

    Today's best permanent magnet materials, SmCo 5 and Nd 2Fe 14B, could likely be made signi fi cantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3 d transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures T o <= 292 K, transition elements must be added to bring T o to temperatures well above ambient. Under pressure T o (P) for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to similar to 60 GPa. Atmore » higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T o for Dy soaring to temperatures well above ambient. In conclusion, we suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.« less

  18. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  19. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  20. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

Top