NASA Technical Reports Server (NTRS)
Lazarewicz, A. R.; Sailor, R. V. (Principal Investigator)
1982-01-01
A higher resolution anomaly map of the Broken Ridge area (2 degree dipole spacing) was produced and reduced to the pole using quiet time data for this area. The map was compared with equally scaled maps of gravity anomaly, geoid undulation, and bathymetry. The ESMAP results were compared with a NASA MAGSAT map derived by averaging data in two-degree bins. A survey simulation was developed to model the accuracy of MAGSAT anomaly maps as a function of satellite altitude, instrument noise level, external noise model, and crustal anomaly field model. A preliminary analysis of the geophysical structure of Broken Ridge is presented and unresolved questions are listed.
A global magnetic anomaly map. [obtained from POGO satellite data
NASA Technical Reports Server (NTRS)
Regan, R. D.; Davis, W. M.; Cain, J. C.
1974-01-01
A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.
Crustal interpretation of the MAGSAT data in the continental United States
NASA Technical Reports Server (NTRS)
Won, I. J.; Son, K. H.
1982-01-01
The processing of MAGSAT scalar data to construct a crustal magnetic anomaly map over the continental U.S. involves removal of the reference field model, a path-by-path subtraction of a low order polynomial through a least-squares fit to reduce orbital offset errors, and a two dimensional spectral filtering to mitigate the spectral bias induced by the path-by-path orbital correction scheme. The resultant anomaly map shows reasonably good correlations with an aeromagnetic map derived from the project MAGNET. Prominent satellite magnetic anomalies are identified in terms of geological provinces and age boundaries. An inversion method was applied to MAGSAT data which produces both the Curie depth topography and laterally varying magnetic susceptibility of the crust. A contoured Curie depth map thus derived shows general agreements with a crustal thickness map based on seismic data.
Gettings, Mark E.
2002-01-01
High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.
Upper Lithospheric Sources of Magnetic and Gravity Anomalies of The Fennoscandian Shield
NASA Astrophysics Data System (ADS)
Korhonen, J. V.; Koistinen, T.; Working GroupFennoscandian Geophysical Maps
Magnetic total intensity anomalies (DGRF-65), Bouguer anomalies (d=2670 kg/m3) and geological units from 3400 Ma to present of the Fennoscandian Shield have been digitally compiled and printed as maps 1:2 000 000. Insert maps 1:15,000,000 com- pare anomaly components in different source scales: pseudogravimetric anomaly ver- sus Bouguer anomaly, DGRF-65 anomaly versus pseudomagnetic anomaly, magnetic vertical derivative versus second derivative of Bouguer anomaly. Data on bulk density, total magnetisation and lithology of samples have been presented as scatter diagrams and distribution maps of the average petrophysical properties in space and time. In sample level, the bulk density correlates with the lithology and, together with mag- netisation, establishes four principal populations of petrophysical properties. The av- erage properties, calculated for 5 km x 5 km cells, correlate only weakly with av- erage Bouguer-anomaly and magnetic anomaly, revealing major deep seated sources of anomalies. Pseudogravimetric and Bouguer anomalies correlate only locally with each other. The correlation is negative in the area of felsic Palaeoproterozoic rocks in W- and NW-parts of the Shield. In 2D models the sources of gravity anomalies are explained by lateral variation of density in upper and lower crust. Smoothly varying regional components are explained by boundaries of the lower crust, the upper mantle and the astenosphere. Magnetic anomalies are explained by lateral variation of magnetisation in the upper crust. Re- gional components are due to the lateral variation of magnetisation in the lower crust and the boundaries of lower crust and mantle and the Curie isotherm of magnetite.
A Geophysical Atlas for Interpretation of Satellite-derived Data
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr. (Editor); Frey, H. V. (Editor); Davis, W. M.; Greenberg, A. P.; Hutchinson, M. K.; Langel, R. A.; Lowrey, B. E.; Marsh, J. G.; Mead, G. D.; Okeefe, J. A.
1979-01-01
A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included.
Gravity and isostatic anomaly maps of Greece produced
NASA Astrophysics Data System (ADS)
Lagios, E.; Chailas, S.; Hipkin, R. G.
A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins
NASA Technical Reports Server (NTRS)
Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.
1993-01-01
Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.
NASA Astrophysics Data System (ADS)
Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav
2014-05-01
In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.
Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies
NASA Astrophysics Data System (ADS)
Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu
2016-10-01
Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.
MAGSAT anomaly field data of the crustal properties of Australia
NASA Technical Reports Server (NTRS)
1983-01-01
Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.
Preliminary Aeromagnetic Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Hill, P.L.
2010-01-01
This aeromagnetic map of Joshua Tree National Park and vicinity is intended to promote further understanding of the geology and structure in the region by serving as a basis for geophysical interpretations and by supporting geological mapping, water-resource investigations, and various topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, or even some sedimentary units, also can cause measurable magnetic anomalies. The database includes two ASCII files containing new aeromagnetic data and two ASCII files with point locations of the local maximum horizontal gradient derived from the aeromagnetic data. This metadata file describes the horizontal gradient locations derived from new and existing aeromagnetic data. This aeromagnetic map identifies magnetic features as a basis for geophysical interpretations; the gradients help define the edges of magnetic sources. This database updates geophysical information originally presented in smaller-scale formats and includes detailed aeromagnetic data collected by EON Geosciences, Inc.
NASA Technical Reports Server (NTRS)
Kim, H.; Taylor, Patrick T.; vonFrese, R. R.; Kim, J. W.
2004-01-01
We compare crustal magnetic anomaly maps over the Kursk (Russia) and Bangui (Central African Republic) isolated anomalies and the Antarctic derived from the Magsat, \\Orsted and CHAMP satellite fields. We wish to demonstrate how progress in satellite magnetic missions has improved the recovery of the crustal magnetic field. The 6-month long Magsat mission of 25 years ago generated two major methods of processing satellite magnetic anomaly data for lithospheric studies. The first was a global perspective using spherical harmonics that emphasize the more regional and global lithospheric fields. However, these fields commonly do not resolve local anomaly features in any detail. Therefore a second procedure involved the use of the individual satellite orbit or track data to recover small-scale anomalies on a regional scale. We present results over prominent magnetic anomalies such as Kursk, Bangui and the large Antarctic continent that demonstrate how the various analysis methods affect the recovery of crustal anomalies. The more recent \\Orsted and CHAMP missions are successfully recording data with an improved accuracy and with full spatial and temporal coverage. We show and interpret the total magnetic intensity anomaly maps over these areas from all three satellite magnetometer data sets.
Venus - Ishtar gravity anomaly
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
Lithospheric magnetic field modelling of the African continent
NASA Astrophysics Data System (ADS)
Hemant, K.; Maus, S.
2003-04-01
New magnetic satellite missions in low-earth orbit are providing increasingly accurate maps of the lithospheric magnetic field. These maps can be used to infer the geological structure of regions hidden by Phanerozoic cover, taking into account our knowledge of crustal structure from surface geology and seismic methods. A GIS based modelling technique has been developed to model the various geological units of the continents using the UNESCO geological map of the world, supported by background geological information from various sources. Geological units of each region are assigned a susceptibility value based on laboratory values of the constituent rock types. Then, using the 3SMAC seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this VIS model, the total field anomaly is computed at an altitude of 400 km and compared with the MF2 lithospheric magnetic field model derived from CHAMP data. The modelling results of the Precambrian units of the West African cratons agree well with MF2. The anomaly in the Central African cratonic region also correlates well, although part of it is unaccounted for as yet. Furthermore, the anomalies over the Tanzanian craton and surrounding region agree very well. Most of the regions around the South African cratons are hidden by Phanerozoic cover, yet the results above the Kaapvaal craton and the southern Zimbabwe craton around the Limpopo belt show good correspondence with the observed anomaly map. The results also suggest a probable extension of the Precambrian units below the sediments of younger age. In general, the lower crust is likely to be more mafic than presumed in our current understanding of Central Africa. Deviations in the magnitude of the anomalies in some regions are likely to be due to incomplete seismic information in those regions. Thus, the thickness of crustal layers derived from magnetic anomalies for these locations may help to constrain future geophysical models in the less explored regions of Africa.
NASA Astrophysics Data System (ADS)
Aydogan, D.
2007-04-01
An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more powerful than the classical methods.
Imaging Small-scale Seafloor and Sub-seafloor Tectonic Fabric Using Satellite Altimetry
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Müller, D.; Matthews, K. J.; Smith, W. H. F.
2017-12-01
Marine gravity anomalies derived from satellite radar altimetry now provide an unprecedented resolution of about 7 km for mapping small-scale seafloor and sub-seafloor tectonic fabric. These gravity maps are improving rapidly because three satellite altimeters are currently collecting data with dense track coverage: (1) CryoSat-2 has routinely collected altimetry data over ice, land, and ocean since July 2010. The satellite has a long 369-day repeat cycle resulting in an average ground track spacing of 3.5 km at the equator. To date it has completed more than 7 geodetic mappings of the ocean surface. (2) The SARAL AltiKa altimeter began a non-repeat orbit phase in July 2016. AltiKa has a new Ka-band instrument with a factor of 2 better range precision than all previous altimeters. (3) Jason-2 was placed in a geodetic orbit starting July 2017. It has lower inclination coverage to provide improved gravity recovery for N-S trending anomalies. These data combined with sparse soundings will provide a dramatic improvement in predicted bathymetry and thus help guide future deep ocean surveys. The most recent global marine gravity anomaly map based on these geodetic mission data with 2-pass retracking for optimal range precision has an accuracy that is 2-4 times better than the maps derived from Geosat and ERS-1. The new data reveal the detailed fabric of fracture zones, previously unmapped, now extinct oceanic microplates in the central Pacific, and fault networks buried beneath thick sediments along continental margins. By combining satellite altimetry with marine magnetic anomalies and seafloor age dates from rock samples we are able to pinpoint the geometry and age of major plate reorganizations, particularly the enigmatic 100 Ma event, which occurred during the Cretaceous Magnetic Superchron.
Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy
NASA Technical Reports Server (NTRS)
Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.
1993-01-01
Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.
Tularosa Basin Play Fairway Analysis: Weights of Evidence; Mineralogy, and Temperature Anomaly Maps
Adam Brandt
2015-11-15
This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.
The search for crustal resources - MAGSAT and beyond
NASA Technical Reports Server (NTRS)
Taylor, P. T.; Hinze, W. J.; Ravat, D. N.
1992-01-01
In the decade since global satellite magnetic field data have been available from MAGSAT, notable progress has been made in processing these data for purposes of mapping crustal anomalies. Several regional magnetic anomaly maps compiled using these new techniques (e.g. Kursk region, U.S.S.R.; central Africa; Kiruna, Sweden; and the U.S.A. midcontinent) provide insight into the nature and tectonic evolution of the crust that contribute to conceptual crustal models useful in regional resource exploration. A recent mail survey of geopotential-field specialists involved in resource exploration indicates interest in MAGSAT data and future satellite missions with improved resolution. It is apparent that magnetic anomalies derived from satellite observations can aid in the search for crustal resources.
New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations
NASA Astrophysics Data System (ADS)
Doo, Wen-Bin; Lo, Chung-Liang; Hsu, Shu-Kun; Tsai, Ching-Hui; Huang, Yin-Sheng; Wang, Hsueh-Fen; Chiu, Shye-Donq; Ma, Yu-Fang; Liang, Chin-Wei
2018-04-01
In this study, we compiled recently collected (from 2005 to 2015) and previously reported (published and open access) gravity data, including land, shipborne and satellite-derived data, for Taiwan and its surrounding regions. Based on the cross-over error analysis, all data were adjusted; and, new Free-air gravity anomalies were obtained, shedding light on the tectonics of the region. To obtain the Bouguer gravity anomalies, the densities of land terrain and marine sediments were assumed to be 2.53 and 1.80 g/cm3, respectively. The updated gravity dataset was gridded with a spacing of one arc-minute. Several previously unnoticed gravity features are revealed by the new maps and can be used in a broad range of applications: (1) An isolated gravity high is located between the Shoushan and the Kaoping Canyon off southwest Taiwan. (2) Along the Luzon Arc, both Free-air and Bouguer gravity anomaly maps reveal a significant gravity discontinuity feature at the latitude of 21°20‧N. (3) In the southwestern Okinawa Trough, the NE-SW trending cross-back-arc volcanic trail (CBVT) marks the low-high gravity anomaly (both Free-air and Bouguer) boundary.
Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1978-01-01
Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.
Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic
Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, Kevin; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.
2011-01-01
New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.
Orbital studies of lunar magnetism
NASA Technical Reports Server (NTRS)
Mcleod, M. G.; Coleman, P. J., Jr.
1982-01-01
Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.
2015-04-15
Analysis of radio tracking data have enabled maps of the gravity field of Mercury to be derived. In this image, overlain on a mosaic obtained by MESSENGER's Mercury Dual Imaging System and illuminated with a shape model determined from stereo-photoclinometry, Mercury's gravity anomalies are depicted in colors. Red tones indicate mass concentrations, centered on the Caloris basin (center) and the Sobkou region (right limb). Such large-scale gravitational anomalies are signatures of subsurface structure and evolution. The north pole is near the top of the sunlit area in this view. http://photojournal.jpl.nasa.gov/catalog/PIA19285
Small-scale features in the Earth's magnetic field observed by Magsat.
Cain, J.C.; Schmitz, D.R.; Muth, L.
1984-01-01
A spherical harmonic expansion to degree and order 29 is derived using a selected magnetically quiet sample of Magsat data. Global maps representing the contribution due to terms of the expansion above n = 13 at 400 km altitude are compared with previously published residual anomaly maps and shown to be similar, even in polar regions. An expansion with such a high degree and order displays all but the sharpest features seen by the satellite and gives a more consistent picture of the high-order field structure at a constant altitude than do component maps derived independently. -Authors
Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron
Cahill, Joshua T.S.; Hagerty, Justin J.; Lawrence, David M.; Klima, Rachel L.; Blewett, David T.
2014-01-01
The Moon has areas of magnetized crust ("magnetic anomalies"), the origins of which are poorly constrained. A magnetic anomaly near the northern rim of South Pole-Aitken (SPA) basin was recently postulated to originate from remnant metallic iron emplaced by the SPA basin-forming impactor. Here, we remotely examine the regolith of this SPA magnetic anomaly with a combination of Clementine and Lunar Prospector derived iron maps for any evidence of enhanced metallic iron content. We find that these data sets do not definitively detect the hypothesized remnant metallic iron within the upper tens of centimeters of the lunar regolith.
Hildenbrand, T.G.; Kucks, R.P.
1983-01-01
Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.
The south-central United States magnetic anomaly
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.
1984-01-01
The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.
An attempt to obtain a detailed declination chart from the United States magnetic anomaly map
Alldredge, L.R.
1989-01-01
Modern declination charts of the United States show almost no details. It was hoped that declination details could be derived from the information contained in the existing magnetic anomaly map of the United States. This could be realized only if all of the survey data were corrected to a common epoch, at which time a main-field vector model was known, before the anomaly values were computed. Because this was not done, accurate declination values cannot be determined. In spite of this conclusion, declination values were computed using a common main-field model for the entire United States to see how well they compared with observed values. The computed detailed declination values were found to compare less favourably with observed values of declination than declination values computed from the IGRF 1985 model itself. -from Author
NASA Astrophysics Data System (ADS)
Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.
2012-11-01
Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.
NASA Astrophysics Data System (ADS)
Ballabrera, Joaquim; Hoareau, Nina; Umbert, Marta; Martínez, Justino; Turiel, Antonio
2013-04-01
Prediction of El Niño/Southern Oscillation (ENSO), and its relation with global climate anomalies, continues to be an important research effort in short-term climate forecasting. This task has become even more challenging as researchers are becoming more and more convinced that there is not a single archetypical El Niño (or La Niña) pattern, but several. During some events (called now Standard or East Pacific), the largest temperature anomalies are located at the eastern part of the Pacific. However, during some of the most recent events, the largest anomalies are restricted to the central part of the Pacific Ocean, and are now called Central Pacific or Modoki (a Japanese word for "almost") events. Although the role of salinity in operational ENSO forecasting was initially neglected (in contrast with temperature, sea level, or surface winds), recent studies have shown that salinity does play a role in the preconditioning of ENSO. Moreover, some researchers suggest that sea surface salinity might play a role (through the modulation of the western Pacific barrier layer) to favor the Standard or the Modoki nature of each event. Sea Surface Salinity maps are being operationally generated from microwave (L-band, 1.4 Ghz) brightness temperature maps. The L-band frequency was chosen because is the optimal one for ocean salinity measurements. However, after three years of satellite data, it has been found that noise in brightness temperatures (due to natural and artificial sources) is larger than expected. Moreover, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Despite of all these facts, current accuracy of SS maps ranges from 0.2-0.4, depending on the processing level and the region being considered. We present here our study about the salinity variability in the tropical Pacific Ocean from the 9-day, 0.25 bins salinity maps derived from the SMOS reprocessing campaign released to the SMOS user community on March 2011. During the period under study, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with the largest anomalous values in the western warm-fresh pool. The anomalies derived from the SMOS data do indeed display a positive anomaly. The persistence of the feature, its geographical pattern, the time modulation of the anomaly amplitude indicate, and its resemblance with in situ observations indicate this novel observation technology is currently able to capture seasonal and interannual signatures of climate interest.
Crustal analysis of the Ulleung Basin in the East Sea (Japan Sea) from enhanced gravity mapping
NASA Astrophysics Data System (ADS)
Park, Chan Hong; Kim, Jeong Woo; Isezaki, Nobuhiro; Roman, Daniel R.; von Frese, Ralph R. B.
2006-12-01
To facilitate geological analyses of the Ulleung Basin in the East Sea (Japan Sea) between Korea and Japan, shipborne and satellite altimetry-derived gravity data are combined to derive a regionally coherent anomaly field. The 2-min gridded satellite altimetry-based gravity predicted by Sandwell and Smith [Sandwell DT, Smith WHF (1997) J Geophys Res 102(B5):10,039-10,054] are used for making cross-over adjustments that reduce the errors between track segments and at the cross-over points of shipborne gravity profiles. Relative to the regionally more homogeneous satellite gravity anomalies, the longer wavelength components of the shipborne anomalies are significantly improved with minimal distortion of their shorter wavelength components. The resulting free-air gravity anomaly map yields a more coherent integration of short and long wavelength anomalies compared to that obtained from either the shipborne or satellite data sets separately. The derived free-air anomalies range over about 140 mGals or more in amplitude and regionally correspond with bathymetric undulations in the Ulleung Basin. The gravity lows and highs along the basin’s margin indicate the transition from continental to oceanic crust. However, in the northeastern and central Ulleung Basin, the negative regional correlation between the central gravity high and bathymetric low suggests the presence of shallow denser mantle beneath thinned oceanic crust. A series of gravity highs mark seamounts or volcanic terranes from the Korean Plateau to Oki Island. Gravity modeling suggests underplating by mafic igneous rocks of the northwestern margin of the Ulleung Basin and the transition between continental and oceanic crust. The crust of the central Ulleung Basin is about a 14-15 km thick with a 4-5 km thick sediment cover. It may also include a relatively weakly developed buried fossil spreading ridge with approximately 2 km of relief.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
A strategy for mineral and energy resource independence
Carter, W.D.
1983-01-01
Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies. Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites. ?? 1983.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
NASA Astrophysics Data System (ADS)
Konadu Amoah, Bernard; Dadzie, Isaac; Takyi-Kyeremeh, Kwaku
2018-08-01
Gravity and magnetic surveys were used to delineate potential gold mineralization zones in the Sefwi belt of Ghana. The study area is an intrusive dominated area that hosts pockets of small scale mining operations locally referred to as Galamsey. These Galamsey operations are not guided by a scientific approach to back the trend of gold mineralization which is conventionally mined. The study aimed at mapping lithological units, structural setting and relating Galamsey sites to delineate potential zones of gold mineralization. A Scintrex CG5 gravimeter and GEM’s Overhauser magnetometer were used for gravity and magnetic data acquisition respectively. The magnetic data were corrected and enhancing filters such as reduction to the pole (RTP), analytical signal and first vertical derivative were applied using Oasis montaj 7.1. Gravity data were also reduced to the geoid using the Oasis montaj software to produce a complete Bouguer anomaly map. The regional/residual separation technique produced a residual gravity map. The RTP and analytical signal filters from the magnetic data and residual gravity anomaly map from the gravity data helped in mapping belt type (Dixcove) Birimian granitoids and mafic intrusive unit, interpreted as gabbro. The first vertical derivative filter was useful in mapping NE/SW minor faults and crosscutting dykes largely concentrated in the belt type Birimian granitoids. All the three mapped Galamsey sites fell on a minor fault and are associated with the belt type granitoids which were used in delineating four potential zones of gold mineralization.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.
2004-01-01
Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.
Global equivalent magnetization of the oceanic lithosphere
NASA Astrophysics Data System (ADS)
Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.
2015-11-01
As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.
Ellipsoidal corrections for geoid undulation computations using gravity anomalies in a cap
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1981-01-01
Ellipsoidal correction terms have been derived for geoid undulation computations when the Stokes equation using gravity anomalies in a cap is combined with potential coefficient information. The correction terms are long wavelength and depend on the cap size in which its gravity anomalies are given. Using the regular Stokes equation, the maximum correction for a cap size of 20 deg is -33 cm, which reduces to -27 cm when the Stokes function is modified by subtracting the value of the Stokes function at the cap radius. Ellipsoidal correction terms were also derived for the well-known Marsh/Chang geoids. When no gravity was used, the correction could reach 101 cm, while for a cap size of 20 deg the maximum correction was -45 cm. Global correction maps are given for a number of different cases. For work requiring accurate geoid computations these correction terms should be applied.
NASA Astrophysics Data System (ADS)
Boschi, Lapo
2006-10-01
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.
Otton, James K.; Wynn, Jeffrey C.
1978-01-01
A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.
Detection of alteration associated with a porphyry copper deposit in southern Arizona
NASA Technical Reports Server (NTRS)
Abrams, M. J.; Siegal, B. S.
1977-01-01
Computer processing of Landsat MSS data was performed using contrast stretching and band-to-band ratioing. A false color ratio composite picture showed color anomalies which coincided with known areas of alteration on and about Red Mountain. A helicopter survey of the study area was undertaken using a portable field reflectance spectrometer. One hundred fifty-six spectra were obtained in the 0.4 to 2.5 micrometer wavelength region. The spectra were digitized, and contour maps for 24 wavelength intervals were produced; no spectral anomalies were evident for the known altered areas. A contour map produced from the 1.6 and 2.2 micrometer ratio generally delineated the alteration areas. The 1.3, 1.6, and 2.2 micrometer wavelength data were canonically transformed using a transformation empirically derived from discriminant function analysis of altered and unaltered materials for the Goldfield, Nevada region, and a contour map was produced for the first canonical variable. The known areas of alteration were clearly defined on the contour map.
Seismic properties of the crust and uppermost mantle of North America
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.
1983-01-01
Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.
MAGSAT anomaly map and continental drift
NASA Technical Reports Server (NTRS)
Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
Residual depth anomalies and the origin of the Australian-Antarctic discordance zone
NASA Astrophysics Data System (ADS)
Marks, Karen M.; Vogt, Peter R.; Hall, Stuart A.
1990-10-01
A new, high resolution depth anomaly map covering the anomalously deep and rough Australian-Antarctic Discordance (AAD) has been constructed using crustal ages derived from a detailed aeromagnetic survey. The map shows a large, arcuate-shaped, negative depth anomaly that is centered on the Southeast Indian Ridge and trends NNE across the Australian plate (SSE across the Antarctic plate). Within this broad scale feature, two prominent depth anomaly lows are observed at 45°S, 128°E (the northern flank) and 54°S, 125°E (the southern flank). Both lows are associated with 15 Ma oceanic crust. The observed depth anomaly patterns are compared with the distinctive patterns predicted by coldspot, downwelling limbs of convection cells, and thin crust models of the discordance source. The observed depth anomaly does not result from absolute plate motions over a fixed coldspot source because the predicted ENE trend on the Antarctic plate is not in agreement with the SSE trend observed. The symmetric arrangement of the large-scale depth anomaly and prominent lows about the ridge axis suggests instead a source that has varied in strength but remained located at the ridge axis as the ridge migrated northeastward in the absolute reference frame. The organized pattern of elongated depth anomaly highs and lows predicted for upper mantle convection (cells) is not evident in the observed depth anomaly map. Thus a convergence of downwelling limbs of convection cells beneath the discordance is not indicated. If the source of cooler upwelling that produces less magma and hence thin crust has not varied over time, nor migrated along the ridge, then the predicted depth anomaly would persist unchanged with distance from the ridge axis, and trend in the direction of relative plate motion (parallel to fracture zones). The observed depth anomaly trends obliquely across fracture zones and changes in both amplitude and location relative to the ridge axis, and is therefore not consistent with cool upwelling producing thin crust. To explain the features of the depth anomaly map, we propose that asthenospheric material flowing from the Amsterdam hotspot in the west, and the Balleny and Tasmantid hotspots in the east, collides within the discordance. Propagating rifts converging on the AAD provide evidence for such asthenospheric flow. Attenuated shear velocities beneath the George V fracture zone complex, and lavas geochemically identical to those from propagating rifts associated with hotspots, suggest a thermal anomaly producing additional asthenospheric flow east of the AAD. The increased flow and greater proximity of the discordance to the thermal anomaly and hotspots to the east produce a higher pressure gradient, and hence greater driving force, which results in a westward migration of the collision zone with time. Seafloor spreading over the westward moving collision zone has produced the observed arcuate-shaped anomaly with the accompanying oblique depth anomaly trends. We cannot decipher from depth anomalies alone whether the converging flows downwell within the AAD or simply mix with upwelling materials.
NASA Astrophysics Data System (ADS)
Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert
2016-03-01
This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.
Gravity anomaly and geoid undulation results in local areas from GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1979-01-01
The adjusted GEOS-3 altimeter data, taken as averages within a data frame, have been used to construct free air anomaly and geoid undulation profiles and maps in areas of geophysical interest. Profiles were constructed across the Philippine Trench (at a latitude of 6 deg) and across the Bonin Trench (at a latitude of 28 deg). In the latter case an anomaly variation of 443 mgals in 143 km was derived from the altimeter data. These variations agreed reasonably with terrestrial estimates, considering the predicted point accuracy was about + or - 27 mgals. An area over the Patton Sea mounts was also investigated with the altimeter anomaly field agreeing well with the terrestrial data except for the point directly over the top of the sea mount. It is concluded that the GEOS-3 altimeter data is valuable not only for determining 5 deg and 1 deg x 1 deg mean anomalies, but also can be used to describe more local anomaly variations.
Structural Control and Groundwater Flow in the Nubian Aquifer
NASA Astrophysics Data System (ADS)
Fathy, K.; Sultan, M.; Ahmed, M.; Save, H.; Emil, M. K.; Elkaliouby, B.
2017-12-01
An integrated research approach (remote sensing, field, geophysics) was conducted to investigate the structural control on groundwater flow in large aquifers using the less studied Nubian Sandstone Aquifer System (NSAS) of NE Africa as a test site. The aquifer extends over 2.2 x 106 km2 in Egypt, Libya, Chad, and Sudan and consists of thick (> 3 kms), water-bearing, Paleozoic and Mesozoic sandstone with intercalations of Tertiary shale and clay. It is subdivided into three sub-basins (Northern Sudan Platform [NSP], Dakhla [DAS], and Kufra) that are separated by basement uplifts (e.g., E-W trending Uweinat-Aswan uplift that separates DAS from the NSP). Aquifer recharge occurs in the south (NSP and southern Kufra) where the aquifer is unconfined and precipitation is high (Average Annual Precipitation [AAP]: 117 mm/yr.) and discharge is concentrated in the north (DAS and northern Kufra). Our approach is a three-fold exercise. Firstly, we compared GOCE-based Global Geopotential Models (GGMs) to terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity anomalies. Secondly, structures and uplifts were mapped using hill shade images and their extension in the subsurface were mapped using the Eigen_6C4 model-derived Bouguer anomalies and their Tilt Derivative products (TDR). Thirdly, hydrological analysis was conducted using GRACE CSR 1° x 1° mascon solutions to investigate the mass variations in relation to the mapped structures. Our findings include: (1) The Eigen-6C4 is the optimum model having the lowest deviation (9.122 mGal) from the terrestrial gravity anomalies; (2) the surface expressions of structures matched fairly well with their postulated extensions in the subsurface; (3) identified fault systems include: Red Sea rift-related N-S to NW-SE trending grabens formed by reactivating basement structures during Red Sea opening and Syrian arc-related NE-SW trending dextral shear systems; (4) TWS patterns are uniform throughout the length (hundreds of kilometers) of the identified shear systems but are dissimilar from those extracted in areas proximal to, but outside of, the shear zones; and (5) basement uplifts impede or redirect the groundwater flow.
Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan
NASA Astrophysics Data System (ADS)
Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.
2018-01-01
Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.
NASA Technical Reports Server (NTRS)
Hayling, Kjell Lennart
1988-01-01
Two aspects of the processing and interpretation of satellite measurements of the geomagnetic field are described. One deals with the extraction of the part of the geomagnetic field that originates from sources in the earth's atmosphere. The other investigates the possibility of using the thermal state of the oceanic lithosphere to further constrain modelling and interpretation of magnetic anomalies. It is shown that some of the magnetic signal in crustal anomaly maps can be an artifact of the mathematical algorithms that have been used to separate the crustal field from the observed data. Strong magnetic anomalies can be distorted but are probably real, but weak magnetic anomalies can arise from leakage of power from short wavelengths, and will also appear in anomaly maps as repetitions of the strong crustal anomaly. The distortion and the ghost anomalies follow the magnetic dip lines in a way that is similar to actual MAGSAT anomaly fields. This phenomenon will also affect the lower degree spherical harmonic terms in the power spectrum of the crustal field. A model of the magnetic properties of the oceanic crust that has been derived from direct measurements of the rock magnetic properties of oceanic rocks is presented. The average intensity of magnetization in the oceanic crust is not strong enough to explain magnetic anomalies observed over oceanic areas. This is the case for both near surface observations (ship and aeromagnetic data) and satellite altitude observations. It is shown that magnetic sources in the part of the upper mantle that is situated above the Curie isotherm, if sufficiently strong, can produce satellite magnetic anomalies that are comparable to MAGSAT data. The method developed for the study of depth to the Curie isotherm and magnetic anomalies can also be used in inverse modelling of satellite magnetic anomalies when the model is to be adjusted with an annihilator.
A Bouguer Gravity Anomaly Map of Africa.
A Bouguer Gravity Anomaly Map of Africa has been compiled using only terrestrial data. The map is a contoured representation of one degree x one...The anomaly pattern shown on the map is discussed and evaluated with respect to regional and local tectonic and geologic patterns. The entire Bouguer
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy; Roberts, Alan
2017-04-01
The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.
USDA-ARS?s Scientific Manuscript database
The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At coarse, regional scales (5-10 km resolution), the ESI has demonstrated capacity to captur...
NASA Technical Reports Server (NTRS)
Hastings, D. A.
1985-01-01
Satellite-derived global gravity and magnetic maps have been shown to be useful in large-scale studies of the Earth's crust, despite the relative infancy of such studies. Numerous authors have made spatial associations of gravity or magnetic anomalies with geological provinces. Gravimetric interpretations are often made in terms of isostasy, regional variations of density, or of geodesy in general. Interpretations of satellite magnetic anomalies often base assumptions of overall crustal magnetism on concepts of the vertical and horizontal distribution of magnetic susceptibility, then make models of these assumed distributions. The opportunity of improving our satellite gravity and magnetic data through the proposed Geopotential Research Mission should considerably improve the scientific community's ability to analyze and interpret global magnetic and gravity data.
Regional geochemistry Bandung Quadrangle West Java: for environmental and resources studies
NASA Astrophysics Data System (ADS)
Sendjaja, Purnama; Baharuddin
2017-06-01
Geochemical mapping based on the stream sediment method has been carried out in the whole of Java Region by the Centre for Geological Survey. The Regional Geochemistry Bandung Quadrangle as part of West Java Region has been mapped in 1:100.000 scale map, base on the Geological Map of Bandung Quadrangle. About 82 stream sediment samples collected and sieved in the 80 mesh sieve fraction during the field work session at 2011. This fraction was prepared and analysed for 30 elements by X-ray fluorescence spectrometry at the Centre for Geological Survey Laboratory. There are some elements indicating significant anomaly in this region, and it is important to determine the present abundance and spatial distribution of the elements for presuming result from natural product or derived from human activities. The volcanic products (Tangkuban Perahu Volcano, Volcanic Rock Complex and Quarternary Volcanic-Alluvial Deposit) are clearly identified on the distribution of As, Ba, Cl, Cu, Zr and La elements. However Mn, Zn, V and Sr are related to precipitation in the Tertiary Sediments, while the influence of human activities are showing from a geochemical map of Cl, Cr, Cu, Pb and Zn that show scattered anomalies localized close to the cities, farming and industries.
NASA Technical Reports Server (NTRS)
Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann
2014-01-01
We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.
Eddy-induced Sea Surface Salinity changes in the tropical Pacific
NASA Astrophysics Data System (ADS)
Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.
2017-12-01
We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Fakundiny, R. H.; Forster, S. W.
1974-01-01
The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 26,500 km. Maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments. Multi-scale analysis of linears shows that single topographic linears at 1:2,500,000 may become dashed linears at 1:1,000,000 aligned zones of shorter parallel, en echelon, or conjugate linears at 1:5000,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of dip slip faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Most circular features found were explained away by U-2 airfoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines, sand plains, and end moraines.
Evaluation of ERTS-1 imagery for spectral geological mapping in diverse terranes of New York State
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Fakundiny, R. H.; Forster, S. W.
1973-01-01
The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 6000 km. Experimentation with a variety of viewing techniques suggest that conventional photogeologic analyses of band 7 results in the location of more than 97 percent of all linears found. Bedrock lithologic types are distinguishable only where they are topographically expressed or govern land use signatures. The maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments. A multiscale analysis of linears showed that single topographic linears at 1:2,500,000 became dashed linears at 1:1,000,000 aligned zones of shorter parallel, en echelon, or conjugate linears at 1:500,00. Most circular features found were explained away by U-2 airphoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, best seen in winter imagery, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines and sand plains, and end moraines.
NASA Astrophysics Data System (ADS)
Shi, L.; Guo, L.; Meng, X.; Yao, C.
2010-12-01
North China is one of the most tectonically important regions in the world to study important continent geodynamics issues such as intraplate earthquakes, volcanism and continent-continent collision. The North China Craton, covering most of North China, bounded by complicated fault systems and orogenic belts, is one of the oldest cratons on the Earth, and is unique in its tectonic reactivation in the Late Mesozoic and Cenozoic. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of North China. We analyzed the regional gravity and magnetic data of this region using new data enhancement techniques to understand the regional geological structures. The satellite-derived free-air gravity anomalies with a resolution of 1 arc-minute were assembled from the Scripps Institution of Oceanography, and were then reduced to obtain Complete Bouguer Gravity Anomalies (CBGA). The Magnetic Anomalies (MA) with a resolution of 2 arc-minutes were assembled from the World Digital Magnetic Anomaly Map. The CBGA and the MA were then gridded on a regular grid, the MA were subsequently reduced to the magnetic pole. Then the data were processed with standard techniques to attenuate the high-frequency noise and analyze the regional and residual anomalies. Specially, we calculated the tilt-angle derivatives of the data. We then calculated the directional horizontal derivatives of the tilt-angle derivatives along different directions. This special processing derived clearer geological structures with more details. From the results of the preliminary processing, we analyzed the main deep faults and tectonic units distributed in this region. In the future, the interpretation of the CBGA and the MA with constraints of other geophysical methods will be performed for better understanding the deep structure of this region. Acknowledgment: We acknowledge the financial support of SinoProbe-01-05, the Fundamental Research Funds for the Central Universities (2010ZY26), and the National Natural Science Foundation of China (40904033).
Spatial-temporal event detection in climate parameter imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Sean Andrew; Gutierrez, Karen A.
Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to themore » earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.« less
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
NASA Astrophysics Data System (ADS)
Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng
2015-07-01
Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought indicators, and used in concert may provide a more reliable evaluation of natural and managed ecosystem response to variable climate regimes.
NASA Astrophysics Data System (ADS)
Meyer, B.; Chulliat, A.; Saltus, R.
2017-12-01
The Earth Magnetic Anomaly Grid at 2 arc min resolution version 3, EMAG2v3, combines marine and airborne trackline observations, satellite data, and magnetic observatory data to map the location, intensity, and extent of lithospheric magnetic anomalies. EMAG2v3 includes over 50 million new data points added to NCEI's Geophysical Database System (GEODAS) in recent years. The new grid relies only on observed data, and does not utilize a priori geologic structure or ocean-age information. Comparing this grid to other global magnetic anomaly compilations (e.g., EMAG2 and WDMAM), we can see that the inclusion of a priori ocean-age patterns forces an artificial linear pattern to the grid; the data-only approach allows for greater complexity in representing the evolution along oceanic spreading ridges and continental margins. EMAG2v3 also makes use of the satellite-derived lithospheric field model MF7 in order to accurately represent anomalies with wavelengths greater than 300 km and to create smooth grid merging boundaries. The heterogeneous distribution of errors in the observations used in compiling the EMAG2v3 was explored, and is reported in the final distributed grid. This grid is delivered at both 4 km continuous altitude above WGS84, as well as at sea level for all oceanic and coastal regions.
Evaluation of ERTS imagery for spectral geological mapping in diverse terranes of New York State
NASA Technical Reports Server (NTRS)
Isachsen, Y. W.; Fakundiny, R. H.; Forster, S. W.
1974-01-01
Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 6000 km. Experimentation with a variety of viewing techniques suggests that conventional photogeologic analyses of band 7 results in the location of more than 97 percent of all linears found. The maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments, despite a difference in relative magnitudes of maxima thought due to solar illumination direction. A multiscale analysis of linears showed that single topographic linears at 1:2,500,000 became segmented at 1:1,000,000, aligned zones of shorter parallel, en echelon, or conjugate linears at 1:500,000, and still shorter linears lacking obvious alignment at 1:250,000. Visible glacial features include individual drumlins, best seen in winter imagery, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines and sand plains, and end moraines.
Method for identifying anomalous terrestrial heat flows
Del Grande, Nancy Kerr
1977-01-25
A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.
Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom
2017-04-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.
Stanley, W.D.
1989-01-01
Large-scale geoelectrical anomalies have been mapped with geomagnetic depth sounding (GDS) and magnetotelluric (MT) surveys in the Carpathian Mountains region. These anomalies are associated with the zone of closure between stable Europe and a complex of microplates in front of the converging African plate. The zone of closure, or suture zone, is largely occupied by an extensive deformed flysch belt. The models derived to fit the observed geoelectrical data are useful in the study of other suture zones, and Carpathian structures have been compared with areas currently being studied in the western Cordillera of the U.S.A. Models derived for a smaller-scale suture zone mapped in western Washington State have features that are similar to the Carpathian models. The geoelectrical models for both the Carpathian and Washington anomalies require dipping conductive slabs of 1-5 ?? m material that extends to depths > 20 km. In both instances there is evidence that these materials may merge with lower crustal-mantle conductors along the down-dip margins of the slab. The main conductive units are interpreted to be sedimentary rocks that have been partially subducted due to collisional processes. Heat flow is low in both regions and it is difficult to explain fully the deep conduction mechanisms; however, evidence suggests that the conduction at depth may include electronic conduction in sulfide mineral or carbon films as well as ionic conduction in fluids or partial melt. ?? 1989.
Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault
ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair
2007-01-01
New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a
Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Shi, L.; Yao, C.
2011-12-01
The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26, 2011PY0184), and the National Natural Science Foundation of China (40904033, 41074095).
Lateral Variations in Geologic Structure and Tectonic Setting from Remote Sensing Data
1983-05-01
bodies. Analogous magnetic anomaly patterns perhaps can be inferred, since regional lithologies are comparable with some volcanic bodies around the...32 14 Geologic map of the Katahdin Batholith . . . . . . . . . . . 34 15 Bouguer gravity map of Mai ne ... ............ . 36 16 Magnetic anomaly map... magnetic anomaly patterns perhaps can be inferred, since regional lithologies are comparable with some volcanic bodies around the plutons. Linear
Aeromagnetic survey map of Sacramento Valley, California
Langenheim, Victoria E.
2015-01-01
Three aeromagnetic surveys were flown to improve understanding of the geology and structure in the Sacramento Valley. The resulting data serve as a basis for geophysical interpretations, and support geological mapping, water and mineral resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense positive magnetic anomalies (for example, in the northwest part of the map). These rock types are the inferred sources, concealed beneath weakly magnetic, valley-fill deposits, of the most prominent magnetic features in the map area, the magnetic highs that extend along the valley axis. Cenozoic volcanic rocks are also an important source of magnetic anomalies and coincide with short-wavelength anomalies that can be either positive (strong central positive anomaly flanked by lower-amplitude negative anomalies) or negative (strong central negative anomaly flanked by lower-amplitude positive anomalies), reflecting the contribution of remanent magnetization. Rocks with more felsic compositions or even some sedimentary units also can cause measurable magnetic anomalies. For example, the long, linear, narrow north-trending anomalies (with amplitudes of <50 nanoteslas [nT]) along the western margin of the valley coincide with exposures of the Mesozoic Great Valley sequence. Note that isolated, short-wavelength anomalies, such as those in the city of Sacramento and along some of the major roads, are caused by manmade features.
NASA Astrophysics Data System (ADS)
Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad
2017-07-01
Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.
NASA Technical Reports Server (NTRS)
Jensen, M. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A significant and possible major economic example of the practical value of Skylab photographs was provided by locating on Skylab Camera Station Number 4, frame 010, SL-2, an area of exposures of limestone rocks which were thought to be completely covered by volcanic rocks based upon prior mapping. The area is located less than 12 miles north of the Ruth porphyry copper deposit, White Pine County, Nevada. This is a major copper producing open pit mine owned by Kennecott Copper Corporation. Geophysical maps consisting of gravity and aeromagnetic studies have been published indicating three large positive magnetic anomalies located at the Ruth ore deposits, the Ward Mountain, not a mineralized area, and in the area previously thought to be completely covered by post-ore volcanics. Skylab photos indicate, however, that erosion has removed volcanic cover in specific sites sufficient to expose the underlying older rocks suggesting, therefore, that the volcanic rocks may not be the cause of the aeromagnetic anomaly. Field studies have verified the initial interpretations made from the Skylab photos. The potential significance of this study is that the large positive aeromagnetic anomaly suggests the presence of cooled and solidified magma below the anomalies, in which ore-bearing solutions may have been derived forming possible large ore deposits.
NASA Astrophysics Data System (ADS)
Mousa, Ahmed; Mickus, Kevin; Al-Rahim, Ali
2017-05-01
The Western Desert of Iraq is part of the stable shelf region on the Arabian Plate where the subsurface structural makeup is relatively unknown due to the lack of cropping out rocks, deep drill holes and deep seismic refraction and reflection profiles. To remedy this situation, magnetic and gravity data were analyzed to determine the thickness of the Phanerozoic cover sequences. The 2-D power spectrum method was used to estimate the depth to density and magnetic susceptibility interfaces by using 0.5° square windows. Additionally, the gravity data were analyzed using isostatic residual and decompensative methods to isolate gravity anomalies due to upper crustal density sources. The decompensative gravity anomaly and the differentially reduced to the pole magnetic map indicate a series of mainly north-south and northwest-southeast trending maxima and minima anomalies related to Proterozoic basement lithologies and the varying thickness of cover sequences. The magnetic and gravity derived thickness of cover sequences maps indicate that these thicknesses range from 4.5 to 11.5 km. Both maps in general are in agreement but more detail in the cover thicknesses was determined by the gravity analysis. The gravity-based cover thickness maps indicates regions with shallower depths than the magnetic-based cover thickness t map which may be due to density differences between limestone and shale units within the Paleozoic sediments. The final thickness maps indicate that the Western Desert is a complicated region of basins and uplifts that are more complex than have been shown on previous structural maps of the Western Desert. These basins and uplifts may be related to Paleozoic compressional tectonic events and possibly to the opening of the Tethys Ocean. In addition, petroleum exploration could be extended to three basins outlined by our analysis within the relatively unexplored western portions of the Western Desert.
Gravimetric maps of the Central African Republic
NASA Technical Reports Server (NTRS)
Albouy, J.; Godivier, R. (Principal Investigator)
1982-01-01
Gravimetric maps of the Central African Republic are described including a map of Bouguer anomalies at 1/1,000,000 in two sections (eastern sheet, western sheet) and a map, in color, of Bouguer anomalies at 1/2,000,000. Instrumentation, data acquisition, calibration, and data correction procedures are discussed.
Payne, Thomas G.
1982-01-01
REGIONAL MAPPER is a menu-driven system in the BASIC language for computing and plotting (1) time, depth, and average velocity to geologic horizons, (2) interval time, thickness, and interval velocity of stratigraphic intervals, and (3) subcropping and onlapping intervals at unconformities. The system consists of three programs: FILER, TRAVERSER, and PLOTTER. A control point is a shot point with velocity analysis or a shot point at or near a well with velocity check-shot survey. Reflection time to and code number of seismic horizons are filed by digitizing tablet from record sections. TRAVERSER starts at a point of geologic control and, in traversing to another, parallels seismic events, records loss of horizons by onlap and truncation, and stores reflection time for geologic horizons at traversed shot points. TRAVERSER is basically a phantoming procedure. Permafrost thickness and velocity variations, buried canyons with low-velocity fill, and error in seismically derived velocity cause velocity anomalies that complicate depth mapping. Two depths to the top of the pebble is based shale are computed for each control point. One depth, designated Zs on seismically derived velocity. The other (Zw) is based on interval velocity interpolated linearly between wells and multiplied by interval time (isochron) to give interval thickness. Z w is computed for all geologic horizons by downward summation of interval thickness. Unknown true depth (Z) to the pebble shale may be expressed as Z = Zs + es and Z = Zw + ew where the e terms represent error. Equating the two expressions gives the depth difference D = Zs + Zw = ew + es A plot of D for the top of the pebble shale is readily contourable but smoothing is required to produce a reasonably simple surface. Seismically derived velocity used in computing Zs includes the effect of velocity anomalies but is subject to some large randomly distributed errors resulting in depth errors (es). Well-derived velocity used in computing Zw does not include the effect of velocity anomalies, but the error (ew) should reflect these anomalies and should be contourable (non-random). The D surface as contoured with smoothing is assumed to represent ew, that is, the depth effect of variations in permafrost thickness and velocity and buried canyon depth. Estimated depth (Zest) to each geologic horizon is the sum of Z w for that horizon and a constant e w as contoured for the pebble shale, which is the first highly continuous seismic horizon below the zone of anomalous velocity. Results of this 'depthing' procedure are compared with those of Tetra Tech, Inc., the subcontractor responsible for geologic and geophysical interpretation and mapping.
Mapping the earth's magnetic and gravity fields from space Current status and future prospects
NASA Technical Reports Server (NTRS)
Settle, M.; Taranik, J. V.
1983-01-01
The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.
Magnetic anomaly map of the central Cayman Trough, northwestern Caribbean Sea
Dillon, William P.; Edgar, N. Terence; Parson, Lindsay M.; Scanlon, Kathryn M.; Driscoll, George R.; Jacobs, Colin L.
1993-01-01
This is the first large-scale published map of magnetic anomalies in the central Cayman Trough area. Two previously published very small scale maps based on much less data are a regional map (Gough and Heirtzler, 1969) and a map compiled from several tracklines running parallel to the axis of the Cayman Trough (MacDonald and Holcombe, 1978).
Preliminary aeromagnetic anomaly map of California
Roberts, Carter W.; Jachens, Rober C.
1999-01-01
The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.
Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking
NASA Astrophysics Data System (ADS)
Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.
2014-08-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.
Contour maps of lunar remanent magnetic fields
NASA Technical Reports Server (NTRS)
Hood, L. L.; Russell, C. T.; Coleman, P. J., Jr.
1981-01-01
The 2605 usable orbits of Apollo 15 and 16 subsatellite magnetometer data have been reexamined for intervals suitable for analysis of crustal magnetic anomalies. To minimize plasma-related disturbances, segments from 274 of these orbits were selected from times when the moon was either in a lobe of the geomagnetic tail or in the solar wind with the subsatellites in the lunar wake. External field contributions which remained in the selected intervals were minimized by (1) quadratic detrending of individual orbit segments with lengths much greater than anomaly wavelengths and (2) two-dimensional filtering with minimum passed wavelengths less than or equal to anomaly wavelengths. Improvements in coverage, accuracy, and resolution of previously published anomaly maps produced from these data are obtained. In addition to improved maps of the Reiner Gamma and Van de Graaff-Aitken anomalies studied previously, a third region of relatively high-amplitude anomalies centered near the crater Gerasimovich on the southeastern far side has been mapped. Both the Van de Graaff-Aitken region and the Gerasimovich region are marked by the general occurrence of extensive groups of Reiner Gamma-type swirls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Twenty-five uranium anomalies meet the minimum statistical requirements as defined. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strips maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.
World Digital Magnetic Anomaly Map, development towards the Second Edition. (Invited)
NASA Astrophysics Data System (ADS)
Korhonen, J. V.
2009-12-01
Magnetic anomalies are small deviations in the Earth’s main magnetic field, caused by variation of magnetization in the uppermost lithosphere. Magnetic anomalies provide spatial key information for understanding the structure and evolution of the Earths crust. In practice these anomalies are used e.g. for assessment and prospecting of geological natural resources and planning of land use. A common way to calculate a magnetic anomaly value has been to subtract International Geomagnetic Reference Field (IGRF) from a total field measurement that is cleaned from short term variation of the Earth's magnetic field. World Digital Magnetic Anomaly Map (WDMAM) is a collaborative project between member organizations of International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for Geological Map of the World (CGMW). The First Edition of the map was published in 2007. It consisted of a paper map 1:50 Million and a 3 minutes global grid of total field anomalies at an altitude of 5 km above the geoid. The First Edition was aimed to compile as much as possible available land and sea magnetic data, and homogenize it by comparing anomalies with a satellite magnetic lithospheric field model. This first version was prepared in a tight schedule, to show the usefulness of the map to the community and to form a basis for later development and future editions of the map. Hence, much was left to be improved for the second edition, including sparse coverage in two continents and all southern seas. The satellite models were understood to gain more detail in near future when the CHAMP-satellite would reach lower orbits, and hence higher resolution. The SWARM-satellite constellation was seen to produce even more suitable data in a few years thereafter. Ocean magnetic data sets required careful processing and leveling. The method of homogenization of anomalies included replacing long wavelength information by satellite model spectral data, and hence rejecting corresponding measurements. A challenge was left to include high quality anomaly levels of near ground measurements in global magnetic anomaly grid, where available. For these purposes WDMAM task force calls for both new and improved old data sets, advanced methods for data processing and compilation, and improved anomaly definition schemes. All these would be put together and submitted as candidate grids in 2010, and finally released as WDMAM 2011 (Second Edition) at IUGG 2011, in Australia. All contributions towards this purpose are solicited.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Gaya-Pique, Luis R.; Taylor, Patrick T.; Golynsky, Alexander V.; Kim, Jeong Woo
2004-01-01
Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic conservations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer.
Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault
Ben-Avraham, Z.; ten Brink, Uri S.; Bell, R.; Reznikov, M.
1996-01-01
The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.
Building the second version of the World Digital Magnetic Anomaly Map (WDMAM)
NASA Astrophysics Data System (ADS)
Lesur, Vincent; Hamoudi, Mohamed; Choi, Yujin; Dyment, Jérôme; Thébault, Erwan
2016-02-01
The World Digital Anomaly Map (WDMAM) is a worldwide compilation of near-surface magnetic data. We present here a candidate for the second version of the WDMAM and its characteristics. This candidate has been evaluated by a group of independent reviewers and has been adopted as the official second version of the WDMAM during the 26th general assembly of the International Union of Geodesy and Geomagnetism (IUGG). The way this compilation has been built is described with some details. A global magnetic field model of the lithosphere contribution, parameterised by spherical harmonics, has been derived up to degree and order 800. The model information content has been evaluated by computing local spectra. Further, the compatibility of the anomaly field displayed by the WDMAM with a pure induced magnetisation is tested by comparison with the main field strength. These studies allowed an analysis of the compilation in terms of strength and wavelength content. They confirm the extremely smooth and weak contribution of the magnetic field generated in the lithosphere over Western Europe. This apparent weakness possibly extends to the Northern African continent. However, a global analysis remains difficult to achieve given the sparseness of good quality data over very large area of oceans and continents. The WDMAM and related information can be downloaded at http://www.wdmam.org/.
CHAMP Magnetic Anomalies of the Antarctic Crust
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo
2003-01-01
Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.
Equivalent magnetization over the World's Ocean and the World Digital Magnetic Anomaly Map
NASA Astrophysics Data System (ADS)
Dyment, Jerome; Choi, Yujin; Hamoudi, Mohamed; Thébault, Erwan; Quesnel, Yoann; Roest, Walter; Lesur, Vincent
2014-05-01
As a by-product of our recent work to build a candidate model over the oceans for the second version of the World Digital Magnetic Anomaly Map (WDMAM), we derived global distributions of the equivalent magnetization in oceanic domains. In a first step, we use classic point source forward modeling on a spherical Earth to build a forward model of the marine magnetic anomalies at sea-surface. We estimate magnetization vectors using the age map of the ocean floor, the relative plate motions, the apparent polar wander path for Africa, and a geomagnetic reversal time scale. We assume two possible magnetized source geometry, involving both a 1 km-thick layer bearing a 10 A/m magnetization either on a regular spherical shell with a constant, 5 km-deep, bathymetry (simple geometry) or following the topography of the oceanic basement as defined by the bathymetry and sedimentary thickness (realistic geometry). Adding a present-day geomagnetic field model allows the computation of our initial magnetic anomaly model. In a second step, we adjust this model to the existing marine magnetic anomaly data, in order to make it consistent with these data. To do so, we extract synthetic magnetic along the ship tracks for which real data are available and we compare quantitatively the measured and computed anomalies on 100, 200 or 400 km-long sliding windows (depending the spreading rate). Among the possible comparison criteria, we discard the maximal range - too dependent on local values - and the correlation and coherency - the geographical adjustment between model and data being not accurate enough - to favor the standard deviation around the mean value. The ratio between the standard deviations of data and model on each sliding window represent an estimate of the magnetization ratio causing the anomalies, which we interpolate to adjust the initial magnetic anomaly model to the data and therefore compute a final model to be included in our WDMAM candidate over the oceanic regions lacking data. The above ratio, after division by the magnetization of 10 A/m used in the model, represents an estimate of the equivalent magnetization under the considered magnetized source geometry. The resulting distributions of equivalent magnetization are further discussed in terms of mid-ocean ridges, presence of hotspots and oceanic plateaus, and the age of the oceanic lithosphere. Global marine magnetic data sets and models represent a useful tool to assess first order magnetic properties of the oceanic lithosphere.
Remanent magnetization and three-dimensional density model of the Kentucky anomaly region
NASA Technical Reports Server (NTRS)
1982-01-01
Existing software was modified to handle 3-D density and magnetization models of the Kentucky body and is being tested. Gravity and magnetic anomaly data sets are ready for use. A preliminary block model is under construction using the 1:1,000,000 maps. An x-y grid to overlay the 1:2,500,000 Albers maps and keyed to the 1:1,000,000 scale block models was created. Software was developed to generate a smoothed MAGSAT data set over this grid; this is to be input to an inversion program for generating the regional magnetization map. The regional scale 1:2,500,000 map mosaic is being digitized using previous magnetization models, the U.S. magnetic anomaly map, and regional tectonic maps as a guide.
The magnetic low of central Europe: analysis and interpretation by a multi scale approach.
NASA Astrophysics Data System (ADS)
Milano, Maurizio; Fedi, Maurizio
2016-04-01
The objective of this work is an interpretation of the European magnetic low (EML) which is the main magnetic anomaly characterizing the magnetic field of central Europe at high-altitude, extending from the eastern France to Poland and placed above the main geological boundary of Europe, the Trans European Suture Zone (TESZ), that separates the western and thinner Paleozoic platform from the eastern and thicker Precambrian platform. In particular, the EML has a relative magnetic high north-east of it, showing a reverse dipolar behavior that many authors tried to interpret in past also by high-altitude satellite exploration. We used an aeromagnetic dataset and employed a level-to-level upward continuation from 1 km up to 200 km, following a multiscale approach thanks to which the anomalies generated by sources placed at different depths can be discriminated. Low-altitude magnetic maps show a complex pattern of high-frequency anomalies up to an altitude of 50 km; then, increasing the altitude up to 200 km, the field simplifies gradually. In order to interpret the anomalies we generated the maps of the total gradient (|T|) of the field at each upward continued altitude, thanks to its property in localizing in a very simple way the edges of the sources and their horizontal position without specifying a priori information about source parameters. From the total gradient maps at low altitude we obtained information about the position of shallow and localized sources producing patterns of small anomalies. In central Europe, most of them have a reverse dipolar behavior, being related probably to metasedimentary rocks in the upper crust containing pyrrhotite and a strong remament component. At higher altitude the total gradient maps has been useful to give a more complex explanation of the EML taking in consideration the results obtained in previous studies. The maps at 150-200 km show that the maximum amplitude of |T| is exactly localized along the TESZ in the NW-SE direction. So, a simple contact model was performed in order to demonstrate that the main source that generates the EML is the complex fault system of the TESZ. However, the |T| maxima are positioned not only along the suture zone, but also in Central Europe, showing that the contributions to the EML derive also from sources placed in the Paleozoic platform with a reverse dipolar aspect. From these results it appears that the contributions responsible for the nature of this anomaly are to be reconnected first to the presence of the TESZ, which puts in contact two different platforms with different thicknesses, and also to the presence of bodies with a strong remanent component, which characterize part of the Central European crust.
Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics
NASA Astrophysics Data System (ADS)
Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.
2018-03-01
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.
NASA Technical Reports Server (NTRS)
Molnar, Gyula; Susskind, Joel; Iredell, Lena
2010-01-01
The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S. (Principal Investigator)
1982-01-01
Progress in the correlation of MAGSAT anomaly maps with geological and geophysical data sets is reported. An excerpt from Bouguer gravity map of the U.S. was filtered to retain wavelengths of 250 km, thus being physically somewhat analogous to MAGSAT data at 400 km height. Residual anomalies were extracted to compare with the satellite magnetics.
NASA Astrophysics Data System (ADS)
Hamada, K.; Yoshizawa, K.
2015-09-01
A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit better recovery of phase speed perturbations, particularly where the strong lateral velocity gradient exists in which the effects of elastic focussing can be significant; that is, the Yellowstone hotspot, Snake River Plains, and Rio Grande Rift. The enhanced resolution of the phase speed models derived from the interstation phase and amplitude measurements will be of use for the better seismological constraint on the lithospheric structure, in combination with dense broad-band seismic arrays.
NASA Astrophysics Data System (ADS)
Dilalos, S.; Alexopoulos, J. D.
2017-05-01
In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.
Improved determination of vector lithospheric magnetic anomalies from MAGSAT data
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay
1993-01-01
Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).
Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.
2009-01-01
We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
A record of the conclusions of a three-day meeting and workshop of the Committee for a National Magnetic Anomaly Map held in February 1976 is presented. The purpose of he workshop was to prepare a statement of the benefits, objectives, specifications, and requirements of a NMAM and establish a working plan for producing the map. (ACR)
NASA Astrophysics Data System (ADS)
Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.
2012-04-01
The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009, were investigated. Basically, the proposed methodology is able to perform a time series analysis of the TEC maps and, eventually, define the spatial and temporal domains of ionospheric disturbances. This goal was achieved by a time series analysis of the spatial dataset able to compare a local pattern of ionospheric activity with its historical mean value and detect areas where the TEC content exhibits anomalous values. This data processing shows some 1 to 2 days long anomalies about 20 days before of the seismic event (confirming also results provided in recent studies by means of ionospheric soundings).
Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking
NASA Astrophysics Data System (ADS)
Rassat, Anais
2016-07-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.
Use of Magsat anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S. (Principal Investigator)
1981-01-01
Magnetic profiles on individual satellites tracks were examined to identify bad (nonterrestrially-based) data points r profiles. Anomaly profiles for the same satellite track, but at different passes were compared for parallel tracks and for tracks that cross. The selected and processed data were plotted and contoured to develop a preliminary magnetic anomaly map. The map is similar in general morphology to NASA's Magsat global scalar anomaly map, but has more detail which is related to crustal properties. Efforts have begun to interpret the satellite magnetic anomalies in terms of crustal character. The correlation of magnetics with crustal petrology may have a much larger tectonic implication. Th possibility of there being an ultramafic lower crust along one zone as a consequence of a continental collision/subduction which helped form the midcontinent craton in Precambrian times is being investigated.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
Paleo-Pole Positions from Martian Magnetic Anomaly Data
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Frawley, James J.
2003-01-01
Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor s magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed four North and 3 South poles with two at approximately 60 degrees north latitude. These results suggest that during the existence of the Martian main magnetic field it experienced several reversals.
Paleo-Pole Positions from Martian Magnetic Anomaly Data
NASA Technical Reports Server (NTRS)
Frawley, James J.; Taylor, Patrick T.
2004-01-01
Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor's magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed paleo-poles that were nearly equally divided between north, south and mid-latitudes. These results suggest that during the existence of the martian main magnetic field it experienced several reversals and excursions.
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Development of a Global Agricultural Hotspot Detection and Early Warning System
NASA Astrophysics Data System (ADS)
Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.
2015-12-01
The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a monthly basis.
Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies
NASA Astrophysics Data System (ADS)
Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.
2012-07-01
The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical harmonic coefficients were computed up to the third degree of the altitude, and the harmonics of the other, smaller parts up to the second degree. Their sum constitutes what we call ETOPG1, the Earth's TOPography derived Gravity model at 1' resolution (half-wavelength). The EGM2008 gravity field model and ETOPG1 were then used to rigorously compute 1' × 1' point values of surface gravity anomalies and disturbances, respectively, worldwide, at the real Earth's surface, i.e. at the lower limit of the atmosphere. The disturbance grid is the most interesting product of this study and can be used in various contexts. The surface gravity anomaly grid is an accurate product associated with EGM2008 and ETOPO1, but its gravity information contents are those of EGM2008. Our method was validated by comparison with a direct numerical integration approach applied to a test area in Morocco-South of Spain (Kuhn, private communication 2011) and the agreement was satisfactory. Finally isostatic corrections according to the Airy model, but in spherical geometry, with harmonic coefficients derived from the sets of the ETOPO1 different parts, were computed with a uniform depth of compensation of 30 km. The new world Bouguer and isostatic gravity maps and grids here produced will be made available through the Commission for the Geological Map of the World. Since gravity values are those of the EGM2008 model, geophysical interpretation from these products should not be done for spatial scales below 5 arc minutes (half-wavelength).
King, Trude V.V.; Johnson, Michaela R.; Hubbard, Bernard E.; Drenth, Benjamin J.
2011-01-01
During the independent analysis of the geophysical, ASTER, and imaging spectrometer (HyMap) data by USGS scientists, previously unrecognized targets of potential mineralization were identified using evaluation criteria most suitable to the individual dataset. These anomalous zones offer targets of opportunity that warrant additional field verification. This report describes the standards used to define the anomalies, summarizes the results of the evaluations for each type of data, and discusses the importance and implications of regions of anomaly overlap between two or three of the datasets.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S. (Principal Investigator)
1981-01-01
While the preliminary magnetic anomaly map for the centra midcontinent is only in the hand-drawn stage, it agrees in broad aspects with the preliminary global MAGSAT map provided by NASA. Because of data evaluation and finer scale averaging, there are more detailed features which hold promise for eventual geological/crustal interpretation. Some current analysis is directed at examining whether a map data feature such as an elongated anomaly or trend, which seems parallel to satellite data tracks, is likely of crustal origin or is an artifact of the data set.
NASA Astrophysics Data System (ADS)
Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre
2016-04-01
Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic sediments, micaschists and metagrauwackes have intermediate to low magnetization and density values. Detailed lithological attribution of geophysical anomalies was achieved separately for each geological sub-domain (in between 2 major structures). This methodology will be generalized at the scale of the entire Paris basin in order to propose a tectonic reconstruction of this segment of the Variscan belt, and provide guides for the exploration of hidden resources.
Jacobson, Herbert Samuel; Tumer, Ural; Karahacioglu, Hamit
1972-01-01
This report reviews progress made during 1968 in the continuing Joint Haden Tetkik ve Arama Enstitusu (MSA)-U. S. Geological Survey (USGS) Mineral Exploration and Training Project, Subproject 2. Subproject 2 is concerned with aeromagnetic interpretation of MTA's aeromagnetic surveys, and ground investigations of selected aeromagnetic anomalies. This report includes new aeromagnetic maps for the Bolu, Canakkale-Karabiga, Demirkoy, and Orhaneli areas and reviews ground investigations in five areas. Activities for each area are sunmarized below: 1. Bolu area: The aeromagnetic map shows two belts of anomalies related to regional magnetite-bearing formations and a group of discrete anomalies, some of which may reflect significant concentrations of magnetite. To date three of these anomalies have been checked on the ground and at one a metamorphic rock containing 14 percent magnetite was observed. 2. Canakkale-Karabiga area: Ground checks were made of six aeromagnetic anomalies. At one locality (Cakirly-Koyu) 6 km south of Nazmara Sea a small magnetite deposit was found. The magnetic anomaly over the area is 150 meters long, and about 3 meters deep in the center of the anomaly exposed massive magnetite boulders. 3. Demirkoy area: The aeromagnetic map shows only one significant anomaly which was checked on the ground and found to be caused by minor magnetite at an intrusive contact. 4. Ezine area: A ground survey of 4.5 sq km area was made where magnetite boulders are locally present on the surface. No significant magnetic anomaly or iron mineralization were found. 5. Orhaneli area: The aeromagnetic map o# the area showed regional magnetic anomaly patterns related to magnetite in mafic intrusives, ultramafic rocks, and mafic flow rocks. In addition 16 localized anomalies were identified. Most of these anomalies were checked on the ground but no significant iron deposits were found. The largest deposit found was a one-meter wide magnetite vein. During the 1969 field season further investigation of anomalies in the Bolu and Orhaneli areas is planned.
Mapping of the total magnetic field in the area of Lake Balaton
NASA Astrophysics Data System (ADS)
Visnovitz, Ferenc; Hegyi, Betti; Raveloson, Andrea; Rozman, Gábor; Lenkey, László; Kovács, Péter; Csontos, András; Heilig, Balázs; Horváth, Ferenc
2017-04-01
The Lake Balaton with 600 km2 area represents the largest lake in Central Europe and a blank spot on the magnetic anomaly map of Hungary. It is because the construction of the Hungarian magnetic anomaly map dates back to the 1960s and relied mainly on classical vertical-field balance surveys. To fill the gap, we initiated a systematic mapping using modern magnetometers and positioning system in the framework of a complex geophysical study of Lake Balaton (National Research Project 109255 K). The main goal of this study has been to identify subvolcanic bodies and tectonic structures below the lake and correlate them with well-known features mapped onshore in the vicinity of Balaton. During the magnetic survey an Overhauser field magnetometer (GEM System, GSM-19) was mounted on a plastic boat and towed behind a motorboat in a distance of 20 m with a speed of 6 to 16 km/h depending on weather conditions. Tests measurements showed that at this distance the magnetic noise generated by the motorboat was negligible. We measured total field values with a sampling interval of 1 to 2 s. As a result, the whole lake has been covered by magnetic profiles in an orthogonal grid with spacing of 1 km. During data interpretation we applied for correction of temporal variation of magnetic field registered in the Tihany Geophysical Observatory and normal field correction from a regional model. The final anomaly map in the western part of the lake shows anomalies with amplitudes of 20 to 60 nT and a half wavelength of 0.5 to 1 km. A larger feature was recognized related to the Badacsony Hill a major basaltic bute at the northern shore of the lake. In the middle part of the lake the total field is rather smooth, no significant anomaly has been revealed. However, slight disturbances can be noticed in the proximity of a neotectonic fault zone mapped by high resolution seismic data. In the eastern part of the lake few low amplitude (5-20 nT) anomalies have been observed that are associated also with seismically mapped strike-slip faults. As an interesting by-product a map was created showing short wavelength anomalies that are most probably caused by artificial metal objects sank and stuck in the lake mud. Some of these anomalies can be caused by parts of fallen warplanes and sunken tanks from military activities during the II. World War.
NASA Astrophysics Data System (ADS)
Fathy, K.; Sultan, M.; Bettadpur, S. V.; Save, H.; Ahmed, M.; Zahran, K. H.; Emil, M. K.; Helaly, A.; Abotalib, A. Z.; Ismaiel, A.
2016-12-01
The Nubian Sandstone Aquifer System (NSAS) extends beyond Egypt's political boundaries to cover eastern Libya, northern and central Sudan and northeast Chad. The optimum utilization of this resource requires a better understanding of the connectivity of the NSAS sub-basins and the structural control on groundwater flow throughout the system. We provide an integrated (geophysics, remote sensing and field) approach to address these issues. Firstly, we evaluated GOCE-based global Geopotential models (GGMs) compared to the terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity datasets. The Eigen-6C4 was found to have the lowest deviation from the terrestrial gravity anomalies. Secondly, structures and uplifts were mapped on the surface and in the sub-surface. Extensive N-S to NW-SE trending grabens were delineated in areas proximal to the Nile Valley using Palsar-derived DEMs, and hill shade maps; these depressions are here interpreted as basement structures that were reactivated during the opening of the Red Sea and the Gulf of Suez. The sinistral E-W trending faults and shear zones of the Syrian Arc were mapped in northern Egypt from Sinai and across the Eastern and Western Deserts. These structures were mapped on the surface using hill shade images and their extension in the subsurface was successfully detected from Eigen-6C4 model-derived Bouguer and TDR maps. The E-W trending basement uplift (Uweinat-Aswan uplift) was mapped in southern Egypt and the N-S trending Uweinat-Howar uplift was delineated in western Sudan and eastern Chad using TDR maps. Thirdly, hydrological analysis was conducted using GRACE spherical harmonic solutions (RL05), and CSR 0.5° X 0.5°, and JPL Mascon solutions. These showed: (1) pronounced TWS depletion over the Dakhla basin (average of three solutions: -3.03 mm/yr); (2) the south to north groundwater flow from Sudan to Egypt is impeded by the E-W trending Uweinat-Aswan basement uplift, yet the southwest to northeast flow from Chad into Sudan is not obstructed by the Uweinat-Howar uplift, (3) the E-W trending faults and shear zones impede groundwater flow to the north and act as conduits for deep-seated groundwater discharge on the surface in natural depressions (e.g., Qattara) and in the overlying layers.
Thermal surveillance of active volcanoes
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. There are three significant scientific results of the discovery of 48 pinpoint anomalies on the upper flanks of Mt. Rainier: (1) Many of these points may actually be the location of fumarolic vapor emission or warm ground considerably below the summit crater. (2) Discovery of these small anomalies required specific V/H scanner settings for precise elevation on Mt. Rainier's flank, to avoid smearing the anomalies to the point of nonrecognition. Several past missions flown to map the thermal anomalies of the summit area did not/detect the flank anomalies. (3) This illustrates the value of the aerial IR scanner as a geophysical tool suited to specific problem-oriented missions, in contrast to its more general value in a regional or reconnaissance anomaly-mapping role.
MAGSAT investigation of crustal magnetic anomalies in the eastern Indian Ocean
NASA Technical Reports Server (NTRS)
Sailor, R. V.; Lazarewicz, A. R.
1983-01-01
Crustal magnetic anomalies in a region of the eastern Indian Ocean were studied using data from NASA's MAGSAT mission. The investigation region (0 deg to 50 deg South, 75 to 125 deg East) contains several important tectonic features, including the Broken Ridge, Java Trench, Ninetyeast Ridge, and Southeast Indian Ridge. A large positive magnetic anomaly is associated with the Broken Ridge and smaller positive anomalies correlate with the Ninetyeast Ridge and western Australia. Individual profiles of scalar data (computed from vector components) were considered to determine the overall data quality and resolution capability. A set of MAGSAT ""Quiet-Time'' data was used to compute an equivalent source crustal magnetic anomaly map of the study region. Maps of crustal magnetization and magnetic susceptibility were computed from the equivalent source dipoles. Gravity data were used to help interpretation, and a map of the ratio of magnetization to density contrasts was computed using Poisson's relation. The results are consistent with the hypothesis of induced magnetization of a crustal layer having varying thickness and composition.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
NASA Astrophysics Data System (ADS)
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
The mineralogy of global magnetic anomalies
NASA Technical Reports Server (NTRS)
Haggerty, S. E. (Principal Investigator)
1984-01-01
Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.
Release of the World Digital Magnetic Anomaly Map version 2 (WDMAM v2) scheduled
NASA Astrophysics Data System (ADS)
Dyment, Jérôme; Lesur, Vincent; Choi, Yujin; Hamoudi, Mohamed; Thébault, Erwan; Catalan, Manuel
2015-04-01
The World Digital Magnetic Anomaly Map is an international initiative carried out under the auspices of the International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for the Geological Map of the World (CGMW). A first version of the map has been published and distributed eight years ago (WDMAM v1; Korhonen et al., 2007). After a call for an improved second version of the map in 2011, the slow process of data compilation, map preparation, evaluation and finalization is near completion, and the WDMAM v2 will be released at the International Union of Geophysics and Geodesy (IUGG) meeting to be held in Prag in June-July 2015. In this presentation we display several shortcomings of the WDMAM v1, both on continental and oceanic areas, that are hopefully alleviated in the WDMAM v2, and discuss the process leading to the new map. We reiterate a long-standing call for aeromagnetic and marine magnetic data contribution, and explore future directions to pursue the effort toward a more complete, higher resolution magnetic anomaly map of the World.
Reducing tensor magnetic gradiometer data for unexploded ordnance detection
Bracken, Robert E.; Brown, Philip J.
2005-01-01
We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.
The next generation Antarctic digital magnetic anomaly map
von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ,
2007-01-01
S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field
Tectonic Interpretation of CHAMP Geopotential Data over the Northern Adriatic Sea.
NASA Astrophysics Data System (ADS)
Taylor, P. T.; Kim, H. R.; Mayer-Gürr, T.
2006-05-01
Recent aeromagnetic anomaly compilations (Chiappini et al., 2000 and Tontini et al., 2004) show a large positive (>700 nT) northwest-southeast trending magnetic anomaly off the Dalmatian coast. Unfortunately these aeromagnetic data cover only a part of this anomaly. We wanted to investigate if this large magnetic anomaly could be detected at satellite altitude and what is the extent and source of this feature. Therefore, magnetic and gravity anomaly maps were made from the CHAMP geopotential data, measured at the current low altitude of 345-350 km over the northern Adriatic Sea. We made the magnetic anomaly map over this relatively small region using 36 descending and 85 ascending orbits screened to be at the lowest altitude and the most magnetically quietest data. We removed the main field component (i.e., IGRF-10 up to degree and order 13) and then demeaned individual tracks and subtracted a second order polynomial to remove regional and/or un-modeled external field features. The resulting map from these well-correlated anomalies revealed a positive magnetic anomaly (>2 nT). Reduction-to-the pole brought these CHAMP anomaly features into coincidence with the aeromagnetic data. Previously Cantini et al. (1999) compared the surface magnetic data with MAGSAT by continuing upward the former and downwards the latter to 100 km and found a good correlation for wavelengths of 300-500 km. We also investigated the CHAMP gravity data. They were reduced using the kinematic short-arc integration method (Ilk et al., 2005 and Mayer Gürr et al., 2005). However, no corresponding short-wavelength gravity anomaly was observed in our study area. This tectonically complex region is under horizontal stress and the source of the large magnetic anomaly can be modelled by an associated ophiolite melange.
Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Fontes, Sergio Luiz
2010-05-01
0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1-minute gridded data were obtained from the Satellite Geodesy at the Scripps Institution of Oceanography, Smith & Sandwell (1997; http://topex.ucsd.edu. Gravity anomaly data were re-gridded using the ETOPO2v2 grid. All calculations and maps were made using MatLab 2007 software. 0.3.2 Cross-Product Cross-product is the result of multiplication of bathymetric and gravity anomaly gradient magnitudes by the sine of the angle between them. According to the definition of gradient cross-product minimal values are expected to be found in points where the angle between gradients is close to zero or where one or both of the gradient magnitudes have values close to zero. It creates an ambiguity and a problem for data interpretation since there is no exact correspondence between bathymetric structures and gravity anomalies. 0.3.3 Dot-Product Dot-product is the result of multiplication of bathymetric and gravity anomaly magnitudes by the cosine on the angle between them. According to the definition of dot-product, values close to zero can be generated by near perpendicular orientation of the gradients or small magnitudes of one or both gradients. So, the results are mutually increased in areas with larger magnitudes or smaller angles between gradients. Due to this mutual amplification dot-products are less affected by the ambiguity of cross-product explained above. The same statistical separation of cross-product was used to support the conclusions. 0.3.4 Statistics and Significance Criteria Statistical analysis was made in order to sort the data into two groups to reduce ambiguity effect: first group - data with magnitudes that could be considered anomalous (where the main minimizing source is the angle between the gradients and the second group - data with magnitudes variations that could be considered as (non significant or background (where cross-product value is determined by the small magnitude). It was chosen to use the mean value and standard deviation (std) to sort the data in such two groups. These values were determined for bathymetric and gravity anomaly gradient magnitudes creating two data sets - one where one or both gradient magnitudes are one standard deviation larger than the mean value with a total of 7831 (anomalous) and a second one where both magnitudes differ smaller than one standard deviation from the mean value with 85584 (background ). Statistical analysis of distribution patterns for both groups was made. 0.4 Examples of Method Application 0.4.1 Map of Angles Between Gradients Figure 1 shows the map of angle values. The angle values were divided into 4 equal intervals. The statistical distribution of angles between gradient in the given intervals is the following (percents of the total): 0 to 60° - 51.39% of the values; 60° to 90° -12.08%; 90° to 120° -14.92%; 120° to 180° -21.18%. It can be seen that 51% of the gradients have a small angle between them, 72% of gradients can be considered as parallel (72%) with angles smaller than 60° or bigger than 120° between them. After statistical separation in the anomalous group almost 91% of the gradients have an angle smaller than 60° while in the background group just 48.6%. From these results we can make a conclusion that the majority of the bathymetric and gravity anomaly gradients are related. Regions with higher gradient magnitudes are characterized by cosine values close to 1 (indicating a small angle between them). The size of the areas characterized by small angles between gradients exceed the size of bathymetric and gravity anomaly isolines characterizing the area of influence of the structures and their effects. Regions with no significant anomalies show uncorrelated value spots. 0.4.2 Map of Cross-Product The resulting map shows small spots of higher cross-product magnitudes following magnitude isolines. About 90% of the values are close to minimum. As was mentioned before, we can presume that areas where bathymetry and gravity anomaly gradient cross-products have smallest magnitudes there is a good correspondence between them indicating a good correspondence between shapes. According to these results for the studied area the shapes and positions of bathymetric structures and gravity anomalies are well correlated suggesting strong correlation between source and its effect. 0.4.3 Map of Dot-Product The resulting map resembles bathymetric and gravity anomaly isolines. All the sea mounts, banks, continental slope and other notable geomorphologic structures and gravity anomalies are well delimitated in the dot-product map eliminating uncorrelated areas where gradient orientations can be considered as near perpendicular. The dot-product map of the studied area suggests a strong source-effect between bathymetry and gravity anomaly. 0.5 Conclusions The joint image interpretation technique uses three different criteria that are sensitive to different gradient properties. Angles between gradients are a good indicator of areas where data are related and it is not sensitive to the magnitudes of the gradients. Angles maps can be used to find areas with direct and inverse relation between mapped properties and contour areas of influence of anomalies unseen on gradient magnitude maps alone. Statistical measures of distribution of angles can be an indicator of relation between data sets as show using significance criteria. Cross-product map has a spotted character of contours. To reduce the effects of the ambiguity the separation into two groups proved to be useful. It helps to separate the cross-product values that are minimized due to gradient magnitudes from those that minimize due to sine values which is a measure of correlation between them. Dot-product values contour areas where gradients are correlated. According to joint image interpretation technique applied bathymetric structures especially the volcanic seamounts and banks in the southern part of East-Brazilian Coast are closely related to the observed gravity anomalies and can be interpreted as sources and effect. This technique also helps to evaluate the shape and dispersion of the gravitational effect from a bathymetrical source. 0.6 References Dehlinger P., Marine Gravity, Elsevier, 1978. Gallardo, L. A., and M. A. Meju., Joint 2D cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification, Geophys. J. Int., 169, 1261-1272. (2007) Gallardo, L.A., M. A. Meju (2004), Joint two-dimensional dc resistivity and seismic traveltime inversion with cross-gradients constraints, J. Geophys. Res., 109, B03311, doi:10.1029/2003JB002716 Jacoby, W., and Smilde P. L., Gravity Interpretation, Springer, 2009. McKenzie D. & Bowin C. 1976. The relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81: 1903-1915. Roy. K. K., Potential Theory in Applied Geophysics, Springer, 2008. Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997. Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. Zembruscki, S.G. 1979. Geomorfologia da Margem Continental Sul Brasileira e das Bacias Oceânicas Adjacentes. In: Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC, N° 7.
NASA Astrophysics Data System (ADS)
Troiani, Francesco; Piacentini, Daniela; Seta Marta, Della
2016-04-01
Many researches successfully focused on stream longitudinal profiles analysis through Stream Length-gradient (SL) index for detecting, at different spatial scales, either tectonic structures or hillslope processes. The analysis and interpretation of spatial variability of SL values, both at a regional and local scale, is often complicated due to the concomitance of different factors generating SL anomalies, including the bedrock composition. The creation of lithologically-filtered SL maps is often problematic in areas where homogeneously surveyed geological maps, with a sufficient resolution are unavailable. Moreover, both the SL map classification and the unbiased anomaly detection are rather difficult. For instance, which is the best threshold to define the anomalous SL values? Further, is there a minimum along-channel extent of anomalous SL values for objectively defining over-steeped segments on long-profiles? This research investigates the relevance and potential of a new approach based on Hotspot and Cluster Analysis of SL values (SL-HCA) for detecting knickzones on long-profiles at a regional scale and for fine-tuning the interpretation of their geological-geomorphological meaning. We developed this procedure within a 2800 km2-wide area located in the mountainous sector of the Northern Apennines of Italy. The Getis-Ord Gi∗ statistic is applied for the SL-HCA approach. The value of SL, calculated starting from a 5x5 m Digital Elevation Model, is used as weighting factor and the Gi∗ index is calculated for each 50 m-long channel segment for the whole fluvial system. The outcomes indicate that high positive Gi∗ values imply the clustering of SL anomalies, thus the occurrence of knickzones on the stream long-profiles. Results show that high and very high Gi* values (i.e. values beyond two standard deviations from the mean) correlate well with the principal knickzones detected with existent lithologically-filtered SL maps. Field checks and remote sensing analysis conducted on 52 clusters of high and very high Gi* values indicate that mass movement of slope material represents the dominant process producing over-steeped long-profiles along connected streams, whereas the litho-structure accounts for the main anomalies along disconnected steams. Tectonic structures generally provide to the largest clusters. Our results demonstrate that SL-HCA maps have the same potential of lithologically-filtered SL maps for detecting knickzones due to hillslope processes and/or tectonic structures. The reduced-complexity model derived from SL-HCA approach highly improve the readability of the morphometric outcomes, thus the interpretation at a regional scale of the geological-geomorphological meaning of over-steeped segments on long-profiles. SL-HCA maps are useful to investigate and better interpret knickzones within regions poorly covered by geological data and where field surveys are difficult to be performed.
In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site
NASA Astrophysics Data System (ADS)
Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.
2010-12-01
Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low-conductivity soil.
Does Terrestrial Drought Explain Global CO2 Flux Anomalies Induced by El Nino?
NASA Technical Reports Server (NTRS)
Schwalm. C. R.; Williams, C. A.; Schaefer, K.; Baker, I.; Collatz, G. J.; Roedenbeck, C.
2011-01-01
The El Nino Southern Oscillation is the dominant year-to-year mode of global climate variability. El Nino effects on terrestrial carbon cycling are mediated by associated climate anomalies, primarily drought, influencing fire emissions and biotic net ecosystem exchange (NEE). Here we evaluate whether El Nino produces a consistent response from the global carbon cycle. We apply a novel bottom-up approach to estimating global NEE anomalies based on FLUXNET data using land cover maps and weather reanalysis. We analyze 13 years (1997-2009) of globally gridded observational NEE anomalies derived from eddy covariance flux data, remotely-sensed fire emissions at the monthly time step, and NEE estimated from an atmospheric transport inversion. We evaluate the overall consistency of biospheric response to El Nino and, more generally, the link between global CO2 flux anomalies and El Nino-induced drought. Our findings, which are robust relative to uncertainty in both methods and time-lags in response, indicate that each event has a different spatial signature with only limited spatial coherence in Amazonia, Australia and southern Africa. For most regions, the sign of response changed across El Nino events. Biotic NEE anomalies, across 5 El Nino events, ranged from -1.34 to +0.98 Pg Cyr(exp -1, whereas fire emissions anomalies were generally smaller in magnitude (ranging from -0.49 to +0.53 Pg C yr(exp -1). Overall drought does not appear to impose consistent terrestrial CO2 flux anomalies during El Ninos, finding large variation in globally integrated responses from 11.15 to +0.49 Pg Cyr(exp -1). Despite the significant correlation between the CO2 flux and El Nino indices, we find that El Nino events have, when globally integrated, both enhanced and weakened terrestrial sink strength, with no consistent response across events
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2013-09-01
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.
NASA Technical Reports Server (NTRS)
Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro
2013-01-01
Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.
Snake River Plain Geothermal Play Fairway Analysis - Phase 1 Raster Files
John Shervais
2015-10-09
Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.
Maui Gravity and Soil Gas Surveys
John Akerley
2010-04-01
Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.
NASA Astrophysics Data System (ADS)
Saleh, Salah
2016-07-01
The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.
NASA Astrophysics Data System (ADS)
Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian
2017-04-01
West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were compared to 17 years of crop yield estimates from the FAOSTAT database (1998-2014). Results showed that the 30-cm soil moisture anomalies explained 89% of the crop yield variation in Niger, 72% in Burkina Faso, 82% in Mali and 84% in Senegal.
Structural-geophysical model of the basement complex of the Aden-Red Sea region
NASA Astrophysics Data System (ADS)
Isaev, E. N.
1987-11-01
A relief map of the basement complex underlying the volcanogenic sedimentary cover has been constructed on the basis of composite Bouguer anomaly maps and maps of magnetic anomalies ΔT. Seismic and geological data on the Gulf of Aden and the Red Sea as well as on adjacent areas of Africa and Arabia have also been used. The mid-Red Sea and mid-Aden uplifts (similar to the mid-oceanic ones) as well as the foredeep have been identified. The thickness of cover in the foredeeps is 6-8 km. A regional negative Bouguer anomaly crosses the Aden-Red Sea rift system and includes the area of young volcanism. Intensive linear magnetic anomalies are traceable only within the area of overlap of the rift system and the zone of young volcanism. Rift system apophyses have advanced into the continent and their nature is similar to that of the Afar triangle.
Wang, Hubiao; Wu, Lin; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong
2017-08-10
The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°-145° E, 0°-40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China's Western Pacific area is ~1.0-4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy.
Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong
2017-01-01
The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158
NASA Astrophysics Data System (ADS)
Saleh, Salah; Pamukçu, Oya; Brimich, Ladislav
2017-09-01
In the present study, we have attempted to map the plate boundary between Arabia and Africa at the Northern Red Sea rift region including the Suez rift, Gulf of Aqaba-Dead Sea transform and southeastern Mediterranean region by using gravity data analysis. In the boundary analysis method which was used; low-pass filtered gravity anomalies of the Northern Red Sea rift region were computed. Different crustal types and thicknesses, sediment thicknesses and different heat flow anomalies were evaluated. According to the results, there are six subzones (crustal blocks) separated from each other by tectonic plate boundaries and/or lineaments. It seems that these tectonic boundaries reveal complex structural lineaments, which are mostly influenced by a predominant set of NNW-SSE to NW-SE trending lineaments bordering the Red Sea and Suez rift regions. On the other side, the E-W and N-S to NNE-SSW trended lineaments bordering the South-eastern Mediterranean, Northern Sinai and Aqaba-Dead Sea transform regions, respectively. The analysis of the low pass filtered Bouguer anomaly maps reveals that the positive regional anomaly over both the Red Sea rift and South-eastern Mediterranean basin subzones are considered to be caused by the high density of the oceanic crust and/or the anomalous upper mantle structures beneath these regions whereas, the broad medium anomalies along the western half of Central Sinai with the Suez rift and the Eastern Desert subzones are attributed to low-density sediments of the Suez rift and/or the thick upper continental crustal thickness below these zones. There are observable negative anomalies over the Northern Arabia subzone, particularly in the areas covered by Cenozoic volcanics. These negative anomalies may be attributed to both the low densities of the surface volcanics and/or to a very thick upper continental crust. On the contrary, the negative anomaly which belongs to the Gulf of Aqaba-Dead Sea transform zone is due to crustal thickening (with limited heat flow values) below this region. Additionally in this study, the crustal thinning was investigated with heat flow, magnetic and free air gravity anomalies in the Northern Red Sea rift region. In fact, the crustal thinning of the study area was also proportional to the regions of observable high heat flow values. Finally, our results were found to be well correlated with the topography, free air, aeromagnetic and heat flow dataset profiles crossing most of the study area.
Grosz, A.E.; Kosanke, Kenneth L.
1983-01-01
Total-count contoured aeroradiometric maps for the Coastal Plain of Virginia were used in an effort to locate economic heavy-mineral placer deposits. The principle behind this approach is that heavy- mineral suites commonly contain radioactive minerals that, if the concentration of heavy minerals is exposed at or within inches of the surface, enable the deposit to be located by use of airborne instruments because of its radiometric contrast with the host sediment. Detailed and regional geologic maps, soil maps, land-use and land- cover maps, information on fertilizer use, and ground-spectrometer data were used to study aeroradiometric anomalies for efficient exploration. Aeroradiometric anomalies in the Coastal Plain of Virginia have three general causes. First, the most intense anomalies are associated with cultural features, such as roads made of granitic material. Second, most anomalies of high to intermediate intensity are associated with land used for agricultural purposes and evidently are caused by applications of radioactive fertilizer. Third, anomalies of intermediate to low intensity are associated with heavy-mineral deposits. Results of this study show that aeroradiometric anomalies associated with heavy-mineral accumulations in the Coastal Plain of Virginia have ground radiometric spectra in which thorium is the strongest component and uranium and potassium are lesser components. Heavy-mineral accumulations found in this study by use of the aeroradiometric data are not considered to be of economic importance, mostly because of the low percentage of economic minerals in the heavy-mineral suites and also because of other factors such as the very fine grained nature of the host sediments and competing land use.
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong
2014-10-01
Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.
NASA Astrophysics Data System (ADS)
Priya, R. Kanmani Shanmuga; Balaguru, B.; Ramakrishnan, S.
2013-10-01
The capabilities of evolving satellite remote sensing technology, combined with conventional data collection techniques, provide a powerful tool for efficient and cost effective management of living marine resources. Fishes are the valuable living marine resources producing food, profit and pleasure to the human community. Variations in oceanic condition play a role in natural fluctuations of fish stocks. The Satellite Altimeter derived Merged Sea Level Anomaly(MSLA) results in the better understanding of ocean variability and mesosclae oceanography and provides good possibility to reveal the zones of high dynamic activity. This study comprised the synergistic analysis of signatures of SEAWIFS derived chlorophyll concentration, National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer(NOAA-AVHRR) derived Sea Surface Temperature and the monthly Merged Sea Level Anomaly data derived from Topex/Poseidon, Jason-1 and ERS-1 Altimeters for the past 7 years during the period from 1998 to 2004. The overlapping Chlorophyll, SST and MSLA were suggested for delineating Potential Fishing Zones (PFZs). The Chlorophyll and SST data set were found to have influenced by short term persistence from days to week while MSLA signatures of respective features persisted for longer duration. Hence, the study used Altimeter derived MSLA as an index for long term variability detection of fish catches along with Chlorophyll and SST images and the maps showing PFZs of the study area were generated. The real time Fishing statistics of the same duration were procured from FSI Mumbai. The catch contours were generated with respect to peak spectra of chlorophyll variation and trough spectra of MSLA and SST variation. The vice- a- versa patterns were observed in the poor catch contours. The Catch Per Unit Effort (CPUE) for each fishing trail was calculated to normalize the fish catch. Based on the statistical analysis the actual CPUEs were classified at each probable MSLA depth zones and plotted on the same images.
Worldwide complete spherical Bouguer and isostatic anomaly maps
NASA Astrophysics Data System (ADS)
Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.
2011-12-01
We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis et al., 2008), which represents the best up-to-date global gravity model (including surface gravity measurements from land, marine and airborne surveys as well as gravity and altimetry satellite measurements). The surface gravity anomaly (free air) is computed at the Earth's surface in the context of Molodensky theory and includes corrections from the mass of the atmosphere. The way gravity anomalies are computed on a worldwide basis slightly differs from the classical usage, but meets modern concerns which tend to take the real Earth into account. The resulting anomaly maps and grids will be distributed for scientific and education purposes by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. Upgraded versions might be done as soon as new global gravity model is available (including satellite GOCE and new surface measurements: ground, airborne). Visit / contact BGI (http://bgi.omp.obs-mip.fr) and CCMW (http://ccgm.free.fr) for more information.
Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.
2002-01-01
A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
A Computer-Based Atlas of Global Instrumental Climate Data (DB1003)
Bradley, Raymond S.; Ahern, Linda G.; Keimig, Frank T.
1994-01-01
Color-shaded and contoured images of global, gridded instrumental data have been produced as a computer-based atlas. Each image simultaneously depicts anomaly maps of surface temperature, sea-level pressure, 500-mbar geopotential heights, and percentages of reference-period precipitation. Monthly, seasonal, and annual composites are available in either cylindrical equidistant or northern and southern hemisphere polar projections. Temperature maps are available from 1854 to 1991, precipitation from 1851 to 1989, sea-level pressure from 1899 to 1991, and 500-mbar heights from 1946 to 1991. The source of data for the temperature images is Jones et al.'s global gridded temperature anomalies. The precipitation images were derived from Eischeid et al.'s global gridded precipitation percentages. Grids from the Data Support Section, National Center for Atmospheric Research (NCAR) were the sources for the sea-level-pressure and 500-mbar geopotential-height images. All images are in GIF files (1024 × 822 pixels, 256 colors) and can be displayed on many different computer platforms. Each annual subdirectory contains 141 images, each seasonal subdirectory contains 563 images, and each monthly subdirectory contains 1656 images. The entire atlas requires approximately 340 MB of disk space, but users may retrieve any number of images at one time.
Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra
NASA Astrophysics Data System (ADS)
Reinhart, Alex; Athey, Alex; Biegalski, Steven
2014-06-01
For security, environmental, and regulatory purposes it is useful to continuously monitor wide areas for unexpected changes in radioactivity. We report on a temporal anomaly detection algorithm which uses mobile detectors to build a spatial map of background spectra, allowing sensitive detection of any anomalies through many days or months of monitoring. We adapt previously-developed anomaly detection methods, which compare spectral shape rather than count rate, to function with limited background data, allowing sensitive detection of small changes in spectral shape from day to day. To demonstrate this technique we collected daily observations over the period of six weeks on a 0.33 square mile research campus and performed source injection simulations.
Investigation from Japanese MAGSAT team
NASA Technical Reports Server (NTRS)
Fukushima, N. (Principal Investigator)
1981-01-01
The acquisition of tapes which contain vector and scalar data decimated at an interval of 0.5 sec, together with time and position data, is reported. Progress in the study of magnetic anomalies in the vicinity of Japan and in electric currents in the ionosphere and magnetosphere is also reported. MAGSAT data was used in obtaining a map of total force anomaly for the area of latitude 10-70 deg N and longitude 110-170 deg E. One of the outstanding features in the map of the magnetic anomaly is a negative magnetic anomaly in the Okhotsk Sea, which is of geophysical interest because of its possible connection with high heat flow values in that area.
Gravity Survey of the Carson Sink - Data and Maps
Faulds, James E.
2013-12-31
A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.
NASA Technical Reports Server (NTRS)
Langel, R. A.; Coles, R. L.; Mayhew, M. A.
1979-01-01
Crustal magnetic anomaly data from the OGO 2, 4 and 6 (Pogo) satellites are compared with upward-continued aeromagnetic data between 50 deg -85 deg N latitude and 220 deg - 260 deg E longitude. Agreement is good both in anomaly location and in amplitude, giving confidence that it is possible to proceed with the derivation and interpretation of satellite anomaly maps in all parts of the globe. The data contain a magnetic high over the Alpha ridge suggesting continental composition and a magnetic low over the southern Canada basin and northern Canadian Arctic islands (Sverdrup basin). The low in the Sverdrup basin corresponds to a region of high heat flow, suggesting a shallow Curie isotherm. A ridge of high field, with two distinct peaks in amplitude, is found over the northern portion of the platform deposits and a relative high is located in the central portion of the Churchill province. No features are present to indicate a magnetic boundary between Slave and Bear provinces, but a trend change is evident between Slave and Churchill provinces. South of 60 deg latitude a broad magnetic low is located over very thick (40-50 km) crust, interpreted to be a region of low magnetization.
Duval, J.S.
1987-01-01
A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.
NASA Astrophysics Data System (ADS)
Chemura, Abel; Mutanga, Onisimo; Dube, Timothy
2017-05-01
The development of cost-effective, reliable and easy to implement crop condition monitoring methods is urgently required for perennial tree crops such as coffee (Coffea arabica), as they are grown over large areas and represent long term and higher levels of investment. These monitoring methods are useful in identifying farm areas that experience poor crop growth, pest infestation, diseases outbreaks and/or to monitor response to management interventions. This study compares field level coffee mean NDVI and LSWI anomalies and age-adjusted coffee mean NDVI and LSWI anomalies in identifying and mapping incongruous patches across perennial coffee plantations. To achieve this objective, we first derived deviation of coffee pixels from the global coffee mean NDVI and LSWI values of nine sequential Landsat 8 OLI image scenes. We then evaluated the influence of coffee age class (young, mature and old) on Landsat-scale NDVI and LSWI values using a one-way ANOVA and since results showed significant differences, we adjusted NDVI and LSWI anomalies for age-class. We then used the cumulative inverse distribution function (α ≤ 0.05) to identify fields and within field areas with excessive deviation of NDVI and LSWI from the global and the age-expected mean for each of the Landsat 8 OLI scene dates spanning three seasons. Results from accuracy assessment indicated that it was possible to separate incongruous and healthy patches using these anomalies and that using NDVI performed better than using LSWI for both global and age-adjusted mean anomalies. Using the age-adjusted anomalies performed better in separating incongruous and healthy patches than using the global mean for both NDVI (Overall accuracy = 80.9% and 68.1% respectively) and for LSWI (Overall accuracy = 68.1% and 48.9% respectively). When applied to other Landsat 8 OLI scenes, the results showed that the proportions of coffee fields that were modelled incongruent decreased with time for the young age category and while it increased for the mature and old age classes with time. We concluded that the method could be useful for the identification of anomalous patches using Landsat scale time series data to monitor large coffee plantations and provide an indication of areas requiring particular field attention.
Equivalent magnetization over the World's Ocean
NASA Astrophysics Data System (ADS)
Dyment, J.; Choi, Y.; Hamoudi, M.; Erwan, T.; Lesur, V.
2014-12-01
As a by-product of our recent work to build a candidate model over the oceans for the World Digital Magnetic Anomaly Map (WDMAM) version 2, we derived global distributions of the equivalent magnetization in oceanic domains. In a first step, we use classic point source forward modeling on a spherical Earth to build a forward model of the marine magnetic anomalies at sea-surface. We estimate magnetization vectors using the age map of the ocean floor, the relative plate motions, the apparent polar wander path for Africa, and a geomagnetic reversal time scale. As magnetized source geometry, we assume 1 km-thick layer bearing a 10 A/m magnetization following the topography of the oceanic basement as defined by the bathymetry and sedimentary thickness. Adding a present-day geomagnetic field model allows the computation of our initial magnetic anomaly model. In a second step, we adjust this model to the existing marine magnetic anomaly data, in order to make it consistent with these data. To do so, we extract synthetic magnetic along the ship tracks for which real data are available and we compare quantitatively the measured and computed anomalies on 100, 200 or 400 km-long sliding windows (depending the spreading rate). Among the possible comparison criteria, we discard the maximal range - too dependent on local values - and the correlation and coherency - the geographical adjustment between model and data being not accurate enough - to favor the standard deviation around the mean value. The ratio between the standard deviations of data and model on each sliding window represent an estimate of the magnetization ratio causing the anomalies, which we interpolate to adjust the initial magnetic anomaly model to the data and therefore compute a final model to be included in our WDMAM candidate over the oceanic regions lacking data. The above ratio, after division by the magnetization of 10 A/m used in the model, represents an estimate of the equivalent magnetization under the considered magnetized source geometry. The resulting distributions of equivalent magnetization are discussed in terms of mid-ocean ridges, presence of hotspots and oceanic plateaus, and the age of the oceanic lithosphere. Global marine magnetic data sets and models represent a useful tool to assess first order magnetic properties of the oceanic lithosphere.
Ionizing radiation environment for the TOMS mission
NASA Technical Reports Server (NTRS)
Lauriente, M.; Maloy, J. O.; Vampola, A. L.
1992-01-01
The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Lopez-Loera, H.; Rebolledo-Vieyra, M.
2011-12-01
We present the initial results of a low-altitude high-resolution aeromagnetic study over the Yucatan peninsula. Area surveyed extends from 86W to 91W and 18N to 21N, covering the peninsula and adjacent continental margin of Gulf of Mexico and Caribbean Sea. Aeromagnetic surveys are integrated into a regional map, and regional and residual anomalies are separated using spectral and least-squares methods. For the study, aeromagnetic field was reduced to the pole and several data filtering techniques were used, including first and second vertical derivatives, analytical signal, and upward and downward analytical continuations. The region is characterized by large amplitude broad elongated magnetic anomalies oriented north-south in the northern sector of the continental shelf, and northwest-southeast and northeast-southwest over the western and eastern sides of the peninsula, respectively. Major regional anomalies extend from the continental shelf into the peninsula, whereas other anomaly trends in the central northern sector, at northeast limit of Chicxulub crater, are restricted to the shelf. Largest anomaly on the east extends over the Holbox fracture zone. At its southern end, south of Chetumal a parallel trend extends over the Rio Hondo fault zone between Quintana Roo and Belize. On the western peninsula the anomaly is characterized by two parallel trends offset between Yucatan and Campeche. The central zone of Chicxulub is characterized by a semi-circular anomaly pattern, surrounded by long wavelength small amplitude anomalies extending to the east on the peninsula and shelf, isolated from the regional broad anomalies. To the south of Chicxulub anomaly, there is an elongated low with a central high extending southward from the terrace zone inside the crater rim. The elongated magnetic anomaly correlates with a broad gravity low, which is apparent south of the concentric zone of anomalies. To the north of Chicxulub anomaly, a magnetic high inside the crater is followed by a low outside, which extend to the north and northwest. The regional broad anomalies crossing the peninsula and shelf are interpreted as crustal structures on the Yucatan block related to pre- and rifting deformation, which include basement uplift. The southward elongated magnetic anomaly and gravity low may correspond to a pre-impact structure. From analysis of residual anomalies, we found no clear indication of secondary craters or multiple impacts.
Hyperspectral target detection using heavy-tailed distributions
NASA Astrophysics Data System (ADS)
Willis, Chris J.
2009-09-01
One promising approach to target detection in hyperspectral imagery exploits a statistical mixture model to represent scene content at a pixel level. The process then goes on to look for pixels which are rare, when judged against the model, and marks them as anomalies. It is assumed that military targets will themselves be rare and therefore likely to be detected amongst these anomalies. For the typical assumption of multivariate Gaussianity for the mixture components, the presence of the anomalous pixels within the training data will have a deleterious effect on the quality of the model. In particular, the derivation process itself is adversely affected by the attempt to accommodate the anomalies within the mixture components. This will bias the statistics of at least some of the components away from their true values and towards the anomalies. In many cases this will result in a reduction in the detection performance and an increased false alarm rate. This paper considers the use of heavy-tailed statistical distributions within the mixture model. Such distributions are better able to account for anomalies in the training data within the tails of their distributions, and the balance of the pixels within their central masses. This means that an improved model of the majority of the pixels in the scene may be produced, ultimately leading to a better anomaly detection result. The anomaly detection techniques are examined using both synthetic data and hyperspectral imagery with injected anomalous pixels. A range of results is presented for the baseline Gaussian mixture model and for models accommodating heavy-tailed distributions, for different parameterizations of the algorithms. These include scene understanding results, anomalous pixel maps at given significance levels and Receiver Operating Characteristic curves.
Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher
1975-01-01
Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.
NASA Astrophysics Data System (ADS)
Supriyanto, Noor, T.; Suhanto, E.
2017-07-01
The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.
A comparison of infrared, radar, and geologic mapping of lunar craters
Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.
1974-01-01
Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.
Shaded relief aeromagnetic map of the Santa Clara Valley and vicinity, California
Roberts, Carter W.; Jachens, Robert C.
2003-01-01
This aeromagnetic map covers the southern portion of San Francisco Bay, the Santa Clara Valley and surrounding mountains, part of which has been modelled in threedimensions (Jachens and other, 2001). The magnetic anomaly map has been compiled from existing digital data. Data was obtained from six aeromagnetic surveys that were flown at different times, spacings and elevations. The International Geomagnetic Reference Field (IGRF) for the date of each survey had been removed in the initial processing. The resulting residual magnetic anomalies were analytically continued onto a common surface 305 m (1000 ft) above terrain. Portions of each survey were substantially above the specified flight height listed in the table. The surveys were then merged together using a commercial software package called Oasis Montage. The gray lines on the map indicate the extent of each survey. The program used these regions of overlap to determine the best fit between surveys. Black dots show probable edges of magnetic bodies defined by the maximum horizontal gradient determined using a computer program by Blakely (1995). Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). Faults often cut magnetic bodies and offset magnetic anomalies can thus be used to help determine fault motion. Serpentinite, which is highly magnetic, is often found along faults. On this map areas of low magnetic anomalies are shown in blues and green while highs are shown in reds and magentas. Faults are from Brabb and others, 1998a,1998b, Graymer and others 1996, Lienkaemper, 1992 and Wentworth and others 1998.
World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids
NASA Astrophysics Data System (ADS)
Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.
2012-04-01
We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis et al., 2008) and the DTU10 (Andersen, 2010) who represents the best up-to-date global gravity models (including surface gravity measurements from land, marine and airborne surveys as well as gravity and altimetry satellite measurements). The surface free-air anomaly is computed at the Earth's surface in the context of Molodensky theory and includes corrections from the mass of the atmosphere. The way gravity anomalies are computed on a worldwide basis slightly differs from the classical usage, but meets modern concerns which tend to take into account of the real Earth. The resulting anomaly maps and grids will be distributed for scientific and education purposes by the Commission for the Geological Map of the World (CGMW) (http://ccgm.free.fr) and by the Bureau Gravimetrique International (BGI) (http://bgi.omp.obs-mip.fr). Upgraded versions might be done as soon as new global gravity model will be available (including satellite GOCE data for instance). Institutions who are interested to contribute with new datasets of surface gravity measurements (i.e. ground, marine or airborne gravity data) are also invited to contact BGI bgi@cnes.fr.
Method of Mapping Anomalies in Homogenous Material
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2016-01-01
An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
Study of gravity and magnetic anomalies using MAGSAT data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.
Surface magnetic field mapping on high albedo marking areas of the moon
NASA Astrophysics Data System (ADS)
Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.
2009-12-01
The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.
NASA Astrophysics Data System (ADS)
Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang
2016-05-01
In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin geochemical data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high geochemical anomaly and known tin polymetallic deposits. The target areas within high tin geochemical anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin geochemical anomalies whereas no tin polymetallic deposits have been found in them.
Acharya, Sujeet S; Gundeti, Mohan S; Zagaja, Gregory P; Shalhav, Arieh L; Zorn, Kevin C
2009-04-01
Although malformations of the genitourinary tract are typically identified during childhood, they can remain silent until incidental detection in evaluation and treatment of other pathologies during adulthood. The advent of the minimally invasive era in urologic surgery has given rise to unique challenges in the surgical management of anomalies of the genitourinary tract. This article reviews the embryology of anomalies of Wolffian duct (WD) derivatives with specific attention to the seminal vesicles, vas deferens, ureter, and kidneys. This is followed by a discussion of the history of the laparoscopic approach to WD derivative anomalies. Finally, we present two cases to describe technical considerations when managing these anomalies when encountered during robotic-assisted radical prostatectomy. The University of Chicago Robotic Laparoscopic Radical Prostatectomy (RLRP) database was reviewed for cases where anomalies of WD derivatives were encountered. We describe how modifications in technique allowed for completion of the procedure without difficulty. None Of the 1230 RLRP procedures performed at our institution by three surgeons, only two cases (0.16%) have been noted to have a WD anomaly. These cases were able to be completed without difficulty by making simple modifications in technique. Although uncommon, it is important for the urologist to be familiar with the origin and surgical management of WD anomalies, particularly when detected incidentally during surgery. Simple modifications in technique allow for completion of RLRP without difficulty.
Remote sensing as a mineral prospecting technique
NASA Technical Reports Server (NTRS)
Meneses, P. R. (Principal Investigator)
1984-01-01
Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Cape Flattery quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.
Gravity and magnetic anomaly data analysis
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1982-01-01
Progress on the analysis MAGSAT data is reported. The MAGSAT data from 40 deg S to 70 deg N latitude and 30 deg W to 60 E longitude was reduced to radial polarization. In addition, gravity anomaly data from this area were processed and a variety of filtered maps were prepared for combined interpretation of the gravity and magnetic data in conjunction with structural and tectonic maps of the area. The VERSATEC listings and cross-reference maps of variable and array names for the spherical Earth analysis programs NVERTSM, SMFLD, NVERTG, and GFLD were also prepared.
Complete Bouguer gravity anomaly map of the state of Colorado
Abrams, Gerda A.
1993-01-01
The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.
Application of GPS Technologies to study Pre-earthquake processes. A review and future prospects
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Liu, J. Y. G.; Ouzounov, D.; Hernandez-Pajares, M.; Hattori, K.; Krankowski, A.; Zakharenkova, I.; Cherniak, I.
2016-12-01
We present the progress reached by the GPS TEC technologies in study of pre-seismic anomalies in the ionosphere appearing few days before the strong earthquakes. Starting from the first case studies such as 17 August 1999 M7.6 Izmit earthquake in Turkey the technology has been developed and converted into the global near real-time monitoring of seismo-ionospheric effects which is used now in the multiparameter nowcast and forecast of the strong earthquakes. Development of the techniques of the seismo-ionospheric anomalies identification was carried out in parallel with the development of the physical mechanism explaining these anomalies generation. It was established that the seismo-ionospheric anomalies have a self-similarity property, are dependent on the local time and are persistent at least for 4 hours, deviation from undisturbed level could be both positive and negative depending on the leading time (in days) to the moment of impending earthquake and from longitude of anomaly in relation to the epicenter longitude. Low latitude and near equatorial earthquakes demonstrate the magnetically conjugated effect, while the middle and high latitude earthquakes demonstrate the single anomaly over the earthquake preparation zone. From the anomalies morphology the physical mechanism was derived within the framework of the more complex Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling concept. In addition to the multifactor analysis of the GPS TEC time series the GIM MAP technology was applied also clearly showing the seismo-ionospheric anomalies locality and their spatial size correspondence to the Dobrovolsky determination of the earthquake preparation zone radius. Application of ionospheric tomography techniques permitted to study not only the total electron content variations but also the modification of the vertical distribution of electron concentration in the ionosphere before earthquakes. The statistical check of the ionospheric precursors passed the Molchan diagram criteria, the most severe criteria used in seismology for precursor's verification.
Hierarchical Kohonenen net for anomaly detection in network security.
Sarasamma, Suseela T; Zhu, Qiuming A; Huff, Julie
2005-04-01
A novel multilevel hierarchical Kohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate.
New geothermal heat flux map of Greenland and the Iceland hotspot track
NASA Astrophysics Data System (ADS)
Martos, Y. M.; Jordan, T. A.; Catalan, M.; Jordan, T. M.; Bamber, J. L.; Vaughan, D. G.
2017-12-01
Greenland is the second largest reservoir of water on Earth and about 80% of its surface is covered by ice. It is mainly composed of Archean blocks that collided during the Early Proterozoic. Indirect methods have been used to study its subglacial thermal conditions, geology and lithospheric structure. Numerous regions of basal melting are identified in the central and north Greenland but their relationship with geothermal heat flux is not yet clear. Crustal thickness derived by seismology and gravity data are consistent, showing no significant lateral variations, and providing average values of about 40 and 36 km respectively. Even though Greenland is considered a craton its crust has been affected by the presume passage of the Iceland hotspot since at least 100 Ma. Here we present the newest and highest resolution Curie Depth and geothermal heat flux maps for Greenland as well as their associated uncertainties. For estimating the Curie Depths we applied spectral methods to aeromagnetic data from the World Digital Magnetic Anomaly Map WDMAM2.0. Calculated Curie Depths vary from 25 to 50 km with shallower values located to the east. A thermal model is built based on the 1D heat conduction equation and considering steady state conditions. The thermal parameters are then optimized using local values derived from direct measurements, temperature profiles and more indirect methods such as radar imaging. The heat flux distribution shows higher spatial variability and a very different pattern than previously proposed and with values of 50-80 mW/m2. We identify a NW-SE high heat flux feature crossing Greenland which we correlate with the Iceland hotspot track. Additionally, to evaluate the lithospheric structure we calculate the Bouguer anomaly from GOCO5s satellite free air data and construct several gravity models across the proposed hotspot track. We show that a dense lower crust body in the same location the high heat flux trend is permissible from a gravimetric perspective, and extensive underplating due to the plume may have occurred. Finally, our new geothermal heat flux map and lithospheric structure models allow us to understand the history and the path of the Iceland hotspot path.
ENSO impacts on flood risk at the global scale
NASA Astrophysics Data System (ADS)
Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel
2014-05-01
We present the impacts of El Niño Southern Oscillation (ENSO) on society and the economy, via relationships between ENSO and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between ENSO phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between ENSO and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by ENSO, the potential predictably of ENSO could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of ENSO influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks (and by extension insured losses). We carried out the research by simulating daily river discharges using a global hydrological model (PCR-GLOBWB), forced with gridded climate reanalysis time-series (EU-WATCH). From this, we derived peak annual flood volumes for large-scale river basins globally. These were used to force a global inundation model (dynRout) to map inundation extent and depth for return periods between 2 and 1000 years, under El Niño conditions, neutral conditions, and La Niña conditions. Theses flood hazard maps were combined with global datasets on socioeconomic variables such as population and income to represent the socioeconomic exposure to flooding, and depth-damage curves to represent vulnerability.
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 6000 kms. Experimentation with a variety of viewing techniques suggests that conventional photogeologic analyses of band 7 results in the location of more than 97 percent of all linears found. Bedrock lithologic types are distinguishable only where they are topographically expressed or govern land use signatures. The maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments, despite a difference in relative magnitudes of maxima thought due to solar illumination direction. A multiscale analysis of linears showed that single topographic linears at 1:2,500,000 became dashed jugate linears at 1:500,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Most circular features found were explained away by U-2 airphoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, best seen in winter imagery, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines and sand plains, and end moraines.
NASA Technical Reports Server (NTRS)
Thomas, H. H.
1984-01-01
A petrologic model of the northern Mississippi Embayment, derived from gravity, seismic and rift data, is evaluated by converting the model to a magnetization model which is compared with satellite magnetic anomaly models. A magnetization contrast of approximately -0.54 A/m, determined from the petrologic model of the embayment compares favorably to values of -0.62 A/m and -0.45 A/m from a Magsat United States Apparent Magnetization Contrast Map and a published POGO magnetization contrast model, respectively. The petrologic model suggests that the magnetic anomaly low associated with the Mississippi Embayment may be largely due to the intrusion under non-oxidizing conditions of low Curie temperature gabbroic material at the base of the crust of the embayment. Near-surface mafic plutons, bordering the Mississippi Valley Graben, appear from aeromagnetic data to have higher magnetizations than the deeper gabbroic material; however, it is impossible to ascertain if this is due to compositional differences or similar material at shallower (lower temperature) depths. These results indicate that variations in the Curie temperatures of intrusions accompanying rifting may account for a large part of the wide range of magnetic anomalies associated with presently inactive rifts with normal heat flow.
NASA Astrophysics Data System (ADS)
Feng, Jiandi; Jiang, Weiping; Wang, Zhengtao; Zhao, Zhenzhen; Nie, Linjuan
2017-08-01
Global empirical total electron content (TEC) models based on TEC maps effectively describe the average behavior of the ionosphere. However, the accuracy of these global models for a certain region may not be ideal. Due to the number and distribution of the International GNSS Service (IGS) stations, the accuracy of TEC maps is geographically different. The modeling database derived from the global TEC maps with different accuracy is likely one of the main reasons that limits the accuracy of the new models. Moreover, many anomalies in the ionosphere are geographic or geomagnetic dependent, and as such the accuracy of global models can deteriorate if these anomalies are not fully incorporated into the modeling approach. For regional models built in small areas, these influences on modeling are immensely weakened. Thus, the regional TEC models may better reflect the temporal and spatial variations of TEC. In our previous work (Feng et al., 2016), a regional TEC model TECM-NEC is proposed for northeast China. However, this model is only directed against the typical region of Mid-latitude Summer Nighttime Anomaly (MSNA) occurrence, which is meaningless in other regions without MSNA. Following the technique of TECM-NEC model, this study proposes another regional empirical TEC model for other regions in mid-latitudes. Taking a small area BeiJing-TianJin-Tangshan (JJT) region (37.5°-42.5° N, 115°-120° E) in China as an example, a regional empirical TEC model (TECM-JJT) is proposed using the TEC grid data from January 1, 1999 to June 30, 2015 provided by the Center for Orbit Determination in Europe (CODE) under quiet geomagnetic conditions. The TECM-JJT model fits the input CODE TEC data with a bias of 0.11TECU and a root mean square error of 3.26TECU. Result shows that the regional model TECM-JJT is consistent with CODE TEC data and GPS-TEC data.
McCafferty, A.E.; Van Gosen, B. S.
2009-01-01
Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between magnetic susceptibilities and concentration of Cr and Ni. Although the study focused on characterizing the geophysical properties of ultramafic rocks and associated soils, it has also yielded information on other rock types in addition to ultramafic rocks, which can also locally host naturally-occurring asbestos; specifically, gabbro and metavolcanic rocks.
Branchial anomalies in the pediatric population.
Schroeder, James W; Mohyuddin, Nadia; Maddalozzo, John
2007-08-01
We sought to review the presentation, evaluation, and treatment of branchial anomalies in the pediatric population and to relate these findings to recurrences and complications. We conducted a retrospective study at a tertiary care pediatric hospital. Ninety-seven pediatric patients who were treated for branchial anomalies over a 10-year period were reviewed. Patients were studied if they underwent surgical treatment for the branchial anomaly and had 1 year of postoperative follow-up; 67 children met criteria, and 74 anomalies were studied. Patients with cysts presented at a later age than did those with branchial anomaly fistulas or sinus branchial anomalies. 32% of branchial anomalies were previously infected. Of these, 71% had more than one preoperative infection. 18% of the BA were first arch derivatives, 69% were second arch derivatives and 7% were third arch derivatives. There were 22 branchial cysts, 31 branchial sinuses and 16 branchial fistulas. The preoperative and postoperative diagnoses differed in 17 cases. None of the excised specimens that contained a cystic lining recurred; all five recurrences had multiple preoperative infections. Recurrence rates are increased when there are multiple preoperative infections and when there is no epithelial lining identified in the specimen.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua
2018-01-01
The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.
Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong
2003-01-01
Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.
Euro-African MAGSAT anomaly-tectonic observations
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.
1985-01-01
Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.
Euro-african MAGSAT Anomaly-tectonic Observations
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.
1984-01-01
Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.
Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming
McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.
2004-01-01
As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.
Griscom, Andrew
1983-01-01
Eleven magnetic interpretation maps (scale 1:250,000) have been prepared for the area .of. exposed crystalline rocks in the Southern Najd and part of the Southern Tuwayq quadrangles (scale 1:500,000) from available published data. Boundaries of a variety of rock units that produce distinctive magnetic anomalies .or anomaly patterns are delineated. In some cases these magnetic boundaries correspond with previously mapped geologic contacts, and in other cases they indicate the possibility of additional, as yet unmapped, geologic contacts. The magnetic boundaries also allow the extrapolation of geologic contacts across areas covered by Quaternary deposits. Many boundaries are identified as part of the Najd fault system, and offset magnetic anomalies may be correlated across certain fault zones. Approximate dips were calculated for a few boundaries that represent igneous contacts, faults, or unconformities. Some characteristic anomalies appear to be associated in a general way with areas of gold mineralization and thus provide a guide for further prospecting.
Remote sensing revealed drainage anomalies and related tectonics of South India
NASA Astrophysics Data System (ADS)
Ramasamy, SM.; Kumanan, C. J.; Selvakumar, R.; Saravanavel, J.
2011-03-01
Drainages have characteristic pattern and life histories with youthful stage in hilly areas, mature stage in plains and old stage in the coastal zones. The deviations from their normal life histories, especially aberrations in their flow pattern in the form of various drainage anomalies have been inferred to be the indications of dominantly the Eustatic and Isostatic changes. This, especially after the advent of Earth Observing Satellites, has attracted the geoscientists from all over the world, for studying such drainage anomalies. In this connection, a study has been undertaken in parts of South India falling south of 14° south latitude to comprehensively map some drainage anomalies like deflected drainages, eyed drainages and compressed meanders and to evolve the tectonic scenario therefrom. The mapping of such mega drainage anomalies and the related lineaments/faults from the satellite digital data and the integration of such lineaments/faults with the overall lineament map of South India showed that the study area is marked by active N-S block faults and NE-SW sinistral and NW-SE dextral strike slip faults. Such an architecture of active tectonic grains indicates that the northerly directed compressive force which has originally drifted the Indian plate towards northerly is still active and deforming the Indian plate.
Satellite-Altitude Geopotential Study of the Kursk Magnetic Anomaly (KMA)
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Kim, Hyung Rae; vonFrese, Ralph R. B.; Potts, Laramie V.; Frawley, James J.
2003-01-01
With the successful launch of the Orsted, SAC-C and CHAMP satellites we are able to make both magnetic and gravity anomaly maps of the Earth's crust; magnetic from all three missions and gravity with CHAMP. We have used these data to study the KMA area of Russia. This is an important region for several reasons: (1) we have already made satellite magnetic anomaly maps of this region and they can be integrated with the gravity data from CHAMP for a comprehensive interpretation; (2) KMA contains the largest know reserves of iron-ore in the world; and (3) there are significant ground truth data available for this region from aeromagnetic, balloon surveys and geophysical mapping, including extensive rock magnetic/paleo-magnetic and geologic studies. Utilizing the gravity observations, collocated with the magnetic data enabled us to make a joint interpretation. While there is a high amplitude magnetic anomaly recorded over the KMA the gravity anomaly at satellite altitude revealed by CHAMP is only around 3-6 mGal but is not centered on the magnetic high. This would indicate that despite the fact that in the region of the KMA the rocks have a higher percentage of iron than in the surrounding formations the entire area is Archean-Proterozoic in age and therefore very dense.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Kusznir, N. J.; Jordan, T. A.
2017-12-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Antarctic crustal thicknesses derived from gravity inversion are compared with seismic estimates from Baranov (2011) and An et al. (2015). We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift (LR) to the South Pole region, a distance of 2500 km. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new crustal thickness map produced by this gravity inversion study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts (DG) and Peter I Island (PI) in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region.
Morphology of the winter anomaly in NmF2 and Total Electron Content
NASA Astrophysics Data System (ADS)
Yasyukevich, Yury; Ratovsky, Konstantin; Yasyukevich, Anna; Klimenko, Maksim; Klimenko, Vladimir; Chirik, Nikolay
2017-04-01
We analyzed the winter anomaly manifestation in the F2 peak electron density (NmF2) and Total Electron Content (TEC) based on the observation data and model calculation results. For the analysis we used 1998-2015 TEC Global Ionospheric Maps (GIM) and NmF2 ground-based ionosonde observation data from and COSMIC, CHAMP and GRACE radio occultation data. We used Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and International Reference Ionosphere model (IRI-2012). Based on the observation data and model calculation results we constructed the maps of the winter anomaly intensity in TEC and NmF2 for the different solar and geomagnetic activity levels. The winter anomaly intensity was found to be higher in NmF2 than in TEC according to both observation and modeling. In this report we show the similarity and difference in winter anomaly as revealed in experimental data and model results.
Anomaly Detection for Beam Loss Maps in the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja
2017-07-01
In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy.
Integrated study of basins in the Four Corners region
NASA Astrophysics Data System (ADS)
Fagbola, Olamide Olawumi
2007-12-01
This dissertation is an integrated study of basins in the four corners area of the central part of the Colorado Plateau. The Colorado Plateau is a structurally unique part of the Rocky Mountain region because it has only been moderately deformed when compared to the more intensely deformed areas around it. The Colorado Plateau covers a portion of Utah, Colorado, New Mexico and Arizona. The study area extends from latitude 34°N-40°N to longitude 106°W-111W° encompassing a series of major basins and uplifts: the San Juan, Black Mesa, Paradox, and the Blanding basins; and the Zuni, Defiance, Four Corners, Monument uplifts and the San Juan dome and volcanic field. An analysis of gravity anomalies, basement and crustal structure for basins in the four corners region was carried out. This involved using gravity, magnetic, well, outcrop, seismic estimates of crustal thickness, and geologic data in an integrated fashion. Six filtered gravity and three filtered magnetic maps were generated to aid in the interpretation of the gravity and magnetic anomalies in the study area. A detailed comparison of these maps was carried out. The results show a deep seated mafic structure in the basement acting as a crustal boundary separating the high gravity anomalies from the low. These maps also show that the sources of these anomalies are quite shallow resulting from the upper crust in the study area. The structures in the study area are characterized by northwest and northeast trends which correspond to the Precambrian and the Late Paleozoic structures, respectively. A crustal thickness map of the area was also constructed from seismic estimates of crustal thickness. A comparison was done between the crustal thickness map and the 45 km upward continuation Bouguer anomaly map. The result of this comparison shows that areas of thicker ix crust corresponded to low gravity while areas of thinner crust means mantle material is closer to the surface, thereby producing a high gravity anomaly. The thinnest crust encountered is about 32 km while the thickest crust is about 50 km. Seven gravity models were constructed and these include three crustal-scale profiles crisscrossing the study area and four local profiles. The gravity profiles were modeled using well data, structural thickness maps, cross section data, geologic maps and previous gravity models as constraints. Basement inhomogeneities beneath the basins and the uplifts were delineated by the gravity modeling. One of results from this study reveals that the basement beneath the Four Corners area is highly inhomogeneous. This study reveals that there is a high density deep seated mafic intrusion present in the basement which is responsible for the high gravity and magnetic anomaly in A. This dissertation has also shown that the Four Corners region does not possess a single crustal signature as shown by the different crustal trends in San Juan basin trending northeast and the east-west trending Uncompahgre uplift. The 45 km upward continuation gravity map was also found to correlate with seismic estimates of crustal thickness. The Precambrian basement in this region is also not homogeneous as shown by the necessity of inserting exotic bodies into the basement to compensate for high gravity anomalies and lastly an attempt was made to better define Tweto's (1980) outline of geologic features in the study area. On integrating gravity, magnetics, well and outcrop data, the relief of the Defiance uplift is not as high as delineated by Tweto's (1980) outline.
An updated stress map of the continental United States reveals heterogeneous intraplate stress
NASA Astrophysics Data System (ADS)
Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan
2018-06-01
Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
One uranium anomaly meets the minimum statistical requirements. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation. Anomaly number 1 is over an exposure of the Permian Shuksan metamorphic suite which is predominantly phyllite (Trps).
NASA Technical Reports Server (NTRS)
Hall, D. H.; Millar, T. W.; Noble, I. A.
1985-01-01
A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.
Maps showing geology, structure, and geophysics of the central Black Hills, South Dakota
Redden, Jack A.; DeWitt, Ed
2008-01-01
This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.
Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?
NASA Technical Reports Server (NTRS)
Hastings, D. A.
1985-01-01
Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes.
NASA Astrophysics Data System (ADS)
Aydemir, Attila; Bilim, Funda; Cifci, Gunay; Okay, Seda
2018-05-01
The Gulf of Izmir (GoI) is one of the largest gulfs in the Aegean Sea, Turkey. There is a large magnetic anomaly extending in the NE-SW direction between Foca and Uzunada (Uzun Island) in the gulf. Previously, Curie Point Depth (CPD), geothermal gradient, heat-flow and radiogenic heat production maps of the onshore part of the Aegean region were constructed from the aeromagnetic data. In this study, the same maps except radiogenic heat production map are presented for the offshore part and the largest magnetic anomaly in the northern part of the gulf is focused, particularly. As a result, the thermal structure of GoI is clearly defined and according to the results of this study, CPD values were found from 7 km in the NE of Foca to 10 km through the south of the gulf. The geothermal gradient values vary between 50 and 80 °C/km. Maximum heat flow values around the anomaly are calculated as 200 and 215 mW/m2 according to the thermal conductivity coefficients of 2.5 W m-1 K-1 and 2.7 W m-1 K-1, respectively. Although the anomaly is located in the Izmir Gulf; CPD, geothermic gradient, heat flow anomalies are shifted through the north of Foca and Aliaga towns in the Candarli Bay. This prominent anomaly in the Gulf of Izmir is associated with the magmatics that were encountered at 969 m in the Foca-1 well although it was drilled about 2 km away from the outermost closed contour of the magnetic anomaly. The anomaly is also modeled three dimensionally (3D) in this study. In the model map, the top of the causative body is completely located in the outer part of the gulf, and is very shallow at about 0.5 km while its bottom is inclined through the west of Cigli and Menemen. From this viewpoint, it is possible to suggest that the causative body is inclined through the Foca Peninsula. However, its closed contours are in the NE direction, through the Candarli Bay. Top depth of the causative body is also calculated from the basement horizon on the seismic sections crossing this anomaly. Depth calculations are consistent in these sections and confirm the top depths from the modeling study. The basement geometry in the seismic sections also reflects the shape of 3D model geometry, and bottom depth of the magmatics is also verified by the basement depth calculations in seismic sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl
A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.
Hawking radiation from rotating black holes and gravitational anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Keiju; Soda, Jiro
2006-08-15
We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt
NASA Astrophysics Data System (ADS)
Gonzalez, T.
2011-12-01
The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources.
Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon
NASA Astrophysics Data System (ADS)
Wiley, T. J.; McClaughry, J. D.
2012-12-01
Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.
Improving the geological interpretation of magnetic and gravity satellite anomalies
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W. (Principal Investigator); Vonfrese, R. R. B.
1985-01-01
Current limitations in the quantitative interpretation of satellite-elevation geopotential field data and magnetic anomaly data were investigated along with techniques to overcome them. A major result was the preparation of an improved scalar magnetic anomaly map of South America and adjacent marine areas directly from the original MAGSAT data. In addition, comparisons of South American and Euro-African data show a strong correlation of anomalies along the Atlantic rifted margins of the continents.
NASA Technical Reports Server (NTRS)
Liu, W.; Hu, H.; Xie, X.
1999-01-01
Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.
Pre-earthquake Anomalies of the Ion Velocity in the Ionosphere
NASA Astrophysics Data System (ADS)
Liu, J. Y. G.; Chao, C. K.
2016-12-01
In the paper, pre-earthquake ionospheric anomalies (PEIAs) of the ion velocity, which are further employed to estimate the seismo-ionospheric electric fields, are for the first time reported. To see whether ionospheric ion velocity can be used to detect PEIAs or not, we examine concurrent measurements of the ion density, ion temperature, and the ion velocity probed by ROCSAT/IPEI (ionospheric Plasma and Electrodynamics Instrument), as well as the global ionospheric map (GIM) of the total electron content (TEC) derived by ground-based GPS receivers during the 31 March 2002 M6.8 Earthquake in Taiwan. It is found around the epicenter area 1-5 days before the earthquake that the GIM TEC significantly decreases, while the ROCSAT/IPEI ion density significantly decreases and ion velocity in the downward direction anomalously increases. The increase in the downward velocity implies that a westward electric field of about 0.91mV/m generated during the earthquake period is essential.
Gu, Yingxin; Wylie, B.K.
2010-01-01
This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.
Gu, Yingxin; Wylie, Bruce K.
2010-01-01
This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Yang, Zifan; Wang, Bin; Ma, Wenqian
2017-09-01
To examine the combined effects of the different spatial patterns of the Arctic Oscillation (AO)-related sea level pressure (SLP) anomalies and the El Niño-Southern Oscillation (ENSO)-related sea surface temperature (SST) anomalies on the wintertime surface temperature anomalies over East Asia, a nonlinear method based on self-organizing maps is employed. Investigation of identified regimes reveals that the AO can affect East Asian temperature anomalies when there are significant SLP anomalies over the Arctic Ocean and northern parts of Eurasian continent. Analogously, ENSO is found to affect East Asian temperature anomalies when significant SST anomalies are present over the tropical central Pacific. The regimes with the warmest and coldest temperature anomalies over East Asia are both associated with the negative phase of the AO. The ENSO-activated, Pacific-East Asian teleconnection pattern could affect the higher latitude continental regions when the impact of the AO is switched off. When the spatial patterns of the AO and ENSO have significant, but opposite, impacts on the coastal winds, no obvious temperature anomalies can be observed over south China. Further, the circulation state with nearly the same AO and Niño3 indices may drive rather different responses in surface temperature over East Asia. The well-known continuous weakening (recovery) of the East Asian winter monsoon that occurred around 1988 (2009) can be attributed to the transitions of the spatial patterns of the SLP anomalies over the Arctic Ocean and Eurasian continent, through their modulation on the occurrences of the Ural and central Siberian blocking events.
Global terrestrial water storage connectivity revealed using complex climate network analyses
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Chen, J.; Donges, J.
2015-07-01
Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.
Integrated geophysical study of the geothermal system in the southern part of Nisyros Island, Greece
NASA Astrophysics Data System (ADS)
Lagios, E.; Apostolopoulos, G.
1995-10-01
The study of the high-enthalpy geothermal field of Nisyros Island is of great importance, because of the planned construction of a geothermal power station. The purpose of the applied geophysical surveys — gravity, SP, VLF and audio-magnetotelluric — in southernmost Nisyros was to investigate the major and minor faulting zones which are geothermally active, i.e. whether geothermal fluid circulation occurs in these zones. The survey lines, four parallel traverses of about 1500 m length, were chosen to be almost transverse to the main faults of the area. The SP method was the main reconnaissance technique, with the VLF and gravity measurements correlating with the "SP model". Previously proposed SP data acquisition and reduction techniques were used, followed by a 2-D interpretation of the SP map which apparently locates the position of the fracture zones (geothermally active). The SP and VLF anomalies are believed to be generated by the same source (subsurface flow of fluid, heat and ions). Hence, at the place of a vertical geothermal fluid circulation zone, the curve of SP dipole-like anomaly changes its behaviour and the curve of the VLF anomaly takes maximum values for the in-phase component and minimum values for the out-of-phase component. On the VLF map of the survey area, the zones detected with the SP interpretation coincide with the maximum values of the VLF in-phase component. The geothermal fluid circulation zones, detected by the SP method, appear to be well correlated with corresponding features derived from the gravity and the AMT surveys. In particular, the AMT soundings indicate two zones of geothermal fluid circulation instead of the one the SP method detected in the central part of the investigated area.
NASA Astrophysics Data System (ADS)
Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.
2007-02-01
We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.
Ghalyan, Najah F; Miller, David J; Ray, Asok
2018-06-12
Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster (2004) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic-nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. (2004) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.
Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico
Bath, G.D.
1977-01-01
An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..
An incremental anomaly detection model for virtual machines.
Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu
2017-01-01
Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform.
An incremental anomaly detection model for virtual machines
Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu
2017-01-01
Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform. PMID:29117245
Neri, Marco; Giammanco, Salvatore; Ferrera, Elisabetta; Patanè, Giuseppe; Zanon, Vittorio
2011-09-01
This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime
2006-12-01
Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.
Magnetic and gravity anomalies in the Americas
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.
Identification and Evaluation of Submerged Anomalies, Mobile Harbor, Alabama.
1984-10-01
Bay Waters , 1864-1865 APPENDIX B: Description of Maps in National ill Archives Collection V LIST OF FIGURES Figure Page cover Torpedo Raft in Mobile Bay...Anomaly D-E 51 13 Magnetometer Chart, Anomaly F 53 14 Sketch of Steel Wreckage Found at Anomaly F 54 15 Approaches to Mobile City by Water (Merrill...Osage (1863-65) 84 30 CSS Albemarle, Prototype for the Huntsville 86 31 Magnolia, CSA-Utilized Vessel 109 32 Approaches to Mobile City by Water (1864
Langenheim, V.E.; Jachens, R.C.; McLaughlin, R.J.
2011-01-01
The Coastal belt of the Franciscan Complex represents a Late Cretaceous to Miocene accretionary prism and overlying slope deposits. Its equivalents may extend from the offshore outer borderland of southern California to north of the Mendocino Triple Junction under the Eel River Basin and in the offshore of Cascadia. The Coastal belt is exposed on land in northern California, yet its structure and stratigraphy are incompletely known because of discontinuous exposure, structural disruption, and lithologically non-distinctive clastic rocks. The intent of this report is to make available, in map form, aeromagnetic data covering the Coastal belt that provide a new dataset to aid in mapping, understanding, and interpreting the incompletely understood geology and structure in northern California.The newly merged aeromagnetic data over the Coastal belt of the Franciscan Complex reveal long, linear anomalies that indicate remarkably coherent structure within a terrane where mapping at the surface indicates complex deformation and that has been described as "broken formation" and, even locally as "mélange". The anomalies in the Coastal belt are primarily sourced by volcanic-rich graywackes and exotic blocks of basalt. Some anomalies along the contact of the Coastal belt with the Central belt are likely caused by local interleaving of components of the Coast Ranges ophiolite. These data can be used to map additional exotic blocks within the Coastal belt and to distinguish lithologically indistinct graywackes within the Coastal terrane. Using anomaly asymmetry allows projection of these "layers" into the subsurface. This analysis indicates predominant northeast dips consistent with tectonic interleaving of blocks within a subduction zone.
NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies
NASA Astrophysics Data System (ADS)
Nasuti, Yasin; Nasuti, Aziz
2018-07-01
We develop a new phase-based filter to enhance the edges of geological sources from potential-field data called NTilt, which utilizes the vertical derivative of the analytical signal in different orders to the tilt derivative equation. This will equalize signals from sources buried at different depths. In order to evaluate the designed filter, we compared the results obtained from our filter with those from recently applied methods, testing against both synthetic data, and measured data from the Finnmark region of North Norway were used. The results demonstrate that the new filter permits better definition of the edges of causative anomalies, as well as better highlighting several anomalies that either are not shown in tilt derivative and other methods or not very well defined. The proposed technique also shows improvements in delineation of the actual edges of deep-seated anomalies compared to tilt derivative and other methods. The NTilt filter provides more accurate and sharper edges and makes the nearby anomalies more distinguishable, and also can avoid bringing some additional false edges reducing the ambiguity in potential field interpretations. This filter, thus, appears to be promising in providing a better qualitative interpretation of the gravity and magnetic data in comparison with the more commonly used filters.
NASA Technical Reports Server (NTRS)
Bentley, C. R.; Ritzwoller, M. H.
1983-01-01
Data selection and reduction procedures are described by which scalar and vector magnetic anomaly maps are constructed. The scalar and vertical magnetic anomalies are believed to be generated mainly in the Earth's crust. The horizontal anomalies are believed to be mainly due to short-period field-aligned currents. The correlation of scalar magnetic anomalies with known oceanic structure is remarkable -- magnetic highs are associated with oceanic ridges and magnetic lows with abyssal plains. The correlation between anomalies and continental geology is not so clear.
Preliminary correlations of MAGSAT anomalies with tectonic features of Africa
Hastings, David A.
1982-01-01
An overview of the MAGSAT scalar anomaly map for Africa has suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Although a magnetic anomaly caused by a rectangular crustal block would be offset from the block's center by the effects of magnetic inclination, an anomaly caused by real crustal blocks of varying uplift, depression, and degree of regional metamorphism would be located nearer to the locus of greatest vertical movement and highest grade of metamorphism. Thus, the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
MAGSAT anomaly field inversion and interpretation for the US
NASA Technical Reports Server (NTRS)
Mayhew, M. A. (Principal Investigator)
1982-01-01
Long wavelength anomalies in the total magnetic field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution, defined as the closest dipole spacing giving a solution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large scale tectonic provinces. A higher resolution (200 km) model based on relatively noise free synthetic "pseudodata" is also presented. Magnetic anomaly component data measured by MAGSAT is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the Earth's surface generated from total field anomaly data alone. An excellent inverse correlation between apparent magnetization and heat flow in the western U.S. is demonstrated. A regional heat flow map which is presented and compared with published maps, predicts high heat flow in Nebraska and the Dakotas, suggesting the presence of a "blind" geothermal area of regional extent.
Gettings, Mark E.; Bultman, Mark W.
2005-01-01
Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in some places. Many derivative products can be produced from the database, such as fracture-density-estimate maps, and maps with the number of correlations color-coded to estimate the possible quality of correlation. The database contained in this report is designed to be used in a geographic information system and image-processing systems, and most data layers are in georeferenced tagged image format (Geotiff) or ARC grids. The report includes 163 map plates and various metadata, supporting, and statistical diagram files.
NASA Technical Reports Server (NTRS)
Hajela, D. P.
1972-01-01
The equations of motion of a geodetic satellite in the earth's gravitational field expressed by gravity anomalies require the evaluation, amongst others, of the partial derivatives of the disturbing force with respect to individual gravity anomalies. Data are discussed on how anomaly blocks should be subdivided so that the partial derivatives may be numerically evaluated for each subdivision, and then finally meaned to give the value representative of the whole blocks, with accuracies better than 2 to 3 percent for all blocks. The number of subdivisions is large for the blocks nearest to the satellite subpoint and decreases away from it. The actual values of this spherical distance and the actual subdivision of the mean gravity anomaly blocks was determined numerically for 184 15 deg x 15 deg equal area blocks. Satellite heights above the earth of 400 km, 800 km and 1600 km were considered. The computer times for the suggested scheme were compared with alternative solutions.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
NASA Technical Reports Server (NTRS)
Jekeli, C.; Rapp, R. H.
1980-01-01
Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.
NASA Technical Reports Server (NTRS)
Hastings, D. A. (Principal Investigator)
1982-01-01
The problems associated with the use of an interactive magnetic modeling program are reported and a publication summarizing the MAGSAT anomaly results for Africa and the possible tectonic associations of these anomalies is provided. An overview of the MAGSAT scalar anomaly map for Africa suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Results indicate that the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.
Effect of Varying Crustal Thickness on CHAMP Geopotential Data
NASA Technical Reports Server (NTRS)
Taylor, P. T.; Kis, K. I.; vonFrese, R. R. B.; Korhonen, J. V.; Wittmann, G.; Kim, H. R.; Potts, L. V.
2003-01-01
To determine the effect of crustal thickness variation on satellite-altitude geopotential anomalies we compared two regions of Europe with vastly different values, Central/Southern Finland and the Pannonian Basin. Crustal thickness exceeds 62 km in Finland and is less than 26 km in the Pannonian Basin. Heat-flow maps indicate that the thinner and more active crust of the Pannonian Basin has a value nearly three times that of the Finnish Svecofennian Province. Ground based gravity mapping in Hungary shows that the free-air gravity anomalies across the Pannonian Basin are near 0 to +20 mGal with shorter wavelength anomalies from +40 to less than +60 mGal and some 0 to greater than -20 mGal. Larger anomalies are detected in the mountainous areas. The minor value anomalies can indicate the isostatic equilibrium for Hungary (the central part of the Pannonian Basin). Gravity data over Finland are complicated by de-glaciation. CHAMP gravity data (400 km) indicates a west-east positive gradient of greater than 4 mGal across Central/Southern Finland and an ovoid positive anomaly (approximately 4 mGal) quasi-coincidental with the magnetic anomaly traversing the Pannonian Basin. CHAMP magnetic data (425 km) reveal elongated semicircular negative anomalies for both regions with South-Central Finland having larger amplitude (less than -6 nT) than that over the Pannonian Basin, Hungary (less than -5 nT). In both regions subducted oceanic lithosphere has been proposed as the anomalous body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yongqing, E-mail: ydonglai@mail.cgs.gov.cn; Zhao Pengda; Chen Jianguo
2001-03-15
A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. Amore » geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.« less
InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain
NASA Astrophysics Data System (ADS)
Contreras, Sergio; Hunink, Johannes E.
2016-04-01
We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía (http://infosequia.es) aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.
Identification of Baribis fault - West Java using second vertical derivative method of gravity
NASA Astrophysics Data System (ADS)
Sari, Endah Puspita; Subakti, Hendri
2015-04-01
Baribis fault is one of West Java fault zones which is an active fault. In modern era, the existence of fault zone can be observed by gravity anomaly. Baribis fault zone has not yet been measured by gravity directly. Based on this reason, satellite data supported this research. Data used on this research are GPS satellite data downloaded from TOPEX. The purpose of this research is to determine the type and strike of Baribis fault. The scope of this research is Baribis fault zone which lies on 6.50o - 7.50o S and 107.50o - 108.80o E. It consists of 5146 points which one point to another is separated by 1 minute meridian. The method used in this research is the Second Vertical Derivative (SVD) of gravity anomaly. The Second Vertical Derivative of gravity anomaly show as the amplitude of gravity anomaly caused by fault structure which appears as residual anomaly. The zero value of residual gravity anomaly indicates that the contact boundary of fault plane. Second Vertical Derivative method of gravity was applied for identifying Baribis fault. The result of this research shows that Baribis fault has a thrust mechanism. It has a lineament strike varies from 107o to 127o. This result agrees with focal mechanism data of earthquakes occurring on this region based on Global CMT catalogue.
Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand
NASA Astrophysics Data System (ADS)
Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.
2015-12-01
Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US Midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S. (Principal Investigator)
1981-01-01
The analysis and preliminary interpretation of investigator-B MAGSAT data are addressed. The data processing included: (1) removal of spurious data points; (2) statistical smoothing along individual data tracks, to reduce the effect of geomagnetic transient disturbances; (3) comparison of data profiles spatially coincident in track location but acquired at different times; (4) reduction of data by weighted averaging to a grid with 1 deg xl deg latitude/longitude spacing, and with elevations interpolated and weighted to a common datum of 400 km; (5) wavelength filtering; and (6) reduction of the anomaly map to the magnetic pole. Agreement was found between a magnitude data anomaly map and a reduce-to-the-pole map supporting the general assumption that, on a large scale (long wavelength), it is induced crustal magnetization which is responsible for major anamalies. Anomalous features are identified and explanations are suggested with regard to crustal structure, petrologic characteristics, and Curie temperature isotherms.
Aeromagnetic survey map of the central California Coast Ranges
Langenheim, V.E.; Jachens, R.C.; Moussaoui, K.
2009-01-01
This aeromagnetic survey was flown as part of a Cooperative Research and Development Agreement (CRADA) with the Pacific Gas and Electric Company and is intended to promote further understanding of the geology and structure in the central California Coast Ranges by serving as a basis for geophysical interpretations and by supporting geological mapping, mineral and water resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals can commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, such as the porphyritic granodiorite-granite of the La Panza Range, and even some sedimentary units, also can cause measurable magnetic anomalies.
A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation
Gettings, M.E.
1983-01-01
Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated with gravity highs contain a large proportion of gabbroic and dioritic intrusive rocks and that the bulk density of the upper crust associated with some of the batholithic complexes has been lowered by the large-scale intrusion of granitic material at depth, as well as by that exposed at the surface. A comparison of known base and precious metals occurrences with the Bouguer gravity anomaly field shows, in some cases, a correlation between such occurrences and the features of the gravity anomaly map. Several areas were identified between known mineral occurrences along gravity-defined structures that may contain mineral deposits if the lithologic environment is favorable.
REE Partitioning in Lunar Minerals
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Lapen, T. J.; Draper, D. S.
2015-01-01
Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.
Hawking radiation and covariant anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Rabin; Kulkarni, Shailesh
2008-01-15
Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.
Plouff, Donald
1992-01-01
A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).
New digital magnetic anomaly database for North America
Finn, C.A.; Pilkington, M.; Cuevas, A.; Hernandez, I.; Urrutia, J.
2001-01-01
The Geological Survey of Canada (GSC), U.S. Geological Survey (USGS), and Consejo de Recursos Minerales of Mexico (CRM) are compiling an upgraded digital magnetic anomaly database and map for North America. This trinational project is expected to be completed by late 2002.
Early Opening of Seychelles and India: the Gop Basin Revisited
NASA Astrophysics Data System (ADS)
Dyment, J.; Vadakkeyakath, Y.; Bhattacharya, G.
2012-12-01
The deep offshore region located between the India-Pakistan continental margin and the Laxmi Ridge continental sliver contains valuable imprints of the early oceanic opening phase between India and the Seychelles. The acquisition of wide-angle deep seismic data by British scientists in 2003 provided new information about the deep structure and nature of the crust [1,2]. These data complement the large amount of seismic reflection profiles, altimetry-derived gravity and marine magnetic data which allow mapping the structure and determining the age of the oceanic crust [3,4,5]. Although these authors all agree on the oceanic nature of the Gop Basin, they surprisingly differ on the extent of the oceanic crust, the location of the extinct spreading center and the age of the basin. Here we re-evaluate published interpretations of the Gop Basin in light of all available data. The major discrepancy between [1,2,4] and [5] is the location of the extinct spreading center. [1,2,4] place it on an unnamed basement high located at 19°55'N, whereas [5] identify it with the Palitana Ridge at 19°25'N. Checking the location of the basement high of [1,2,4] on the basement isobath map of [3], based on many seismic reflection profiles, reveals that this basement high actually is an isolated feature of limited extent, which at best can be considered as part of a NE-SW trending basement high zone. This basement high locally coincides with a strong positive magnetic anomaly and a narrow gravity anomaly low but the trend of these anomalies is E-W, in contrast to the NE-SW trend of the basement in this area. For these reasons, this basement high probably is not the location of the Gop Basin extinct spreading center. Conversely, on the basement isobath map of [3], the Palitana Ridge appears as a prominent E-W high, located in the middle of a broad E-W graben, the Gop Basin. It extends over 200 km and is flanked on both sides by basement 2000 m deeper. On free air gravity anomaly maps, the Palitana Ridge lies in the center of the broad gravity high that delineates the Gop Basin. It corresponds, to the west, to a narrow gravity low, a typical signature of fossil spreading centers. The crustal structure determined by the wide angle seismic data of [1,2] shows that the base of the lower crust, the best seismically constrained interface (according to the ray diagram of [1]), is flat in the Arabian Basin, deeper under the Laxmi Ridge, shallower in the Gop Basin under the Palitana Ridge, and deeper again further north. For these reasons, the Palitana Ridge probably is the location of the Gop Basin extinct spreading centre. Further, the Gop Basin, being narrow, does not exhibit long sequences of magnetic anomalies, thereby making their interpretation difficult. Many models may fit the observed anomalies, so [4] and [5] each proposed different hypotheses. We note, however, that [4] consider a plausible (and preferred) model with "initial" spreading rates, i.e. just after break up, as fast as 68 mm/yr half-rate, which implies the Gop Basin to form in 1 Myr. Such a fast initial rate appears unrealistic, considering that initial spreading rates are usually much slower, about one fourth of that rate. [1] Minshull et al., Nature Geo., 2008 [2] Collier et al., JGR, 2009 [3] Malod et al., Tectonophys., 1997 [4] Collier et al., EPSL, 2008 [5] Yatheesh et al., EPSL, 2009
NASA Astrophysics Data System (ADS)
Blecha, V.
A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.
NASA Astrophysics Data System (ADS)
Frodsham, A. E.; Wen, L.
2006-12-01
A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.
Atmospheric dynamics over Europe during the Younger Dryas revealed by palaeoglaciers.
NASA Astrophysics Data System (ADS)
Rea, Brice; Pellitero, Ramon; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven
2017-04-01
A dataset of 120 palaeoglaciers ranging from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east, has been assembled from the literature. A robust quality control on the chronology was undertaken and, when derived from cosmogenic nuclides, ages were recalculated using the most up-to-date production rates. All the reconstructed glaciers date to the Younger Dryas. Frontal moraines/limits were used to initiate the palaeoglacier reconstructions using GlaRe, a GIS tool which generates an equilibrium profile ice surface along a single flowline and extrapolates this to out to a 3D ice surface. From the resulting glacier surfaces palaeo-ELAs were calculated within the GIS. Where multiple glaciers were reconstructed within in a region, a single ELA value was generated. Results show that ELAs decrease with latitude but have a more complex pattern with longitude. A database of 121 sites, spanning the same geographical range as the palaeoglaciers, was compiled for Younger Dryas temperature, determined from palaeoproxies, for example pollen, diatoms, coleoptera, chironimids etc. These proxy data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. Results show that, in general, temperature decreases with latitude. Temperature at the palaeo-ELAs were determined from the temperature maps using a lapse rate of 0.65°C/100m and the precipitation required for equilibrium was calculated. Positive precipitation anomalies are found along much of the western seaboard of Europe, with the most striking positive anomalies present in the eastern Mediterranean. Negative precipitation anomalies appear on the northern side of the Alps. This pattern is interpreted to represent a southward displaced polar frontal jet stream with a concomitant track of Atlantic mid-latitude depressions, leading to more frequent incursions of low pressure systems especially over the relatively warm eastern Mediterranean, enhancing cyclogenesis. This is similar to the modern Scandinavia (SCAND) pattern which, in its positive phase, is characterised by a high pressure anomaly over Fennoscandia and western Russia, negative pressure anomalies around the Iberian Peninsula and enhanced cyclogenesis in the central and eastern Mediterranean. During the YD the Fennoscandian Ice Sheet and permafrost across much of northern continental Europe and Russia would have generated a high pressure region leading to a persistent, enhanced SCAND circulation.
Interpretation of the 'Trans European Suture Zone' by a multiscale aeromagnetic dataset
NASA Astrophysics Data System (ADS)
Milano, Maurizio; Fedi, Maurizio
2015-04-01
One of the main goals in crustal geomagnetic prospecting is to obtain information about the sources of magnetic anomalies in order to model the geological structure of the Earth's crust. A "multiscale approach" is very useful to analyze, concurrently, the effects of sources placed at different depths, observing the potential field at various altitudes from the Earth's surface. The aim of this work is the study of the main geological structure of Central Europe, the "Trans European Suture Zone", using high-resolution aeromagnetic data. The 'TESZ' is the most prominent geological boundary in Europe, oriented NW-SE from the North Sea to the Black Sea and separating The Paleozoic platform in the south and west from the Precambrian East European craton. At high altitudes the European magnetic field is characterized by a large and extended magnetic low, which is related to the deep TESZ structure. The study of this anomaly field began by detecting the position of the anomaly sources using the properties of the Analytical Signal modulus (AS). The AS map presents anomalies in which the dipolar behavior of the magnetic anomaly field is substantially removed and the maxima are placed directly above the anomaly sources. The multiridge method has been applied to the Analytical Signal modulus in order to have information about the sources' depths in the TESZ region. Many profiles were tracked transversely to the fault line in order to map at depth the main magnetic discontinuities. Cause of the low heat flow of the Central Europe, we were able to get information also in the lower crust and to map the deep Moho discontinuity. Available geological sections based on seismic data show consistent results with our interpretation.
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
Density Of The Continental Roots: Compositional And Thermal Effects
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.
We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.
Regional magnetic anomaly constraints on continental breakup
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
One uranium anomaly meets the minimum statistical requirements as defined. This anomaly is over the potassium (%K) contact area between undifferentiated Tertiary rocks and Pleistocene glacial deposits. Equivalent uranium (ppM eU), equivalent thorium (ppM eT), eU/eT, eU/eK, eT,K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi
The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less
Construction of Improved Maps of Mercury's Crustal Magnetic Field at Northern Midlatitudes
NASA Astrophysics Data System (ADS)
Hood, L. L.; Oliveira, J. S.
2017-12-01
We report progress toward the construction of a refined version of the northern midlatitude crustal magnetic field map of Hood [GRL, 2016], extended to cover latitudes from 35N to 80N and all longitudes. The main improvements include: (1) Combining MESSENGER magnetometer data from August and September of 2014 with that from February, March, and April of 2015 to provide the best overall input data set for mapping and the largest possible area of coverage; (2) improving the elimination of external and core field contamination by using a model for Mercury's core field and a more conservative high-pass filter length; and (3) improving the equivalent source dipole (ESD) mapping technique using an equidistant equivalent source dipole array and varying the depth, orientation, and resolution of the array to minimize the overall root mean square misfit. Combining data from the two time intervals allows the total latitude range of the final map to be increased by at least 5 degrees to 35N - 80N. Also, previous mapping has concentrated on the hemisphere from 90E to 270E; inclusion of all available data will allow the final maps to be extended to all longitudes, more than doubling the coverage reported by Hood [2016]. Previous work has demonstrated a concentration of relatively strong magnetic anomalies near and within the Caloris impact basin. A secondary concentration near Sobkou Planitia, which contains an older impact basin, was also found. The existence of anomalies within the Caloris rim implies that a steady magnetizing field, i.e., a core dynamo, was present when this basin formed. A major application of the improved map will be to investigate whether anomalies are concentrated near and within other impact basins. If some basins are found not to have concentrations of magnetic anomalies, this could imply a role of impactor composition (e.g., iron content) in producing the crustal materials that are most strongly magnetized, as has previously been proposed to be the case on the Moon [Wieczorek et al., Science, 2012].
NASA Astrophysics Data System (ADS)
Khaki, M.; Forootan, E.; Sharifi, M. A.; Awange, J.; Kuhn, M.
2015-09-01
Satellite radar altimetry observations are used to derive short wavelength gravity anomaly fields over the Persian Gulf and the Caspian Sea, where in situ and ship-borne gravity measurements have limited spatial coverage. In this study the retracking algorithm `Extrema Retracking' (ExtR) was employed to improve sea surface height (SSH) measurements that are highly biased in the study regions due to land contaminations in the footprints of the satellite altimetry observations. ExtR was applied to the waveforms sampled by the five satellite radar altimetry missions: TOPEX/POSEIDON, JASON-1, JASON-2, GFO and ERS-1. Along-track slopes have been estimated from the improved SSH measurements and used in an iterative process to estimate deflections of the vertical, and subsequently, the desired gravity anomalies. The main steps of the gravity anomaly computations involve estimating improved SSH using the ExtR technique, computing deflections of the vertical from interpolated SSHs on a regular grid using a biharmonic spline interpolation and finally estimating gridded gravity anomalies. A remove-compute-restore algorithm, based on the fast Fourier transform, has been applied to convert deflections of the vertical into gravity anomalies. Finally, spline interpolation has been used to estimate regular gravity anomaly grids over the two study regions. Results were evaluated by comparing the estimated altimetry-derived gravity anomalies (with and without implementing the ExtR algorithm) with ship-borne free air gravity anomaly observations, and free air gravity anomalies from the Earth Gravitational Model 2008 (EGM2008). The comparison indicates a range of 3-5 mGal in the residuals, which were computed by taking the differences between the retracked altimetry-derived gravity anomaly and the ship-borne data. The comparison of retracked data with ship-borne data indicates a range in the root-mean-square-error (RMSE) between approximately 1.8 and 4.4 mGal and a bias between 0.4062 and 2.1413 mGal over different areas. Also a maximum RMSE of 4.4069 mGal, with a mean value of 0.7615 mGal was obtained in the residuals. An average improvement of 5.2746 mGal in the RMSE of the altimetry-derived gravity anomalies corresponding to 89.9 per cent was obtained after applying the ExtR post-processing.
Graymer, R.W.; Langenheim, V.E.; Roberts, M.A.; McDougall, Kristin
2014-01-01
The Cambria 30´ x 60´ quadrangle comprises southwestern Monterey County and northwestern San Luis Obispo County. The land area includes rugged mountains of the Santa Lucia Range extending from the northwest to the southeast part of the map; the southern part of the Big Sur coast in the northwest; broad marine terraces along the southwest coast; and broadvalleys, rolling hills, and modest mountains in the northeast. This report contains geologic, gravity anomaly, and aeromagnetic anomaly maps of the eastern three-fourths of the 1:100,000-scale Cambria quadrangle and the associated geologic and geophysical databases (ArcMap databases), as well as complete descriptions of the geologic map units and the structural relations in the mapped area. A cross section is based on both the geologic map and potential-field geophysical data. The maps are presented as an interactive, multilayer PDF, rather than more traditional pre-formatted map-sheet PDFs. Various geologic, geophysical, paleontological, and base map elements are placed on separate layers, which allows the user to combine elements interactively to create map views beyond the traditional map sheets. Four traditional map sheets (geologic map, gravity map, aeromagnetic map, paleontological locality map) are easily compiled by choosing the associated data layers or by choosing the desired map under Bookmarks.
Application of filtering techniques in preprocessing magnetic data
NASA Astrophysics Data System (ADS)
Liu, Haijun; Yi, Yongping; Yang, Hongxia; Hu, Guochuang; Liu, Guoming
2010-08-01
High precision magnetic exploration is a popular geophysical technique for its simplicity and its effectiveness. The explanation in high precision magnetic exploration is always a difficulty because of the existence of noise and disturbance factors, so it is necessary to find an effective preprocessing method to get rid of the affection of interference factors before further processing. The common way to do this work is by filtering. There are many kinds of filtering methods. In this paper we introduced in detail three popular kinds of filtering techniques including regularized filtering technique, sliding averages filtering technique, compensation smoothing filtering technique. Then we designed the work flow of filtering program based on these techniques and realized it with the help of DELPHI. To check it we applied it to preprocess magnetic data of a certain place in China. Comparing the initial contour map with the filtered contour map, we can see clearly the perfect effect our program. The contour map processed by our program is very smooth and the high frequency parts of data are disappeared. After filtering, we separated useful signals and noisy signals, minor anomaly and major anomaly, local anomaly and regional anomaly. It made us easily to focus on the useful information. Our program can be used to preprocess magnetic data. The results showed the effectiveness of our program.
NASA Astrophysics Data System (ADS)
Martinez-Retama, S.; Pérez-Segura, E.; Vega-Granillo, R.
2014-12-01
This study is focused in obtaining a geophysical-geological characterization of magnetic anomalies associated with outcropping or buried rock bodies and its possible relation to ore deposits. To do this, total field aeromagnetic data from the Mexican Geological Survey were processed. Reduction to pole and residual anomaly maps show two main elongated dipolar high-amplitude anomalies, a first NE-SW directed, which is located in the NW portion of the card, and a second corresponding to a belt with NW-SE direction that is located SW of the chart, near the eastern region of the "El Elegante" volcano. Above structures have not been mapped in the surface; however, the well-defined magnetic anomalies indicate its existence below Quaternary sediments. The geology of the chart is only partially known. The outcropping units, mostly in the Sierra de Los Tanques, are Paleoproterozoic igneous and metamorphic rocks; Permian-Triassic granitoids; and Jurassic and Tertiary volcanic and volcanosedimentary rocks. About 50% of the card is covered by Quaternary sediments, there the interest of these geophysical studies. The NW-SE oriented deep magnetic anomaly follows the same direction as the Sierra San Francisco (SSF) located south of Los Norteños chart H12A-2. This mountain is composed of Paleoproterozoic metamorphic rocks intruded by Upper Cretaceous granitoids. Numerous mineral manifestations of orogenic gold type occurred in that range. This anomaly can be interpreted in 2 ways: first: as a NW extension of a landform similar to the SSF, which dips to NW or that is more erosionated; or; second: as an extension of the SSF to the NW displaced by a normal fault oriented ~N60E, roughly following the Palo Fierro creek indicated on the map. Either of the two possible interpretations, the magnetic anomaly indicates an interesting target in the search of orogenic gold deposits that could be buried in the area.
Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation
NASA Astrophysics Data System (ADS)
Karargyros, Alex; Syeda-Mahmood, Tanveer
2018-02-01
Deep learning networks are gaining popularity in many medical image analysis tasks due to their generalized ability to automatically extract relevant features from raw images. However, this can make the learning problem unnecessarily harder requiring network architectures of high complexity. In case of anomaly detection, in particular, there is often sufficient regional difference between the anomaly and the surrounding parenchyma that could be easily highlighted through bottom-up saliency operators. In this paper we propose a new hybrid deep learning network using a combination of raw image and such regional maps to more accurately learn the anomalies using simpler network architectures. Specifically, we modify a deep learning network called U-Net using both the raw and pre-segmented images as input to produce joint encoding (contraction) and expansion paths (decoding) in the U-Net. We present results of successfully delineating subdural and epidural hematomas in brain CT imaging and liver hemangioma in abdominal CT images using such network.
Detection and characterization of buried lunar craters with GRAIL data
NASA Astrophysics Data System (ADS)
Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.
2017-06-01
We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Woei
2012-09-01
This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.
Scientific support of the Apollo infrared scanning radiometer experiment
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1976-01-01
The Infrared Scanning Radiometer (ISR) was designed to map the thermal emission of the lunar surface from the service module of the orbiting Apollo 17 spacecraft. Lunar surface nighttime temperatures, which are extremely difficult to map from earth based telescopes were measured. The ISR transmitted approximately 90 hours of lunar data spread over 5 days in lunar orbit. Approximately 10 to the 8th power independent lunar temperature measurements were made with an absolute accuracy of 2K. Spatial resolution at nadir was approximately 2.2 km (depending on orbital altitude), exceeding that of earth based measurements by at least an order of magnitude. Preliminary studies of the data reveal the highest population of thermal anomalies (or hot spots) in Oceanus Procellarum. Very few anomalies exist on the far side of the moon as was predicted from the association of anomalies with mare on the near side. A number of negative anomalies (or cold spots) have also been found.
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
Some new methods in geomagnetic field modeling applied to the 1960 - 1980 epoch
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.; Mead, G. H.
1981-01-01
The utilization of satellite and surface data together permitted the incorporation of a solution for the anomaly field at each observatory. The residuals of the observatory measurements to such models is commensurate with the actual measurment accuracy. Incorporation of the anomaly estimation enabled the inclusion of stable time derivatives of the spherical harmonic coefficients up to the third derivative. A spherical harmonic model is derived with degree and order 13 in its constant and first time derivative terms, six in its second derivative terms and four in its third derivative terms.
The use of a calculus-based cyclone identification method for generating storm statistics
NASA Astrophysics Data System (ADS)
Benestad, R. E.; Chen, D.
2006-08-01
Maps of 12 hr sea-level pressure (SLP) from the former National Meteotrological Center (NMC) and 24 hr SLP maps from the European Centre for Medium-range Weather Forecasts (ECMWF) 40 yr re-analysis (ERA40) were used to identify extratropical cyclones in the North Atlantic region. A calculus-based cyclone identification (CCI) method is introduced and evaluated, where a multiple regression against a truncated series of sinusoids was used to obtain a Fourier approximation of the north-south and east-west SLP profiles, providing a basis for analytical expressions of the derivatives. Local SLP minima were found from the zero-crossing points of the first-order derivatives for the SLP gradients where the second-order derivatives were greater than zero. Evaluation of cyclone counts indicates a good correspondence with storm track maps and independent monthly large-scale SLP anomalies. The results derived from ERA40 also revealed that the central storm pressure sometimes could be extremely deep in the re-analysis product, and it is not clear whether such outliers are truly representative of the actual events. The position and the depth of the cyclones were subjects for a study of long-term trends in cyclone number for various regions around the North Atlantic. Noting that the re-analyses may contain time-dependent biases due to changes in the observing practises, a tentative positive linear trend, statistically significant at the 10% level, was found in the number of intense storms over the Nordic countries over the period 1955-1994 in both the NMC and the ERA40 data. However, there was no significant trend in the western parts of the North Atlantic where trend analysis derived from NMC and ERA40 yielded different results. The choice of data set had a stronger influence on the results than choices such as the number of harmonics to include or spatial resolution of interpolation.
NASA Astrophysics Data System (ADS)
Garcia-Reyes, A.; Dyment, J.; Thebault, E.
2016-12-01
Despite of the Caribbean plate and Gulf of Mexico have been widely explored from the last 60 years, there is still no consensus about its nature and age of formation. The imaging of the acoustic basement which can help to better understand the composition of the upper crust, is dependent on seismic reflection and exploratory wells but both of them lack of sufficient penetration. Regarding the magnetic anomalies and possible contribution to decipher the age of the Caribbean seafloor, some authors have reported the lack of an identifiable pattern over the Caribbean Plate (Duncan and Hargraves, 1984, Pindell et al. many publications). Marine tracks widely spaced or with very short coverage, and low amplitude magnetic anomalies constitute a limitation in terms of mapping and interpretation. In this work we present a geophysical interpretation from recently reprocessed marine magnetic data (Garcia et al., 2015), satellite geomagnetic models, and new free-air gravity anomaly derived from altimetry (Sandwell et al., 2014), which is useful to better understand the structure and age of the seafloor and constrain its nature and formation. A marine magnetic anomaly map of the Caribbean region and the Gulf of Mexico to 0.18 degree spatial resolution is showed as resulting from a dedicated processing of the NGDC marine magnetic measurements over the Caribbean region, applied over 516 surveys that were acquired between epochs 1958 and 2012. The corrections applied include the main internal field using a CM4 model for epochs ranging between 1960 and 2002.5 and the IGRF-11 model outside the time range of the CM4 model, removal of outliers, correction by magnetic heading effect, analysis and improvement of the internal and external cross-overs and frequency analysis and separation. This processing allows us to integrate and to interpret the results along with the potential field data mentioned above and open the discussion about the meaning of the magnetic and gravity signatures of some of the striking structures of the area. Special emphasis is done over the Gulf of Mexico, in where a magnetic isochrons identification and plate tectonic reconstruction is in progress.
Archaeogeophysical Investigation of Water Tower Region on Enez (Ainos) Ancient City
NASA Astrophysics Data System (ADS)
Deniz, Hazel; Ahmet Yüksel, Fethi; Başaran, Sait
2017-04-01
Archaeogeophysical (geomagnetics) surveys have been made in two locations which are, Enez Entry Region and Water Tower Necropolis.The objective of geophysical mesurements is to reach the informations such as detailed depths, orientations and locations of achaeological structure remnants. Enez (Ainos) is located in the Northwestern coastal side of the Aegean Sea in which Meriç (Maritza-Hebros) River flows down to the sea. The city displaced due to alluvium accumulate which are drifted by Meriç River in contrast with its former location. Existing of settlements of Enez and its surrounding in Neolithic times has been proved. Enez has a castle ambient acropolis apex which is built on Miocene limestone rocks rise about 25 m above the sea level. The castle walls are 740 m long and are thought to have been built in the middle ages. three different cultural phases form the 2nd building level of the archaeological excavations representing the ancient Greek cultures, Archaic, Classical and Hellenistic bottom to top. In all of the openings made on the acropolis, a thick layer dated to the Hellenistic era is located just above The Classical Age layer. The 3rd cultural floor dated from the Roman Age is represented by a thin layer and whose boundaries can not be determined with certain lines. In this study, Proton Magnetometer has been used for magnetic measurements. Across Water Tower Region, total magnetic field has been measured by magnetometer equipment on 592 m2 site. Existing of remarkable regular and irregular anomalies have been detected when magnetic maps produced from magnetic measurements are examined. It is determined from excavations after measurements that regular anomalies refer to water structures of old times or current electrical cables and dispersed anomalies to graves, sarcophagus and pithos burials. During excavations in locations where notable anomalies are found in Magnetic maps derived from magnetic measurements applied on Water Tower Necropolis, brick-walled, rock and roof-tile covered buried graves have been found. Many, solid Lekythos and skeletons were found from the graves opened. 15 sarcophagi and 59 tombs emerged from the graves opened in the Water Tower Necropolis. Keywords: Enez, Ainos ,Necropolis, Proton Magnetometer, Turkey.
World Digital Magnetic Anomaly Map version 2 (WDMAM v.2) - released for research and education
NASA Astrophysics Data System (ADS)
CHOI-Dyment, Y.; Lesur, V.; Dyment, J.; Hamoudi, M.; Thebault, E.; Catalan, M.
2015-12-01
The World Digital Magnetic Anomaly Map is an international initiative carried out under the auspices of the International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for the Geological Map of the World (CGMW). A first version of the map has been published and distributed eight years ago (WDMAM v1; Korhonen et al., 2007). We have produced a candidate which has been accepted as the second version of this map (WDMAM v2) at the International Union of Geophysics and Geodesy in Prag, in June 2015. On land, we adopted an alternative approach avoiding any unnecessary processing on existing aeromagnetic compilations. When available, we used the original aeromagnetic data. As a result the final compilation remains an acceptable representation of the national and international data grids. Over oceanic areas the marine data have been extended. In areas of insufficient data coverage, a model has been computed based on a modified digital grid of the oceanic lithosphere age, considering plate motions in the determination of magnetization vector directions. This model has been further adjusted to the available data, resulting in a better representation of the anomalies. The final grid will be periodically upgraded. Version 2.0 has been released and is available at wdmam.org to support both research and education projects. Colleagues willing to contribute data for future releases (and become a co-author of the map) should contact any of the authors or Jerome Dyment (chair of the WDMAM Task Force) at jdy@ipgp.fr .
MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.
1981-01-24
Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly
The concept of geodesic curvature applied to optical surfaces.
Barbero, Sergio
2015-07-01
To propose geodesic curvature as a metric to characterise how an optical surface locally differs from axial symmetry. To derive equations to evaluate geodesic curvatures of arbitrary surfaces expressed in polar coordinates. The concept of geodesic curvature is explained in detail as compared to other curvature-based metrics. Starting with the formula representing a surface as function of polar coordinates, an equation for the geodesic curvature is obtained depending only on first and second radial and first order angular derivatives of the surface function. The potential of the geodesic curvature is illustrated using different surface tests. Geodesic curvature reveals local axial asymmetries more sharply than other types of curvatures such as normal curvatures. Geodesic curvature maps could be used to characterise local axial asymmetries for relevant optometry applications such as corneal topography anomalies (keratoconus) or ophthalmic lens metrology. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California
Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.
2006-01-01
Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.
Multilayer apparent magnetization mapping approach and its application in mineral exploration
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Chen, Z.
2016-12-01
Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.
3D gravimetric investigation of the Cerro do Jarau structure, Rio Grande do Sul, Brazil
NASA Astrophysics Data System (ADS)
Giacomini, Bruno B.; Leite, Emilson P.; Crósta, Alvaro P.
2017-04-01
The Cerro do Jarau structure is possibly the third Brazilian basaltic crater formed in continental flood basalt of the Serra Geral Formation, Paraná Basin, a large igneous province (LIP) in southern Brazil. It is a nearly circular landform with a diameter of approximately 13 km that rises 200 m above the plains of the "pampas" in southern Brazil. In this work, Bouguer anomalies were calculated from gravity accelerations measured on the area of this structure. The residual Bouguer map shows a strong positive anomaly trending NE-SW, located in the northeastern part of the structure, a feature not commonly associated with impact structures. However, the negative anomaly present in its center and the circular positive anomaly surrounding the central portion are typical of impact structures. The residual Bouguer anomaly varies from -2 mGal to 8 mGal. The positive circular anomaly is not spatially coincident with the rim of the structure. Based on the interpretation of our gravimetric data, the estimated diameter of the structure is 12 km and the central portion has a diameter of approximately 5 km, both slightly smaller than previously suggested. The Bouguer anomaly map was inverted into a 3D density model using a constrained inversion method with a maximum density contrast of 0.5 g cm-3. This model was interpreted to associate densities with rock types, resulting in a geological model. This geological model is in accordance with the meteorite impact nature of Cerro do Jarau.
NASA Astrophysics Data System (ADS)
Parihar, Navin; Radicella, Sandro Maria; Nava, Bruno; Migoya-Orue, Yenca Olivia; Tiwari, Prabhakar; Singh, Rajesh
2018-05-01
Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat. ˜ 16.30° N), located near the crest of the Appleton anomaly in India during September-December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3) electron density profiles. Next, the electron density maximum (Nm) and its height (hmF2) of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA) and the midnight temperature maximum (MTM) phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7-3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-01
Volume II contains the following data on Mt. Saint Elias, Alaska: geologic base map, flight path map, anomaly maps (U, Th, K, UlTh, UlK, ThlK), radiometric multiple-parameter stacked profiles, magnetic and ancillary profile data, and statistical data. (LK)
Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-10-17
We establish a linear relation between the a-type Weyl anomaly and the ’t Hooft anomaly coeffcients for the R-symmetry and gravitational anomalies in sixdimensional (1,0) superconformal field theories. For RG flows onto the tensor branch, where conformal symmetry is spontaneously broken, supersymmetry relates the anomaly mismatch Δa to the square of a four-derivative interaction for the dilaton. This establishes the a-theorem for all such flows. The four-derivative dilaton interaction is in turn related to the Green-Schwarz-like terms that are needed to match the ’t Hooft anomalies on the tensor branch, thus fixing their relation to Δa. We use our formulamore » to obtain exact expressions for the a-anomaly of N small E 8 instantons, as well as N M 5-branes probing an orbifold singularity, and verify the a-theorem for RG flows onto their Higgs branches. We also discuss aspects of supersymmetric RG flows that terminate in scale but not conformally invariant theories with massless gauge fields.« less
NASA Astrophysics Data System (ADS)
Phethean, Jordan J. J.; Kalnins, Lara M.; van Hunen, Jeroen; Biffi, Paolo G.; Davies, Richard J.; McCaffrey, Ken J. W.
2016-12-01
Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.
Viscous remanent magnetization model for the Broken Ridge satellite magnetic anomaly
NASA Technical Reports Server (NTRS)
Johnson, B. D.
1985-01-01
An equivalent source model solution of the satellite magnetic field over Australia obtained by Mayhew et al. (1980) showed that the satellite anomalies could be related to geological features in Australia. When the processing and selection of the Magsat data over the Australian region had progressed to the point where interpretation procedures could be initiated, it was decided to start by attempting to model the Broken Ridge satellite anomaly, which represents one of the very few relatively isolated anomalies in the Magsat maps, with an unambiguous source region. Attention is given to details concerning the Broken Ridge satellite magnetic anomaly, the modeling method used, the Broken Ridge models, modeling results, and characteristics of magnetization.
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria
2016-04-01
Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.
Underwater Gravity Survey of Northern Monterey Bay.
stations were occupied just above the swash zone. A complete Bouguer anomaly map was drawn and tied in with the previous land surveys and with one...covering the southern half of the bay. The isolines of the complete Bouguer anomaly indicate the relative vertical position of the basement complex Santa
Standardized Analysis for UXO Demonstration Sites
2008-04-01
is a time-domain electromagnetic instrument designed to detect shallow ferrous and nonferrous metallic objects. The applicability of the EM61 for UXO...or spots show EMI field anomalies caused by buried metal objects, both UXO and clutter. Anomaly maps for APG are shown in Figure 5. The Blind Grid
A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds
NASA Astrophysics Data System (ADS)
Bär, Christian; Strohmaier, Alexander
2016-11-01
We discuss the chiral anomaly for a Weyl field in a curved background and show that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the gravitational chiral anomaly. A formula for the total charge generated by the gravitational and gauge field background is derived directly in Lorentzian signature and in a mathematically rigorous manner. It contains a term identical to the integrand in the Atiyah-Singer index theorem and another term involving the {η}-invariant of the Cauchy hypersurfaces.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.
2011-01-01
This paper compares recent spatial and temporal anomaly time series of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the 7 year time period September 2002 through February 2010. This time period is marked by a substantial decrease of OLR, on the order of +/-0.1 W/sq m/yr, averaged over the globe, and very large spatial variations of changes in OLR in the tropics, with local values ranging from -2.8 W/sq m/yr to +3.1 W/sq m/yr. Global and Tropical OLR both began to decrease significantly at the onset of a strong La Ni a in mid-2007. Late 2009 is characterized by a strong El Ni o, with a corresponding change in sign of both Tropical and Global OLR anomalies. The spatial patterns of the 7 year short term changes in AIRS and CERES OLR have a spatial correlation of 0.97 and slopes of the linear least squares fits of anomaly time series averaged over different spatial regions agree on the order of +/-0.01 W/sq m/yr. This essentially perfect agreement of OLR anomaly time series derived from observations by two different instruments, determined in totally independent and different manners, implies that both sets of results must be highly stable. This agreement also validates the anomaly time series of the AIRS derived products used to compute OLR and furthermore indicates that anomaly time series of AIRS derived products can be used to explain the factors contributing to anomaly time series of OLR.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.
2011-01-01
This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that the recent global and tropical mean decreases in OLR and OLRCLR are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the relationship between global mean, and especially tropical mean, OLR anomalies to the El Nino index can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perigaud C.; Dewitte, B.
The Zebiak and Cane model is used in its {open_quotes}uncoupled mode,{close_quotes} meaning that the oceanic model component is driven by the Florida State University (FSU) wind stress anomalies over 1980-93 to simulate sea surface temperature anomalies, and these are used in the atmospheric model component to generate wind anomalies. Simulations are compared with data derived from FSU winds, International Satellite Cloud Climatology Project cloud convection, Advanced Very High Resolution Radiometer SST, Geosat sea level, 20{degrees}C isotherm depth derived from an expendable bathythermograph, and current velocities estimated from drifters or current-meter moorings. Forced by the simulated SST, the atmospheric model ismore » fairly successful in reproducing the observed westerlies during El Nino events. The model fails to simulate the easterlies during La Nina 1988. The simulated forcing of the atmosphere is in very poor agreement with the heating derived from cloud convection data. Similarly, the model is fairly successful in reproducing the warm anomalies during El Nino events. However, it fails to simulate the observed cold anomalies. Simulated variations of thermocline depth agree reasonably well with observations. The model simulates zonal current anomalies that are reversing at a dominant 9-month frequency. Projecting altimetric observations on Kelvin and Rossby waves provides an estimate of zonal current anomalies, which is consistent with the ones derived from drifters or from current meter moorings. Unlike the simulated ones, the observed zonal current anomalies reverse from eastward during El Nino events to westward during La Nina events. The simulated 9-month oscillations correspond to a resonant mode of the basin. They can be suppressed by cancelling the wave reflection at the boundaries, or they can be attenuated by increasing the friction in the ocean model. 58 refs., 14 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Louro, V. H.; Ribeiro, V. B.; Mantovani, M. S.; Geolit Team
2013-05-01
The Indiavaí-Lucialva Shear Zone (ILSZ) has a notorious cinematic standard, moving from SW to NE, juxtaposing the Santa Helena Granitic Batholith to the metavolcanosedimentary sets and orthogneisses from the Jauru Domain basement. Along the ILSZ, a sequence of magnetic anomalies of high interference, with each other, and varied polarities occurs, what suggests the presence of different lithologies or times of (re)crystallization of the ferromagnetic minerals from these magnetic structures. In its southernmost portion, the sequence of magnetic anomalies splits in two directions, SW and SE, with the first invading the limits of the Santa Helena batholith and, the latest, accompanying the ILSZ. This study aimed for the comprehension of complex tectonic setting of this region. It analyzed the set of anomalies estimating their lateral limits, depths and directions of total magnetization, with the Enhanced Horizontal Derivatives (EHD), its extrapolation for depth estimative (EHD-Depth), and through an iterative reduction to the magnetic pole, respectively. This procedure allowed the composition of initial models for further inversions of magnetic data which, results, indicate contrasts of magnetic susceptibility in sub-surface. Once known the approximated 3-D shape of the magnetic structures along the ILSZ, the total magnetization intensity of each anomaly was recovered, what consequently allowed, by vector subtraction, to estimate their individual remnant magnetization. The remnant magnetization's inclinations and declinations of the anomalies sources and their latitudes and longitudes permitted the calculus of their respective virtual magnetic paleopoles. When confronted with the South American paleopole wander path and the datings linked to this path, available in the literature, it was possible to have an indirect approximation of the age of (re)crystallization of each magnetic structure near the ILSZ. This procedure indicated an increasing of the ages of the structures from SE (1298 Ma) to NW (1439 Ma). The southwestern anomalies invading the Santa Helena batholith showed ages of approximately 1419 Ma, what allows to infer their allocation with the rest of the intrusion of the batholith.; Total magnetic field map of the region of the ILSZ, locating the studied anomalies, mineral occurences and tectonic limits.
NASA Astrophysics Data System (ADS)
Meroni, M.; Rembold, F.; Urbano, F.; Lemoine, G.
2016-12-01
Anomaly maps and time profiles of remote sensing derived indicators relevant to monitor crop and vegetation stress can be accessed online thanks to a rapidly growing number of web based portals. However, timely and systematic global analysis and coherent interpretation of such information, as it is needed for example for SDG 2 related monitoring, remains challenging. With the ASAP system (Anomaly hot Spots of Agricultural Production) we propose a two-step analysis to provide monthly warning of production deficits in water-limited agriculture worldwide. The first step is fully automated and aims at classifying each administrative unit (1st sub-national level) into a number of possible warning levels, ranging from "none" to "watch" and up to "extended alarm". The second step involves the verification of the automatic warnings and integration into a short national level analysis by agricultural analysts. In this paper we describe the methodological development of the automatic vegetation anomaly classification system. Warnings are triggered only during the crop growing season, defined by a remote sensing based phenology. The classification takes into consideration the fraction of the agricultural and rangelands area for each administrative unit that is affected by a severe anomaly of two rainfall-based indicators (the Standardized Precipitation Index (SPI), computed at 1 and 3-month scale) and one biophysical indicator (the cumulative NDVI from the start of the growing season). The severity of the warning thus depends on the timing, the nature and the number of indicators for which an anomaly is detected. The prototype system is using global NDVI images of the METOP sensor, while a second version is being developed based on 1km Modis NDVI with temporal smoothing and near real time filtering. Also a specific water balance model is under development to include agriculture water stress information in addition to the SPI. The monthly warning classification and crop condition assessment will be made available on a website and will strengthen the JRC support to information products based on consensus assessment such as the GEOGLAM Crop Monitor for Early Warning.
NASA Technical Reports Server (NTRS)
Raychenko, L. V.
1974-01-01
Results are presented from a study of the region of anomalous cosmic radiation in the area of the Brazilian magnetic anomaly at the altitudes 250-500 km, using data measurements taken on the Kosmos-225 satellite (14-29 June 1968). The existence of a stable intensity anomaly discovered in the experiments on the second and third Soviet spacecraft-satellites is confirmed. The total vector of the geomagnetic field at different altitudes was compared with isoline maps. An altitude profile of the South Atlantic anomaly of radiation intensity was obtained, using data from the same instrument. The nature of the anomalies in cosmic radiation intensity over the regions of negative magnetic anomalies is discussed.
A Review of Aeromagnetic Anomalies in the Sawatch Range, Central Colorado
Bankey, Viki
2010-01-01
This report contains digital data and image files of aeromagnetic anomalies in the Sawatch Range of central Colorado. The primary product is a data layer of polygons with linked data records that summarize previous interpretations of aeromagnetic anomalies in this region. None of these data files and images are new; rather, they are presented in updated formats that are intended to be used as input to geographic information systems, standard graphics software, or map-plotting packages.
MX Siting Investigation Gravity Survey - Wah Wah Valley, Utah.
1981-05-15
Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone...Utah .... 12 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours In Pocket at 2 Deptn to Rock - Interpreted from End of Report...DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Gupta, A.; Page, K.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
Mathur, S.; Gupta, A.; Page, K.; ...
2017-08-31
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Pogge, R. W.; Adams, S. M.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
NASA Astrophysics Data System (ADS)
Chaves, Carlos Alberto Moreno; Ussami, Naomi
2013-12-01
developed a three-dimensional scheme to invert geoid anomalies aiming to map density variations in the mantle. Using an ellipsoidal-Earth approximation, the model space is represented by tesseroids. To assess the quality of the density models, the resolution and covariance matrices were computed. From a synthetic geoid anomaly caused by a plume tail with Gaussian noise added, the inversion code was able to recover a plausible solution about the density contrast and geometry when it is compared to the synthetic model. To test the inversion algorithm in a natural case study, geoid anomalies from the Yellowstone Province (YP) were inverted. From the Earth Gravitational Model 2008 expanded up to degree 2160, lower crust- and mantle-related negative geoid anomalies with amplitude of approximately 70 m were obtained after removing long-wavelength components (>5400 km) and crustal effects. We estimated three density models for the YP. The first model, the EDM-1 (estimated density model), uses a starting model with density contrast equal to 0. The other two models, the EDM-2 and EDM-3, use an initial density derived from two S-velocity models for the western United States, the Dynamic North America Models of S Waves by Obrebsky et al. (2011) and the Northwestern United States Teleseismic Tomography of S Waves (NWUS11-S) by James et al. (2011). In these three models, a lower and an upper bound for the density solution was also imposed as a priori information. Regardless of the initial constraints, the inversion of the residual geoid indicates that the lower crust and the upper mantle of the YP have a predominantly negative density contrast ( -50 kg/m3) relative to the surrounding mantle. This solution reveals that the density contrast extends at least to 660 km depth. Regional correlation analysis between the EDM-1 and NWUS11-S indicates an anticorrelation (coefficient of -0.7) at 400 km depth. Our study suggests that the mantle density derived from the inversion of geoid could be integrated with seismic velocity models to image mantle anomalous features beyond the depth limit of investigation achieved combining gravity and seismic tomography. ©2013. American Geophysical Union. All Rights Reserved.
Further Mapping of Mercury's Crustal Magnetic Field Using MESSENGER Magnetometer Data
NASA Astrophysics Data System (ADS)
Hood, L. L.; Oliveira, J. S.; Spudis, P. D.; Galluzzi, V.
2018-05-01
Further mapping of Mercury's crustal magnetic field shows that anomalies are associated with some impact craters but not others. Differences in impactor composition (e.g., iron content) may be indicated by this new observation.
NASA Astrophysics Data System (ADS)
Kramer, K.; Shedd, W. W.
2017-12-01
In May, 2017, the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) published a high-resolution seafloor map of the northern Gulf of Mexico region. The new map, derived from 3-D seismic surveys, provides the scientific community with enhanced resolution and reveals previously undiscovered and poorly resolved geologic features of the continental slope, salt minibasin province, abyssal plain, Mississippi Fan, and the Florida Shelf and Escarpment. It becomes an even more powerful scientific tool when paired with BOEM's public database of 35,000 seafloor features, identifying natural hydrocarbon seeps, hard grounds, mud volcanoes, sediment flows, pockmarks, slumps, and many others. BOEM has mapped the Gulf of Mexico seafloor since 1998 in a regulatory mission to identify natural oil and gas seeps and protect the coral and chemosynthetic communities growing at those sites. The nineteen-year mapping effort, still ongoing, resulted in the creation of the 1.4-billion pixel map and the seafloor features database. With these tools and continual collaboration with academia, professional scientific institutions, and the offshore energy industry, BOEM will continue to incorporate new data to update and expand these two resources on a regular basis. They can be downloaded for free from BOEM's website at https://www.boem.gov/Gulf-of-Mexico-Deepwater-Bathymetry/ and https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.
Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.
1996-01-01
Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.
Finite-Size Effects in Non-neutral Two-Dimensional Coulomb Fluids
NASA Astrophysics Data System (ADS)
Šamaj, Ladislav
2017-07-01
Thermodynamic potential of a neutral two-dimensional (2D) Coulomb fluid, confined to a large domain with a smooth boundary, exhibits at any (inverse) temperature β a logarithmic finite-size correction term whose universal prefactor depends only on the Euler number of the domain and the conformal anomaly number c=-1. A minimal free boson conformal field theory, which is equivalent to the 2D symmetric two-component plasma of elementary ± e charges at coupling constant Γ =β e^2, was studied in the past. It was shown that creating a non-neutrality by spreading out a charge Qe at infinity modifies the anomaly number to c(Q,Γ ) = - 1 + 3Γ Q^2. Here, we study the effect of non-neutrality on the finite-size expansion of the free energy for another Coulomb fluid, namely the 2D one-component plasma (jellium) composed of identical pointlike e-charges in a homogeneous background surface charge density. For the disk geometry of the confining domain we find that the non-neutrality induces the same change of the anomaly number in the finite-size expansion. We derive this result first at the free-fermion coupling Γ ≡ β e^2=2 and then, by using a mapping of the 2D one-component plasma onto an anticommuting field theory formulated on a chain, for an arbitrary even coupling constant.
Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo volcano
Sanchez, J.J.; McNutt, S.R.; Power, J.A.; Wyss, M.
2004-01-01
The frequency-magnitude distribution of earthquakes measured by the b-value is mapped in two and three dimensions at Mount Pinatubo, Philippines, to a depth of 14 km below the summit. We analyzed 1406 well-located earthquakes with magnitudes MD ???0.73, recorded from late June through August 1991, using the maximum likelihood method. We found that b-values are higher than normal (b = 1.0) and range between b = 1.0 and b = 1.8. The computed b-values are lower in the areas adjacent to and west-southwest of the vent, whereas two prominent regions of anomalously high b-values (b ??? 1.7) are resolved, one located 2 km northeast of the vent between 0 and 4 km depth and a second located 5 km southeast of the vent below 8 km depth. The statistical differences between selected regions of low and high b-values are established at the 99% confidence level. The high b-value anomalies are spatially well correlated with low-velocity anomalies derived from earlier P-wave travel-time tomography studies. Our dataset was not suitable for analyzing changes in b-values as a function of time. We infer that the high b-value anomalies around Mount Pinatubo are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma bodies.
Continental and oceanic magnetic anomalies: Enhancement through GRM
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.
NASA Astrophysics Data System (ADS)
Greene, John A.; Tominaga, Masako; Miller, Nathaniel C.; Hutchinson, Deborah R.; Karl, Matthew R.
2017-11-01
To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0-M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 ( 168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.
Greene, John A.; Tominaga, Masako; Miller, Nathaniel; Hutchinson, Deborah; Karl, Matthew R.
2017-01-01
To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0–M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 (~168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.
NASA Astrophysics Data System (ADS)
Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.
2005-12-01
The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions on the gravity data are discussed. The combination of GPS-derived horizontal accelerations with meter-mounted accelerometer measurements allows for the direct calculation of platform leveling errors, including leakage of the horizontal accelerations into the measured vertical gravity. We examine the magnitude and significance of platform leveling errors in relation to the overall survey resolution. Power spectral analysis of the gravity illuminates differences in the anomaly detection threshold over thick ice like that near Byrd Subglacial Basin versus over thin ice like that near the Thwaites Glacier grounding line. Filtering requirements for this situation are discussed. A preliminary free-air gravity map for the Thwaites Glacier catchment is presented along with error analysis and initial structural interpretations. The interpretations of the airborne regional gravity will be compared to GRACE static gravity anomalies over the same area of the catchment.
A Bottom Gravity Survey of the Continental Shelf Between Point Lobos and Point Sur, California.
From an occupation of 68 ocean bottom and 38 land gravity stations between Pt. Lobos and Pt. Sur, California, a complete Bouguer anomaly map was...produced and analyzed. The steps in data reduction leading to the complete Bouguer anomaly field are presented, unique features of which are associated
On gravity from SST, geoid from SEASAT, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G.
1983-01-01
Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the SEASAT altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantel without complete thermal equilibration is considered.
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the SO(3). MAP can be extended to a neural network, where the synaptic connection of the holonomy attractor is just the mathematical condition adjusting and bridging spaces with positive (spherical) and negative (hyperbolic) curvature allowing for lossless/supra spin currents. Another strategy is to look for existing spin/precession anomalies and corresponding nonlinear holonomy conditions at the most fundamental level from the quark level to the cosmic scale. In these sceneries the geodesic attractor could control holonomy and curvature near the fixed points. It was proposed in 2002 that this should happen with electrons in atomic orbits showing a Berry phase part of the Rydberg or Sommerfeld fine structure constant and in 2003 that this effect could be responsible for (in)stabilities in the nuclear range and in superconductors. In 2008 it was shown that the attractor is part of the chaotic mechanical dynamics successfully at work in the Gyro-twister fitness device, and in 2007-2009 that there could be some deep relevance to "anomalies" in many scenarios even on the cosmic scales. Thus, we will point to and discuss some possible future applications that could be utilized for metric engineering: generating artificial holonomy and curvature (DC effect) for propulsion, or forcing holonomy waves (AC effect) in hyperbolic space-time, which are just gravitational waves interesting for communication.
How are the wetlands over tropical basins impacted by the extreme hydrological events?
NASA Astrophysics Data System (ADS)
Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.
2016-12-01
Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.
Subduction-zone magnetic anomalies and implications for hydrated forearc mantle
Blakely, R.J.; Brocher, T.M.; Wells, R.E.
2005-01-01
Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.
Crustal structure of the Pannonian-Carpathian region, Central Europe, from ambient noise tomography
NASA Astrophysics Data System (ADS)
Ren, Y.; Stuart, G. W.; Houseman, G. A.; Carpathian Basins Project Working Group
2010-12-01
The Pannonian Basin of Central Europe is a major extensional basin surrounded by the Carpathian Mountains. During the evolution of the Carpathian-Pannonian region, extension of the crust and lithosphere created several inter-related basins of which the Pannonian basin is the largest. Imaging the seismic velocity structure of the crust and the upper mantle may help us understand the structure and geodynamic evolution of this part of central Europe. Here, we use ambient noise tomography to investigate the crust and uppermost mantle structure in the region. We have collected and processed continuous data from 56 temporary stations deployed in the Carpathian Basins Project (CBP) for 16 months (2005-2007) and 41 permanent broadband stations; this dataset enables the most well-resolved images of the S-wave structure of the region yet obtained. We computed the cross-correlation between vertical component seismograms from pairs of stations and stacked the correlated waveforms over 1-2 years to estimate the Rayleigh wave Green’s function. Frequency-time analysis is used to measure the group velocity dispersion curves, which are then inverted for the group velocity maps. Our 4-10 s group velocity maps exhibit low velocity anomalies which clearly defined the major sediment depo-centers in the Carpathian region. A broad low velocity anomaly in the center of the 5 s group velocity map can be associated with the Pannonian Basin, whereas an anomaly in the southeastern region is related to the Moesian platform. Further east, the Vienna Basin can also be seen on our maps. A fast anomaly in the central region can be associated with the Mid-Hungarian line. At periods from 18 to 24 seconds, group velocities become increasingly sensitive to crustal thickness. The maps also reveal low-velocity anomalies associated with the Carpathians. The low velocity anomalies are probably caused by deeper crustal roots beneath the mountain ranges which occur due to isostatic compensation. CBP working group: G. Houseman, G. Stuart, Y. Ren, B. Dando, P. Lorinczi, School of Earth and Environment, University of Leeds, UK; E. Hegedus, A. Kovács, I. Török, I. László, R. Csabafi, Eötvös Loránd Geophysical Institute, Budapest, Hungary; E. Brüeckl, H. Hausmann, W. Loderer, T-U Wien, Vienna, Austria; S. Radovanovic, V. Kovacevic, D. Valcic, S. Petrovic-Cacic, G. Krunic, Seismological Survey of Serbia, Belgrade, Serbia; A. Brisbourne, D. Hawthorn, A. Horleston, V. Lane, SEIS-UK, Leicester University, UK.
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.
Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products
NASA Astrophysics Data System (ADS)
Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.
2012-12-01
The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.
Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen
2013-01-01
The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013
Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen
2013-02-01
The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.
Smith, D.B.; Theobald, P.K.; Shiquan, S.; Tianxiang, R.; Zhihui, H.
1993-01-01
In 1987, a cooperative project between the U.S. Geological Survey and the Institute of Geophysical and Geochemical Exploration was initiated to evaluate the origin of the Hatu gold anomaly. The anomaly is located in the Hatu mining district in the northwest corner of Xinjiang-Uygur Autonomous Region in northwest China. The climate is semiarid to arid and wind erosion predominates. A regional soil survey of the Hatu district, based on samples collected on a 200 by 500 m grid and composited prior to chemical analysis to a density of one sample per square km, delineated a series of south-southeast-trending Au anomalies. Anomalous Au values range from 5 ppb to more than 700 ppb. The Hatu anomaly, the most prominent of these anomalies, is more than 30 km long and about 5 km wide. The mining town of Hatu and the economic gold deposits of Qiqu 1 and Qiqu 2 are at the northern end of this anomaly. The axis of the Hatu anomaly cuts across mapped structure and stratigraphy in the district, but is parallel to the prevailing wind direction. This observation led to the hypothesis that the Hatu anomaly is the result of acolian dispersion of gold from the vicinity of Qiqu 1 and Qiqu 2. The alternative interpretation, that the anomalies reflected additional primary gold occurrences, was not consistent with existing information on the known occurrences and the geology. The investigation led to the identification of three types of gold in heavy-mineral concentrates derived from stream sediments that were collected along the axis of the Hatu anomaly: (1) free gold, (2) gold in pyrite, and (3) gold included in quartz. Gold in quartz was only observed within 2 km of Qiqu 1. The size of the gold particles and the number of gold particles in these samples did not decrease with distance from Qiqu 1 as would be expected from aeolian or fluvial dispersion from a point source. Instead, both the size and amount of gold increased significantly at a distance of 3.5 km from Qiqu 1 and this increase continued to approximately 5.5 km from Qiqu 1. The mean intermediate diameter of gold particles increased from 0.1 mm to approximately 0.25 mm and the gold particle content increased from approximately 0.3 particles per kg of sample to almost 8 particles per kg of sample. The morphology of the gold changed from a delicate filigree texture near Qiqu 1 to coarse, blocky particles in the southern part of the anomaly. The Hatu anomaly is caused primarily by alluvial dispersion of free gold from local point sources along the anomaly. Aeolian dispersion is restricted to very fine-grained (??2 ??m) gold included in sulfide minerals or quartz grains and is significant only within 1-2 km of the known deposits. ?? 1993.
Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.
Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang
2017-01-01
Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.
Mapping the Extent of the Lovejoy Basalt Beneath the Sacramento Valley, CA, Using Aeromagnetic Data
NASA Astrophysics Data System (ADS)
Langenheim, V. E.; Sweetkind, D. S.; Springhorn, S.
2014-12-01
The Lovejoy Basalt is a distinctive Miocene (~16 Ma) unit that erupted from Thompson Peak in the northeast Sierra Nevada, flowed southwest across the Sierra Nevada into the Sacramento Valley. It crops out in a few places in Sacramento Valley: (1) near Chico and Oroville on the east side of the valley, (2) Orland Buttes on the west side, and (3) Putnam Peak, some 250 km southwest of Thompson Peak. The basalt is also encountered in drill holes, but its extent is not entirely known. The Lovejoy Basalt is strongly magnetic and, in general, reversely magnetized, making it an excellent target for aeromagnetic mapping. Recently acquired aeromagnetic data (flight line spacing 800 m at an altitude of 240 m) indicate a characteristic, sinuous, short-wavelength magnetic pattern associated with outcrops and known subcrops of Lovejoy Basalt. Filtering of these data to enhance negative, short-wavelength anomalies defines two large bands of negative anomalies that trend southwest of Chico and Oroville and appear to coalesce about 25 km north of Sutter Buttes. Another band of negative anomalies extends north of the junction roughly along the Sacramento River 40 km to Deer Creek. The anomalies become more subdued to the north, suggesting that the Lovejoy thins to the north. Aeromagnetic data also indicate a large subcrop of Lovejoy Basalt that extends 25 km north-northeast from exposures at Orland Buttes. Driller logs from gas and water wells confirm our mapping of Lovejoy within these areas. The sinuous magnetic lows are not continuous south of Sutter Buttes, but form isolated patches that are aligned in a north-south direction south of the concealed Colusa Dome to Putnam Peak and an east-west, 20-km-long band about 15 km south of Sutter Buttes. Other reversed anomalies in the Sacramento Valley coincide with volcanic necks in the Sutter Buttes and Colusa Dome; these produce semicircular anomalies that are distinct from those caused by the Lovejoy Basalt.
Contributions to Climate Research Using the AIRS Science Team Version-5 Products
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2011-01-01
This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that recent global and tropical mean decreases in OLR and OLR(sub CLR) are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. This relationship can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
NASA Astrophysics Data System (ADS)
Sugano, T.; Heki, K.
2002-12-01
Direct estimation of mass distribution on the lunar nearside surface using the Lunar Prospector (LP) line-of-sight (LOS) acceleration data has several merits over conventional methods to estimate Stokes' coefficients of the lunar gravity field, such as (1) high resolution gravity anomaly recovery without introducing Kaula's constraint, (2) fast inversion calculation by stepwise estimation of parameter sets enabled by small correlation between parameters sets. Resolution of the lunar free-air gravity anomaly map obtained here, is as high as a gravity model complete to degree/order 225, and yet less noisy than the recent models. Next we performed terrain correction for the raw LOS acceleration data using lunar topography model from the Clementine laser altimetry data and the average crustal density of 2.9 g/cm3. By conducting the same inversion for the data after the correction, we obtained the map of Bouguer gravity anomaly that mainly reflects the MOHO topography. By comparing maps we notice that signatures of medium-sized (80-300 km in diameter) craters visible as topographic depression and negative free air anomaly, disappear in the Bouguer anomaly. The absence of mass deficits in the Bouguer anomaly suggests that the MOHO beneath them is flat. Generally speaking, longer wavelength topographic features have to be supported by MOHO topography (Airy isostatic compensation) while small scale topographic features are supported by lithospheric strength. The boundary between these two modes constrains the lithosphere thickness, and hence thermal structure near the surface. Larger craters are known to have become Mascons; mantle plugs and high-density mare basalts cause positive gravity anomalies there. The smallest Mascon has diameters a little larger than 300 km (e.g. Schiller-Zuccius), and the boundary between the two compensation status seems to lie around 300 km. Thermal evolution history of the Moon suggests temporally increasing thickness of lithosphere over its entire history, and the lithosphere as thick as 50-100 km around 4.0 Ga. This is consistent with the isostatic compensation status of the craters studied here, and a model describing the degree of lithospheric supports for various wavelength topographies.
Dielectric and thermal modeling of Vesta's surface
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.
2013-09-01
We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Identifying Resistivity Anomalies of Sungai Batu Ancient River using 3D Contour Map
NASA Astrophysics Data System (ADS)
Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.; Ismail, M. A. M.; Hazreek, Z. A. M.
2018-04-01
Electrical resistivity method was undertaken at archeological site at Sungai Batu in Lembah Bujang, located at Sungai Merbok in northwestern of Malaysia. The survey was implemented near the excavation site. This paper shows the results of 5 ground resistivity survey line was carry out using SAS4000 equipment. The wenner-schlumberger array was applied for measurement. Resistivity data are used to obtain valuable information to identify the remain buried archeology. The ground resistivity data were presented in contour map for various depth by using Surfer 13 software visualized clearly the anomalies evidenced for every single depth section. The results from the survey has found the appearance of sedimentation formation that believe happen long time ago after ancient river was buried by sediment from weathering process due to increasing sea level. Otherwise, another anomaly was found in the middle of the survey area which shows high resistivity value about 1000 – 2000 ohm.m
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay; Hinze, William J.
1991-01-01
Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.
Magnetic map of the Irish Hills and surrounding areas, San Luis Obispo County, central California
Langenheim, V.E.; Watt, J.T.; Denton, K.M.
2012-01-01
A magnetic map of the Irish Hills and surrounding areas was created as part of a cooperative research and development agreement with the Pacific Gas and Electric Company and is intended to promote further understanding of the areal geology and structure by serving as a basis for geophysical interpretations and by supporting geological mapping, mineral and water resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on magnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals can be related to either lithologic or structural boundaries. Magnetic susceptibility measurements from the area indicate that bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because some sedimentary units also can produce measurable magnetic anomalies. Remanent magnetization does not appear to be a significant source for magnetic anomalies because it is an order of magnitude less than the induced magnetization. The map is a mosaic of three separate surveys collected by (1) fixed-wing aircraft at a nominal height of 305 m, (2) by boat with the sensor at sea level, and (3) by helicopter. The helicopter survey was flown by New-Sense Geophysics in October 2009 along flight lines spaced 150-m apart and at a nominal terrain clearance of 50 to 100 m. Tie lines were flown 1,500-m apart. Data were adjusted for lag error and diurnal field variations. Further processing included microleveling using the tie lines and subtraction of the reference field defined by International Geomagnetic Reference Field (IGRF) 2005 extrapolated to August 1, 2008.
NASA Astrophysics Data System (ADS)
Flinders, A. F.; Ito, G.; Garcia, M.; Kim, S.; Appelgate, B.
2008-12-01
The shield stage evolution of the islands of Kauai and Niihau are poorly understood. Previous land-based gravity surveys provide only a coarse constraint on the observed gravitational field. Questions as to whether the island of Kauai was formed by a single or multiple shields and the developmental relationship between these neighboring islands are still debated. Our new land-based gravity survey of Kauai and ship-board gravity surveys around both islands identified large complete Bouguer gravitational anomalies under Kauai's Lihue Basin and offshore in the Kaulakahi Channel, a 30-km-long bathymetric ridge connecting the two islands. These gravitational highs are consistent in size and magnitude with those of other Hawaiian islands and imply local zones of high density crust, most likely attributed to magmatic intrusions; e.g. former magma chambers, or rift zones. The Lihue Basin anomaly observed is offset 20 km east from the geologically mapped caldera region. This offset implies either the unlikely case that the shield stage plumbing system connecting the magma chamber and caldera could have been inclined by up to 75 degrees from the vertical, or that the currently mapped caldera is a late feature, unrelated to shield volcanism. The location of the gravitational anomaly, in the Kaulakahi Channel, 20 km east of Niihau is consistent with geologic mapping, which indicates that Niihau is a remnant of an ancient shield volcano centered east of the island. The proximity of the Niihau gravitational anomaly 10 km from the western edge of Kauai supports the hypothesis that the two volcanoes were part of the same island.
Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle
Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.
2004-01-01
Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of <0.56 between VS and T and of <0.47 between QS and T at any depth. Such low correlation coefficients can partially be attributed to modelling arrefacts; however, they also suggest that not all of the VS and QS anomalies in the continental upper mantle can be explained by T variations. Global maps show that, by the sign of the anomaly, VS and QS usually inversely correlate with lithospheric temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that temperature variations alone are sufficient to explain seismic VS and QS in ca 50 per cent of continental regions. We hypothesize that compositional anomalies resulting from Fe depletion can explain the misfit between seismic and theoretical VS in cratonic lithosphere. In regions of active tectonics, temperature effects alone cannot explain seismic VS and QS in the lithosphere. It is likely that partial melts and/or fluids may affect seismic parameters in these regions. This study demonstrates that lithospheric temperature plays the dominant role in controlling VS and QS anomalies, but other physical parameters, such as compositional variations, fluids, partial melting and scattering, may also play a significant role in determining VS and QS variations in the continental mantle. ?? 2004 RAS.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
Interpretation of Local Gravity Anomalies in Northern New York
NASA Astrophysics Data System (ADS)
Revetta, F. A.
2004-05-01
About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.
NASA Astrophysics Data System (ADS)
Ghosh, G. K.
2016-02-01
The study has been carried out in the transition zone of the Narmada-Son lineament (NSL) which is seismically active with various geological complexities, upwarp movement of the mantle material into the crust through fault, fractures lamination and upwelling. NSL is one of the most prominent lineaments in central India after the Himalaya in the Indian geology. The area of investigation extends from longitude 80.25°E to 81.50°E and latitude 23.50°N to 24.37°N in the central part of the Indian continent. Different types of subsurface geological formations viz. alluvial, Gondwana, Deccan traps, Vindhyan, Mahakoshal, Granite and Gneisses groups exist in this area with varying geological ages. In this study area tectonic movement and crustal variation have been taken place during the past time and which might be reason for the variation of magnetic field. Magnetic anomaly suggests that the area has been highly disturbed which causes the Narmada-Son lineament trending in the ENE-WSW direction. Magnetic anomaly variation has been taken place due to the lithological variations subject to the changes in the geological contacts like thrusts and faults in this area. Shallow and deeper sources have been distinguished using frequency domain analysis by applying different filters. To enhance the magnetic data, various types of derivatives to identify the source-edge locations of the causative source bodies. The present study carried out the interpretation using total horizontal derivative, tilt angle derivative, horizontal tilt angle derivative and Cos (θ) derivative map to get source-edge locations. The results derived from various derivatives of magnetic data have been compared with the basement depth solutions calculated from 3D Euler deconvolution. It is suggested that total horizontal derivative, tilt angle derivative and Cos (θ) derivative are the most useful tools for identifying the multiple source edge locations of the causative bodies in this tectonically active and transition zone area. As this area is highly prone to hydrocarbon bearing zone, hence, the integrated interpretation could reliably image various thrusts and faults boundaries and the source edge locations with dip and strike orientation along with the basement lineation in encouraging exploration for better understanding of the geo-scientific data.
Europium anomaly in plagioclase feldspar - Experimental results and semiquantitative model.
NASA Technical Reports Server (NTRS)
Weill, D. F.; Drake, M. J.
1973-01-01
The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.
Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model.
Weill, D F; Drake, M J
1973-06-08
The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.
Mapping the total electron content over Malaysia using Spherical Cap Harmonic Analysis
NASA Astrophysics Data System (ADS)
Bahari, S.; Abdullah, M.; Bouya, Z.; Musa, T. A.
2017-12-01
The ionosphere over Malaysia is unique because of her location which is in close proximity to the geomagnetic equator and is in the equatorial regions. In this region, the magnetic field is horizontally oriented from south to north and field aligned direction is in the meridional plane (ExB) which becomes the source of equatorial ionospheric anomaly occurrence such as plasma bubble, fountain effects and others. Until today, there is no model that has been developed over Malaysia to study the ionosphere. Due to that, the main objective of this paper is to develop a new technique for mapping the total electron content (TEC) from GPS measurements. Data by myRTKnet network of GPS receiver over Malaysia were used in this study. A new methodology, based on modified spherical cap harmonic analysis (SCHA), was developed to estimate diurnal vertical TEC over the region using GPS observations. The SCHA model is based on longitudinal expansion in Fourier series and fractional Legendre co-latitudinal functions over a spherical cap-like region. The TEC map with spatial resolution of 0.15 ° x 0.15 ° in latitude and longitude with the time resolution of 30 seconds are derived. TEC maps from the SCHA model were compared with the global ionospheric map and other regional models. Result shows that during low solar activity, SCHA model had a better mapping with the accuracy of less than 1 TECU compared to other regional models.
Langenheim, Victoria; Jachens, Robert C.; Wentworth, Carl M.; McLaughlin, Robert J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Langenheim, V.E.; Jachens, R.C.; Wentworth, C.M.; McLaughlin, R.J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies define simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Magnetic signature of the Sicily Channel volcanism
NASA Astrophysics Data System (ADS)
Lodolo, E.; Civile, D.; Zanolla, C.; Geletti, R.
2012-03-01
Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S-E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north-western termination of the Linosa Graben. Only the anomaly located off the south-eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations like boundary faults and transfer zones, in a manner similar to that found along several segments of the East African Rift system.
A climatology of the California Current System from a network of underwater gliders
NASA Astrophysics Data System (ADS)
Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.
2017-05-01
Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.
Rayleigh and Love Wave Phase Velocities in the Northern Gulf Coast of the United States
NASA Astrophysics Data System (ADS)
Li, A.; Yao, Y.
2017-12-01
The last major tectonic event in the northern Gulf Coast of the United States is Mesozoic continental rifting that formed the Gulf of Mexico. This area also experienced igneous activity and local uplifts during Cretaceous. To investigate lithosphere evolution associated with the rifting and igneous activity, we construct Rayleigh and Love wave phase velocity models at the periods of 6 s to 125 s in the northern Gulf Coast from Louisiana to Alabama including the eastern Ouachita and southern Appalachian orogeny. The phase velocities are derived from ambient noise and earthquake data recorded at the 120 USArray Transportable Array stations. At periods below 20 s, phase velocity maps are characterized by significant low velocities in the Interior Salt Basin and Gulf Coast Basin, reflecting the effects of thick sediments. The northern Louisiana and southern Arkansas are imaged as a low velocity anomaly in Rayleigh wave models but a high velocity anomaly of Love wave at the periods of 14 s to 30 s, indicating strong lower crust extension to the Ouachita front. High velocity is present in the Mississippi Valley Graben from period 20 s to 35 s, probably reflecting a thin crust or high-velocity lower crust. At longer periods, low velocities are along the Mississippi River to the Gulf Coast Basin, and high velocity anomaly mainly locates in the Black Warrior Basin between the Ouachita Belt and Appalachian Orogeny. The magnitude of anomalies in Love wave images is much smaller than that in Rayleigh wave models, which is probably due to radial anisotropy in the upper mantle. A 3-D anisotropic shear velocity model will be developed from the phase velocities and will provide more details for the crust and upper mantle structure beneath the northern Gulf of Mexico continental margin.
SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training
NASA Technical Reports Server (NTRS)
Owens, Brandon Dewain; Crocker, Alan R.
2015-01-01
Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.
Marine magnetic anomalies in the NE Indian Ocean: the Wharton and Central Indian basins revisited
NASA Astrophysics Data System (ADS)
Jacob, J.; Dyment, J.; Yatheesh, V.; Bhattacharya, G. C.
2009-04-01
The North-eastern Indian Ocean has recently received a renewed interest. The disastrous earthquakes and tsunamis of Dec. 2004 off Sumatra have triggered a large international effort including several oceanographic cruises. The Ninetyeast Ridge, a long submarine ridge which extends NS on more than 4000 km, has been the focus of a recent cruise aiming to study the interaction of a hotspot with the oceanic lithosphere and spreading centres. Both the study of the seismogenic zone under Sumatra and the Ninetyeast Ridge formation require accurate determination of the age and structure of the oceanic lithosphere in the Wharton and Central Indian Basins. First we delineate tectonic elements such as the Sunda Trench, the Ninetyeast Ridge, and the fracture zones of the Wharton and Central Indian basins from a recent version of the free-air gravity anomaly deduced from satellite altimetry and available multibeam bathymetric data. We use all available magnetic data to identify magnetic anomalies and depict seafloor spreading isochrons in order to build a tectonic map of the Wharton Basin. To do so, we apply the analytic signal method to unambiguously determine the location of the magnetic picks. The new tectonic map shows more refinements than previous ones, as expected from a larger data set. The fossil ridge in the Wharton Basin is clearly defined; spreading ceased at anomaly 18 young (38.5 Ma), and, perhaps, as late as anomaly 15 (35 Ma). Symmetric anomalies are observed on both flanks of the fossil ridge up to anomaly 24 (54 Ma), preceded by a slight reorganization of the spreading compartments between anomalies 28 and 25 (64 - 56 Ma) and a more stable phase of spreading between anomalies 34 and 29 (83 - 64 Ma). Earlier, a major change of spreading direction is clearly seen in the bending fracture zones; interpolating in the Cretaceous Quiet Zone between anomaly 34 in the Wharton Basin and anomaly M0 off Australia leads to an age of ~100 Ma for this reorganization. Anomalies 20 to 34 are clearly identified in the western part of the Central Indian Basin. The interpretation is more difficult in the compartments located immediately west of the Ninetyeast Ridge, where multiple ridge jumps have been proposed to explain complex anomaly patterns. In a different way, we recognize a continuous sequence of anomalies 20 to 34, although the anomalies 25 to 29 seem to be wider and display complex boundaries.
NASA Technical Reports Server (NTRS)
Hastings, D. A. (Principal Investigator)
1981-01-01
Several possible causes for the east-west striping of the MAGSAT anomaly maps are listed and discussed including: (1) the inadequacy of the field model used for core-crustal separation of geomagnetic anomalies; (2) external field noise remaining in the available maps; (3) east-west trends of crustal uplift and depression; (4) east-west trends to convection patterns in the mantle; (5) bands of crustal materials of similar metamorphic grade; (6) variations in the depth of the Curie isotherm; and (7) the data processing techniques used to overcome the absence of tie lines and orbital path of MAGSAT.
Application of diffusion maps to identify human factors of self-reported anomalies in aviation.
Andrzejczak, Chris; Karwowski, Waldemar; Mikusinski, Piotr
2012-01-01
A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. Diffusion Maps (DM) were selected as the method of choice for performing dimensionality reduction on text records for this study. Diffusion Maps have seen successful use in other domains such as image classification and pattern recognition. High-dimensionality data in the form of narrative text reports from the NASA Aviation Safety Reporting System (ASRS) were clustered and categorized by way of dimensionality reduction. Supervised analyses were performed to create a baseline document clustering system. Dimensionality reduction techniques identified concepts or keywords within records, and allowed the creation of a framework for an unsupervised document classification system. Results from the unsupervised clustering algorithm performed similarly to the supervised methods outlined in the study. The dimensionality reduction was performed on 100 of the most commonly occurring words within 126,000 text records describing commercial aviation incidents. This study demonstrates that unsupervised machine clustering and organization of incident reports is possible based on unbiased inputs. Findings from this study reinforced traditional views on what factors contribute to civil aviation anomalies, however, new associations between previously unrelated factors and conditions were also found.
Air-sea interaction in the tropical Pacific Ocean
NASA Technical Reports Server (NTRS)
Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.
1972-01-01
Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.
Airborne gravity measurement over sea-ice: The western Weddel Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, J.; Peters, M.; LaBrecque, J.
1990-10-01
An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less
NASA Technical Reports Server (NTRS)
Hastings, D. A. (Principal Investigator)
1981-01-01
Accomplishments with regard to the mapping and analysis of MAGSAT data for the investigation of correlations between the magnetic field characteristics of South American and African shields are reported. Significant results in the interpretation of the global total-field anomalies and the anomaly patterns of Africa and South America are discussed. The central position of the Brazilian shield tends to form a negative total-field anomaly, consistent with findings for shields in equatorial Africa. Sedimentary sequences in the Amazon basin and in the Rio de Janeiro-Sao Paolo areas exhibit positive anomalies, also consistent with equatorial Africa. Results for the Caribbean Sea and Guyana regions are also described.
NASA Astrophysics Data System (ADS)
Pankratz, H. G.; Sultan, M.; Fathy, K.; AlMogren, S. M.; Harbi, H.; Sefry, S.; Emil, M.; Elkadiri, R.; Ahmed, M.; Othman, A.; Chouinard, K.
2016-12-01
The Jazan city in the Jazan Province of the Kingdom of Saudi Arabia is a vibrant and rapidly growing economic center and port. The old city of Jazan is centered over a salt dome (diaper) that crops out over an area, 3-4 km wide and 20 to 40 m above surroundings. The intrusion of the diaper into the overlying cap rock causes uneven surfaces, compromises building foundations, and causes infrastructural problems. Our study is aimed at the assessment of the salt dome-related land deformation. Using observations acquired over known locations of salt domes in Jazan and neighboring Farsan Islands, we identified criteria by which previously unidentified, near-surface salt domes, could be mapped. The selected criteria and/or applied methodologies included: (1) deformation over potential salt dome locations detected from Envisat, ERS-2, and Sentinel-1 scenes using the Stanford Method for Persistent Scatterers [StaMPs] and SARscape software. Uplift rates of about 3 mm/yr were observed over the salt dome outcrop in Jazan with increasing rates towards the center, indicating continuous rise of the salt diaper. (2) Local elevation highs over potential, near surface, salt dome intrusions observed in high spatial resolution (12.5 m), PALSAR digital elevation model (DEM). The elevation the Jazan dome is 45m high, whereas its surroundings are 15-30m high. (3) Negative Bouguer gravity anomalies over potential salt dome locations (Bouguer maps generated from 714 m interval airborne gravity data). Negative Bouguer anomalies were observed over the salt domes in Jazan (-3 mGal) and in Farsan (-30 mGal). (4) Boundaries of the potential salt domes extracted from zero tilt contour values on tilt derivative maps. (5) Shallow (< 2km) modeled depth to identified potential salt dome locations (software: Grav2dc 2-D modeling software). Zero contour values and 2-D modeling was used to identify the location and depth of the source anomaly (depth: Jazan = 0 m). (6) Spatial correlation (in a GIS platform) of observations extracted from remote sensing, geophysical, GPS, and DEM datasets (items 1 through 5). Eight previously unidentified locations of potential near-surface salt domes were identified along the Red Sea coastline within the scene extent, five of which were north of the salt dome outcrop and three to the south.
Doppler-Zeeman mapping of the magnetic CP star HD 215441
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.
1997-07-01
The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.
Magnetic mapping of Spanish Canary archipelago [ZEEE project
NASA Astrophysics Data System (ADS)
Catalan, M.; Martin, J.; Marin, J. A.; Agudo, L. M.
2003-04-01
The Spanish Exclusive Economic Zone [ZEEE] Project constitutes the most intensive mapping to date of the sea floor off Spain's coast. This extensive geophysical survey is being undertaken by a Spanish government team. The first phase [1995-1997] concentrated its efforts in the Balearic sea. The geomagnetic data acquired for this area, has already being reduced and stored as a data base, and six scalar magnetic anomaly maps have been produced at a scale of 1:200.000, and another that cover the whole zone at a scale of 1:500.000. Since 1998, the Project has systematically surveyed the Canary archipelago, ending on October 2002. This group of islands, located off the West African Continental Margin, conform an intraplate volcanic archipelago which reflects a magmatic story that started probably at Tertiary. This Communication describes its main technical details, discusses the scalar magnetic map and presents a regional analysis of the Canary islands magnetic picture, trying to identify the different intra-crustal structures which generate the anomalies.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Kis, Karoly I.; Puszta, Sandor; Wittmann, Geza; Kim, Hyung Rae; Toronyi, B.
2011-01-01
The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin.
Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010
NASA Astrophysics Data System (ADS)
Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.
2012-03-01
The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.
Effect of attractive interactions on the water-like anomalies of a core-softened model potential.
Pant, Shashank; Gera, Tarun; Choudhury, Niharendu
2013-12-28
It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K.
2016-12-01
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium.
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K
2016-12-07
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
NASA Astrophysics Data System (ADS)
Tao, Dan; Cao, Jinbin; Battiston, Roberto; Li, Liuyuan; Ma, Yuduan; Liu, Wenlong; Zhima, Zeren; Wang, Lanwei; Wray Dunlop, Malcolm
2017-04-01
In this paper, we report significant evidence for preseismic ionospheric anomalies in total electron content (TEC) of the global ionosphere map (GIM) and plasma density appearing on day 2 before the 17 July 2006 M7.7 south of Java earthquake. After distinguishing other anomalies related to the geomagnetic activities, we found a temporal precursor around the epicenter on day 2 before the earthquake (15 July 2006), which agrees well with the spatial variations in latitude-longitude-time (LLT) maps. Meanwhile, the sequences of latitude-time-TEC (LTT) plots reveal that the TECs on epicenter side anomalously decrease and lead to an anomalous asymmetric
structure with respect to the magnetic equator in the daytime from day 2 before the earthquake. This anomalous asymmetric
structure disappears after the earthquake. To further confirm these anomalies, we studied the plasma data from DEMETER satellite in the earthquake preparation zone (2046.4 km in radius) during the period from day 45 before to day 10 after the earthquake, and also found that the densities of both electron and total ion in the daytime significantly increase on day 2 before the earthquake. Very interestingly, O+ density increases significantly and H+ density decreases, while He+ remains relatively stable. These results indicate that there exists a distinct preseismic signal (preseismic ionospheric anomaly) over the epicenter.
Geophysical survey at Tell Barri (Syria)
NASA Astrophysics Data System (ADS)
Florio, Giovanni; Cella, Federico; Pierobon, Raffaella; Castaldo, Raffaele; Castiello, Gabriella; Fedi, Maurizio
2010-05-01
A geophysical survey at the archaeological site of Tell Barri (Northeasterm Syria) was carried out. The Tell (Arab word for "hill") is 32 m high with a whole covered area of 37 hectares. The Tell, with its huge dimensions and with a great amount of pottery on the surface, is a precious area to study the regional history from IV mill. BC to Islamic and Medieval period. The geophysical study consisted in magnetic and electromagnetic measurements in the lower town area. The aim of this survey was to provide evidence of the presence of buried archaeological structures around an already excavated area. The wall structures in the Tell Barri are made by backed or crude clay bricks. The instrument used for the magnetic survey was an Overhauser-effect proton magnetometer (Gem GSM-19GF), in gradiometric configuration. The electromagnetic instrument used, Geonics Ltd. EM31, implements a Frequency Domain Electromagnetic Method (FDEM). It was used in vertical coils configuration, and this choice should grant a maximum theoretical investigation depth of about 6 m. Before starting the measurements on a larger scale, we conducted a magnetic and EM test profile on some already excavated, outcropping, baked bricks walls. Results were encouraging, because clear and strong magnetic and EM anomalies were recorded over the outcropping walls. However, in the survey area these structures are covered by 3 to 4 meters of clay material and the increased sensors-structures distance will reduce the anomalies amplitude. Moreover, the cover material is disseminated with bricks, basalt blocks and ceramics, all of which have relevant magnetic properties. After magnetic surveying some 50 m side square areas, we verified that unfortunately their effect resulted to be dominant with respect to the deeper wall structures, degrading too much the signal-to-noise ratio. The processing and analysis of magnetic data is however currently underway and will determine decisions about further use of this method in future surveys. These disturbances were much lower in the EM data, thus, these data were acquired in 7 squares having 50 m long sides, along profiles spaced 0.5 m. The acquisition rate, combined with the operator speed, resulted in an average sampling step of 0.2-0.25 m along each profile. First, the quadrature and inphase data were interpolated at a regular step of 0.5 m and visualized in false colour maps representing the spatial variation of conductivity and magnetic susceptibility, respectively. Then, corrections for zig-zag effect and heading error were applied. In both maps many elongated anomalies are visible, often crossing each other perpendicularly and arranged with a meaningful orientation with respect to the topography. This suggest a possible archaeological meaning for these anomalies. Quadrature data were processed by AGC filter to obtain an amplitude-normalized map. Data were further processed with algorithms based on spatial derivatives that can define the position of the source bodies with higher definition. Some hypothesis about the meaning of these linear anomalies include the presence of an urbanization area, with edifices and roads. The orientation of many structures in directions parallel or perpendicular to the altitude isolines may also suggest the presence of ancient defensive structures. Thus, the main result of the geophysical investigation was to highlight that the urbanized area extent is wider than known before. The fine stratification of the archaeological remains at Tell Barri site represents a major difficulty to the interpretation. During the next mission some anomalies will be the target of excavations to improve our understanding of the conductivity pattern and its interpretation.
NASA Astrophysics Data System (ADS)
Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; Santana-González, C.; Baker, E. T.; Resing, J. A.; Walker, S. L.
2016-12-01
The detection of activity from low-temperature hydrothermal vents, where the increase in temperature is not evident, requires the utilization of alternative sensors that respond to emissions of certain chemical species. The character of both reduced and acid fluids in the volcanic emissions in the El Hierro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos with these sensors provided the approximate locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. The magnitude of this change is examined by the time derivative of ORP, δ(ORP)/δt. For pH changes, ΔpH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to apply CTD-pH-ORP tow-yo methodology and to study the effect of CO2 emission on the seawater carbonate system, the global carbon flux, and local ocean acidification. Detailed surveys of the volcanic edifice were carried out during VULCANO 0314 and VULCANA0615 cruises using several CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. CTD-pH-ORP yo-yo studies were also conducted that included discrete sampling for carbonate system parameters and total dissolved Fe(II), TDFe(II). The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1and increases the acidity above the volcano by 20%. From the yo-yo studies important anomalies in both pHT and TDFe(II) were observed. The increased TDFe(II) concentrations and the low associated pHT values may be acting as an important fertilization event in the seawater around the volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
Glacier mass balance in high-arctic areas with anomalous gravity
NASA Astrophysics Data System (ADS)
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be learned from another industry, e.g. technical chemistry. Several questions associated with the variability of evaporation, ice nucleation, aerosol deposition and snow redistribution in the heterogeneous field of gravity remain open.
Statistical Representations of Track Geometry : Volume I, Text.
DOT National Transportation Integrated Search
1980-03-31
Mathematical representations of railroad track geometry variations are derived from time series analyses of track measurements. Since the majority of track is free of anomalies (turnouts, crossings, bridges, etc.), representation of anomaly-free trac...
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2010-01-01
This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino anomaly index four months previously. The El Nino index is defined as the SST anomaly averaged over the area 15S to 15N and 160W eastward to 30E. If one excludes the area 5degN - 20degS, 150degW - 30degE from the statistics, the negative area mean tropical OLR trends, as well as OLR trends over the rest of the globe, are substantially
NASA Astrophysics Data System (ADS)
Susskind, J.; Molnar, G. I.; Iredell, L. F.; Sounder Research Team
2010-12-01
Joel Susskind, Gyula Molnar, and Lena Iredell NASA GSFC Sounder Research Team Abstract This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 - February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Niña in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5°N - 20°S latitude extending eastward from 150°W - 30°E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Niño, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as well as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino anomaly index four months previously. The El Nino index is defined as the SST anomaly averaged over the area 15S to 15N and 160W eastward to 30E. If one excludes the area 5°N - 20°S, 150°W - 30°E from the statistics, the negative area mean tropical OLR trends, as well as OLR trends over the rest of the globe, are substantially reduced over the time period under study.
Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China
Bai, Chunhua; Kang, Guofa; Gao, Guoming
2014-01-01
Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232
Observation of El Nino by the Nimbus-7 SMMR
NASA Technical Reports Server (NTRS)
Hwang, P. H.; Macmillan, D. S.; Fu, C. C.; Kim, S. T.; Han, Daesoo; Gloersen, P.
1986-01-01
The quality of Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) derived SST, water vapor, and windspeed are assessed, and these parameters are used to study the El Nino event of 1982-1983 in the equatorial Pacific region from 120 deg to the South American coast. The features of the anomaly fields for these parameters, and the connections between these fields, are discussed. Anomaly fields are found to be qualitatively consistent with outgoing longwave radiation anomaly fields and wind vector anomaly fields.
NASA Astrophysics Data System (ADS)
Blanco-Montenegro, I.; Montesinos, F. G.; GarcíA, A.; Vieira, R.; VillalaíN, J. J.
2005-12-01
The Bouguer and aeromagnetic anomaly maps of Lanzarote show a gravity high and a dipolar magnetic anomaly over the central part of the island, indicating one isolated source. Assuming that the structure responsible for both anomalies is the same, a methodology has been designed to estimate the total magnetization vector of the source, which is interpreted as a large intrusive body (mafic core) positioned as a result of magma rising to the surface during the early stages of growth of Lanzarote. Considering its geometry to be known from a previous three-dimensional (3-D) gravity model, the approach proposed in this paper is based on the delineation of magnetic contacts through analysis of the horizontal gradient of the reduced-to-the-pole anomaly map, comparison between the gravity and the pseudogravity anomalies, and 3-D forward magnetic modeling. The total magnetization vector obtained by this method is defined by a module of 4.5 A m-1 and a direction D = -20° and I = 30°. Comparing the paleomagnetic pole, obtained from this direction, with the apparent polar wander path of Africa for the last 160 Myr, it is concluded that the main component of the total magnetization vector is probably a primary natural remanent magnetization (NRM) which could have been acquired between 60 and 100 Ma. This result suggests that the emplacement of magmas at shallow depths linked to the beginning of volcanism in Lanzarote took place during the Upper Cretaceous, thus providing the first evidence of a timeline for the early formative stages of this volcanic island.
Engima of a thermal anomaly - A TM/AVHRR study of the volcanic Arabian highlands
NASA Technical Reports Server (NTRS)
Blodget, H. W.; Andre, C. G.; Masuoka, P. M.
1987-01-01
Discovery of a large thermal anomaly in the western Arabian highlands on Landsat TM imagery is reported. The anomaly, 15 C warmer than surroundings, forms a 2-km-wide arc around the southern flank of Jebel Chada, a volcano active in 1256 AD. It is recorded by AVHRR imagery as well, despite the 1.1-km spatial resolution of this sensor. Air photos and geologic maps show no bedrock unit that corresponds to the anomaly. Digital techniques were applied to the TM and AVHRR data, including contrast enhancement, density slicing, principal components analysis, and construction of multiband composite images. It is concluded that the anomaly results from a thin cover of volcanic ash or cinder that is optically indistinguishable from underlying basalt, rather than from internal (volcanic or hydrologic) heat sources.
Interannual Variability of OLR as Observed by AIRS and CERES
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.
2012-01-01
This paper compares spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLR(sub CLR) (Clear Sky OLR) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. Both AIRS and CERES show a significant decrease in global mean and tropical mean OLR over this time period. We find excellent agreement of the anomaly time-series of the two OLR data sets in almost every detail, down to 1 deg X 1 deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper also examines the correlations of anomaly time series of AIRS and CERES OLR, on different spatial scales, as well as those of other AIRS derived products, with that of the NOAA Sea Surface Temperature (SST) product averaged over the NOAA Nino-4 spatial region. We refer to these SST anomalies as the El Nino Index. Large spatially coherent positive and negative correlations of OLR anomaly time series with that of the El Nino Index are found in different spatial regions. Anomalies of global mean, and especially tropical mean, OLR are highly positively correlated with the El Nino Index. These correlations explain that the recent global and tropical mean decreases in OLR over the period September 2002 through June 2011, as observed by both AIRS and CERES, are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of global mean, and especially tropical mean, OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions which lie outside the NOAA Nino-4 region, in which anomalies of cloud cover and mid-tropospheric water vapor are both highly negatively correlated with the El Nino Index. Agreement of the AIRS and CERES OLR(sub CLR) anomaly time series is less good, which may be a result of the large sampling differences in the ensemble of cases included in each OLR(sub CLR) data set.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
On the Weyl anomaly of 4D conformal higher spins: a holographic approach
NASA Astrophysics Data System (ADS)
Acevedo, S.; Aros, R.; Bugini, F.; Diaz, D. E.
2017-11-01
We present a first attempt to derive the full (type-A and type-B) Weyl anomaly of four dimensional conformal higher spin (CHS) fields in a holographic way. We obtain the type-A and type-B Weyl anomaly coefficients for the whole family of 4D CHS fields from the one-loop effective action for massless higher spin (MHS) Fronsdal fields evaluated on a 5D bulk Poincaré-Einstein metric with an Einstein metric on its conformal boundary. To gain access to the type-B anomaly coefficient we assume, for practical reasons, a Lichnerowicz-type coupling of the bulk Fronsdal fields with the bulk background Weyl tensor. Remarkably enough, our holographic findings under this simplifying assumption are certainly not unknown: they match the results previously found on the boundary counterpart under the assumption of factorization of the CHS higher-derivative kinetic operator into Laplacians of "partially massless" higher spins on Einstein backgrounds.
Analysis of LANDSAT-4 TM Data for Lithologic and Image Mapping Purpose
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Salisbury, J. W.; Bender, L. V.; Jones, O. D.; Mimms, D. L.
1984-01-01
Lithologic mapping techniques using the near infrared bands of the Thematic Mapper onboard the LANDSAT 4 satellite are investigated. These methods are coupled with digital masking to test the capability of mapping geologic materials. Data are examined under medium to low Sun angle illumination conditions to determine the detection limits of materials with absorption features. Several detection anomalies are observed and explained.
Dynamics of total electron content distribution during strong geomagnetic storms
NASA Astrophysics Data System (ADS)
Astafyeva, E. I.; Afraimovich, E. L.; Kosogorov, E. A.
We worked out a new method of mapping of total electron content TEC equal lines displacement velocity The method is based on the technique of global absolute vertical TEC value mapping Global Ionospheric Maps technique GIM GIM with 2-hours time resolution are available from Internet underline ftp cddisa gsfc nasa gov in standard IONEX-files format We determine the displacement velocity absolute value as well as its wave vector orientation from increments of TEC x y derivatives and TEC time derivative for each standard GIM cell 5 in longitude to 2 5 in latitude Thus we observe global traveling of TEC equal lines but we also can estimate the velocity of these line traveling Using the new method we observed anomalous rapid accumulation of the ionosphere plasma at some confined area due to the depletion of the ionization at the other spacious territories During the main phase of the geomagnetic storm on 29-30 October 2003 very large TEC enhancements appeared in the southwest of North America TEC value in that area reached up to 200 TECU 1 TECU 10 16 m -2 It was found that maximal velocity of TEC equal lines motion exceeded 1500 m s and the mean value of the velocity was about 400 m s Azimuth of wave vectors of TEC equal lines were orientated toward the center of region with anomaly high values of TEC the southwest of North America It should be noted that maximal TEC values during geomagnetically quiet conditions is about 60-80 TECU the value of TEC equal lines
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
NASA Technical Reports Server (NTRS)
Fukushima, N. (Principal Investigator)
1981-01-01
Preliminary results of MAGSAT data analysis are described. Regional anomaly maps (deviations from the MGST model field) for X,Y,Z, and F in the area of 115 to 155 deg E and 20 to 60 deg N were obtained. A similar map for the geomagnetic total force anomaly in the vicinity of Japan showed that the observed anomaly can be explained by the difference in crustal magnetization between the Japan Sea and the Japan Island, which reflects a difference of 25 km in the thickness of the magnetized layer. The MAGSAT record of a sudden commencement of a magnetic storm above the South Atlantic Ocean showed a reverse impulse particularly in the D-component. Results relating to toroidal currents in the ionosphere, transverse and parallel perturbations over the polar regions, the relationship between field aligned currents and precipitating electrons, and the calculation of the subsatellite electric field are also discussed.
On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Galtier, Sébastien
2018-05-01
Incompressible Hall magnetohydrodynamics (MHD) may be the subject of energy dissipation anomaly which stems from the lack of smoothness of the velocity and magnetic fields. I derive the exact expression of which appears to be closely connected with the well-known 4/3 exact law of Hall MHD turbulence theory. This remarkable similitude suggests a deeper mathematical property of the fluid equations. In the MHD limit, the expression of differs from the one derived by Gao et al (2013 Acta Math. Sci. 33 865–71) which presents miscalculations. The energy dissipation anomaly can be used to better estimate the local heating in space plasmas where in situ measurements are accessible.
NASA Astrophysics Data System (ADS)
Najine, Abdessamad; Jaffal, Mohammed; Khammari, Kamal El; Aïfa, Tahar; Khattach, Driss; Himi, Mahjoub; Casas, Albert; Badrane, Said; Aqil, Hicham
2006-08-01
This study is based on the analysis and the interpretation of the gravity data of the Tadla basin. Its purpose is to increase the knowledge of this basin structure. A residual anomaly map was first calculated from the Bouguer anomaly data witch are strongly affected by a regional gradient. The computed map provides information on the ground density variation but it does not bring enough of new elements. Data filtering allows us to emphasize the structures affecting the basin. We chose the horizontal gradient coupled to the upward continuation techniques that permit to highlight news structures and to give information on their dip. The elaborated structural map of the study area constitutes a useful document for rationalizing the future groundwater exploration in the Tadla basin. To cite this article: A. Najine et al., C. R. Geoscience 338 (2006).
Armadillo, E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.
2007-01-01
The Wilkes Subglacial Basin (WSB) is the major morphological feature recognized in the hinterland of the Transantarctic Mountains. The origin of this basin remains contentious and relatively poorly understood due to the lack of extensive geophysical exploration. We present a new aeromagnetic anomaly map over the transition between the Transantarctic Mountains and the WSB for an area adjacent to northern Victoria Land. The aeromagnetic map reveals the existence of subglacial faults along the eastern margin of the WSB. These inferred faults connect previously proposed fault zones over Oates Land with those mapped along the Ross Sea Coast. Specifically, we suggest a link between the Matusevich Frature Zone and the Priestley Fault during the Cenozoic. The new evidence for structural control on the eastern margin of the WSB implies that a purely flexural origin for the basin is unlikely.
Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs
NASA Technical Reports Server (NTRS)
Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.
2015-01-01
We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.
Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs.
Villanueva, G L; Mumma, M J; Novak, R E; Käufl, H U; Hartogh, P; Encrenaz, T; Tokunaga, A; Khayat, A; Smith, M D
2015-04-10
We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. Copyright © 2015, American Association for the Advancement of Science.
Publications - GPR 2014-4 | Alaska Division of Geological & Geophysical
Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2014-4 Publication Details Title: Farewell and Middle Styx survey areas: Project report , Inc., 2015, Farewell and Middle Styx survey areas: Project report, interpretation maps, EM anomalies
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
NASA Astrophysics Data System (ADS)
Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail
2013-04-01
In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating favorable conditions for development of the cod larvae and fry and provide them with food stock, finally, direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, Northeast Arctic cod, spawning area, maps of SST, prognosis.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
NASA Astrophysics Data System (ADS)
Ho, Yi-Ying; Jhuang, Hau-Kun; Su, Yung-Chih; Liu, Jann-Yenq
2013-06-01
In this paper we examine the pre-earthquake ionospheric anomalies by the total electron content (TEC) extracted from GIM (global ionospheric map) and the electron density (Ne) observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite during the 2010 M8.8 Chile earthquake. Temporal variations show the nighttime TEC and Ne simultaneously increase 9-19 days before the earthquake. A cross-comparison of data recorded during the period of 1 February to 3 March in 2006-2010 confirms the above temporal anomalies specifically appear in 2010. The spatial analyses show that the anomalies tend to appear over the epicenter.
Sources of Meridional Heat and Freshwater Transport Anomalies in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Kelly, K. A.; Thompson, L.; Drushka, K.
2016-02-01
Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean for 1993-2014. A Kalman filter extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content in each of eight regions. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding an integration constant derived from updated MHT estimates at 41N (Willis 2010). MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. Anomalies in MHT are comparable to those observed at the RAPID/MOCHA line at 26.5N and show a continued recovery from the minimum in 2010 throughout the Atlantic. MHT anomalies resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates are also insensitive to choice of flux products. Interannual anomalies of FWC integrated from 67N to 35S resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009), whereas the trend is consistent with estimates of freshwater input from Greenland. Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.
NASA Astrophysics Data System (ADS)
Migoya-Orué, Y.; Folarin-Olufunmilayo, O.; Radicella, S.; Alazo-Cuartas, K.; Rabiu, A. B.
2017-10-01
Global Ionospheric Maps (GIM) of vertical Total Electron Content (TEC) are utilized in an ingestion approach to generate a 3D specification of the ionosphere over the African Equatorial Ionospheric Anomaly (EIA) by using NeQuick model. The effectiveness of the GIM to specify the ionosphere over the African region has been assessed during the IONAF, a project under the ESA's Alcantara Initiative. A series of analysis that takes into account the day-to-day variability seen by the GIM and by specific receivers' ground stations have shown that the vertical TEC derived from the GIMs (CODE) presents a systematic but not necessarily constant positive offset with respect to the corresponding data obtained from individual stations. These offsets have been taken into account in the ingestion process. Therefore, as option, an 'adjustment' to the vertical TEC from CODE has been introduced, to see if it has any effect in modeling the ionosphere in the region of interest. One of the outputs of the ingestion process is a series of maps of foF2 over the African EIA. A validation with foF2 values from the only ionosonde station available in that period, Ilorin, for some months of the year 2010 has been performed. Another comparison with the slant TEC obtained in the 3D specification using GNSS data from the station bjco, Benin, in a given day has been done. Results show that the mismodelings are reduced when the positive offset is taken out from the maps. The paper concludes with an investigation of the effects of the NeQuick bottomside thickness parameter (B2bot) mismodeling on the electron density retrieval. A parameterization of experimental B2bot as a function of time is used to explore the possibility of reducing the mismodeling when foF2 is retrieved from the 3D specification of the ionosphere obtained through the data ingestion process.
Total electron content anomalies associated with global VEI4 + volcanic eruptions during 2002-2015
NASA Astrophysics Data System (ADS)
Li, Wang; Guo, Jinyun; Yue, Jianping; Shen, Yi; Yang, Yang
2016-10-01
In previous studies, little attention has been paid to the total electron content (TEC) anomalies preceding the volcanic eruption. We analyze the coupling relationship between volcanic eruption and TEC anomalies, and discuss the spatial distribution of TEC anomalies associated with volcanic geographical location. We utilize the global ionosphere map (GIM) data from the Center for Orbit Determination in Europe (CODE) to analyze TEC variations before the global volcanic eruptions indicated by VEI (Volcanic Explosivity Index) 4 + from 2002 to 2015 with the sliding interquartile range method. The results indicate the occurrence rate of TEC anomalies before great volcanic eruptions is related with the volcanic type and geographical position. The occurrence rate of TEC anomalies before stratovolcano and caldera eruptions is higher than that before shield and pyroclastic shield eruptions, and the occurrence rate of TEC anomalies has a descending trend from low latitudes to high latitudes. The TEC anomalies before the volcanic eruptions in low-mid latitudes are within the volcanic affected areas, but do not coincide with the volcanic foci. The corresponding TEC anomalies could be observed in the conjugated region, and all the TEC anomalies in the volcanic affected areas are usually close to bounds of equatorial anomaly zones. However, the TEC anomalies preceding these eruptions in high latitudes usually surround the volcano, and no TEC anomalies appear in the conjugated region. These conclusions have potential applications to the prediction of great volcanic eruptions in the future.
Delineation of The Sumatra Fault in The Central Part of West Sumatra based on Gravity Method
NASA Astrophysics Data System (ADS)
Saragih, R. D.; Brotopuspito, K. S.
2018-04-01
The Sumatra Fault System is elongated across the Sumatra Island, Indonesia, Southeast Asia including the central part of West Sumatra, Indonesia, Southeast Asia. The Sumatra Fault and subsurface structure on the Central Part of West Sumatra had been analyzed using gravity method. Bouguer anomaly data were obtained from GRDC (Geological Research and Development Centre) maps, Bandung, Indonesia (i.e. without terrain correction). In this study, terrain correction had been applied to these Bouguer data. Bouguer anomaly in a horizontal plane at 3000 meters high and equivalent depth of mass point 7000 meters were obtained using Dampney Method. Residual and regional anomalies were separated using upward continuation method at 8000 meters high. The result of the SVD on residual anomaly shows two negative anomalies on northwest – southeast. The zero miligal per meter square quantity coincides remarkably well with trace faults which is a part of the Sumatra Fault System. Two negative anomalies are located around the Sianok Segment and Sumani Segment.
NASA Astrophysics Data System (ADS)
Liu, Wenjing; Xu, Liang
2017-07-01
Based on Center of Orbit Determination in Europe (CODE) global ionospheric map (GIM) data, a statistical analysis of local total electron content (TEC) anomalies before 121 low-depth ( D ≤ 100 km) strong ( M w ≥ 7.0) earthquakes has been made using the sliding median differential calculation method combining with a new approach of image processing technique. The results show that significant local TEC anomalies could be observed 0-6 days before 80 earthquakes, about 66.1% out of the total. The positive anomalies occur more often than negative ones. For 26 cases, both positive and negative anomalies are observed before the shock. The pre-earthquake TEC anomalies show local time recurrence for 38 earthquakes, which occur around the same local time on different days. The local time distribution of the pre-earthquake TEC anomalies mainly concentrates between 19 and 06 LT, roughly from the sunset to sunrise. Most of the pre-earthquake TEC anomalies do not locate above the epicenter but shift to the south. The pre-earthquake TEC anomalies could be extracted near the magnetic conjugate point of the epicenter for 40 events, which is 50% out of the total 80 cases with significant local TEC anomalies. In general, the signs of the anomalies around epicenter and its conjugate point are the same, but the abnormal magnitude and lasting time are not.
NASA Astrophysics Data System (ADS)
Hong, F.
2017-12-01
After retrospection of years of practice of the earthquake prediction in Yunnan area, it is widely considered that the fixed-point earthquake precursory anomalies mainly reflect the field information. The increase of amplitude and number of precursory anomalies could help to determine the original time of earthquakes, however it is difficult to obtain the spatial relevance between earthquakes and precursory anomalies, thus we can hardly predict the spatial locations of earthquakes using precursory anomalies. The past practices have shown that the seismic activities are superior to the precursory anomalies in predicting earthquakes locations, resulting from the increased seismicity were observed before 80% M=6.0 earthquakes in Yunnan area. While the mobile geomagnetic anomalies are turned out to be helpful in predicting earthquakes locations in recent year, for instance, the forecasted earthquakes occurring time and area derived form the 1-year-scale geomagnetic anomalies before the M6.5 Ludian earthquake in 2014 are shorter and smaller than which derived from the seismicity enhancement region. According to the past works, the author believes that the medium-short-term earthquake forecast level, as well as objective understanding of the seismogenic mechanisms, could be substantially improved by the densely laying observation array and capturing the dynamic process of physical property changes in the enhancement region of medium to small earthquakes.
High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park
Finn, C.A.; Morgan, L.A.
2002-01-01
High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within Yellowstone Lake, which is mostly within the Yellowstone caldera, aeromagnetic lows also are associated with known hydrothermal activity in the lake. Many of the magnetic lows extend beyond the areas of alteration and hot springs, suggesting a more extensive currently active or fossil hydrothermal system than is currently mapped. Steep magnetic gradients, suggesting faults or fractures, bound the magnetic lows. This implies that fractures localize the hot springs. Magnetic gradient trends reflect the mapped Basin and Range structural trends of north and northwest, as well as northeasterly trends that parallel the regional trend of the Snake River Plain and the track of the Yellowstone hot spot which follow the Precambrian structural grain. These trends are found both at small scales such as in hydrothermal basins and at more regional fault scales, which suggests that the regional stress field and reactivated older structures may exert some control on localization of hydrothermal activity. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila
2017-01-01
An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.
Remote detection of geobotanical anomalies associated with hydrocarbon microseepage
NASA Technical Reports Server (NTRS)
Rock, B. N.
1985-01-01
As part of the continuing study of the Lost River, West Virginia NASA/Geosat Test Case Site, an extensive soil gas survey of the site was conducted during the summer of 1983. This soil gas survey has identified an order of magnitude methane, ethane, propane, and butane anomaly that is precisely coincident with the linear maple anomaly reported previously. This and other maple anomalies were previously suggested to be indicative of anaerobic soil conditions associated with hydrocarbon microseepage. In vitro studies support the view that anomalous distributions of native tree species tolerant of anaerobic soil conditions may be useful indicators of methane microseepage in heavily vegetated areas of the United States characterized by deciduous forest cover. Remote sensing systems which allow discrimination and mapping of native tree species and/or species associations will provide the exploration community with a means of identifying vegetation distributional anomalies indicative of microseepage.
Experimental Investigation into the Radar Anomalies on the Surface of Venus
NASA Technical Reports Server (NTRS)
Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.
2012-01-01
Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.
Boundary conformal anomalies on hyperbolic spaces and Euclidean balls
NASA Astrophysics Data System (ADS)
Rodriguez-Gomez, Diego; Russo, Jorge G.
2017-12-01
We compute conformal anomalies for conformal field theories with free conformal scalars and massless spin 1/2 fields in hyperbolic space ℍ d and in the ball B^d , for 2≤d≤7. These spaces are related by a conformal transformation. In even dimensional spaces, the conformal anomalies on ℍ2 n and B^{2n} are shown to be identical. In odd dimensional spaces, the conformal anomaly on B^{2n+1} comes from a boundary contribution, which exactly coincides with that of ℍ2 n + 1 provided one identifies the UV short-distance cutoff on B^{2n+1} with the inverse large distance IR cutoff on ℍ2 n + 1, just as prescribed by the conformal map. As an application, we determine, for the first time, the conformal anomaly coefficients multiplying the Euler characteristic of the boundary for scalars and half-spin fields with various boundary conditions in d = 5 and d = 7.
Satellite-Derived Sea Surface Temperature: Workshop-2
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1984-01-01
Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.
Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.
Intracranial developmental venous anomaly: is it asymptomatic?
Puente, A Bolívar; de Asís Bravo Rodríguez, F; Bravo Rey, I; Romero, E Roldán
2018-03-16
Intracranial developmental venous anomalies are the most common vascular malformation. In the immense majority of cases, these anomalies are asymptomatic and discovered incidentally, and they are considered benign. Very exceptionally, however, they can cause neurological symptoms. In this article, we present three cases of patients with developmental venous anomalies that presented with different symptoms owing to complications derived from altered venous drainage. These anomalies were located in the left insula, right temporal lobe, and cerebellum. The exceptionality of the cases presented as well as of the images associated, which show the mechanism through which the symptoms developed, lies in the low incidence of symptomatic developmental venous anomalies reported in the literature. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less
Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.
Reinforcing flood-risk estimation.
Reed, Duncan W
2002-07-15
Flood-frequency estimation is inherently uncertain. The practitioner applies a combination of gauged data, scientific method and hydrological judgement to derive a flood-frequency curve for a particular site. The resulting estimate can be thought fully satisfactory only if it is broadly consistent with all that is reliably known about the flood-frequency behaviour of the river. The paper takes as its main theme the search for information to strengthen a flood-risk estimate made from peak flows alone. Extra information comes in many forms, including documentary and monumental records of historical floods, and palaeological markers. Meteorological information is also useful, although rainfall rarity is difficult to assess objectively and can be a notoriously unreliable indicator of flood rarity. On highly permeable catchments, groundwater levels present additional data. Other types of information are relevant to judging hydrological similarity when the flood-frequency estimate derives from data pooled across several catchments. After highlighting information sources, the paper explores a second theme: that of consistency in flood-risk estimates. Following publication of the Flood estimation handbook, studies of flood risk are now using digital catchment data. Automated calculation methods allow estimates by standard methods to be mapped basin-wide, revealing anomalies at special sites such as river confluences. Such mapping presents collateral information of a new character. Can this be used to achieve flood-risk estimates that are coherent throughout a river basin?
NASA Astrophysics Data System (ADS)
Li, Wang; Yue, Jianping; Guo, Jinyun; Yang, Yang; Zou, Bin; Shen, Yi; Zhang, Kefei
2018-03-01
The Circum-Pacific seismic belt is the region heavily affected by earthquakes in the world. The relationship between earthquake (e.g., the geographic location, occurrence time, magnitude, and focal depth) and ionospheric anomalies in the belt was investigated using 100 M7.0+ earthquakes during 2006-2015. The ground-based GPS measurements and global ionosphere map (GIM) data were used for the analyses of the ionospheric variations preceding the earthquakes. The results indicated that the occurrence rate of total electron content (TEC) anomalies was proportional to the magnitude and inversely proportional to the focal depth to a certain degree, and the occurrence frequency of anomalies had a rising trend with the days getting close to the main shock. The occurrence rate of TEC anomalies in the Southern hemisphere was larger than that in the Northern hemisphere. Besides, the spatial characteristics of TEC anomalies showed that the anomalies in low-middle latitudes did not coincide with the epicenter, sometimes the anomalies were also observed in the corresponding conjugated region. However, the TEC anomalies in the high latitude usually appeared around the epicenter and within the seismogenic zone while no TEC anomalies appeared in the conjugated area. These results may have potential applications to the earthquake prediction in the Circum-Pacific seismic belt.
NASA Astrophysics Data System (ADS)
Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.
2017-04-01
A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braile, L.W.; Hinze, W.J.; Keller, G.R.
1978-06-01
Extensive gravity and aeromagnetic surveys have been conducted in critical areas of Kentucky, Illinois, and Indiana centering around the intersection of the 38th Parallel Lineament and the extension of the New Madrid Fault Zone. Available aeromagnetic maps have been digitized and these data have been processed by a suite of computer programs developed for this purpose. Seismic equipment has been prepared for crustal seismic studies and a 150 km long seismic refraction line has been observed along the Wabash River Valley Fault System. Preliminary basement rock and configuration maps have been prepared based on studies of the samples derived frommore » basement drill holes. Interpretation of these data are at a preliminary stage, but studies to this date indicate that the 38th Parallel Lineament features extend as far north as 39/sup 0/N and a subtle northeasterly striking magnetic and gravity anomaly cuts across Indiana from the southwest corner of the state, roughly on strike with the New Madrid Seismic Zone.« less
On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)
1984-01-01
A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.
Aeromagnetic maps of the Uinta and Piceance Basins and vicinity, Utah and Colorado
Grauch, V.J.S.; Plesha, Joseph L.
1989-01-01
In order to understand the evolution of sedimentary basins, it is important to understand their tectonic setting. In a U.S. Geological Survey (USGS) study of the Uinta and Piceance basins in Utah and Colorado, this understanding is approached through characterization of subsurface structure and lithology of a large region encompassing the basins. An important tool for interpreting these subsurface features is aeromagnetic data. Aeromagnetic anomalies represent variations in the strength and direction of the Earth's magnetic field that are produced by rocks containing a significant number of magnetic minerals (commonly magnetite). The shape and magnitude of an anomaly produced by one body of rock are complexly related to the amount of magnetic minerals present, the magnetic properties of those minerals (determined by a number of factors, including the history of the rock), and the shape of the rock body. In the study area, only crystalline basement rocks and volcanic rocks are likely to contain enough magnetic minerals to produce anomalies; sedimentary rocks and metasediments are generally so poor in magnetic minerals that their magnetic effects cannot be detected by the types of surveys presented in this report. Patterns of anomalies on aeromagnetic maps can reveal not only lithologic differences related to magnetite content, but structural features as well, such as faults that have juxtaposed crystalline rocks against sedimentary rocks, and upwarps of crystalline basement underlying sedimentary sequences. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times and have widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the differences in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all survey data, but computer methods to enhance or model regional features crossing the survey boundaries cannot be applied. On the other hand, these computer methods can be applied to the merged data, but the resolution of the data may be somewhat diminished. This report presents both composite and merged aeromagnetic maps for a large region that includes the Uinta Basin in Utah and the Piceance basin in Colorado (fig. 1).
Segmentation of singularity maps in the context of soil porosity
NASA Astrophysics Data System (ADS)
Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.
2016-04-01
Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).
Laureano-Rosario, Abdiel E; Symonds, Erin M; Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E
2017-12-19
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W·m -2 ; daily average turbidity anomaly >0.005 sr -1 ; SST anomaly >0.8 °C; and 3-day average MSL anomaly <-18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.
A remanent and induced magnetization model of Magsat vector anomalies over the west African craton
NASA Technical Reports Server (NTRS)
Toft, P. B.; Haggerty, S. E.
1986-01-01
Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.
A remanent and induced magnetization model of Magsat vector anomalies over the west African craton
NASA Astrophysics Data System (ADS)
Toft, P. B.; Haggerty, S. E.
1986-04-01
Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.
Continental magnetic anomaly constraints on continental reconstruction
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.
Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagatemore » downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.« less
NASA Astrophysics Data System (ADS)
Saltus, R. W.; Oakey, G.; Miller, E. L.; Jackson, R.
2012-12-01
The magnetic anomalies of the high arctic are dominated by a large domain (1000 x 1700 km; the High Arctic Magnetic High, HAMH) consisting of numerous high-amplitude magnetic high ridges with a complex set of orientations and by other smaller, but still fundamentally highly magnetic, domains. The magnetic potential anomaly field (also known as pseudogravity) of the HAMH shows a single large intensity high and underscores the crustal-scale thickness of this geophysical feature (which also forms a prominent anomaly on satellite magnetic maps). The seafloor morphology of this region includes the complex linear trends of the Alpha and Mendeleev ridges, but the magnetic expression of this domain extends beyond the complex bathymetry to include areas where Canada Basin sediments have covered the complex basement topography. The calculated magnetic effect of the bathymetric ridges matches some of the observed magnetic anomalies, but not others. We have analyzed and modeled the distinctive HAMH and other smaller magnetic high domains to generate estimates of their volume and to characterize the directionality of their component features. Complimentary processing and modeling of high arctic gravity anomalies allows characterization of the density component of these geophysical features. Spatially, the HAMH encompasses the Alpha and Mendeleev "ridges," that are considered to represent a major mafic igneous province. The term "Alpha-Mendeleev Large Igneous Province" is given to a domain mapped by tracing magnetic anomalies in a recent map published by AAPG (Grantz and others, 2009). On this map the province is described as "alkali basalt with ages between 120 and 90 Ma". New seismic and bathymetric data, collected as part of on-going research efforts for definition of extended continental shelf, are revealing new details about the Alpha ridge. One interesting development is the possible identification of a supervolcano that may represent a major locus of igneous activity. In the broader Arctic region, the term High Arctic Large Igneous Province (HALIP) refers to (now) scattered parts of a major plume-type basaltic eruption, many of which also show as magnetic highs on the current data compilation. Rocks that contribute to this province have been mapped in Arctic Canada, Greenland, Svalbard, Franz Josef Land and the DeLong Islands. Most HALIP volcanic rocks do not have reliable reported radiometric ages but seem to indicate two pulses of magmatism of around 130-120 Ma and 90-80 Ma. There are many fundamental open questions regarding the evolution of the Arctic, particularly for the opening and development of the Amerasian side. The mafic igneous rocks and their roots that make up large igneous provinces are a good target for regional magnetic interpretation. Our goal is to use a data-driven approach to characterize the geometries and volumes these features as the expression of major mafic (basaltic) elements to aid in tectonic reconstruction and understanding.
ADMAP-2: The next-generation Antarctic magnetic anomaly map
NASA Astrophysics Data System (ADS)
Golynsky, Alexander; Golynsky, Dmitry; Ferraccioli, Fausto; Jordan, Tom; Damaske, Detlef; Blankenship, Don; Holt, Jack; Young, Duncan; Ivanov, Sergey; Kiselev, Alexander; Jokat, Wilfried; Gohl, Karsten; Eagles, Graeme; Bell, Robin; Armadillo, Egidio; Bozzo, Emanuelle; Caneva, Giorgio; Finn, Carol; Forsberg, Rene; Aitken, Alan
2017-04-01
The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60°S (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014¸ Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field and diurnal effects, edited for high-frequency errors, and levelled to minimize line-correlated noise. The magnetic anomaly data collected mainly in the 21-st century clearly cannot be simply stitched together with the previous surveys. Thus, mutual levelling adjustments were required to accommodate overlaps in these surveys. The final compilation merged all the available aeromagnetic and marine grids to create the new composite grid of the Antarctic with minimal mismatch along the boundaries between the datasets. Regional coverage gaps in the composite grid will be filled with anomaly estimates constrained by both the near-surface data and satellite magnetic observations taken mainly from the CHAMP and Swarm missions. Magnetic data compilations are providing tantalizing new views into regional-scale subglacial geology and crustal architecture in interior of East and West Antarctica. The ADMAP-2 map provides a new geophysical foundation to better understand the geological structure and tectonic history of Antarctica and surrounding marine areas. In particular, it will provide improved constraints on the lithospheric transition of Antarctica to its oceanic basins, and thus enable improved interpretation of the geodynamic evolution of the Antarctic lithosphere that was a key component in the assembly and break-up of the Rodinia and Gondwana supercontinents. This work was supported by the Korea Polar Research Institute.
NASA Astrophysics Data System (ADS)
Seyoum, Wondwosen M.; Milewski, Adam M.
2017-12-01
Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.
Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements
NASA Astrophysics Data System (ADS)
Zakharenkova, Irina; Cherniak, Iurii; Shagimuratov, Irk
2017-08-01
The Weddell Sea Anomaly (WSA) is a summer ionospheric anomaly, which is characterized by a greater nighttime ionospheric density than that in daytime in the region near the Weddell Sea. We investigate the WSA signatures in the ground-based TEC (vertical total electron content) by using GPS and GLONASS measurements of the dense regional GNSS networks in South America. We constructed the high-resolution regional TEC maps for December 2014-January 2015. The WSA effects of the TEC exceed the noontime values are registered starting from 17 LT, it reaches its maximum at 01-05 LT and starts to disappear after 09 LT. Maximal TEC enhancements were as large as a factor of 2.5-3.5 and were registered at 03-04 LT. This effect was mainly localized in the geographical region of 55°S-75°S latitude and 80°W-30°W longitude, close to the Antarctic Peninsula. Further, we examined the WSA occurrence in the topside ionosphere by using GPS measurements from a zenith-looking GPS antenna on board three Swarm satellites to determine topside TEC (above ∼500 km altitude) at the topside ionosphere-plasmasphere system. Global maps of the topside TEC indicated that the zone with significant WSA effect in the topside TEC (TEC increase ∼2-4 times the noontime level) had a large spatial extent over southern Pacific and Atlantic Ocean. It was observed around 150°W-20°W and between 40°S and 70°S during 23 LT - 06 LT. For the first time, the WSA signatures were shown in the topside TEC data derived from the GPS measurements onboard the Swarm constellation. Independently, two other instruments - FORMOSAT-3/COSMIC radio occultation electron density profiles and in situ measurements by the Langmuir Probe instrument onboard Swarm satellites - were able to confirm: (1) the same location of the WSA zone as revealed in Swarm TEC; (2) the most-pronounced WSA effect, as a maximal electron density exceed over the noontime values, corresponds to altitudes above 400-500 km.
Sedimentary basins reconnaissance using the magnetic Tilt-Depth method
Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.
2010-01-01
We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to basement). The method is especially valuable as a reconnaissance tool in regions where drillhole or seismic information are either scarce, lacking, or ambiguous.
Integrated geophysical study of the northeastern margin of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shi, L.; Meng, X.; Guo, L.
2011-12-01
Tibetan Plateau, the so-called "Roof of the World", is a direct consequence of collision of the Indian plate with the Eurasian plate starting in the early Cenozoic time. The continent-continent collision is still going on. The northeastern margin of Tibetan Plateau is the front part of the Tibetan Plateau extends to mainland and favorable area for studying uplift and deformation of the Tibetan Plateau. In the past decades, a variety of geophysical methods were conducted to study geodynamics and geological tectonics of this region. We assembled satellite-derived free-air gravity anomalies with a resolution of one arc-minute from the Scripps Institution of Oceanography, and reduced them to obtain Complete Bouguer Gravity Anomalies. Then we gridded Complete Bouguer Gravity Anomalies on a regular grid, and subsequently processed them with the preferential continuation method to attenuate high-frequency noise and analyzed regional and residual anomalies. We also calculated tilt-angle derivative of Complete Bouguer Gravity Anomalies to derive clearer geological structures with more details. Then we calculated the depth distribution of the Moho discontinuity surface in this area by 3D density interface inversion. From the results of preliminary processing, we analyzed the main deep faults and geological tectonics in this region. We extracted seven important profiles' data of Complete Bouguer Gravity Anomalies in this area, and then did forward modeling and inversion on each profile with constraints of geological information and other geophysical data. In the future, we will perform 3D constrained inversion of Complete Bouguer Gravity Anomalies in this region for better understanding deep structure and tectonics of the northeastern margin of Tibetan Plateau. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26 2011PY0184), and the National Natural Science Foundation of China (40904033).
Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations
NASA Astrophysics Data System (ADS)
Kelly, K. A.; Drushka, K.; Thompson, L.
2015-12-01
Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.
Modeling of self-potential anomalies near vertical dikes.
Fitterman, D.V.
1983-01-01
The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author
NASA Astrophysics Data System (ADS)
Jacob, Jensen; Dyment, Jérôme; Yatheesh, V.
2014-01-01
the subduction processes along the Sunda Trench requires detailed constraints on the subducting lithosphere. We build a detailed tectonic map of the Wharton Basin based on reinterpretation of satellite-derived gravity anomalies and marine magnetic anomalies. The Wharton Basin is characterized by a fossil ridge, dated 36.5 Ma, offset by N-S fracture zones. Magnetic anomalies 18 to 34 (38-84 Ma) are identified on both flanks, although a large part of the basin has been subducted. We analyze the past plate kinematic evolution of the Wharton Basin by two-plate (India-Australia) and three-plate (India-Australia-Antarctica) reconstructions. Despite the diffuse plate boundaries within the Indo-Australian plate for the last 20 Ma, we obtain finite rotation parameters that we apply to reconstruct the subducted Wharton Basin and constrain the thickness, buoyancy, and rheology of the subducting plate. The lower subductability of younger lithosphere off Sumatra has important consequences on the morphology, with a shallower trench, forearc islands, and a significant inward deviation of the subduction system. This deviation decreases in the youngest area, where the Wharton fossil spreading center enters subduction: The discontinuous magmatic crust and serpentinized upper mantle, consequences of the slow spreading rates at which this area was formed, weaken the mechanical resistance to subduction and facilitate the restoration of the accretionary prism. Deeper effects include the possible creation of asthenospheric windows beneath the Andaman Sea, in relation to the long-offset fracture zones, and east of 105°E, as a result of subduction of the spreading center.
Cerium anomaly at microscale in fossils.
Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc
2015-09-01
Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.
Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2007-01-01
Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.
Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies
Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.
2004-01-01
Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.
Symbolic Time-Series Analysis for Anomaly Detection in Mechanical Systems
2006-08-01
Amol Khatkhate, Asok Ray , Fellow, IEEE, Eric Keller, Shalabh Gupta, and Shin C. Chin Abstract—This paper examines the efficacy of a novel method for...recognition. KHATKHATE et al.: SYMBOLIC TIME-SERIES ANALYSIS FOR ANOMALY DETECTION 447 Asok Ray (F’02) received graduate degrees in electri- cal...anomaly detection has been pro- posed by Ray [6], where the underlying information on the dynamical behavior of complex systems is derived based on
From the Cluster Temperature Function to the Mass Function at Low Z
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Markevitch, Maxim
2004-01-01
This XMM project consisted of three observations of the nearby, hot galaxy cluster Triangulum Australis, one of the cluster center and two offsets. The goal was to measure the radial gas temperature profile out to large radii and derive the total gravitating mass within the radius of average mass overdensity 500. The central pointing also provides data for a detailed two-dimensional gas temperature map of this interesting cluster. We have analyzed all three observations. The derivation of the temperature map using the central pointing is complete, and the paper is soon to be submitted. During the course of this study and of the analysis of archival XMM cluster observations, it became apparent that the commonly used XMM background flare screening techniques are often not accurate enough for studies of the cluster outer regions. The information on the cluster's total masses is contained at large off-center distances, and it is precisely the temperatures for those low-brightness regions that are most affected by the detector background anomalies. In particular, our two offset observations of the Triangulum have been contaminated by the background flares ("bad cosmic weather") to a degree where they could not be used for accurate spectral analysis. This forced us to expand the scope of our project. We needed to devise a more accurate method of screening and modeling the background flares, and to evaluate the uncertainty of the XMM background modeling. To do this, we have analyzed a large number of archival EPIC blank-field and closed-cover observations. As a result, we have derived stricter background screening criteria. It also turned out that mild flares affecting EPIC-pn can be modeled with an adequate accuracy. Such modeling has been used to derive our Triangulum temperature map. The results of our XMM background analysis, including the modeling recipes, are presented in a paper which is in final preparation and will be submitted soon. It will be useful not only for our future analysis but for other XMM cluster observations as well.
The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates
NASA Astrophysics Data System (ADS)
Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.
2018-02-01
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.
Brane boxes, anomalies, bending, and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, R.G.; Rozali, M.
1999-01-01
Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less
Model-Based Anomaly Detection for a Transparent Optical Transmission System
NASA Astrophysics Data System (ADS)
Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.
In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S.
1983-01-01
Magnetic field data acquired by NASA's MAGSAT satellite is used to construct a long-wavelength magnetic anomaly map for the U.S. midcontinent. This aids in interpretation of gross crustal geology (structure, lithologic composition, resource potential) of the region. Magnetic properties of minerals and rocks are investigated and assessed, to help in evaluation and modelling of crustal magnetization sources and depth to the Curie-temperature isotherm.
Absolute Positioning Using The Earth’s Magnetic Anomaly Field
2016-09-15
many of these limitations. We present a navigation filter which uses the Earth’s magnetic anomaly field as a navigation signal to aid an inertial...navigation system (INS) in an aircraft. The filter utilizes highly-accurate optically pumped cesium (OPC) magnetometers to make scalar intensity...measurements of the Earth’s magnetic field and compare them to a map using a marginalized particle filter approach. The accuracy of these mea- surements allows
NASA Astrophysics Data System (ADS)
Giusti, M.; Dziak, R. P.; Maia, M.; Perrot, J.; Sukhovich, A.
2017-12-01
In August of 2010 an unusually large earthquake sequence of >700 events occurred at the Famous and North Famous segments (36.5-37°N) of the Mid-Atlantic Ridge (MAR), recorded by an array of five hydrophones moored on the MAR flanks. The swarm extended spatially >70 km across the two segments. The non-transform offset (NTO) separating the two segements, which is thought to act as strucutural barrier, did not appear to impede or block the earthquake's spatial distribution. Broadband acoustic energy (1-30 Hz) was also observed and accompanied the onset of the swarm, lasting >20 hours. A total of 18 earthquakes from the swarm were detected teleseismically, four had Centroid-Moment Tensor (CMT) solutions derived. The CMT solutions indicated three normal faulting events, and one non-double couple (explosion) event. The spatio-temporal distribution of the seismicity and broadband energy show evidence of two magma dike intrusions at the North Famous segment, with one intrusion crossing the NTO. This is the first evidence for an intrusion event detected on the MAR south of the Azores since the 2001 Lucky Strike intrusion. Gravimetric data were required to identify whether or not the Famous area is indeed comprised of two segments down to the level of the upper mantle. A high resolution gravity anomaly map of the two segments has been realized, based on a two-dimensional polygons model (Chapman, 1979) and will be compared to gravimetric data originated from SUDACORES experiment (1998, Atalante ship, IFREMER research team). Combined with the earthquake observations, this gravity anomaly map should provide a better understanding the geodynamic processes of this non-transform offset and of the deep magmatic system driving the August 2010 swarm.
Lithospheric Structure of Greenland from Ambient Noise and Earthquake Surface Wave Tomography
NASA Astrophysics Data System (ADS)
Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.
2017-12-01
We present a high resolution seismic tomography model of Greenland's lithosphere from surface wave analysis. Regional and teleseismic events recorded by GLISN over the last 20 years were used. We developed a new group velocity correction method to alleviate the limitations of the sparse network and the relatively few local events. The global dispersion model GDM52 was used to calculate group delays from the earthquake to the boundaries of our study area. To better constrain the crustal structure of Greenland and cross-validate our group velocity correction approach, we also collected and processed several years of ambient noise data. An iterative reweighted generalized least-square scheme was used to invert for the group velocity maps and a Markov chain Monte Carlo technique was applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km. Our shear wave velocity model is consistent with previous studies but of higher resolution and we show that in regions with limited station coverage and local seismicity, we can rely on global models to construct relatively large local data sets that can provide some important constraints on regional structures. Our model contains the signature of known geological features and reveals three prominent anomalies: a shallow low-velocity anomaly between central-eastern and northeastern Greenland that correlates well with a previously measured high geothermal heat flux; a deep high-velocity anomaly extending from southwestern to northwestern Greenland that could be interpreted as the signature of a thick Archean keel; and a deep low-velocity anomaly in central-eastern Greenland that could be associated with lithospheric thinning and upwelling of hot asthenosphere material from the rifting of the Atlantic Ocean around 60 Ma and the passage of the Icelandic mantle plume beneath Greenland between 70 and 30 Ma. Upper mantle temperature and heat flux distribution beneath Greenland are further derived from our velocity model using a grid search approach and some thermodynamic constraints. By delineating the velocity and thermal properties of these anomalies, we hope to better understand how underlying geological and geophysical processes may impact the ice sheet dynamics and influence its potential contribution to future sea level changes.
Kunisaki, Shaun M.
2012-01-01
Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340
A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
NASA Astrophysics Data System (ADS)
Claessens, S. J.; Hirt, C.
2015-10-01
A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.
Preliminary Gravity and Ground Magnetic Data in the Arbuckle Uplift near Sulphur, Oklahoma
Scheirer, Daniel S.; Aboud, Essam
2008-01-01
Improving knowledge of the geology and geophysics of the Arbuckle Uplift in south-central Oklahoma is a goal of the Framework Geology of Mid-Continent Carbonate Aquifers project sponsored by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program (NCGMP). In May 2007, we collected ground magnetic and gravity observations in the Hunton Anticline region of the Arbuckle Uplift, near Sulphur, Oklahoma. These observations complement prior gravity data collected for a project sponsored by the National Park Service and helicopter electromagnetic (HEM) and aeromagnetic data collected in March 2007 for the NCGMP project. This report describes the instrumentation and processing that was utilized in the May 2007 geophysical fieldwork, and it presents preliminary results as gravity anomaly maps and magnetic anomaly profiles. Digital tables of gravity and magnetic observations are provided as a supplement to this report. Future work will generate interpretive models of these anomalies and will involve joint analysis of these ground geophysical measurements with airborne and other geophysical and geological observations, with the goal of understanding the geological structures influencing the hydrologic properties of the Arbuckle-Simpson aquifer.
Exploring the Nature of Galaxies with Abundance Gradient Anomalies in the SDSS-IV/MaNGA Survey
NASA Astrophysics Data System (ADS)
Keith, Celeste; Tremonti, Christy; Pace, Zach; Schaefer, Adam
2018-01-01
Disk galaxies are known to have radial oxygen abundance gradients with their centers being more chemically enriched than their outskirts. The steepness of the abundance gradient has recently been shown to correlate with galaxy stellar mass, on average. However, individual galaxies sometimes show pronounced deviations from the expected trends, such as flatter or steeper slopes than expected for their mass, abrupt changes in slope, or azimuthal asymmetries. Here we report on a systematic search for galaxies with abundance gradient anomalies using 2-D spectroscopy from the Sloan Digital Sky Survey IV MaNGA. We construct nebular oxygen and nitrogen abundance maps for 300 moderately inclined non-interacting disk galaxies and use visual inspection to identify the most interesting cases. We use this training set to develop an automated pipeline to flag galaxies with abundance anomalies from the larger MaNGA dataset for visual inspection. We combine the metallicity maps with kinematic data and measurements of the galaxies' local environments to better understand the processes that shape the radial abundance gradients of disk galaxies.
A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data.
Song, Hongchao; Jiang, Zhuqing; Men, Aidong; Yang, Bo
2017-01-01
Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k -nearest neighbor graphs- ( K -NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.
A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data
Jiang, Zhuqing; Men, Aidong; Yang, Bo
2017-01-01
Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k-nearest neighbor graphs- (K-NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity. PMID:29270197
NASA Astrophysics Data System (ADS)
Honsho, C.; Ura, T.; Kim, K.
2012-12-01
The Bayonnaise knoll caldera is one of the silicic submarine calderas in the Izu-Ogasawara Arc in Japan. In 2003, a large-scale hydrothermal deposit was found in the caldera, called the Hakurei deposit. The caldera had been explored by four surveys using autonomous underwater vehicles (AUVs) from 2008 to 2011, and the near-bottom magnetic field was mapped over about 75% of the caldera floor. We carried out detailed correction for the magnetic field produced by the vehicle body, which allowed us to take advantage of the vector anomaly instead of the total anomaly for the magnetic inversion. We applied the inversion method using the block model together with the Akaike's Bayesian information criterion (ABIC). One remarkable thing is that we recognized significant difference between the magnetic inversion result using the vector anomaly and that using the total anomaly: the latter result explains the observed total anomalies excellently, but does not explain the vector anomalies adequately. Except for a rare case where the vector anomaly is perpendicular to the main field throughout, the total anomaly should be sufficient for evaluating the entire field, provided that the data is collected in sufficiently high density. In fact, the track lines of our survey sometimes separate from each other by about twice the altitude of the vehicle (100 m), which can lead to considerable aliasing in the sampled field. The vector anomaly can provide vital information in such a situation. The obtained magnetization distribution is well correlated with the topography. The caldera rim and central cone have weak magnetization, which is consistent with the fact that they consist of dacite rocks. On the other hand, the caldera floor shows high magnetization, which implies the existence of basaltic rocks. The high magnetization appears to continue north and south beyond the caldera rim, forming an NS-trending high magnetization zone. Because the caldera floor is generally covered with sediment and pumice, the existence of basaltic rocks in the caldera floor has not yet been directly confirmed. As for the regional settings, however, there are NS-lined small knolls in the north and south of the caldera, which seem to continue across the caldera, and these knolls are known to consist of basaltic rocks. We postulate that the high magnetization zone of the caldera is due to basaltic volcanism, which formed the knoll chains and occurred after the formation of the silicic caldera. The Hakurei hydrothermal site is located on the southeastern rim of the caldera floor, near an inferred intersection of the caldera rim and the knoll chain. In the magnetization map, the Hakurei deposit is located near the edge of the high magnetization zone. We can clearly observe a zone of reduced magnetization associated with the deposit, probably caused by the high-temperature hydrothermal alteration of the host basaltic rock.
Geophysical Characterization of Some Terranes and the Geophysical Modeling of Candidate Suture Zones
NASA Technical Reports Server (NTRS)
Ravat, D.
1997-01-01
Indian participation in this project was terminated during the last year by a sudden withdrawal of support by the Department of Science and Technology, India, to the Indian Institute of Geomagnetism, Bombay. As a result, significant changes in the project focus had to be undertaken. Much of the work carried out at Southern Illinois University at Carbondale during the first year of the project anticipated the Indian participation and included development of computer programs to be used on gravity and magnetic data from the Indian subcontinent and preparations for fieldwork, tutorials, and workshops in India. Despite these setbacks, which were beyond our control, a number of significant tasks have been accomplished during the project period. These include: (1) Completion of digitization of the regional Bouguer gravity anomaly map of India and the regional ground total intensity magnetic anomaly map of India at an overdetermined spacing of 0.05 degrees. (2) We investigated and assessed the limitations of the Euler method using environmental examples because detailed aeromagnetic maps of parts of India were not available for interpretation by this method. (3) We also undertook an assessment of a suture zone between the Nyaza Craton (Archean) and the Mozambique Belt (Pan African) in the Kenya Rift, Africa, using gravity anomalies and the lithospheric seismological models. (4) We studied Magsat and high-altitude (approx. 4 km) aeromagnetic data over Canada.
Detailed gravity anomalies from Geos 3 satellite altimetry data
NASA Technical Reports Server (NTRS)
Gopalapillai, G. S.; Mourad, A. G.
1979-01-01
Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.
Nasreldin, Magda H A; Ibrahim, Eman A; Saad El-Din, Somaia A
2016-01-01
Branchial pouch-derived anomalies may arise from remnants of the first, second, or third/fourth branchial arches. Branchial pouch-related structures are found within the thyroid gland in the form of solid cell rests, epithelial lined cyst with or without an associated lymphoid component, thymic and/or parathyroid tissue, and less commonly in the form of heterotopic cartilage. We present a rare case of left solid thyroid swelling nearby two cervical nodules in a seven-year-old female with a clinical diagnosis suggestive of malignant thyroid tumor with metastasis to the cervical lymph nodes. Histopathological examination revealed that it was compatible with third/fourth branchial pouch-derived anomaly composed of mature cartilage and thymic and parathyroid tissues for clinical and radiological correlations.
Nasreldin, Magda H. A.; Ibrahim, Eman A.; Saad El-Din, Somaia A.
2016-01-01
Branchial pouch-derived anomalies may arise from remnants of the first, second, or third/fourth branchial arches. Branchial pouch-related structures are found within the thyroid gland in the form of solid cell rests, epithelial lined cyst with or without an associated lymphoid component, thymic and/or parathyroid tissue, and less commonly in the form of heterotopic cartilage. We present a rare case of left solid thyroid swelling nearby two cervical nodules in a seven-year-old female with a clinical diagnosis suggestive of malignant thyroid tumor with metastasis to the cervical lymph nodes. Histopathological examination revealed that it was compatible with third/fourth branchial pouch-derived anomaly composed of mature cartilage and thymic and parathyroid tissues for clinical and radiological correlations. PMID:26819565
NASA Technical Reports Server (NTRS)
Yuan, D. W.
1984-01-01
Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.
2012-12-01
The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190 μm, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.
NASA Astrophysics Data System (ADS)
Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed
2009-06-01
This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.
Missouri aeromagnetic and gravity maps and data: a web site for distribution of data
Kucks, Robert P.; Hill, Patricia L.
2005-01-01
Magnetic anomalies are due to variations in the Earth's magnetic field caused by the uneven distribution of magnetic minerals (primarily magnetite) in the rocks that make up the upper part of the Earth's crust. The features and patterns of the magnetic anomalies can be used to delineate details of subsurface geology, including the locations of buried faults and magnetite-bearing rocks and the depth to the base of sedimentary basins. This information is valuable for mineral exploration, geologic mapping, and environmental studies. The Missouri magnetic map is constructed from grids that combine information collected in 25 separate magnetic surveys conducted between 1943 and 1987. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form.
Zhu, J.; Currens, J.C.; Dinger, J.S.
2011-01-01
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wu, Jingfeng; Wells, Mark L.; Rember, Robert
2011-01-01
Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron and, potentially, on ocean productivity and climate change during the geologic past.
Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E.
2017-01-01
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity anomaly >0.005 sr−1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <−18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health. PMID:29257092
NASA Astrophysics Data System (ADS)
Di Filippo, Michele; Di Nezza, Maria
2016-04-01
Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost-effective method, we have also detection and location of underground buried structures using different instruments and techniques geophysical were carried out (EMI, GPR and microgravity) and so far excavated only in a targeted sector of the area of the anomaly labeled in order to test the validity of the geophysical survey.
Global and local magnetic mapping using CrowdMag data
NASA Astrophysics Data System (ADS)
Saltus, R.; Nair, M. C.
2016-12-01
NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's CIRES develop magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to map and model the Earth's magnetic field. However, the available measurements leave gaps in coverage, particularly for short-wavelength anomalies associated with man-made infrastructure ("urban noise"). In 2014, we started a project to address these gaps through the collection of vector magnetic data from digital magnetometers in smartphones. In October 2014, we released the "CrowdMag" Android and iOS apps for harvesting data from phones. Currently, the CrowdMag project has more than 10,000 enthusiastic users contributing more than 12 million magnetic data measurements from around the world. We present the first analysis results from the crowdsourced magnetic data. A global magnetic model derived solely from CrowdMag data is consistent to degree and order 4 with satellite-derived models such as World Magnetic Model. A unique contribution of CrowdMag project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. To demonstrate, we generated a magnetic map (by binning the data collected in 200x200m cells) of central Boulder, Colorado using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the potential reliability of crowdsourced magnetic maps and their applications to navigation and other applications.
Mariano, John; Grauch, V.J.
1988-01-01
Aeromagnetic anomalies are produced by variations in the strength and direction of the magnetic field of rocks that include magnetic minerals, commonly magnetite. Patterns of anomalies on aeromagnetic maps can reveal structures - for example, faults which have juxtaposed magnetic rocks against non-magnetic rocks, or areas of alteration where magnetic minerals have been destroyed by hydrothermal activity. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times with widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the difference in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all the survey data, but computer methods to enhance regional features crossing the survey boundaries may not be applied. On the other hand, computer methods can be applied to the merged data, but the accuracy of the data may be slightly diminished.
Depth to bedrock in the upper San Pedro Valley, Cochise County, southeastern Arizona
Gettings, M.E.; Houser, Brenda B.
2000-01-01
The thickness, distribution, and character of alluvial sediments that were deposited in the structural subbasins of the upper San Pedro basin in southeastern Arizona during the late Cenozoic provide important constraints on ground-water availability of the area. Two sedimentary units are recognized; the Oligocene and Miocene Pantano(?) Formation and an unnamed upper Miocene through lower Pleistocene unit termed basin fill. The complete Bouguer gravity anomaly map shows that there are three major structural subbasins in the upper San Pedro basin north of the international border with Mexico. The Tombstone subbasin is north of Tombstone, and two more are located north and south of Sierra Vista, respectively. This report concentrates on the two subbasins north and south of Sierra Vista. The northern subbasin (termed the Huachuca City subbasin) extends from east of Huachuca City to northeast of Whetstone, and the southern subbasin (termed the Palominas subbasin) extends southward from a line between Nicksville and Hereford to the border. The locations and shapes of these subbasins, thickness of basin fill, and depth to bedrock were estimated using a procedure involving interpolation of (1) the density functions derived in this study, (2) stratigraphic data from water wells, and (3) a residual gravity anomaly grid obtained by subtracting the gravity effects of the bedrock ranges bordering the basin from the complete Bouguer gravity anomaly. This procedure indicates that the subbasins are shallow and contain significant thicknesses of the Pantano(?) Formation in addition to the overlying younger basin fill. The maximum depth to bedrock is about 1,700 m in the Palominas subbasin and 800m in the Huachuca City subbasin; the basin-fill unit occupies the upper 250-350 m in general with local thickenings exceeding 1,000 m in the Palominas subbasin. An east-west trending buried bedrock high beneath Fort Huachuca, Sierra Vista, and Charleston separates the subbasins. The depth to bedrock over this high is 200-500 m and the basin-fill unit ranges from 100 to 200 m thick there. A number of previously unrecognized faults were identified and the lengths of some of the known faults were extended based on reconnaissance geologic mapping, study of driller's logs, interpretation of aerial photographs and thematic mapper satellite images, and inspection of contoured gravity and aeromagnetic anomaly data. Many faults that segment the main San Pedro basin and shape the boundaries of the subbasins are apparently pre-existing faults that have been reactivated by Basin and Range extension.
Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.
2018-04-01
The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.
NASA Astrophysics Data System (ADS)
Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.
2013-06-01
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.
Saltus, R.W.; Blakely, R.J.; Haeussler, Peter J.; Wells, R.E.
2005-01-01
High-resolution aeromagnetic surveys over forearc basins can detect faults and folds in weakly magnetized sediments, thus providing geologic constraints on tectonic evolution and improved understanding of seismic hazards in convergent-margin settings. Puget Sound, Washington, and Cook Inlet, Alaska, provide two case histories. In each lowland region, shallow-source magnetic anomalies are related to active folds and/or faults. Mapping these structures is critical for understanding seismic hazards that face the urban regions of Seattle, Washington, and Anchorage, Alaska. Similarities in aeromagnetic anomaly patterns and magnetic stratigraphy between the two regions suggest that we can expect the aeromagnetic method to yield useful structural information that may contribute to earth-hazard and energy resource investigations in other forearc basins.
Inspection of a Medieval Wood Sculpture Using Computer Tomography
NASA Astrophysics Data System (ADS)
Kapitany, K.; Somogyi, A.; Barsi, A.
2016-06-01
Computer tomography (CT) is an excellent technique for obtaining accurate 3D information about the human body. It allows to visualize the organs, bones and blood vessels, furthermore it enables to diagnose anomalies and diseases. Its spatial reconstruction capability supports other interesting applications, such as inspecting different, even valuable objects like ancient sculptures. Current paper presents a methodology of evaluating CT and video imagery through the example of investigating a wood Madonna with infant Jesus sculpture from the 14th century. The developed techniques extract the outer boundary of the statue, which has been triangulated to derive the surface model. The interior of the sculpture has also been revealed: the iron bolts and rivets as well as the woodworm holes can be mapped. By merging the interior and outer data (geometry and texture) interesting visualizations (perspective views, sections etc.) have been created.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2003-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
Photogrammetry and altimetry. Part A: Apollo 16 laser altimeter
NASA Technical Reports Server (NTRS)
Wollenhaupt, W. R.; Sjogren, W. L.
1972-01-01
The laser altimeter measures precise altitudes of the command and service module above the lunar surface and can function either with the metric (mapping) camera or independently. In the camera mode, the laser altimeter ranges at each exposure time, which varies between 20 and 28 sec (i.e., 30 to 43 km on the lunar surface). In the independent mode, the laser altimeter ranges every 20 sec. These altitude data and the spacecraft attitudes that are derived from simultaneous stellar photography are used to constrain the photogrammetric reduction of the lunar surface photographs when cartographic products are generated. In addition, the altimeter measurements alone provide broad-scale topographic relief around the entire circumference of the moon. These data are useful in investigating the selenodetic figure of the moon and may provide information regarding gravitational anomalies on the lunar far side.
Gravity anomaly detection: Apollo/Soyuz
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.
1976-01-01
The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.
NASA Technical Reports Server (NTRS)
Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Toronyi, B.; Puszta, S.
2012-01-01
In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.
Detailed gravity anomalies from GEOS-3 satellite altimetry data
NASA Technical Reports Server (NTRS)
Gopalapillai, G. S.; Mourad, A. G.
1978-01-01
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.
Remanent and induced contributions of the Earth's magnetization
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Lesur, Vincent; Thébault, Erwan; Dyment, Jérôme; Holschneider, Matthias
2016-04-01
Inverting the magnetic field of crustal origin for the magnetization distribution that generates it suffers from non-uniqueness. The reason for this is the so-called annihilators, i.e. structures that produce no visible magnetic field outside the sources. Gubbins et al., 2011 uses the complex vector Spherical Harmonics notation in order to separate the Vertical Integrated Magnetization (VIM) distribution into the parts that do and do not contribute to the magnetic field measured in source free regions. We use their formalism and convert a crustal SH model based on the WDMAM into a model for the equivalent magnetization. However, we extend their formalism and assume that the magnetization is confined within a layer of finite thickness. A different thickness is considered for the oceanic crust than for the continental one. It is well known that the large scales of the crustal field are entirely masked by the Earth's main field. Therefore, we complement the WDMAM based magnetization map (SH degrees 16 to 800) with the magnetization map for the large wavelengths (SH degrees 1-15) that was recently derived by Vervelidou and Thébault (2015) from a series of regional statistical analyses of the World Digital Magnetic Anomaly Map. Finally we propose a tentative separation of this magnetization map into induced and remanent contributions on a regional scale. We do so based on the direction of the core magnetic field. We discuss the implications of these results in terms of the tectonic history of the Earth.
Large-Angle Anomalies in the CMB
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; ...
2010-01-01
We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.
Mars gravity: high-resolution results from viking orbiter 2.
Sjogren, W L
1979-03-09
Doppler radio-tracking data have provided detailed measurements for a martian gravity map extending from 30 degrees S to 65 degrees N in latitude and through 360 degrees of longitude. The feature resolution is approximately 500 kilometers, revealing a huge anomaly associated with Olympus Mons, a mascon in Isidis Planitia, and other anomalies correlated with volcanic structure. Olympus Mons has been modeled with a 600-kilometer surface disk having a mass of 8.7 x 1021grams.
Decomposing Worldwide Complete Spherical Bouguer Gravity Anomaly Using 2-D Empirical Method
NASA Astrophysics Data System (ADS)
Firdaus, Ruhul; Mey Ekawati, Gestin
2017-04-01
Currently available worldwide gravity anomaly data provides a high-resolution (2’×2’) of Complete Spherical Bouguer Anomaly (CSBA) based on the available information of the Earth gravity field from surface and satellite measurements. The data has not only been provided and processed thoroughly but it also has been claimed to be appropriate for various geophysical applications. Therefore, the analysis of gravity anomaly is becoming increasingly significant for the earth sciences as a whole and assisting both shallow and deep geological problems. Earth gravity anomaly has to be analyzed carefully as it has very complex data due to anomaly mixing of the density masses spread over the Earth horizontally and vertically. The bigger the spatial coverage of data (e.g. global scale data), the more severe the data from anomaly mixing due to various wavelength. BEMD is an empirical method supposedly suitable with highly oscillation-mixing data. It can effectively isolate each local anomaly in details and is analogized as successively reverse moving average with local windowing. BEMD is designed to reduce multi-component, non-linear gravity field data to a series of single local anomaly contributions. Anomaly from a single body was assumed as a mono-component signal. The main advantage of BEMD processing techniques is to present the subtle details in the data which are not clearly identified in anomaly maps, without specifying any prior information about the nature of the source bodies. As the result, we have identified regional anomalies due to the drift of continental and oceanic masses considered as crust-regional anomaly (CRA). We remove the CRA from the CBA to provide surface-residual anomaly (SRA) where shallow geologic bodies reveal. Meanwhile, the CRA itself can be used as reference to reduce this high magnitude anomaly from any measurement data to exhibit only shallow body anomaly. Further analysis can be carried out to build a general understanding of the details and parameters of the shallower or deeper causative body distributions.
NASA Astrophysics Data System (ADS)
Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu
2017-06-01
To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.
Magnetic anomalies in the Cosmonauts Sea, off East Antarctica
NASA Astrophysics Data System (ADS)
Nogi, Y.; Hanyu, T.; Fujii, M.
2017-12-01
Identification of magnetic anomaly lineations and fracture zone trends in the Southern Indian Ocean, are vital to understanding the breakup of Gondwana. However, the magnetic spreading anomalies and fracture zones are not clear in the Southern Indian Ocean. Magnetic anomaly lineations in the Cosmonauts Sea, off East Antarctica, are key to elucidation of separation between Sri Lanka/India and Antarctica. No obvious magnetic anomaly lineations are observed from a Japanese/German aerogeophysical survey in the Cosmonauts Sea, and this area is considered to be created by seafloor spreading during the Cretaceous Normal Superchron. Vector magnetic anomaly measurements have been conducted on board the Icebreaker Shirase mainly to understand the process of Gondwana fragmentation in the Indian Ocean. Magnetic boundary strikes are derived from vector magnetic anomalies obtained in the Cosmonauts Sea. NE-SW trending magnetic boundary strikes are mainly observed along the several NW-SE oriented observation lines with magnetic anomaly amplitudes of about 200 nT. These NE-SW trending magnetic boundary strikes possibly indicate M-series magnetic anomalies that can not be detected from the aerogeophysical survey with nearly N-S observation lines. We will discuss the magnetic spreading anomalies and breakup process between Sri Lanka/India and Antarctica in the Cosmonauts Sea.
Infrared Microtransmission And Microreflectance Of Biological Systems
NASA Astrophysics Data System (ADS)
Hill, Steve L.; Krishnan, K.; Powell, Jay R.
1989-12-01
The infrared microsampling technique has been successfully applied to a variety of biological systems. A microtomed tissue section may be prepared to permit both visual and infrared discrimination. Infrared structural information may be obtained for a single cell, and computer-enhanced images of tissue specimens may be calculated from spectral map data sets. An analysis of a tissue section anomaly may gg suest eitherprotein compositional differences or a localized concentration of foreign matterp. Opaque biological materials such as teeth, gallstones, and kidney stones may be analyzed by microreflectance spectroscop. Absorption anomalies due to specular dispersion are corrected with the Kraymers-Kronig transformation. Corrected microreflectance spectra may contribute to compositional analysis and correlate diseased-related spectral differences to visual specimen anomalies.
Analysis of MAGSAT and surface data of the Indian region
NASA Technical Reports Server (NTRS)
Agarwal, G. C. (Principal Investigator)
1983-01-01
Techniques and significant results of an analysis of MAGSAT and surface data of the Indian region are described. Specific investigative tasks included: (1) use of the multilevel data at different altitudes to develop a model for variation of magnetic anomaly with altitude; (2) development of the regional model for the description of main geomagnetic field for the Indian sub-continent using MAGSAT and observatory data; (3) development of regional mathematical model of secular variations over the Indian sub-continent; and (4) downward continuation of the anomaly field obtained from MAGSAT and its combination with the existing observatory data to produce a regional anomaly map for elucidating tectonic features of the Indian sub-continent.
The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.
1999-01-01
Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
LIN, JYH-WOEI
2012-08-01
Principal Component Analysis (PCA) and image processing are used to determine Total Electron Content (TEC) anomalies in the F-layer of the ionosphere relating to Typhoon Nakri for 29 May, 2008 (UTC). PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May, 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly is highly localized; however, it becomes more intense and widespread with height. Potential causes of these results are discussed with emphasis given to acoustic gravity waves caused by wind force.
Aeromagnetic map of the Fossil Springs Roadless Area, Yavapai, Gila, and Coconino counties, Arizona
Davis, W.E.; Weir, G.W.
1984-01-01
The magnetic anomalies and patterns on the aeromagnetic map reflect variations of magnetization in the underlying rocks. Basaltic rocks contain moderate amounts of magnetic minerals, mainly magnetite, and possess strong intensities of magnetization. The more silicic volcanic rocks have much lower magnetization intensities. Sedimentary rocks contain little or no magnetite and are virtually nonmagnetic.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
NASA Astrophysics Data System (ADS)
Pang, Guanghua; Feng, Jikun; Lin, Jun
2016-11-01
We imaged the crust structure beneath Jilin Province and Liaoning Province in China with fundamental mode Rayleigh waves recorded by 60 broadband stations deployed in the region. Surface-wave empirical Green's functions were retrieved from cross-correlations of inter-station data and phase velocity dispersions were measured using a frequency-time analysis method. Dispersion measurements were then utilized to construct 2D phase velocity maps for periods between 5 and 35 s. Subsequently, the phase-dispersion curves extracted from each cell of the 2D phase velocity maps were inverted to determine the 3D shear wave velocity structures of the crust. The phase velocity maps at different periods reflected the average velocity structures corresponding to different depth ranges. The maps in short periods, in particular, were in excellent agreement with known geological features of the surface. In addition to imaging shear wave velocity structures of the volcanoes, we show that obvious low-velocity anomalies imaged in the Changbaishan-Tianchi Volcano, the Longgang-Jinlongdingzi Volcano, and the system of the Dunmi Fault crossing the Jingbohu Volcano, all of which may be due to geothermal anomalies.
Ocean gravity and geoid determination
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.
1977-01-01
Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.
Calculation and Analysis of magnetic gradient tensor components of global magnetic models
NASA Astrophysics Data System (ADS)
Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina
2014-05-01
Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
The hydrocarbon accumulations mapping in crystalline rocks by mobile geophysical methods
NASA Astrophysics Data System (ADS)
Nesterenko, A.
2013-05-01
Sedimentary-migration origin theory of hydrocarbons dominates nowadays. However, a significant amount of hydrocarbon deposits were discovered in the crystalline rocks, which corroborates the theory of non-organic origin of hydrocarbons. During the solving of problems of oil and gas exploration in crystalline rocks and arrays so-called "direct" methods can be used. These methods include geoelectric methods of forming short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS express-technology). Use of remote Earth sounding (RES) methods is also actual. These mobile technologies are extensively used during the exploration of hydrocarbon accumulations in crystalline rocks, including those within the Ukrainian crystalline shield. The results of explorations Four anomalous geoelectric zones of "gas condensate reservoir" type were quickly revealed as a result of reconnaissance prospecting works (Fig. 1). DTA "Obukhovychi". Anomaly was traced over a distance of 4 km. Approximate area is 12.0 km2. DTA"Korolevskaya". Preliminary established size of anomalous zone is 10.0 km2. The anomalous polarized layers of gas and gas-condensate type were determined. DTA "Olizarovskaya". Approximate size of anomaly is about 56.0 km2. This anomaly is the largest and the most intense. DTA "Druzhba". Preliminary estimated size of anomaly is 16.0 km2. Conclusions Long experience of a successful application of non-classical geoelectric methods for the solving of variety of practical tasks allow one to state their contribution to the development of a new paradigm of geophysical researches. Simultaneous usage of the remote sensing data processing and interpretation method and FSPEF and VERS technologies can essentially optimize and speed up geophysical work. References 1. S.P. Levashov. Detection and mapping of anomalies of "hydrocarbon deposit" type in the fault zones of crystalline arrays by geoelectric methods. / S.P. Levashov, N.A. Yakymchuk, I.N. Korchagin, V.V. Prilukov, J.N. Yakymchuk / / Oil. Gas. Novations. - 2011/4. - P. 10-17. Introduction. (in Russian); Fig. 1. The map of "gas condensate reservoir" type anomalous geoelectric zones on the area of human settlements Malin: 1 - a scale of the intensity of anomalous response, 2 - the zones of tectonic disturbances.
Shallow gas in Cenozoic sediments of the Southern North Sea
NASA Astrophysics Data System (ADS)
Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar
2013-04-01
Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting the underground emphasize the need for detailed knowledge on the underground for sound decisions on the future use of this area.
A magnetic anomaly of possible economic significance in southeastern Minnesota
Zietz, Isidore
1964-01-01
An aeromagnetic survey in southeastern Minnesota by the U. S. Geological Survey in cooperation with the State of Minnesota has revealed a high-amplitude, linear, and narrow magnetic feature that suggests a possible source of Precambrian iron-formation of economic value. For the past few years the U. S. Geological Survey has been conducting detailed geophysical studies of the midcontinent gravity anomaly--a broad, high-amplitude feature that extends from Lake Superior through the States of Minnesota, Iowa, Nebraska, and part of Kansas. As part of this study an aeromagnetic survey of the southern part of the State was made in cooperation with the State of Minnesota during the summer of 1963, in which a linear high-amplitude anomaly of the order of 4,000 gammas was discovered. Because of the high amplitude, the linearity, and the narrowness of the magnetic feature, it is believed the source may be Precambrian iron-formation of possible economic value. The anomalous area is in Fillmore County, approximately between the towns of Lanesboro and Peterson in the extreme southeastern part of the State. (See figures 1 and 2.) At the site of the anomaly, Cambrian sedimentary rocks occur in the valley of the Root River, and Ordovician rocks (nearly flat lying) mantle the upland areas. The uplands are largely covered by glacial deposits, which are relatively thin (Paul K. Sims, written communication, 1964). Depths to the Precambrian are estimated to range from 500 feet to 1,000 feet below the surface. The aeromagnetic map shown in figure 2 was compiled from continuous magnetic profiles made along east-west flight lines 1,000 feet above ground, and spaced approximately 1 mile apart. Contour intervals of 20, 100, and 500 gammas were used depending on the intensity. The instrument for the survey was a flux-gate type magnetometer (AN/ASQ-3A) which measures total-field variations. The contour map displays variations in magnetic pattern which are typical of shallow Precambrian rocks. Anomalies of the order of 1,000 gammas are shown along the east and west edges of the map. The outstanding feature is the previously mentioned linear positive anomaly that trends northeast and reaches a peak of 3,960 gammas. The positive anomaly is contoured from data on four consecutive profiles, but only two show high amplitudes. The high-amplitude anomalies along traverses 1 and 2 are shown in figure 3. Depth calculations suggest that the source of the anomaly lies about 1,000 feet below the surface. Assuming a dikelike source and magnetization resulting entirely from induction in the earth's field, several calculations were made in an attempt to fit the magnetic profile taken along the line AA' (see figs. 2 and 4), considered to be a typical cross-section of the magnetic anomaly. Comparisons are shown between observed and computed profiles. The fixed parameters used were (a) distance from detector to source of 2,000 ft; width of dike of 5,000 ft; dip of dike of 75?, 90?, 105? , and 120? , as shown. The best fit occurs when the dike is vertical or dips 75? to the southwest. For these cases, the susceptibility, k, is computed to be 0.016 c.g.s, units, and is comparable to k = 0.02+ calculated by Bath (1962) for the relatively unmetamorphosed iron-formation of the Main Megabi district in Minnesota where the induced magnetization was most likely the dominant magnetization. If the dominant magnetization for the anomaly in Fillmore County were remanent rather than induced, the economic importance of the anomaly would be greatly reduced. This anomaly seems sufficiently promising to warrant further geologic and geophysical investigation. Detailed ground magnetic and electrical studies would be useful to delineate the feature. In the final analysis, however, the presence of iron-formation can be determined only by the drill.
NASA Astrophysics Data System (ADS)
Shen, W.; Lin, F.; Ritzwoller, M. H.
2010-12-01
The transition region between the tectonic western US and the cratonic eastern US contains numerous significant geological regions (e.g., the Rocky Mountains, the Colorado Plateau, and the Rio Grande Rift), and also, unknowns (e.g, the location or extent of the east-west US dichotomy, the compensation of the high topography of the western Great Plains, the extensional mechanics of the Rio Grande Rift, and the structure of the mantle beneath the Colorado Plateau). The answers to these questions and others are critical to an understanding of the tectonics and tectonic history of this region and its impact on the cratonic eastern US. The recent deployments of seismic stations, particularly the EarthScope USArray Transportable Array (TA), provide an opportunity to construct a detailed 3-D structural model of the crust and upper mantle beneath this transition region, and thus allow us to address some of the questions listed above. We present results from ambient noise tomography (ANT) and teleseismic earthquake tomography by using data from TA stations within the western and central US. We processed continuous seismic noise data from ~600 TA stations from August 2008 to March 2010, which after data selection produces a data set with ~100,000 inter-station paths. Rayleigh wave phase speed maps between 6 and 40 sec period and Love wave phase speed maps between 8 and 30 sec with a resolution of ~60 km are constructed using eikonal tomography. In addition, we applied eikonal tomography (ET) to about 300 teleseismic earthquakes to obtain long-period (30 - 100 sec) Rayleigh wave phase speed maps and Love wave phase speeds maps (30 - 60 sec). By jointly inverting Rayleigh and Love phase speeds maps from ANT and earthquake tomography, we constructed a 3-D isotropic and radially anisotropic shear velocity model of the crust and upper mantle to ~150 km depth together with model uncertainties constrained by a Monte-Carlo inversion. The 3-D isotropic model reveals a variety of robust features in this transition region. In the uppermost crust, the main sedimentary basins (e.g., Green River, Uinta, Washakie, Powder River, Denver, Albuquerque, Permian, and Anadarko) are imaged. In the middle and lower crust where the low shear velocities from basins diminish, the Yellowstone hot spot becomes the main slow anomaly. In the uppermost mantle, high velocity anomalies are observed beneath the Colorado Plateau, the Wyoming craton, and the Great Plains. Although the Colorado Plateau shows more or less homogeneous shear velocity in its middle and towards its northern boundary, the other two main fast anomalies reveal inhomogeneous structures at depths deeper than 100 km. Two main low velocity anomalies are observed: one underlying the Snake River Plain which broadens and dips to the northeast and another U-shaped anomaly on the eastern margin of the Colorado Plateau. These velocity anomalies add to complexities at the transition between the tectonic western US and the stable eastern US. The location and uncertainty of the east-west shear velocity dichotomy also is constrained by this model.
A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate
NASA Astrophysics Data System (ADS)
Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.
2009-12-01
We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in other more local high-resolution tomographic studies, but covers the whole range of the European Plate. We also obtain three-dimensional mantle density structure by inversion of GRACE Bouguer anomalies locally adjusting density and the scaling relation between seismic wave speeds and density. We validate the new comprehensive model through comparison of recorded seismograms with numerical simulations based on SPECFEM3D. This work is a contribution towards the definition of a reference earth model for Europe. To this extent, in order to improve model dissemination and comparison, we propose the adoption of a common exchange format for tomographic earth models based on JSON, a lightweight data-interchange format supported by most high-level programming languages. We provide tools for manipulating and visualising models, described in this standard format, in Google Earth and GEON IDV.
Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-05-01
Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.
MX Siting Investigation, Gravity Survey - Delamar Valley, Nevada.
1981-07-20
reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri...DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours 2 Depth to Rock -Interpreted from In Pocket at Gravity Data End of Report iv E-TR-33-DM...ErtPX E-TR-3 3-DM 6 2.0 GRAVITY DATA REDUCTION DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer
The reduction, verification and interpretation of MAGSAT magnetic data over Canada
NASA Technical Reports Server (NTRS)
Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.; Nandi, A.
1982-01-01
Correlations between the MAGSAT scalar anomaly map produced at the Earth Physics ranch and other geophysical and geological data reveal relationships between high magnetic field and some metamorphic grade shields, as well as between low magnetic field and shield regions of lower metamorphic grade. An intriguing contrast exists between the broad low anomaly field over the Nasen-Gakkel Ridge (a spreading plate margin) and the high anomaly field over Iceland (part of a spreading margin). Both regions have high heat flow, and presumably thin magnetic crust. This indicates that Iceland is quite anomalous in its magnetic character, and possible similarities with the Alpha Ridge are suggested. Interesting correlations exist between MAGSAT anomalies around the North Atlantic, after reconstructing the fit of continents into a prerifting configuration. These correlations suggest that several orogenies in that region have not completely destroyed an ancient magnetization formed in high grade Precambrian rocks.
NASA Astrophysics Data System (ADS)
Ghezelbash, Reza; Maghsoudi, Abbas
2018-05-01
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.
EMPACT 3D: an advanced EMI discrimination sensor for CONUS and OCONUS applications
NASA Astrophysics Data System (ADS)
Keranen, Joe; Miller, Jonathan S.; Schultz, Gregory; Sander-Olhoeft, Morgan; Laudato, Stephen
2018-04-01
We recently developed a new, man-portable, electromagnetic induction (EMI) sensor designed to detect and classify small, unexploded sub-munitions and discriminate them from non-hazardous debris. The ability to distinguish innocuous metal clutter from potentially hazardous unexploded ordnance (UXO) and other explosive remnants of war (ERW) before excavation can significantly accelerate land reclamation efforts by eliminating time spent removing harmless scrap metal. The EMI sensor employs a multi-axis transmitter and receiver configuration to produce data sufficient for anomaly discrimination. A real-time data inversion routine produces intrinsic and extrinsic anomaly features describing the polarizability, location, and orientation of the anomaly under test. We discuss data acquisition and post-processing software development, and results from laboratory and field tests demonstrating the discrimination capability of the system. Data acquisition and real-time processing emphasize ease-of-use, quality control (QC), and display of discrimination results. Integration of the QC and discrimination methods into the data acquisition software reduces the time required between sensor data collection and the final anomaly discrimination result. The system supports multiple concepts of operations (CONOPs) including: 1) a non-GPS cued configuration in which detected anomalies are discriminated and excavated immediately following the anomaly survey; 2) GPS integration to survey multiple anomalies to produce a prioritized dig list with global anomaly locations; and 3) a dynamic mapping configuration supporting detection followed by discrimination and excavation of targets of interest.
Statistical Analysis of TEC Anomalies Prior to M6.0+ Earthquakes During 2003-2014
NASA Astrophysics Data System (ADS)
Zhu, Fuying; Su, Fanfan; Lin, Jian
2018-04-01
There are many studies on the anomalous variations of the ionospheric TEC prior to large earthquakes. However, whether or not the morphological characteristics of the TEC anomalies in the daytime and at night are different is rarely studied. In the present paper, based on the total electron content (TEC) data from the global ionosphere map (GIM), we carry out a statistical survey on the spatial-temporal distribution of TEC anomalies before 1339 global M6.0+ earthquakes during 2003-2014. After excluding the interference of geomagnetic disturbance, the temporal and spatial distributions of ionospheric TEC anomalies prior to the earthquakes in the daytime and at night are investigated and compared. Except that the nighttime occurrence rates of the pre-earthquake ionospheric anomalies (PEIAs) are higher than those in the daytime, our analysis has not found any statistically significant difference in the spatial-temporal distribution of PEIAs in the daytime and at night. Moreover, the occurrence rates of pre-earthquake ionospheric TEC both positive anomalies and negative anomalies at night tend to increase slightly with the earthquake magnitude. Thus, we suggest that monitoring the ionospheric TEC changes at night might be a clue to reveal the relation between ionospheric disturbances and seismic activities.