Science.gov

Sample records for anopheles kerteszia em

  1. Man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific lowlands of Colombia.

    PubMed

    Solarte, Y; Hurtado, C; Gonzalez, R; Alexander, B

    1996-01-01

    The daily man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities. PMID:8736081

  2. Man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific lowlands of Colombia.

    PubMed

    Solarte, Y; Hurtado, C; Gonzalez, R; Alexander, B

    1996-01-01

    The daily man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities.

  3. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-07-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.

  4. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-01-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  5. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-07-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  6. Anopheles (Kerteszia) lepidotus (Diptera: Culicidae), not the malaria vector we thought it was: Revised male and female morphology; larva, pupa, and male genitalia characters; and molecular verification

    PubMed Central

    HARRISON, BRUCE A.; RUIZ-LOPEZ, FREDDY; FALERO, GUILLERMO CALDERON; SAVAGE, HARRY M.; PECOR, JAMES E.; WILKERSON, RICHARD C.

    2015-01-01

    The name Anopheles (Kerteszia) lepidotus Zavortink, commonly used for an important malaria vector in the eastern cordillera of the Andes, is here corrected to An. pholidotus Zavortink. We discovered that An. (Ker.) specimens from Peru, and reared-associated specimens from Ecuador, had unambiguous habitus characters that matched those on the male holotype of An. lepidotus. However, the specimens do not exhibit characters of the female allotype and female paratypes of An. lepidotus, which are actually An. pholidotus. Our specimens are the first correctly associated females of An. lepidotus, which allow us to provide a new morphological interpretation for the adult habitus of this species. This finding is also corroborated by molecular data from a portion of the Cytochrome Oxidase I (COI) gene and ribosomal DNA Internal Transcribed Spacer 2 (rDNA ITS2). The pupal stage of An. lepidotus is described for the first time, and additional larval characters are also noted. Diagnostic morphological characters for the adult, pupal, and larval stages of An. pholidotus are provided to separate the two species. All stages of An. lepidotus are easily separated from other currently known species in subgenus Kerteszia and a new key to the females of An. (Kerteszia) is given. Previously published distribution, bionomics, and medical significance data are corrected and enhanced. PMID:26726290

  7. Isoenzymatic analysis of four Anopheles (Kerteszia) bellator Dyar & Knab (Diptera: Culicidae) populations.

    PubMed

    de Carvalho-Pinto, Carlos José; Lourenço-de-Oliveira, Ricardo

    2003-12-01

    Anopheles bellator is a small silvatic bromelia-breeding mosquito and is a primary human malaria vector species in Southern Brazil. The bromelia-breeding habitat of the species should accompany the Atlantic forest coastal distribution, where bromeliads are abundant. Nonetheless, records on An. bellator collections show a gap in the species geographical distribution. An. bellator has been recorded in Southern Brazil and in the Brazilian states of Bahia and Paraíba. It appears again in the island of Trinidad, in Trinidad and Tobago. The aim of this work was to measure gene flow between different populations of An. bellator collected in the northern and southern extremes of the geographic distribution of this species. Mosquitoes were captured in forest borders in Santa Catarina, São Paulo, and Bahia states in Brazil and in the island of Trinidad in Republic of Trinidad and Tobago. Genetic distances varied between 0.076 and 0.680, based on enzymatic profiles from 11 distinct isoenzymes. Results indicate the existence of low-level gene flow between Brazilian populations of An. bellator, and a gene flow was even lower between the Brazilian and the Trinidad populations. This finding lead us to hypothesize that An. bellator did not spread along the coast, but reached northeastern areas through inland routes.

  8. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha Lucía

    2013-01-01

    On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria. PMID:24402159

  9. Anopheles (Kerteszia) cruzii (DIPTERA: CULICIDAE) IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    PubMed Central

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen. PMID:25229220

  10. Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzii complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis

    PubMed Central

    2013-01-01

    Background Anopheles (Kerteszia) cruzii (Diptera: Culicidae) is a primary vector of human and simian malaria parasites in southern and southeastern Brazil. Earlier studies using chromosome inversions, isoenzymes and a number of molecular markers have suggested that An. cruzii is a species complex. Results In this study, a multilocus approach using six loci, three circadian clock genes and three encoding ribosomal proteins, was carried out to investigate in more detail the genetic differentiation between the An. cruzii populations from Florianópolis–Santa Catarina (southern Brazil) and Itatiaia–Rio de Janeiro States (southeastern Brazil). The analyses were performed first comparing Florianópolis and Itatiaia, and then comparing the two putative sympatric incipient species from Itatiaia (Itatiaia A and Itatiaia B). The analysis revealed high FST values between Florianópolis and Itatiaia (considering Itatiaia A and B together) and also between the sympatric Itatiaia A and Itatiaia B, irrespective of their function. Also, using the IM program, no strong indication of migration was found between Florianópolis and Itatiaia (considering Itatiaia A and B together) using all loci together, but between Itatiaia A and Itatiaia B, the results show evidence of migration only in the direction of Itatiaia B. Conclusions The results of the multilocus analysis indicate that Florianópolis and Itatiaia represent different species of the An. cruzii complex that diverged around 0.6 Mya, and also that the Itatiaia sample is composed of two sympatric incipient species A and B, which diverged around 0.2 Mya. Asymmetric introgression was found between the latter two species despite strong divergence in some loci. PMID:24063651

  11. Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus.

    PubMed

    Lorenz, Camila; Patané, José S L; Suesdek, Lincoln

    2015-10-01

    The mosquito species Anopheles cruzii and Anopheles homunculus are co-occurring vectors for etiological agents of malaria in southeastern Brazil, a region known to be a major epidemic spot for malaria outside Amazon region. We sought to better understand the biology of these species in order to contribute to future control efforts by (1) improving species identification, which is complicated by the fact that the females are very similar, (2) investigating genetic composition and morphological differences between the species, (3) inferring their phylogenetic histories in comparison with those of other Anophelinae, and (4) dating the evolutionary divergence of the two species. To characterise the species we used wing geometry and mitochondrial cytochrome oxidase subunit I (COI) gene as morphological and genetic markers, respectively. We also used the genes white, 28S, ITS2, Cytb, and COI in our phylogenetic and dating analyses. A comparative analysis of wing thin-plate splines revealed species-specific wing venation patterns, and the species An. cruzii showed greater morphological diversity (8.74) than An. homunculus (5.58). Concerning the COI gene, An. cruzii was more polymorphic and also showed higher haplotype diversity than An. homunculus, with many rare haplotypes that were displayed by only a few specimens. Phylogenetic analyses revealed that all tree topologies converged and showed [Anopheles bellator+An. homunculus] and [Anopheles laneanus+An. cruzii] as sister clades. Diversification within the subgenus Kerteszia occurred 2-14.2millionyears ago. The landmark data associated with wing shape were consistent with the molecular phylogeny, indicating that this character can distinguish higher level phylogenetic relationships within the Anopheles group. Despite their morphological similarities and co-occurrence, An. cruzii and An. homunculus show consistent differences. Phylogenetic analysis revealed that the species are not sister-groups but species that recently

  12. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

    PubMed Central

    LOAIZA, J. R.; BERMINGHAM, E.; SCOTT, M. E.; ROVIRA, J. R.; CONN, J. E.

    2010-01-01

    Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics. PMID:18826025

  13. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous

    PubMed Central

    Freitas, Lucas A.; Russo, Claudia A. M.; Voloch, Carolina M.; Mutaquiha, Olívio C. F.; Marques, Lucas P.; Schrago, Carlos G.

    2015-01-01

    The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur. PMID:26244561

  14. [Anopheles cruzii larvae found in bromelias in an urban area on the Brazilian coast].

    PubMed

    Marques, Gisela R A M; Forattini, Oswaldo Paulo

    2009-04-01

    The occurrence of Anopheles (Kerteszia) cruzii larvae is reported for the first time in bromelias on the ground located in an urban area within the municipality of Ilha Bela, on the northern coast of the State of São Paulo. From March 1998 to July 1999 312 immature forms of An. cruzii were captured, being that 8.6% of them were in bromelias in the urban environment, 40.1% in periurban bromelias and 51.3% in the forest. The average number of bromelias containing An. cruzii was 4.0% of the total investigated. The positive rate in the periurban and forested environments presented similar values. The presence of An. cruzii is probably due to their having been present previously in the forest, together with the frequent presence of these breeding places, food sources and appropriate shelter in the urban area. This set of factors makes it necessary to warn against the possibility of transferring infections from one environment to the other.

  15. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  16. Cladistic analysis of the subgenus Anopheles (Anopheles) Meigen (Diptera: Culicidae) based on morphological characters.

    PubMed

    Collucci, Eliana; Sallum, Maria Anice Mureb

    2007-06-01

    In the present study, we used morphological characters to estimate phylogenetic relationships among members of the subgenus Anopheles Meigen. Phylogenetic analyses were carried out for 36 species of Anopheles (Anopheles). An. (Stethomyia) kompi Edwards, An. (Lophopodomyia) gilesi (Peryassú), Bironella hollandi Taylor, An. (Nyssorhynchus) oswaldoi (Peryassú) and An. (Cellia) maculatus Theobald were employed as outgroups. One hundred one characters of the external morphology of the adult male, adult female, fourth-instar larva, and pupa were scored and analyzed under the parsimony criterion in PAUP. Phylogenetic relationships among the series and several species informal groups of Anopheles (Anopheles) were hypothesized. The results suggest that Anopheles (Anopheles) is monophyletic. Additionally, most species groups included in the analysis were demonstrated to be monophyletic.

  17. Habitats and distribution of Anopheles sinensis and associated Anopheles hyrcanus group in Japan.

    PubMed

    Rueda, Leopoldo M; Iwakami, Masashiro; O'Guinn, Monica; Mogi, Motoyoshi; Prendergast, Brian E; Miyagi, Ichiro; Toma, Takako; Pecor, James E; Wilkerson, Richard C

    2005-12-01

    Mosquito collections were carried out in August 2002 and July 2003 in Japan. Anopheles sinensis of the Hyrcanus Group, Myzomyia Series of Anopheles, was the most common species encountered. The distribution and habitats of 5 Anopheles Hyrcanus Group species are included. Eight species belonging to Aedes, Culex, and Uranotaenia were found associated with An. sinensis in rice paddies and a variety of other larval habitats.

  18. Tools for Anopheles gambiae Transgenesis.

    PubMed

    Volohonsky, Gloria; Terenzi, Olivier; Soichot, Julien; Naujoks, Daniel A; Nolan, Tony; Windbichler, Nikolai; Kapps, Delphine; Smidler, Andrea L; Vittu, Anaïs; Costa, Giulia; Steinert, Stefanie; Levashina, Elena A; Blandin, Stéphanie A; Marois, Eric

    2015-06-01

    Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the target species. Transgenesis in disease vector mosquitoes has existed since the 2000s but has remained limited by the delicate biology of these insects. Here, we report a compilation of the transgenesis tools that we have designed for the malaria vector Anopheles gambiae, including new docking strains, convenient transgenesis plasmids, a puromycin resistance selection marker, mosquitoes expressing cre recombinase, and various reporter lines defining the activity of cloned promoters. This toolbox contributed to rendering transgenesis routine in this species and is now enabling the development of increasingly refined genetic manipulations such as targeted mutagenesis. Some of the reagents and procedures reported here are easily transferable to other nonmodel species, including other disease vector or agricultural pest insects.

  19. Brain Proteomics of Anopheles gambiae

    PubMed Central

    Dwivedi, Sutopa B.; Muthusamy, Babylakshmi; Kumar, Praveen; Kim, Min-Sik; Nirujogi, Raja Sekhar; Getnet, Derese; Ahiakonu, Priscilla; De, Gourav; Nair, Bipin; Gowda, Harsha; Prasad, T.S. Keshava; Kumar, Nirbhay

    2014-01-01

    Abstract Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future. PMID:24937107

  20. Insecticide resistance in Anopheles sacharovi

    PubMed Central

    de Zulueta, Julian

    1959-01-01

    A series of observations is presented on the susceptibility or resistance to insecticides of Anopheles sacharovi in Greece, Iran, Italy, Romania and Turkey. High physiological resistance to DDT was observed in the Tarsus area of southern Turkey. In Greece very marked physiological resistance to dieldrin was found in all the areas examined and was associated, at least in the Peloponnese, with similar resistance to DDT, affecting, however, only a part of the sacharovi population. In Italy and Romania, after 10 years' use of DDT, sacharovi is still susceptible to it; long use of BHC in Romania has not resulted in the development of resistance to dieldrin or to BHC. Further investigation of the situation in Iran is considered necessary. The fact that the use of DDT in Greece, after the development of resistance to this insecticide in 1951, has not resulted in the formation of a highly resistant mosquito population is considered to be due to the irritant effect of the DDT on susceptible mosquitos, causing them to leave sprayed surfaces before they have picked up a lethal dose. The information to date points to the existence in A. sacharovi of two independent mechanisms of physiological resistance—one to DDT and another to dieldrin and BHC—which may or may not be present together. PMID:13847916

  1. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    PubMed

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes.

  2. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    PubMed

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  3. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    PubMed

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe.

  4. Neuropeptides and Peptide Hormones in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  5. Filaria vector competence of some Anopheles species.

    PubMed

    Zahedi, M; White, G B

    1994-03-01

    The filaria vector competence of Anopheles stephensi was compared with Brugia-susceptible Aedes aegypti Liverpool strain, An. gambiae Badagry Lagos strain and An. dirus Perlis Malaysia strain. An. stephensi ingested more Brugia pahangi microfilariae, had the highest infectivity rate and yielded more infective mosquitoes than the other two anopheline species. The overall vector competence of An. stephensi was 0.13 times that of Ae. aegypti, 0.62 times that of An. gambiae and 2.17 times that of An. dirus. However, heavy mortality among infected An. stephensi in the present investigation indicates that the filaria vectorial capacity of the mosquito might be limited epidemiologically. The relationship between filaria vector competence and mosquito foregut armature is discussed. It was observed that the relative vector competence of the three anopheline species tested was in the same order as their relative degrees of armature elaboration. The converse would be expected if foregut armatures really give partial protection to the mosquitoes against filarial infection. It is suggested that high host microfilariae density favours larval survival proportional to the degree of armature development in Anopheles (Cellia) species.

  6. Confirmation of Anopheles varuna in vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus.

    PubMed

    Van Bortel, W; Harbach, R E; Trung, H D; Roelants, P; Backeljau, T; Coosemans, M

    2001-12-01

    Malaria control programs in Southeast Asia are faced with several questions concerning vector behavior and species identification, which need to be answered to consolidate and further improve the results of control practices. The vector system in Southeast Asia is complex because of the number of species potentially involved in malaria transmission. Additionally, the follow-up and evaluation of preventive control measures are hampered by the misidentification of vectors due to overlapping morphological characters of the female mosquitoes. In central Vietnam, control practices are aimed at 2 main species, Anopheles dirus s.l. and Anopheles minimus s.l. These reputed vectors were studied in an area of Binh Thuan Province of south-central Vietnam. Different collection methods were used to capture mosquitoes quarterly during a 1-year period. Mosquitoes were identified in the field and later subjected to detailed morphological examination and polymerase chain reaction-restriction fragment length polymorphism analysis. What was thought to be an unusual morphotype of An. minimus was shown to be Anopheles varuna, and most specimens identified as the former species in the field proved to be the latter species. Very few An. minimus individuals were found during the study period. The population of An. varuna was found to be highly zoophilic, and based on this behavior, it cannot be considered a vector in Vietnam. Because this species was previously being misidentified as An. minimus, a nonvector was mistargeted as a malaria vector in Binh Thuan Province. Anopheles dirus, which was found positive for Plasmodium falciparum circumsporozoite via enzyme-linked immunosorbent assay, is clearly the main vector in this area. Despite the fact that several potential secondary vectors were found during the study, the primary target for vector control in the region should be An. dirus.

  7. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria.

    PubMed

    Okorie, P N; Ademowo, O G; Irving, H; Kelly-Hope, L A; Wondji, C S

    2015-03-01

    The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock-down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real-time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies. PMID:25417803

  8. The mosquito Anopheles (Cellia) oreios sp. n., formerly species 6 of the Australasian Anopheles farauti complex, and a critical review of its biology and relation to disease.

    PubMed

    Bangs, M J; Taai, K; Howard, T M; Cook, S; Harbach, R E

    2015-03-01

    Species 6 of the Australasian Anopheles farauti sibling species complex (Diptera: Culicidae) is described and formally named Anopheles oreios Bangs & Harbach, sp. n. Adult, pupal and fourth-instar larval specimens collected in the Baliem Valley, Papua Province, Indonesia, are characterized and compared with those of Anopheles farauti, Anopheles hinesorum, Anopheles irenicus and Anopheles torresiensis (formerly informally denoted as species 1, 2, 7 and 3, respectively). The variable wings of adult females, the male genitalia, the pupa and the fourth-instar larva of An. oreios are illustrated and DNA sequence data are included for regions coding for sections of the mitochondrial COI and COII genes. The biology of An. oreios and its relation to malaria transmission are discussed in detail and contrasted with the biology and disease relations of some members of the An. farauti and Anopheles punctulatus sibling species complexes.

  9. DDT-resistance in Anopheles stephensi.

    PubMed

    DAVIDSON, G; JACKSON, C E

    1961-01-01

    In view of the increasing number of reports from different parts of the world indicating resistance to DDT in both adults and larvae of Anopheles stephensi, an important malaria vector, a series of laboratory studies has been carried out on the degree, the pattern and the mode of inheritance of resistance in this species. A DDT-resistant strain from Iraq and a susceptible strain from India were used.In four sets of observations made in the course of tests on both adults and larvae a monofactorial type of inheritance was indicated, and the factor involved was shown to be dependent for its expression on the genetic background.DDT-resistance in A. stephensi appears to be similar in most respects to that in A. sundaicus. PMID:13883789

  10. Chromosomal differences in populations of Anopheles nuneztovari

    PubMed Central

    Kitzmiller, J. B.; Kreutzer, R. D.; Tallaferro, E.

    1973-01-01

    Anopheles nuneztovari from 3 localities in Brazil, 2 in Venezuela, and 1 in Colombia were subjected to chromosome analysis. The Venezuelan and Colombian populations, responsible for malaria transmission in certain areas of these countries, differ in an X-chromosome arrangement from the Brazilian specimens, the difference apparently being due to the fixation of an inversion in the homozygous state in one population. It was possible to identify 216 specimens from Venezuela and Colombia and 190 from Brazil by the X-chromosome. A. nuneztovari and its close relatives may be easily distinguished in this way. Diagnostic descriptions of the chromosomes and a standard map, based on the Brazilian population, are provided. ImagesFig. 2Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4543549

  11. Comparison of transmission parameters between Anopheles argyritarsis and Anopheles pseudopunctipennis in two ecologically different localities of Bolivia

    PubMed Central

    2013-01-01

    Background Anopheles (Anopheles) pseudopunctipennis is a recognized malaria vector in the slopes of the Andes of Bolivia. There, other species might be involved in malaria transmission and one candidate could be Anopheles argyritarsis. Although it is generally admitted that this species is not a malaria vector in the neotropical region, its potential role in transmission is still controversial and this situation has to be cleared, at least for Bolivia. Comparing the vectorial efficiency of An. pseudopunctipennis with that of An. argyritarsis could solve the question. Methods The two species were sampled throughout Bolivia to estimate their degree of co-existence in their distribution range. Vectorial efficiencies of the two species were compared in two ecologically different localities where the species were sympatric by analysing their vectorial capacities and components (i e, human biting rates, human biting index, survival, durations of the gonotrophic cycle and extrinsic cycle), and the entomological inoculation rates (EIR). Mosquitoes were sampled monthly during more than one year in the two localities. A monthly sample consisted in hourly captures in four houses (inside and outside) in each locality, during four consecutive nights. Climatic variables (temperature, humidity, potential evapo-transpiration and precipitations) were recorded to better understand variability in the entomological parameters. Relationships were analysed using multivariate methods. Results Anopheles pseudopunctipennis and An. argyritarsis are “altitude” species, sharing the same geographical distribution range in the Andes of Bolivia. No Plasmodium parasite was identified in An. argyritarsis and estimates of the vectorial capacity indicated that it is not a malaria vector in the two studied localities, unlike An. pseudopunctipennis which showed positive EIRs. This latter species, although not a very good malaria vector, exhibited better life traits values and better behavioural

  12. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, South-West Nigeria

    PubMed Central

    Okorie, Patricia N.; Ademowo, George O.; Irving, Helen; Kelly-Hope, Louise A.; Wondji, Charles S.

    2014-01-01

    The emergence of insecticide resistance in Anopheles mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and frequency of knockdown resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and An. gambiae Giles ( (Diptera: Culicidae) from Ojoo and Bodija areas of Ibadan, South-West, Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using WHO bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification and kdr genotyping was determined using the Taqman real time PCR assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodja samples (n=186) comprised of An. gambiae (91.4%) and An. coluzzii (8.1%) while one An. coluzzii / An. gambiae hybrid was recorded. All mosquitoes screened in Ojoo (n=26) were An. gambiae. The 1014F kdr mutation was detected at a frequency of 24.52% and 5.8% in Bodija and Ojoo respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the resistance and highlights the need to implement insecticide resistance management strategies. PMID:25417803

  13. Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum

    PubMed Central

    Hume, Jennifer CC; Tunnicliff, Mark; Ranford-Cartwright, Lisa C; Day, Karen P

    2007-01-01

    Background The susceptibility of anopheline mosquito species to Plasmodium infection is known to be variable with some mosquitoes more permissive to infection than others. Little work, however, has been carried out investigating the susceptibility of major malaria vectors to geographically diverse tropical isolates of Plasmodium falciparum aside from examining the possibility of infection extending its range from tropical regions into more temperate zones. Methods This study investigates the susceptibility of two major tropical mosquito hosts (Anopheles gambiae and Anopheles stephensi) to P. falciparum isolates of different tropical geographical origins. Cultured parasite isolates were fed via membrane feeders simultaneously to both mosquito species and the resulting mosquito infections were compared. Results Infection prevalence was variable with African parasites equally successful in both mosquito species, Thai parasites significantly more successful in An. stephensi, and PNG parasites largely unsuccessful in both species. Conclusion Infection success of P. falciparum was variable according to geographical origin of both the parasite and the mosquito. Data presented raise the possibility that local adaptation of tropical parasites and mosquitoes has a role to play in limiting gene flow between allopatric parasite populations. PMID:17958900

  14. Laser induced mortality of Anopheles stephensi mosquitoes

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  15. RNAi Trigger Delivery into Anopheles gambiae Pupae

    PubMed Central

    Regna, Kimberly; Harrison, Rachel M.; Heyse, Shannon A.; Chiles, Thomas C.; Michel, Kristin; Muskavitch, Marc A. T.

    2016-01-01

    RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel. PMID:27023367

  16. Laser induced mortality of Anopheles stephensi mosquitoes

    PubMed Central

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  17. Anopheles punctulatus group: evolution, distribution, and control.

    PubMed

    Beebe, Nigel W; Russell, Tanya; Burkot, Thomas R; Cooper, Robert D

    2015-01-01

    The major malaria vectors of the Southwest Pacific belong to a group of closely related mosquitoes known as the Anopheles punctulatus group. The group comprises 13 co-occurring species that either are isomorphic or carry overlapping morphological features, and today several species remain informally named. The advent of species-diagnostic molecular tools in the 1990s permitted a new raft of studies into the newly differentiated mosquitoes of this group, and these have revealed five species as the region's primary malaria vectors: An. farauti, An. hinesorum, An. farauti 4, An. koliensis, and An. punctulatus. Species' distributions are now well established across Papua New Guinea, northern Australia, and the Solomon Archipelago, but little has been documented thus far in eastern Indonesia. As each species reveals significant differences in distribution and biology, the relative paucity of knowledge of their biology or ecology in relation to malaria transmission is brought into clearer focus. Only three of the species have undergone some form of spatial or population genetics analyses, and this has revealed striking differences in their genetic signatures throughout the region. This review compiles and dissects the key findings for this important mosquito group and points to where future research should focus to maximize the output of field studies in developing relevant knowledge on these malaria vectors.

  18. Laser induced mortality of Anopheles stephensi mosquitoes.

    PubMed

    Keller, Matthew D; Leahy, David J; Norton, Bryan J; Johanson, Threeric; Mullen, Emma R; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  19. Metabolic pathways in Anopheles stephensi mitochondria.

    PubMed

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A; Luckhart, Shirley

    2008-10-15

    No studies have been performed on the mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that have a significant impact on malaria parasite transmission in endemic regions. In the present study, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells [ASE (Anopheles stephensi Mos. 43) cell line] from A. stephensi, a major vector of malaria in India, South-East Asia and parts of the Middle East. ASE cell mitochondria share many features in common with mammalian muscle mitochondria, despite the fact that these cells are of larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays as major a role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize proline at a rate comparable with that of alpha-glycerophosphate. However, the proline pathway appeared to differ from the currently accepted pathway, in that oxoglutarate could be catabolized completely by the tricarboxylic acid cycle or via transamination, depending on the ATP need.

  20. “Saltwater Anopheles gambiae” on Mauritius*

    PubMed Central

    Paterson, H. E.

    1964-01-01

    In this paper the author reports the results of three months' study of the saltwater-breeding member of the Anopheles gambiae complex of sibling species on Mauritius. There is evidence for the views that this form's distribution on the island is limited by the availability of suitable breeding areas, that it does not usually disperse far from the breeding grounds or coast, and that it is probably not an important vector except, perhaps, in the near vicinity of its breeding places. Some new evidence is presented in support of the view that this form (and forms A and B) are distinct species. This turns on the observed close coexistence of these three forms on Mauritius, supported by a theoretical consideration of what would be expected to happen in such circumstances if a system of random mating prevailed. Evidence is given that the Mauritian saltwater-breeding form of the A. gambiae complex is conspecific with the form occurring on the east coast of Africa. The practical importance of reaching general agreement on the evolutionary status of the members of the A. gambiae complex is emphasized. PMID:14278002

  1. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia.

    PubMed

    Stoops, Craig A; Rusmiarto, Saptoro; Susapto, Dwiko; Munif, Amurl; Andris, Heri; Barbara, Kathryn A; Sukowati, Supratman

    2009-12-01

    A 15-month bionomic study of Anopheles species was conducted in two ecologically distinct villages (coastal and upland) of Sukabumi District, West Java, Indonesia from June 2006 to September 2007. Mosquitoes were captured using human-landing collections at both sites. During the study, a total of 17,100 Anopheles mosquitoes comprising 13 Anopheles species were caught: 9,151 at the coastal site and 7,949 at the upland site. Anopheles barbirostris, Anopheles maculatus, and Anopheles vagus were the predominant species caught at the coastal site, and Anopheles aconitus, Anopheles barbirostris, and An. maculatus predominated in the upland site. Overall, species were exophagic at both sites, but there was variation between species. Anopheles aconitus was endophagic at the coastal site, exophagic at the upland site, collected most often in April 2007 and had a peak landing time between 22:00 and 23:00. Anopheles sundaicus was only collected at the coastal site, exophagic, collected most often in October 2006, and had a peak landing time between 19:00 and 20:00. Potential malaria vector species such An. aconitus, An. maculatus, and An. sundaicus were present throughout the year. None of the 7,770 Anopheles tested using CSP-ELISA were positive for malaria, although the risk for malaria outbreaks in Sukabumi district remains high.

  2. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis

    PubMed Central

    2011-01-01

    Background The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. Methods F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. Results The oocyst rate was significantly higher in the molecular S form (79.07%) than in the M form (57.81%, Fisher's exact test p < 0.001) and in Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p < 0.001). Mean ± s.e.m. number of oocyst was greater in the An. gambiae S form (1.72 ± 0.26) than in the An. gambiae M form (0.64 ± 0.04, p < 0.0001) and in the An. arabiensis group (0.58 ± 0.04, vs. S group, p < 0.0001). Sporozoite rate was also higher in the molecular form S (83.52%) than in form M (50.98%, Fisher's exact test p < 0.001) and Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p < 0.001). Conclusion Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis. PMID:21929746

  3. Microsporidium Infecting Anopheles supepictus (Diptera: Culicidae) Larvae

    PubMed Central

    Omrani, Seyed-Mohammad; Moosavi, Seyedeh-Fatemeh; Manouchehri, Kourosh

    2016-01-01

    Background: Microsporidia are known to infect a wide variety of animals including mosquitoes (Diptera: Culicidae). In a recent study on the mosquito fauna of Chahar Mahal and Bakhtiari Province, at the central western part of Iran, a few larvae of Anopheles superpictus were infected with a microsporidium-resembled microorganism. Current investigation deals with the identification of the responsible microorganism at the genus level. Methods: Fresh infected larvae were collected from the field. After determining the species identity they were dissected to extract their infective contents. Wet preparations were checked for general appearance and the size of the pathogenic microorganism. Fixed preparations were stained with Geimsa and Ryan-Blue modified Trichrome techniques to visualize further morphological characters. The obtained light microscopy data were used in the identification process. Results: The infected larvae were bulged by a whitish material filling the involved segments corresponding to a microsporidium infection. Bottle-shaped semioval spores ranged 4.33±0.19×2.67±0.12 and 4.18±0.43×2.45±0.33 micron in wet and fixed preparations, respectively. They were mostly arranged in globular structures comprised of 8 spores. These data was in favor of a species from the genus Parathelohania in the family Ambliosporidae. Conclusion: This is the first report of a microsporidium infection in An. superpictus. The causative agent is diagnosed as a member of the genus Parathelohania. Further identification down to the species level needs to determine its ultrastructural characteristics and the comparative analysis of ss rRNA sequence data. It is also necessary to understand the detail of the components of the transmission cycle. PMID:27308299

  4. Biology & control of Anopheles culicifacies Giles 1901

    PubMed Central

    Sharma, V.P.; Dev, V.

    2015-01-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  5. Biology & control of Anopheles culicifacies Giles 1901.

    PubMed

    Sharma, V P; Dev, V

    2015-05-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  6. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  7. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  8. Workbook on the Identification of Anopheles Adults. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional workbook is designed to enable malaria control workers to identify adults of "Anopheles" species that are important malaria vectors. The morphological features of the adults are illustrated in a programed booklet, which also contains an illustrated taxonomic key to adult females of 29 anopheline species. A glossary and a…

  9. Anthropophilic Anopheles species composition and malaria in Tierradentro, Córdoba, Colombia

    PubMed Central

    Schiemann, David Joachim; Pinzón, Martha Lucía Quiñones; Hankeln, Thomas

    2014-01-01

    Malaria is still a primary health problem in Colombia. The locality of Tierradentro is situated in the municipality of Montelíbano, Córdoba, in the northwest of Colombia, and has one of the highest annual parasite index of malaria nationwide. However, the vectors involved in malaria transmission in this locality have not yet been identified. In this study, the local anthropophilic Anopheles composition and natural infectivity with Plasmodium were investigated. In August 2009, 927 female Anopheles mosquitoes were collected in eight localities using the human landing catch method and identified based on their morphology. Cryptic species were determined by restriction fragment length polymorphism-internal transcribed spacer (ITS)2 molecular analysis. Eight species [Anopheles nuneztovari s.l. (92.8%), Anopheles darlingi (5.1%), Anopheles triannulatus s.l. (1.8%), Anopheles pseudopunctipennis s.l. (0.2%), Anopheles punctimacula s.l. (0.2%), Anopheles apicimacula (0.1%), Anopheles albimanus (0.1%) and Anopheles rangeli (0.1%)] were identified and species identity was confirmed by ITS2 sequencing. This is the first report of An. albimanus, An. rangeli and An. apicimacula in Tierradentro. Natural infectivity with Plasmodium was determined by ELISA. None of the mosquitoes was infectious for Plasmodium. An. nuneztovari s.l. was the predominant species and is considered the primary malaria vector; An. darlingi and An. triannulatus s.l. could serve as secondary vectors.

  10. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  11. Nigeria Anopheles Vector Database: An Overview of 100 Years' Research

    PubMed Central

    Okorie, Patricia Nkem; McKenzie, F. Ellis; Ademowo, Olusegun George; Bockarie, Moses; Kelly-Hope, Louise

    2011-01-01

    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles

  12. The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border

    PubMed Central

    2013-01-01

    Background Malaria around the China-Myanmar border is a serious health problem in the countries of South-East Asia. An. minimus is a principle malaria vector with a wide geographic distribution in this area. Malaria is endemic along the boundary between Yunnan province in China and the Kachin State of Myanmar where the local Anopheles community (species composition) and the malaria transmission vectors have never been clarified. Methods Adult Anopheles specimens were collected using CDC light traps in four villages along the border of China and Myanmar from May 2012 to April 2013. Morphological and molecular identification of mosquito adults confirmed the species of Anopheles. Blood-meal identification using the female abdomens was conducted using multiplex PCR. For sporozoite detection in An. minimus, sets of 10 female salivary glands were pooled and identified with SSU rDNA using nested PCR. Monthly abundance of An. minimus populations during the year was documented. The diversity of Anopheles and the role of An. minimus on malaria transmission in this border area were analyzed. Results 4,833 adult mosquitoes in the genus Anopheles were collected and morphologically identified to species or species complex. The Anopheles community is comprised of 13 species, and 78.83% of our total specimens belonged to An. minimus s.l., followed by An. maculatus (5.55%) and the An. culicifacies complex (4.03%). The quantity of trapped An. minimus in the rainy season of malaria transmission was greater than during the non-malarial dry season, and a peak was found in May 2012. An. minimus fed on the blood of four animals: humans (79.8%), cattle (10.6%), pigs (5.8%) and dogs (3.8%). 1,500 females of An. minimus were pooled into 150 samples and tested for sporozoites: only 1 pooled sample was found to have sporozoites of Plasmodium vivax. Conclusion Anopheles is abundant with An. minimus being the dominant species and having a high human blood index along the China-Myanmar border

  13. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  14. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings.

  15. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  16. Locomotor behavioral responses of Anopheles minimus and Anopheles harrisoni to alpha-cypermethrin in Thailand.

    PubMed

    Malaithong, Naritsara; Tisgratog, Rungarun; Tainchum, Krajana; Prabaripai, Atchariya; Juntarajumnong, Waraporn; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2011-09-01

    Excito-repellency responses of 3 test populations, representing 2 sibling species within the Minimus Complex, Anopheles minimus and An. harrisoni, were characterized for contact irritant and noncontact repellent actions of chemicals during and after exposure to alpha-cypermethrin at half the recommended field (0.010 g/m2), the recommended field (0.020 g/m2), and double the recommended field concentration (0.040 g/m2), using an excito-repellency escape chamber system. Two field populations of An. minimus and An. harrisoni collected from the malaria-endemic areas in Tak and Kanchanuburi provinces in western Thailand, respectively, were tested along with a laboratory population of An. minimus maintained since 1993. Females of all 3 test populations rapidly escaped after direct contact with treated surfaces for each concentration. In general, increased escape responses in the An. minimus test populations were proportionate to increased insecticide dosages. The greatest escape response for An. harrisoni was observed at the operational field concentration of alpha-cypermethrin. The noncontact repellency response to alpha-cypermethrin was comparatively weak for all 3 test populations, but significantly different from each paired contact test and respective noncontact controls. We conclude that strong contact irritancy is a major action of alpha-cypermethrin, whereas noncontact repellency plays no role in the escape responses of 2 species in the Minimus Complex in Thailand.

  17. Separation of Anopheles merus from freshwater Anopheles gambiae by salinity tolerance test and morphological characters.

    PubMed

    Mosha, F W; Mutero, C M

    1982-12-01

    The separation methods for Anopheles merus from freshwater A. gambiae s.l. involving the use of salinity tolerance test, sensilla coeloconica, palpal ratio and palpal bands were evaluated for a period of one year on a total of about 340 mosquitoes. The salinity tolerance test method was found to be quite simple and reliable but unsuitable in disease transmission studies due to an interval of 2-3 days between the collection and dissection periods and also due to the fact that only a fraction of the mosquito sample is generally identified by this method. Although significantly higher proportions of sensilla coeloconica and palpal ratio were observed in A. merus as compared to freshwater A. gambiae s.l. these characters were found quite unreliable due to their overlapping between two mosquito groups. Sensilla coeloconica and palpal ratio used separately could separate respective percentages of 11.4 and 11.8 A. merus from freshwater A. gambiae s.l., while in combination they separated up to 40.9%. Percentages 4-banded palp mosquitoes accounted for about 32% in A. merus and 19% in freshwater A. gambiae s.l. All these characters also displayed some seasonal variations in the two mosquito groups. PMID:6926942

  18. A maleness gene in the malaria mosquito Anopheles gambiae.

    PubMed

    Krzywinska, Elzbieta; Dennison, Nathan J; Lycett, Gareth J; Krzywinski, Jaroslaw

    2016-07-01

    The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome-linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae Yob, activated at the beginning of zygotic transcription and expressed throughout a male's life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs. PMID:27365445

  19. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes

    PubMed Central

    Hughes, Grant L.; Dodson, Brittany L.; Johnson, Rebecca M.; Murdock, Courtney C.; Tsujimoto, Hitoshi; Suzuki, Yasutsugu; Patt, Alyssa A.; Cui, Long; Nossa, Carlos W.; Barry, Rhiannon M.; Sakamoto, Joyce M.; Hornett, Emily A.; Rasgon, Jason L.

    2014-01-01

    Over evolutionary time, Wolbachia has been repeatedly transferred between host species contributing to the widespread distribution of the symbiont in arthropods. For novel infections to be maintained, Wolbachia must infect the female germ line after being acquired by horizontal transfer. Although mechanistic examples of horizontal transfer exist, there is a poor understanding of factors that lead to successful vertical maintenance of the acquired infection. Using Anopheles mosquitoes (which are naturally uninfected by Wolbachia) we demonstrate that the native mosquito microbiota is a major barrier to vertical transmission of a horizontally acquired Wolbachia infection. After injection into adult Anopheles gambiae, some strains of Wolbachia invade the germ line, but are poorly transmitted to the next generation. In Anopheles stephensi, Wolbachia infection elicited massive blood meal-induced mortality, preventing development of progeny. Manipulation of the mosquito microbiota by antibiotic treatment resulted in perfect maternal transmission at significantly elevated titers of the wAlbB Wolbachia strain in A. gambiae, and alleviated blood meal-induced mortality in A. stephensi enabling production of Wolbachia-infected offspring. Microbiome analysis using high-throughput sequencing identified that the bacterium Asaia was significantly reduced by antibiotic treatment in both mosquito species. Supplementation of an antibiotic-resistant mutant of Asaia to antibiotic-treated mosquitoes completely inhibited Wolbachia transmission and partly contributed to blood meal-induced mortality. These data suggest that the components of the native mosquito microbiota can impede Wolbachia transmission in Anopheles. Incompatibility between the microbiota and Wolbachia may in part explain why some hosts are uninfected by this endosymbiont in nature. PMID:25114252

  20. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  1. Anopheles culicifacies breeding in polluted water bodies in Trincomalee District of Sri Lanka

    PubMed Central

    2013-01-01

    Background Anopheles culicifacies, the major vector of malaria in Sri Lanka, is known to breed in clean and clear water. The main objective of the study was to detect the breeding habitat diversity of An. culicifacies. Methods Potential larval habitats for Anopheles mosquitoes were surveyed on a monthly basis for 17 months (January 2011–June 2012) in four different selected sampling sites (Murthankulam, Kommnaimottai, Paranamadawachchiya and Kokmotawewa) in Trincomalee District of Sri Lanka. Results A total of 2,996 larval specimens representing 13 Anopheles species were reported from 16 different breeding habitats. According to density criterion, An. culicifacies, Anopheles subpictus, Anopheles barbirostris, Anopheles peditaeniatus and Anopheles nigerrimus were dominant. Anopheles nigerrimus, An. subpictus and An. peditaeniatus were observed as constant in relation to their distribution. The most productive breeding site for An. culicifacies was drains filled with waste water in remote areas; the second highest productivity was found in built wells. Conclusions These results indicate that An. culicifacies has adapted to breed in a wide range of water bodies including waste water collections although they were earlier considered to breed only in clean and clear water. PMID:23958454

  2. Abundance of immature Anopheles and culicines (Diptera: Culicidae) in different water body types in the urban environment of Malindi, Kenya

    PubMed Central

    Keating, Joseph; Mbogo, Charles M.; Potts, Matthew D.; Chowdhury, Rinku Roy; Beier, John C.

    2008-01-01

    In this study we 1) describe the abundance of Anopheles and culicine immatures in different water body types in urban Malindi, Kenya, 2) compare Anopheles immature density in relation to culicine immature density, and 3) identify characteristics that influence the likelihood of water bodies being co-colonized by Anopheles and culicines. Entomological and environmental cross-sectional surveys conducted in 2001 and 2002 were used in the analysis. A total of 889 Anopheles and 7,217 culicine immatures were found in diverse water body types in 2001 and 2002. Car-track pools (n=45) and unused swimming pools (n=25) comprised 61% (70 of 115) of all water bodies found and served as the main habitats for Anopheles immatures. Of the 38 water bodies found containing Anopheles immature mosquitoes, 63% (24 of 38) were car-track pools and unused swimming pools. Culicine immatures utilized several water body types as habitats. We found that Anopheles and culicine immatures had higher density when occurring individually compared to when they occurred simultaneously. We determined that season, permanency, and water body area size influenced the likelihood of water bodies being simultaneously positive for Anopheles and culicines. Though Anopheles immatures were found in diverse water body types, their numbers were low compared to culicine immatures. The low density of Anopheles immatures suggests that Anopheles larval control is an achievable goal in Malindi. PMID:18697313

  3. Implications of low-density microfilariae carriers in Anopheles transmission areas: molecular forms of Anopheles gambiae and Anopheles funestus populations in perspective

    PubMed Central

    2014-01-01

    Background Previous studies have shown a general reduction in annual transmission potential (ATP) of Anopheles species after mass drug administration (MDA) in lymphatic filariasis endemic communities. Whereas results obtained from a monitoring programme after three years of MDA revealed a decrease in ATP of Anopheles funestus this was not the same for An. gambiae s.s. in Ghana. In this study, the ability of these vectors in transmitting Wuchereria bancrofti in nine lymphatic filariasis endemic communities in Gomoa District of Ghana after four rounds of MDA with ivermectin and albendazole was investigated. Methods After mass screening of inhabitants in these communities, twelve consenting volunteers with different intensities of microfilariae (mf) slept under partly opened mosquito nets as sources of mf blood meal. Hourly collection of mosquitoes and finger-pricked blood were taken from 21.00 to 06.00 hours the following day. For each hour, half of the mosquitoes collected were immediately killed and dissected for mf. The remaining half were maintained up to 13 days for parasite maturation. Parasitaemia and infection rates in the mosquitoes were determined by microscopy. The mosquitoes were identified by microscopy and molecular techniques. Results A total of 1,083 participants were screened and the overall parasite prevalence was 1.6% with mf intensities ranging from 0 to 59 per 100 μl and geometric mean intensity of 1.1 mf per ml of blood. Of the 564 mosquitoes collected, 350 (62.1%) were Anopheles spp., from which 310 (88.6%) were An. funestus and 32 (9.1%) An. gambiae. Six anopheline mosquitoes (1.7%) were found infected with L1, but no larva was observed in any of the mosquitoes maintained up to 13 days. Molecular studies showed all An. gambiae s.l. to be An. gambiae s.s., of which 21 (70%) were of the M molecular form. Conclusion At low-level parasitaemia after 4 rounds of MDA, there was no recovery of infective stage larvae of W. bancrofti in An

  4. Silencing of genes and alleles by RNAi in Anopheles gambiae.

    PubMed

    Lamacchia, Marina; Clayton, John R; Wang-Sattler, Rui; Steinmetz, Lars M; Levashina, Elena A; Blandin, Stéphanie A

    2013-01-01

    Anopheles gambiae mosquitoes are the major vectors of human malaria parasites. However, mosquitoes are not passive hosts for parasites, actively limiting their development in vivo. Our current understanding of the mosquito antiparasitic response is mostly based on the phenotypic analysis of gene knockdowns obtained by RNA interference (RNAi), through the injection or transfection of long dsRNAs in adult mosquitoes or cultured cells, respectively. Recently, RNAi has been extended to silence specifically one allele of a given gene in a heterozygous context, thus allowing to compare the contribution of different alleles to a phenotype in the same genetic background. PMID:22990777

  5. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  6. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  7. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  8. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso

    PubMed Central

    2013-01-01

    Background The Anopheles gambiae sensu lato (s.l.) species complex in Burkina Faso consists of Anopheles arabiensis, and molecular forms M and S of Anopheles gambiae sensu stricto (s.s.). Previous studies comparing the M and S forms for level of infection with Plasmodium falciparum have yielded conflicting results. Methods Mosquito larvae were sampled from natural pools, reared to adulthood under controlled conditions, and challenged with natural P. falciparum by experimental feeding with blood from gametocyte carriers. Oocyst infection prevalence and intensity was determined one week after infection. DNA from carcasses was genotyped to identify species and molecular form. Results In total, 7,400 adult mosquitoes grown from wild-caught larvae were challenged with gametocytes in 29 experimental infections spanning four transmission seasons. The overall infection prevalence averaged 40.7% for A. gambiae M form, 41.4% for A. gambiae S form, and 40.1% for A. arabiensis. There was no significant difference in infection prevalence or intensity between the three population groups. Notably, infection experiments in which the population groups were challenged in parallel on the same infective blood displayed less infection difference between population groups, while infections with less balanced composition of population groups had lower statistical power and displayed apparent differences that fluctuated more often from the null average. Conclusion The study clearly establishes that, at the study site in Burkina Faso, there is no difference in genetic susceptibility to P. falciparum infection between three sympatric population groups of the A. gambiae s.l. complex. Feeding the mosquito groups on the same infective blood meal greatly increases statistical power. Conversely, comparison of the different mosquito groups between, rather than within, infections yields larger apparent difference between mosquito groups, resulting from lower statistical power and greater noise

  9. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  10. Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony. Methods Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients. The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis. Results All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis

  11. [Preliminary investigation of four anopheles larvae samples susceptibility to chlorpyrifos in Tunisia].

    PubMed

    Krida, G; Bouattour, A; Rhaim, A; el Kebir, A; Jlidi, R

    1998-01-01

    Larvae susceptibility to chlorpyrifos is studied on four Tunisian Anopheles larvas samples: Anopheles labranchiae from Rades (South of Tunis) and Menchar (region of Beja), in the North of Tunisia, A. sergentii from Meknassy and A. multicolor from Sidi Bouzid, both in the Centre of Tunisia. The test results of larvae susceplibility indicate that the LC50 and the LC95 values are less than 0.002 and 0.02 mg l-1 respectively and their 95% confidence limits overlap. We also notice that the studied samples show the same susceptibility to chlorpyrifos. The results can be used as a base data further studies on the susceptibility of Anopheles to chemical insecticides.

  12. Dosage Compensation in the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Rose, Graham; Krzywinska, Elzbieta; Kim, Jan; Revuelta, Loic; Ferretti, Luca; Krzywinski, Jaroslaw

    2016-01-01

    Dosage compensation is the fundamental process by which gene expression from the male monosomic X chromosome and from the diploid set of autosomes is equalized. Various molecular mechanisms have evolved in different organisms to achieve this task. In Drosophila, genes on the male X chromosome are upregulated to the levels of expression from the two X chromosomes in females. To test whether a similar mechanism is operating in immature stages of Anopheles mosquitoes, we analyzed global gene expression in the Anopheles gambiae fourth instar larvae and pupae using high-coverage RNA-seq data. In pupae of both sexes, the median expression ratios of X-linked to autosomal genes (X:A) were close to 1.0, and within the ranges of expression ratios between the autosomal pairs, consistent with complete compensation. Gene-by-gene comparisons of expression in males and females revealed mild female bias, likely attributable to a deficit of male-biased X-linked genes. In larvae, male to female ratios of the X chromosome expression levels were more female biased than in pupae, suggesting that compensation may not be complete. No compensation mechanism appears to operate in male germline of early pupae. Confirmation of the existence of dosage compensation in A. gambiae lays the foundation for research into the components of dosage compensation machinery in this important vector species. PMID:26782933

  13. Dipsticks for rapid detection of plasmodium in vectoring anopheles mosquitoes.

    PubMed

    Ryan, J R; Dav, K; Emmerich, E; Garcia, L; Yi, L; Coleman, R E; Sattabongkot, J; Dunton, R F; Chan, A S; Wirtz, R A

    2001-06-01

    Malaria remains the most serious vector-borne disease, affecting some 300-500 million people annually, transmitted by many species of Anopheles mosquitoes (Diptera: Culicidae). Monoclonal antibodies developed against specific circumsporozoite (CS) proteins of the main malaria parasites Plasmodium falciparum and P. vivax have been used previously for enzyme-linked immunosorbent assays (ELISA), widely employed for detection of malaria sporozoites in vector Anopheles for local risk assessment, epidemiological studies and targeting vector control. However, ELISA procedures are relatively slow and impractical for field use. To circumvent this, we developed rapid wicking assays that identify the presence or absence of specific peptide epitopes of CS protein of the most important P. falciparum and two strains (variants 210 and 247) of the more widespread P. vivax. The resulting assay is a rapid, one-step procedure using a 'dipstick' wicking test strip. In laboratory assessment, dipsticks identified 1 ng/ mL of any of these three CS protein antigens, with sensitivity nearly equal to the CS standard ELISA. We have developed and are evaluating a combined panel assay that will be both qualitative and quantitative. This quick and easy dipstick test (VecTest Malaria) offers practical advantages for field workers needing to make rapid surveys of malaria vectors.

  14. Anophelism in a Former Malaria Area of Northeastern Spain

    PubMed Central

    Bueno-Marí, Rubén; Jiménez-Peydró, Ricardo

    2013-01-01

    Background: A field study on diversity and distribution of anophelines currently present in a past endemic malaria area of Spain was carried out in order to identify possible risk areas of local disease transmission. Methods: Multiple larval sites were sampled from June to October of 2011 in the Region of Somontano de Barbastro (Northeastern Spain). The sampling effort was fixed at 10 minutes which included the active search for larvae in each biotope visited. Results: A total of 237 larval specimens belonging to four Anopheles species (Anopheles atroparvus, An. claviger, An. maculipennis and An. petragnani) were collected and identified. Conclusions: Malaria receptivity in the study area is high, especially in the area of Cinca river valley, due to the abundance of breeding sites of An. atroparvus very close to human settlements. Although current socio-economic conditions in Spain reduce possibilities of re-emergence of malaria transmission, it is evident that certain entomological and epidemiological vigilance must be maintained and even increased in the context of current processes of climate change and globalization. PMID:24409440

  15. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    PubMed

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  16. Mass spectrometry identification of age-associated proteins from the malaria mosquitoes Anopheles gambiae s.s. and Anopheles stephensi.

    PubMed

    Sikulu, Maggy T; Monkman, James; Dave, Keyur A; Hastie, Marcus L; Dale, Patricia E; Kitching, Roger L; Killeen, Gerry F; Kay, Brian H; Gorman, Jeffry J; Hugo, Leon E

    2015-09-01

    This study investigated proteomic changes occurring in Anopheles gambiae and Anopheles stephensi during adult mosquito aging. These changes were evaluated using two-dimensional difference gel electrophoresis (2D-DIGE) and the identities of aging related proteins were determined using capillary high-pressure liquid chromatography (capHPLC) coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometry (MS). Here, we have described the techniques used to determine age associated proteomic changes occurring in heads and thoraces across three age groups; 1, 9 and 17 d old A. gambiae and 4 age groups; 1, 9, 17 and 34 d old A. stephensi. We have provided normalised spot volume raw data for all protein spots that were visible on 2D-DIGE images for both species and processed Orbitrap mass spectrometry data. For public access, mass spectrometry raw data are available via ProteomeXchange with identifier PXD002153. A detailed description of this study has been described elsewhere [1].

  17. Mass spectrometry identification of age-associated proteins from the malaria mosquitoes Anopheles gambiae s.s. and Anopheles stephensi

    PubMed Central

    Sikulu, Maggy T.; Monkman, James; Dave, Keyur A.; Hastie, Marcus L.; Dale, Patricia E.; Kitching, Roger L.; Killeen, Gerry F.; Kay, Brian H.; Gorman, Jeffry J.; Hugo, Leon E.

    2015-01-01

    This study investigated proteomic changes occurring in Anopheles gambiae and Anopheles stephensi during adult mosquito aging. These changes were evaluated using two-dimensional difference gel electrophoresis (2D-DIGE) and the identities of aging related proteins were determined using capillary high-pressure liquid chromatography (capHPLC) coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometry (MS). Here, we have described the techniques used to determine age associated proteomic changes occurring in heads and thoraces across three age groups; 1, 9 and 17 d old A. gambiae and 4 age groups; 1, 9, 17 and 34 d old A. stephensi. We have provided normalised spot volume raw data for all protein spots that were visible on 2D-DIGE images for both species and processed Orbitrap mass spectrometry data. For public access, mass spectrometry raw data are available via ProteomeXchange with identifier PXD002153. A detailed description of this study has been described elsewhere [1]. PMID:26306320

  18. Larval habitats characterization and species composition of Anopheles mosquitoes in Tunisia, with particular attention to Anopheles maculipennis complex.

    PubMed

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-03-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)-internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places.

  19. Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex

    PubMed Central

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-01-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)–internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. PMID:25561567

  20. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon

    PubMed Central

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2015-01-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  1. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae

    PubMed Central

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Robert Shaw, W.; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2014-01-01

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia–Anopheles associations to limit malaria transmission. PMID:24905191

  2. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships

    PubMed Central

    Khrabrova, Natalia V.; Andreeva, Yulia V.; Sibataev, Anuarbek K.; Alekseeva, Svetlana S.; Esenbekova, Perizat A.

    2015-01-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5′ end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic. PMID:26149867

  3. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships.

    PubMed

    Khrabrova, Natalia V; Andreeva, Yulia V; Sibataev, Anuarbek K; Alekseeva, Svetlana S; Esenbekova, Perizat A

    2015-09-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5' end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic.

  4. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  5. Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Dumont, Y.; Lubuma, J.

    2011-11-01

    Sterile Insect Technology (SIT) is a nonpolluting method of insect control that relies on the release of sterile males. We study the effectiveness of the application of SIT for control of Anopheles mosquito via mathematical modeling. The theoretical analysis of the mathematical model as a dynamical system leads to the formulation of possible strategies for control of the Anopheles mosquito, also illustrated by numerical simulations.

  6. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. PMID:26364718

  7. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control.

  8. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    PubMed Central

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D.

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O’nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  9. Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.

    PubMed Central

    Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley

    2013-01-01

    The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865

  10. Inhibition of Anopheles gambiae Odorant Receptor Function by Mosquito Repellents*

    PubMed Central

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-01-01

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca2+-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  11. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    PubMed Central

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  12. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    PubMed

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  13. Genetic Structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia

    PubMed Central

    Brochero, Helena; Li, Cong; Wilkerson, Richard; Conn, Jan E.; Ruiz-García, Manuel

    2010-01-01

    Five Anopheles marajoara Galvão and Damasceno populations, representing diverse ecological conditions, were sampled throughout Colombia and analyzed using nine hypervariable DNA microsatellite loci. The overall genetic diversity (H = 0.58) was lower than that determined for some Brazilian populations using the same markers. The Caquetá population (Colombia) had the lowest gene diversity (H = 0.48), and it was the only population at Hardy–Weinberg equilibrium. Hardy–Weinberg disequilibrium in the remaining four populations was probably caused by the Wahlund effect. The assignment analyses showed two incompletely isolated gene pools separated by the Eastern Andean cordillera. However, other possible geographical barriers (rivers and other mountains) did not play any role in the moderate genetic heterogeneity found among these populations (FST = 0.069). These results are noteworthy, because this species is a putative malaria vector in Colombia. PMID:20810825

  14. Salinity tolerance of Anopheles farauti Laveran sensu stricto.

    PubMed

    Bell, D; Bryan, J; Cameron, A; Foley, D; Pholsyna, K

    1999-01-01

    To assess the salt tolerance of the malaria vector Anopheles farauti sensu stricto, larvae were collected from a freshwater environment on the outskirts of Honiara, Solomon Islands and placed in trays containing water with salinity varying from freshwater to seawater. Dead larvae and pupae and emerged adults were recorded and preserved. Most adults and nearly half of the larvae and pupae were then subjected to DNA analysis for species identification. No adult An. farauti emerged after prolonged immersion of larvae in undiluted seawater (3.5% salinity), although temporary immersion before pupation was compatible with survival. Salinities of up to 2.2% to 2.5% were compatible with good survival and adult emergence, at least from fourth instars. The results suggest that higher salinities may slow larval development and show that mortality at a given salinity is not uniform. PMID:11061001

  15. Larval salinity tolerances of the sibling species of Anopheles farauti.

    PubMed

    Sweeney, A W

    1987-12-01

    Experiments conducted with laboratory colonies of the sibling species of Anopheles farauti showed larvae of An. farauti No. 1 had a higher salinity tolerance than larvae of An. farauti No. 2 and An. farauti No. 3. The salinity response of field-collected larvae of An. farauti No. 1 from Cowley Beach, Queensland, Australia was similar to that of larvae from two colonies of this species which originated from Papua New Guinea. These results indicate that An. farauti No. 1 is the species which is likely to be found breeding in brackish water whereas the other species may be restricted to freshwater habitats. Laboratory experiments conducted with the colonies and with specimens collected from three localities in northern Queensland indicated that a simple test, based on exposure of first-instar larvae to sea water for 1 hr, should enable identification of An. farauti No. 1 in the field. PMID:3504945

  16. Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia.

    PubMed

    Cienfuegos, Astrid V; Rosero, Doris A; Naranjo, Nelson; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2011-05-01

    Anopheles mosquitoes are routinely identified using morphological characters of the female that often lead to misidentification due to interspecies similarity and intraspecies variability. The aim of this work was to evaluate the applicability of a previously developed PCR-RFLP-ITS2 assay for accurate discrimination of anophelines in twelve localities spanning three Colombian malaria epidemiological regions: Atlantic Coast, Pacific Coast, and Uraba-Bajo Cauca-Alto Sinu region. The evaluation of the stability of the PCR-RFLP patterns is required since variability of the ITS2 has been documented and may produce discrepancies in the patterns previously reported. The assay was used to evaluate species assignation of 939 mosquitoes identified by morphology. Strong agreement between the morphological and molecular identification was found for species Anopheles albimanus, Anopheles aquasalis, Anopheles darlingi and Anopheles triannulatus s.l. (p≥0.05, kappa=1). However, disagreement was found for species Anopheles nuneztovari s.l., Anopheles neomaculipalpus, Anopheles apicimacula and Anopheles punctimacula (p≤0.05; kappa ranging from 0.33 to 0.80). The ITS2-PCR-RFLP assay proved valuable for discriminating anopheline species of northern and western Colombia, especially those with overlapping morphology in the Oswaldoi Group. PMID:21345325

  17. Dose and developmental responses of Anopheles merus larvae to salinity.

    PubMed

    White, Bradley J; Kundert, Peter N; Turissini, David A; Van Ekeris, Leslie; Linser, Paul J; Besansky, Nora J

    2013-09-15

    Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na(+)/K(+)-ATPase, carbonic anhydrase and Na(+)/H(+)-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l(-1) is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii-A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na(+)/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus. PMID:23966587

  18. Effect of temperature on laboratory reared Anopheles dirus Peyton and Harrison and Anopheles sawadwongporni Rattanarithikul and Green.

    PubMed

    Phasomkusolsil, Siriporn; Lerdthusnee, Kriangkrai; Khuntirat, Benjawan; Kongtak, Weeraphan; Pantuwatana, Kanchana; Murphy, Jittawadee R

    2011-01-01

    Investigations have shown that female mosquitoes with a larger body size (determined by wing length) exhibit higher feeding rates and greater fecundity relative to smaller mosquitoes. In this study, Anopheles dirus and An. sawadwongporni were reared in the laboratory at two different temperatures (23 degrees C and 30 degrees C). Effects of the rearing temperature on body size, fecundity, and larval development period were examined by measuring wing length, adult body weight at emergence, the number of eggs produced and the length of time from the first to the fourth instar. Rearing temperature had a direct effect on body size, fecundity and larval development period for both species. Mosquitoes of both species reared at 23 degrees C were larger in body size, experienced prolonged development and produced a larger clutch of eggs relative to mosquitoes reared at 30 degrees C. However, there was no temperature effect on egg hatching rate and sex ratio.

  19. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  20. Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

    PubMed Central

    2011-01-01

    Background Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. Methodology Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (~700 km away) as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. Results High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km2 of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (FST = 0.066) was higher than that of the well-known M and S forms of An. gambiae s. s. in West and Central Africa (FST = 0.035), suggesting that these populations are maintained by some level of reproductive isolation. Conclusion It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The impact of the observed An

  1. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2012-01-01

    Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal

  2. New highland distribution records of multiple Anopheles species in the Ecuadorian Andes

    PubMed Central

    2011-01-01

    Background Several recent climate change reviews have stressed the possibility of some malaria vectors occupying regions of higher altitudes than previously recorded. Indeed, highland malaria has been observed in several African nations, possibly attributable to changes in land use, vector control and local climate. This study attempts to expand the current knowledge of the distribution of common Anopheles species in Ecuador, with particular attention to highland regions (> 500 m) of the Andes. Methods Extensive field collections of larvae were undertaken in 2008, 2009 and 2010 throughout all regions of Ecuador (except the lower-altitude Amazonian plain) and compared to historical distribution maps reproduced from the 1940s. Larvae were identified using both a morphological key and sequencing of the 800 bp region of the CO1 mitochondrial gene. In addition, spatial statistics (Getis-Ord Hotspot Analysis: Gi*) were used to determine high and low-density clusters of each species in Ecuador. Results Distributions have been updated for five species of Anopheles in Ecuador: Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, Anopheles eiseni and Anopheles oswaldoi s.l.. Historical maps indicate that An. pseudopunctipennis used to be widespread in highland Andean valleys, while other species were completely restricted to lowland areas. By comparison, updated maps for the other four collected species show higher maximum elevations and/or more widespread distributions in highland regions than previously recorded. Gi* analysis determined some highland hot spots for An. albimanus, but only cold spots for all other species. Conclusions This study documents the establishment of multiple anopheline species in high altitude regions of Ecuador, often in areas where malaria eradication programs are not focused. PMID:21835004

  3. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  4. Scanning electron microscopy of Anopheles hyrcanus group (Diptera: Culicidae) eggs in Thailand and an ultrastructural key for species identification.

    PubMed

    Saeung, Atiporn; Hempolchom, Chayanit; Yasanga, Thippawan; Otsuka, Yasushi; Thongsahuan, Sorawat; Srisuka, Wichai; Chaithong, Udom; Taai, Kritsana; Somboon, Pradya; Choochote, Wej

    2014-03-01

    The eggs of Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae, Anopheles peditaeniatus, Anopheles pursati, and Anopheles sinensis are described with the aid of scanning electron micrographs. Comparisons of the egg structure among the eight species showed that the eggs differed with respect to the following characteristics: the deck-complete (An. argyropus, An. nigerrimus, An. paraliae, An. peditaeniatus, and An. sinensis); variable (complete, split and incomplete decks found together within an egg batch/An. crawfordi); and division into an area at each end (An. nitidus and An. pursati). The ratios of the entire length per maximal deck width within the area covered by floats were 3.33-6.86 (An. sinensis), 8.78-18.20 (An. peditaeniatus), 13.67-22 (An. nigerrimus), 26.33-44.25 (An. paraliae), and 26.99-75.94 (An. argyropus). The numbers of float ribs were 21-27 (An. peditaeniatus) and 28-34 (An. nigerrimus), and the total numbers of anterior and posterior tubercles were 6-8 (An. paraliae) and 9-11 (An. argyropus). Exochorionic sculpturing was of reticulum type (An. argyropus, An. crawfordi, An. nigerrimus, An. nitidus, An. paraliae, An. peditaeniatus, and An. sinensis) and pure tubercle type (An. pursati). Attempts are proposed to construct a robust key for species identification based on the morphometrics and ultrastructures of eggs under scanning electron microscopy.

  5. Comparative Studies on the Stenogamous and Eurygamous Behavior of Eight Anopheles Species of the Hyrcanus Group (Diptera: Culicidae) in Thailand

    PubMed Central

    Wijit, Adulsak; Taai, Kritsana; Dedkhad, Watcharatip; Hempolchom, Chayanit; Thongsahuan, Sorawat; Srisuka, Wichai; Otsuka, Yasushi; Fukuda, Masako; Saeung, Atiporn

    2016-01-01

    Establishment of laboratory colony is essential for mosquito-borne-disease research. Mating behavior of stenogamous Anopheles peditaeniatus and seven eurygamous species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (=An. lesteri), Anopheles pursati and Anopheles sinensis), were investigated and compared in this study. The self-mating success of adult mosquitoes in different size cages at two density resting surface (DRS) values, 3.6 and 7.2, was statistically significant between stenogamous and eurygamous species. The results obtained from comparative measurements of specific characters in adult females (maxillary palpomere and antennal sensilla characters) and males (wing and genitalia) indicate those characters might influence the mating success of An. peditaeniatus in a small cage. The gonostylus of An. peditaeniatus was shorter than the eurygamous species. Additionally, the lower frequency of clasper movement and shorter mating time could be important mechanisms that control the stenogamous behavior of An. peditaeniatus. Interestingly, for the first time, a cluster of large sensilla coeloconica was recorded on the antenna of An. argyropus and An. peditaeniatus females. There was no statistically significant difference in the mean number per female of those large antennal sensilla coeloconica among six of the eurygamous species. PMID:27023618

  6. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae.

    PubMed

    Jones, Andrew K; Grauso, Marta; Sattelle, David B

    2005-02-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect nervous system and are targets of widely selling insecticides. We have identified the nAChR gene family from the genome of the malaria mosquito vector, Anopheles gambiae, to be the second complete insect nAChR gene family described following that of Drosophila melanogaster. Like Drosophila, Anopheles possesses 10 nAChR subunits with orthologous relationships evident between the two insects. Interestingly, the Anopheles orthologues of Dbeta2 and Dbeta3 possess the vicinal cysteines that define alpha subunits. As with Dalpha4 and Dalpha6, the Anopheles orthologues are alternatively spliced at equivalent exons. Reverse transcription-polymerase chain reaction analysis shows that RNA A-to-I editing sites conserved between Dalpha6 of Drosophila and alpha7-2 of the tobacco budworm, Heliothis virescens, are not shared with the equivalent nAChR subunit of Anopheles. Indeed, RNA-editing sites identified in functionally significant regions of Dbeta1, Dalpha5, and Dalpha6 are not conserved in the mosquito orthologues, indicating considerable divergence of RNA molecules targeted for editing within the insect order Diptera. These findings shed further light on the diversity of nAChR subunits and may present a useful basis for the development of improved malaria control agents by enhancing our understanding of a validated mosquito insecticide target.

  7. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  8. Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America

    PubMed Central

    2013-01-01

    Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the

  9. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    PubMed Central

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  10. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    PubMed Central

    2014-01-01

    Background Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods The attraction of laboratory-reared and wild Anopheles gambiae complex mosquitoes to CO2 generated from yeast-fermentation of molasses was assessed under semi-field and field conditions in western Kenya. In the field, responses of wild Anopheles funestus were also assessed. Attraction of the mosquitoes to a synthetic mosquito attractant, Mbita blend (comprising ammonia, L-lactic acid, tetradecanoic acid and 3-methyl-1-butanol) when augmented with CO2 generated from yeast fermentation of either molasses or sucrose was also investigated. Results In semi-field, the release rate of CO2 and proportion of An. gambiae mosquitoes attracted increased in tandem with an increase in the quantity of yeast-fermented molasses up to an optimal ratio of molasses and dry yeast. More An. gambiae mosquitoes were attracted to a combination of the Mbita blend plus CO2 produced from fermenting molasses than the Mbita blend plus CO2 from yeast-fermented sucrose. In the field, significantly more female An. gambiae sensu lato mosquitoes were attracted to the Mbita blend augmented with CO2 produced by fermenting 500 g of molasses compared to 250 g of sucrose or 250 g of molasses. Similarly, significantly more An. funestus, Culex and other anopheline mosquito species were attracted to the Mbita blend augmented with CO2 produced from fermenting molasses than the Mbita blend with CO2 produced from sucrose. Augmenting the Mbita blend with CO2 produced from molasses was associated with high catches of blood-fed An. gambiae s.l. and An. funestus

  11. Chromosome end elongation by recombination in the mosquito Anopheles gambiae.

    PubMed Central

    Roth, C W; Kobeski, F; Walter, M F; Biessmann, H

    1997-01-01

    One of the functions of telomeres is to counteract the terminal nucleotide loss associated with DNA replication. While the vast majority of eukaryotic organisms maintain their chromosome ends via telomerase, an enzyme system that generates short, tandem repeats on the ends of chromosomes, other mechanisms such as the transposition of retrotransposons or recombination can also be used in some species. Chromosome end regression and extension were studied in a medically important mosquito, the malaria vector Anopheles gambiae, to determine how this dipteran insect maintains its chromosome ends. The insertion of a transgenic pUChsneo plasmid at the left end of chromosome 2 provided a unique marker for measuring the dynamics of the 2L telomere over a period of about 3 years. The terminal length was relatively uniform in the 1993 population with the chromosomes ending within the white gene sequence of the inserted transgene. Cloned terminal chromosome fragments did not end in short repeat sequences that could have been synthesized by telomerase. By late 1995, the chromosome ends had become heterogeneous: some had further shortened while other chromosomes had been elongated by regenerating part of the integrated pUChsneo plasmid. A model is presented for extension of the 2L chromosome by recombination between homologous 2L chromosome ends by using the partial plasmid duplication generated during its original integration. It is postulated that this mechanism is also important in wild-type telomere elongation. PMID:9271395

  12. Ligand-binding study of Anopheles gambiae chemosensory proteins.

    PubMed

    Iovinella, Immacolata; Bozza, Francesco; Caputo, Beniamino; Della Torre, Alessandra; Pelosi, Paolo

    2013-06-01

    Chemosensory proteins (CSPs) are a class of small proteins expressed only in arthropods and endowed with heterogeneous functions. Some of them are involved in chemical communications, others in development or other physiological roles. The numbers of CSPs in different species of insects range from 4 in Drosophila to at least 70 in locusts, whereas in other arthropods such as crustaceans and millipedes, only 2-3 very similar sequences have been reported in each species. We have expressed, in a bacterial system, 5 of the 8 CSPs predicted by the genome of the malaria mosquito Anopheles gambiae, 4 identified at the protein level (SAP1, SAP2, SAP3, and CSP3) and a fifth annotated as part of this work, obtaining the proteins with high yields and in their soluble forms. Purified CSPs have been used to study their ligand-binding properties, both using competitive binding assays and quenching of intrinsic tryptophan fluorescence, in order to get insights into their physiological functions. The agreement between the 2 sets of data supports the assumptions that the ligands, including the fluorescent reporter, bind within the core of the proteins. Their different affinities toward a set of pure chemicals suggest specific roles in chemical communication.

  13. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  14. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  15. The “Far-West” of Anopheles gambiae Molecular Forms

    PubMed Central

    Caputo, Beniamino; Santolamazza, Federica; Vicente, José L.; Nwakanma, Davis C.; Jawara, Musa; Palsson, Katinka; Jaenson, Thomas; White, Bradley J.; Mancini, Emiliano; Petrarca, Vincenzo; Conway, David J.; Besansky, Nora J.; Pinto, João; Torre, Alessandra della

    2011-01-01

    The main Afrotropical malaria vector, Anopheles gambiae sensu stricto, is undergoing a process of sympatric ecological diversification leading to at least two incipient species (the M and S molecular forms) showing heterogeneous levels of divergence across the genome. The physically unlinked centromeric regions on all three chromosomes of these closely related taxa contain fixed nucleotide differences which have been found in nearly complete linkage disequilibrium in geographic areas of no or low M-S hybridization. Assays diagnostic for SNP and structural differences between M and S forms in the three centromeric regions were applied in samples from the western extreme of their range of sympatry, the only area where high frequencies of putative M/S hybrids have been reported. The results reveal a level of admixture not observed in the rest of the range. In particular, we found: i) heterozygous genotypes at each marker, although at frequencies lower than expected under panmixia; ii) virtually all possible genotypic combinations between markers on different chromosomes, although genetic association was nevertheless detected; iii) discordant M and S genotypes at two X-linked markers near the centromere, suggestive of introgression and inter-locus recombination. These results could be indicative either of a secondary contact zone between M and S, or of the maintenance of ancestral polymorphisms. This issue and the perspectives opened by these results in the study of the M and S incipient speciation process are discussed. PMID:21347223

  16. Salivary vasodilators of Aedes triseriatus and Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Ribeiro, J M; Nussenzveig, R H; Tortorella, G

    1994-09-01

    Salivary vasodilators of Aedes aegypti (L.) and Anopheles albimanus (Wiedemann) were characterized previously as a tachykinin peptide and a catechol oxidase/peroxidase activity, respectively. To verify whether these two different vasodilators also were found in other distantly related members of each mosquito genus, we characterized the vasodilators from A. triseriatus and A. gambiae. A. triseriatus salivary gland homogenates produced a reversible, endothelium dependent vasorelaxation of rabbit aortic rings constricted with norepinephrine, and contracted an isolated guinea pig ileum preparation. Additionally, the homogenate had no activity on both smooth muscle preparations when both tissues were desensitized previously by a large dose of substance P. Taken together, these assays suggest the presence of a salivary tachykinin in A. triseriatus. A. gambiae salivary gland homogenates induced a slow vasodilation on both endothelium intact and endotheliumless preparations of aortic rings. A. gambiae homogenates also displayed catechol oxidase and peroxidase activity against o-dianisidine but not against serotonin, indicating the presence of an enzyme system slightly different from A. albimanus. We conclude that the presence of salivary tachykinins or catechol/oxidase is not unique to A. aegypti or A. albimanus. PMID:7966179

  17. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan.

    PubMed

    Mannen, Kosuke; Toma, Takako; Minakawa, Noboru; Higa, Yukiko; Miyagi, Ichiro

    2016-03-01

    Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year. PMID:27105212

  18. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru.

    PubMed

    Reinbold-Wasson, Drew D; Sardelis, Michael R; Jones, James W; Watts, Douglas M; Fernandez, Roberto; Carbajal, Faustino; Pecor, James E; Calampa, Carlos; Klein, Terry A; Turell, Michael J

    2012-03-01

    As part of a field ecology study of arbovirus and malaria activity in the Amazon Basin, Loreto Department, Peru, we collected mosquitoes landing on humans at a forest site and inside and outside of residences and military barracks at periurban, rural, and village sites. We collected 11 Anopheles spp. from these four sites. An. darlingi, the principal malaria vector in the region, accounted for 98.7% of all Anopheles spp. collected at Puerto Almendra. Peaks in landing activity occurred during the December and April collection periods. However, the percent of sporozoite-positive Anopheles spp. was highest 1-2 months later, when landing activity decreased to approximately 10% of the peak activity periods. At all sites, peak landing activity occurred about 2 hours after sunset. These data provide a better understanding of the taxonomy, population density, and seasonal and habitat distribution of potential malaria vectors within the Amazon Basin region.

  19. Distribution of the sibling species of Anopheles farauti in the Cape York Peninsula, northern Queensland, Australia.

    PubMed

    Sweeney, A W; Cooper, R D; Frances, S P

    1990-09-01

    The sibling species of Anopheles farauti s.l. were collected in larval and adult surveys from 34 localities on Cape York Peninsula and were identified by isoenzyme electrophoresis. The most common species near the coast was An. farauti 1 which was often found breeding within 100 m of the sea in either brackish or freshwater habitats. Larvae of the other 2 species were not found in brackish water which accords with previous laboratory observations of their lower salinity tolerance. Anopheles farauti 2 appears to have the widest distribution of the 3 sibling species on Cape York Peninsula as it was common in both coastal and inland localities. Anopheles farauti 3 was rarely found near the coast. In one locality at Lockhart River near the east coast of the peninsula larvae of the 3 species were found together in a small muddy creek. PMID:2230771

  20. Field evaluation of deet against Anopheles farauti at Ndendo (Santa Cruz) Island, Solomon Islands.

    PubMed

    Frances, S P; Bugoro, H; Butafa, C; Cooper, R D

    2010-09-01

    Field efficacy studies comparing two formulations of deet (N,N-diethyl-3-methylbenzamide) against mosquitoes were conducted on Ndendo Island, Solomon Islands. The repellent study was conducted at Pala village in November 2008, and the only mosquito species collected was Anopheles farauti Laveran. A formulation containing 35% deet in a gel provided >95% protection for 2 h, whereas a formulation containing 40% deet in ethanol in a spray applicator provided >95% for only 1 h. This field study demonstrated again that repellents containing deet provide a relatively short period of complete protection against Anopheles spp. PMID:20939380

  1. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea.

    PubMed

    Vannini, Laura; Bowen, John Hunter; Reed, Tyler W; Willis, Judith H

    2015-10-01

    Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are

  2. Filling the Gap 115 Years after Ronald Ross: The Distribution of the Anopheles coluzzii and Anopheles gambiae s.s from Freetown and Monrovia, West Africa

    PubMed Central

    de Souza, Dziedzom K.; Koudou, Benjamin G.; Bolay, Fatorma K.; Boakye, Daniel A.; Bockarie, Moses J.

    2013-01-01

    It was in Freetown, Sierra Leone, that the malaria mosquito Anopheles coastalis, now known as Anopheles gambiae, was first discovered as the vector of malaria, in 1899. That discovery led to a pioneering vector research in Sierra Leone and neighbouring Liberia, where mosquito species were extensively characterized. Unfortunately, the decade long civil conflicts of the 1990s, in both countries, resulted in a stagnation of the once vibrant research on disease vectors. This paper attempts to fill in some of the gaps on what is now known of the distribution of the sibling species of the An. gambiae complex, and especially the An. coluzzii and An. gambiae s.s, formerly known as the An. gambiae molecular M and S forms respectively, in the cities of Freetown and Monrovia. PMID:23741429

  3. Characteristics of Anopheles arabiensis larval habitats in Tubu village, Botswana.

    PubMed

    Chirebvu, Elijah; Chimbari, Moses J

    2015-06-01

    Documented information on the ecology of larval habitats in Botswana is lacking but is critical for larval control programs. Therefore, this study determined the characteristics of these habitats and the influences of biotic and abiotic factors in Tubu village, Botswana. Eight water bodies were sampled between January and December, 2013. The aquatic vegetation and invertebrate species present were characterized. Water parameters measured were turbidity (NTU), conductivity (μS/cm), oxygen (mg/l), and pH. Larval densities of Anopheles arabiensis mosquitoes and their correlation with abiotic factors were determined. Larval breeding was associated with 'short' aquatic vegetation, a variety of habitats fed by both rainfall and flood waters and sites with predators and competitors. The monthly mean (± SE(mean)) larval density was 8.16±1.33. The monthly mean (±SE(mean)) pH, conductivity, oxygen, and turbidity were 7.65±0.13, 1152.834±69.171, 5.59±1.33, and 323.421±33.801, respectively. There was a significant negative correlation between larval density and conductivity (r = -0.839; p < 0.01), while a significant positive correlation occurred between turbidity and larval density (r = 0.685; p < 0.05). Oxygen (r = 0.140; p > 0.05) and pH (r = 0.252; p > 0.05) were not correlated with larval density. Floods and diversified breeding sites contributed to prolonged and prolific larval breeding. 'Short' aquatic vegetation and predator-infested waters offered suitable environments for larval breeding. Turbidity and conductivity were good indicators for potential breeding places and can be used as early warning indices for predicting larval production levels.

  4. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    PubMed

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P < 0.001, r2 > 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  5. Systematics and population level analysis of Anopheles darlingi.

    PubMed

    Conn, J E

    1998-01-01

    A new phylogenetic analysis of the Nyssorhynchus subgenus (Danoff-Burg and Conn, unpub. data) using six data sets morphological (all life stages); scanning electron micrographs of eggs; nuclear ITS2 sequences; mitochondrial COII, ND2 and ND6 sequences¿ revealed different topologies when each data set was analyzed separately but no heterogeneity between the data sets using the arn test. Consequently, the most accurate estimate of the phylogeny was obtained when all the data were combined. This new phylogeny supports a monophyletic Nyssorhynchus subgenus but both previously recognized sections in the subgenus (Albimanus and Argyritarsis) were demonstrated to be paraphyletic relative to each other and four of the seven clades included species previously placed in both sections. One of these clades includes both Anopheles darlingi and An. albimanus, suggesting that the ability to vector malaria effectively may have originated once in this subgenus. Both a conserved (315 bp) and a variable (425 bp) region of the mitochondrial COI gene from 15 populations of An. darlingi from Belize, Bolivia, Brazil, French Guiana, Peru and Venezuela were used to examine the evolutionary history of this species and to test several analytical assumptions. Results demonstrated (1) parsimony analysis is equally informative compared to distance analysis using NJ; (2) clades or clusters are more strongly supported when these two regions are combined compared to either region separately; (3) evidence (in the form of remnants of older haplotype lineages) for two colonization events; and (4) significant genetic divergence within the population from Peixoto de Azevedo (State of Mato Grosso, Brazil). The oldest lineage includes populations from Peixoto, Boa Vista (State of Roraima) and Dourado (State of São Paulo).

  6. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    PubMed Central

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  7. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  8. Breakdown in the Process of Incipient Speciation in Anopheles gambiae

    PubMed Central

    Nwakanma, Davis C.; Neafsey, Daniel E.; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc A. T.; Conway, David J.

    2013-01-01

    Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing. PMID:23335339

  9. The Anopheles dirus complex: spatial distribution and environmental drivers

    PubMed Central

    Obsomer, Valérie; Defourny, Pierre; Coosemans, Marc

    2007-01-01

    Background The Anopheles dirus complex includes efficient malaria vectors of the Asian forested zone. Studies suggest ecological and biological differences between the species of the complex but variations within species suggest possible environmental influences. Behavioural variation might determine vector capacity and adaptation to changing environment. It is thus necessary to clarify the species distributions and the influences of environment on behavioural heterogeneity. Methods A literature review highlights variation between species, influences of environmental drivers, and consequences on vector status and control. The localisation of collection sites from the literature and from a recent project (MALVECASIA) produces detailed species distributions maps. These facilitate species identification and analysis of environmental influences. Results The maps give a good overview of species distributions. If species status partly explains behavioural heterogeneity, occurrence and vectorial status, some environmental drivers have at least the same importance. Those include rainfall, temperature, humidity, shade, soil type, water chemistry and moon phase. Most factors are probably constantly favourable in forest. Biological specificities, behaviour and high human-vector contact in the forest can explain the association of this complex with high malaria prevalence, multi-drug resistant Plasmodium falciparum and partial control failure of forest malaria in Southeast Asia. Conclusion Environmental and human factors seem better than species specificities at explaining behavioural heterogeneity. Although forest seems essential for mosquito survival, adaptations to orchards and wells have been recorded. Understanding the relationship between landscape components and mosquito population is a priority in foreseeing the influence of land-cover changes on malaria occurrence and in shaping control strategies for the future. PMID:17341297

  10. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  11. Was Anopheles donaldi a vector of malaria in Kuala Lumpur, Malaysia, in the past?

    PubMed

    Reid, J A

    1980-01-01

    Anopheles donaldi Reid, a member of the A. barbirostris species group, is a vector of human filariasis and probably malaria. The discovery of some old specimens of this species, collected in Kuala Lumpur town where it no longer occurs, together with evidence from the literature about past malaria in the town, suggest that donaldi may have played a part in transmitting that malaria.

  12. Batkoa apiculata (Thaxter) Humber affecting Anopheles (Diptera: Culicidae) in the municipality of Una, Southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys for fungal pathogens affecting adult mosquitoes from the genus Anopheles were conducted in flooded and swamp-like natural breeding sites near residences in the center and suburbs of the city of Una as well as the nearby village of Outeiro in southern Bahia. Surveys of 54 mosquito breeding si...

  13. A study of the blood-feeding patterns of Anopheles mosquitos through precipitin tests*

    PubMed Central

    1960-01-01

    The success of malaria eradication campaigns depends on the use of all methods which make for a better understanding of the biology and behaviour of mosquito vectors. One such method is precipitin testing, by which it is possible to identify the human or animal origin of blood meals of mosquitos and thereby to determine their host preferences and vectorial importance, both generally and locally. In 1955, the World Health Organization in agreement with the Lister Institute of Preventive Medicine, Elstree, England, set up a precipitin test service related to entomological surveys in malaria eradication programmes and available to national research and WHO field personnel. The purpose was to stimulate interest in the study of bionomics of Anopheles species, to facilitate the identification of blood meals of Anopheles, to eliminate experimental errors by the use of a standardized technique and highly sensitive antisera, and finally to apply the results in the strategy of malaria eradication. The results obtained over the past five years are summarized in tabular form. The study—the largest ever undertaken—included 51 species of Anopheles and 56 377 tests, of which 93.9% yielded positive results, are reviewed. The available knowledge of the vectorial importance of 39 species of Anopheles is compared with their human blood ratio, this term being used to express the percentage of human blood in relation to all precipitin tests found positive. PMID:20604062

  14. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya

    PubMed Central

    Wanjala, Christine L.; Mbugi, Jernard P.; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A.; Atieli, Harrysone E.; Zhou, Guofa; Githeko, Andrew K.

    2015-01-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  15. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis

    PubMed Central

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  16. Seasonal climate effects anemotaxis in newly emerged adult anopheles gambiae giles in Mali, West Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direction and magnitude of movement of the malaria vector Anopheles gambiae Giles has been of great interest to medical entomologists for over 70 years. This direction of movement is likely to be affected by many factors, from environmental conditions and stage of life history of the mosquito to...

  17. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia

    PubMed Central

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-01-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  18. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    PubMed

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  19. Using a near-infrared spectrometer to estimate the age of Anopheles mosquitoes exposed to pyrethroids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as ,7 or $7 d ol...

  20. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis.

    PubMed

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  1. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    PubMed

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region.

  2. Ecology of Anopheles stephensi in a malarious area, southeast of Iran.

    PubMed

    Mehravaran, Ahmad; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Abai, Mohammad Reza; Edalat, Hamideh; Javadian, Ezatoddin; Mashayekhi, Minoo; Piazak, Norair; Hanafi-Bojd, Ahmad Ali

    2012-01-01

    District of Jiroft is situated in south-east of Iran which is one of the malarious regions. Anopheles stephensi is considered as one of the main malaria vector in this region. Ecology of this species was studied in the area to understand its vector behavior for implementation of effective vector control measures. Different methods like total catch, pit shelter, night bite collection on human and animal, larval dipping methods were used for species identification, seasonal activity, anthropophilic index and egg morphological characteristics. Anthropophilicity index was assessed by ELISA test. Activity of Anopheles species started at the beginning of April, and its peak occurs in late spring. The larvae were found in the river bed with pools, stagnant streams, slow foothill streams, temporary pools, and slowly moving water with and without vegetation, drainage containers of air conditioner and palm irrigation canals. From different methods of adult collection, it was found that spray sheet collection is the appropriate method. ELISA testing of 144 blood meals of females revealed the anthropophilicity of 11.8% indicating host preference on animal, mainly cow. Ridge length and their number on the egg floats confirmed Anopheles stephensi mysorensis form. This study showed that Anopheles stephensi is the main vector of malaria in the region, although some other species may play a role. Our findings could provide a valuable clue for epidemiology and control of malaria in the southeast of Iran. PMID:22267381

  3. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia.

    PubMed

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-11-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  4. Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids

    PubMed Central

    Sikulu, Maggy T.; Majambere, Silas; Khatib, Bakar O.; Ali, Abdullah S.; Hugo, Leon E.; Dowell, Floyd E.

    2014-01-01

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed. PMID:24594705

  5. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  6. Observations on the taxonomic status of Anopheles sicaulti.

    PubMed

    de Zulueta, J; Ramsdale, C; Cianchi, R; Bullini, L; Coluzzi, M

    1983-04-01

    Field and laboratory studies were carried out on populations of Anopheles sicaulti and An. labranchiae from the Moroccan province of Tetouan, in order to evaluate the hypothesis of a specific rank for the former taxon, recently suggested by White (1978). The egg morphology, and particularly the exochorion pattern and the number of float ribs, showed a complete range of variation, from typical sicaulti to typical labranchiae. Females laying "intermediate" eggs are those prevailing in the study area (60.5% of the eggs collected in the Tetouan province were of this type); in some localities (Ben Karriche and Restinga) only such females were observed. The latter finding would indicate a polygenic control of the egg pattern, as the two supposed parental forms do not seem to segregate from the "intermediate" one. No pure labranchiae populations were observed in the study area, while a pure sicaulti sample was found at Kantara. More widespread appears to be the coexistence of the "intermediate" form either with sicaulti (at Mdiq and Beni Yder, in both cases with a ratio of about 1.7:1), or with both sicaulti and labranchiae (at Souk Khemis and Tatoufet, with a ratio of about 2:1:1 in the two cases). These data seem to indicate that in the considered area sicaulti interbreeds freely with labranchiae. Crossing experiments failed to evidence post-mating barriers between the two taxa; fertile hybrids were obtained in the expected numbers. The polytene chromosome studies showed no differences of diagnostic value between sicaulti and labranchiae, that have the same banding pattern. Also the genetic structure, analyzed by means of starch-gel electrophoresis on the basis of 16 gene-enzyme systems appears to be quite similar in the two forms: allele frequencies at the polymorphic loci do not show significant differences. The average Nei's genetic distance found between sicaulti and labranchiae is exceedingly low (D = 0.014); values of the same magnitude were observed between

  7. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses.

    PubMed

    Fauver, Joseph R; Grubaugh, Nathan D; Krajacich, Benjamin J; Weger-Lucarelli, James; Lakin, Steven M; Fakoli, Lawrence S; Bolay, Fatorma K; Diclaro, Joseph W; Dabiré, Kounbobr Roch; Foy, Brian D; Brackney, Doug E; Ebel, Gregory D; Stenglein, Mark D

    2016-11-01

    Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission. PMID:27639161

  8. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period

    PubMed Central

    Sattler, Michael A; Mtasiwa, Deo; Kiama, Michael; Premji, Zul; Tanner, Marcel; Killeen, Gerry F; Lengeler, Christian

    2005-01-01

    Introduction By 2030, more than 50% of the African population will live in urban areas. Controlling malaria reduces the disease burden and further improves economic development. As a complement to treated nets and prompt access to treatment, measures targeted against the larval stage of Anopheles sp. mosquitoes are a promising strategy for urban areas. However, a precise knowledge of the geographic location and potentially of ecological characteristics of breeding sites is of major importance for such interventions. Methods In total 151 km2 of central Dar es Salaam, the biggest city of Tanzania, were systematically searched for open mosquito breeding sites. Ecologic parameters, mosquito larvae density and geographic location were recorded for each site. Logistic regression analysis was used to determine the key ecological factors explaining the different densities of mosquito larvae. Results A total of 405 potential open breeding sites were examined. Large drains, swamps and puddles were associated with no or low Anopheles sp. larvae density. The probability of Anopheles sp. larvae to be present was reduced when water was identified as "turbid". Small breeding sites were more commonly colonized by Anopheles sp. larvae. Further, Anopheles gambiae s.l. larvae were found in highly organically polluted habitats. Conclusions Clear ecological characteristics of the breeding requirements of Anopheles sp. larvae could not be identified in this setting. Hence, every stagnant open water body, including very polluted ones, have to be considered as potential malaria vector breeding sites. PMID:15649333

  9. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique

    PubMed Central

    2011-01-01

    Background The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS) programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. Results No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475) of the total collections. Of the specimens identified to species by PCR (n = 167), 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53) and of those identified (n = 33) 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality) and lambda-cyhalothrin (14.6% mortality), less so to bendiocarb (71.5% mortality) and fully susceptible to both malathion and DDT (100%). Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo), strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166). One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Conclusion Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of bendiocarb within the

  10. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks.

    PubMed

    Dimopoulos, G; Zheng, L; Kumar, V; della Torre, A; Kafatos, F C; Louis, C

    1996-06-01

    Randomly amplified polymorphic DNA (RAPD) markers have been integrated in the genetic and cytogenetic maps of the malaria vector mosquito, Anopheles gambiae. Fifteen of these markers were mapped by recombination, relative to microsatellite markers that had been mapped previously. Thirty-four gel-purified RAPD bands were cloned and sequenced, generating sequence tagged sites (STSs) that can be used as entry points to the A. gambiae genome. Thirty one of these STSs were localized on nurse cell polytene chromosomes through their unique hybridization signal in in situ hybridization experiments. Five STSs map close to the breakpoints of polymorphic inversions, which are notable features of the Anopheles genome. The usefulness and limitations of this integrated mosquito map are discussed. PMID:8725241

  11. [Identification of breeding sites of Anopheles sp. during part of the dry season in Jigawa, Nigeria].

    PubMed

    Marquetti, María del Carmen; Rojas, Lázara; Mohd Birniwa, Muktar; Sulaiman, Haruna U; Adamu, Hassana H

    2007-01-01

    A study was conducted in the state of Jigawa, Republic of Nigeria, from November to December in the dry season, where malaria is one of the main morbidity and mortality causes particularly in under 5 years-old children and pregnant women. This state had two climate seasons: dry from October to May and rainy from June to September. A total of 112 water bodies were sampled and just 18 in nine local governments were positive to mosquitoes. Breeding sites for Anopheles were rice fields, small holes in land, animal footsteps, small ponds, flooded pasture fields and water treatment dam, among others, to amount to 10 sites. Contrary to what has always been reported about the presence of Anopheles in clean waters, they were also breeding in highly polluted waters containing human faeces and garbage and located in open sewers. PMID:23427452

  12. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.

  13. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali.

    PubMed

    Main, Bradley J; Lee, Yoosook; Collier, Travis C; Norris, Laura C; Brisco, Katherine; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2015-10-01

    In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage. PMID:26359110

  14. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae.

    PubMed

    Vizioli, J; Bulet, P; Charlet, M; Lowenberger, C; Blass, C; Müller, H M; Dimopoulos, G; Hoffmann, J; Kafatos, F C; Richman, A

    2000-02-01

    Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts. PMID:10672074

  15. Preliminary observations on cross-mating of the malaria vector, Anopheles sergentii from two Egyptian oases.

    PubMed

    Kenawy, M A; Sowilem, M M; Abdel-Hamid, Y M; Wahba, M M

    2000-12-01

    Intra- and inter-strain crosses were made between randomly collected adults Anopheles sergentii originated from Tersa village (El-Faiyum Governorate) and Siwa oasis (Matruh Governorate). The success of such crosses and their effects on fecundity and fertility of the parental females and on survival and development velocities of the F1 immatures were examined. No overall heterosis effects on such attributes were detected suggesting absence of genetic differences between the vector populations in these two malarious areas.

  16. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast.

    PubMed

    Mbogo, Charles M; Mwangangi, Joseph M; Nzovu, Joseph; Gu, Weidong; Yan, Guiyan; Gunter, James T; Swalm, Chris; Keating, Joseph; Regens, James L; Shililu, Josephat I; Githure, John I; Beier, John C

    2003-06-01

    The seasonal dynamics and spatial distributions of Anopheles mosquitoes and Plasmodium falciparum parasites were studied for one year at 30 villages in Malindi, Kilifi, and Kwale Districts along the coast of Kenya. Anopheline mosquitoes were sampled inside houses at each site once every two months and malaria parasite prevalence in local school children was determined at the end of the entomologic survey. A total of 5,476 Anopheles gambiae s.l. and 3,461 An. funestus were collected. Species in the An. gambiae complex, identified by a polymerase chain reaction, included 81.9% An. gambiae s.s., 12.8% An. arabiensis, and 5.3% An. merus. Anopheles gambiae s.s. contributed most to the transmission of P. falciparum along the coast as a whole, while An. funestus accounted for more than 50% of all transmission in Kwale District. Large spatial heterogeneity of transmission intensity (< 1 up to 120 infective bites per person per year) resulted in correspondingly large and significantly related variations in parasite prevalence (range = 38-83%). Thirty-two percent of the sites (7 of 22 sites) with malaria prevalences ranging from 38% to 70% had annual entomologic inoculation rates (EIR) less than five infective bites per person per year. Anopheles gambiae s.l. and An. funestus densities in Kwale were not significantly influenced by rainfall. However, both were positively correlated with rainfall one and three months previously in Malindi and Kilifi Districts, respectively. These unexpected variations in the relationship between mosquito populations and rainfall suggest environmental heterogeneity in the predominant aquatic habitats in each district. One important conclusion is that the highly non-linear relationship between EIRs and prevalence indicates that the consistent pattern of high prevalence might be governed by substantial variation in transmission intensity measured by entomologic surveys. The field-based estimate of entomologic parameters on a district level does

  17. Beta-integrin of Anopheles gambiae: mRNA cloning and analysis of structure and expression.

    PubMed

    Mahairaki, V; Lycett, G; Blass, C; Louis, C

    2001-06-01

    We have isolated an mRNA encoding a beta integrin subunit of the malaria mosquito Anopheles gambiae. Our analysis predicts a protein that is very similar to betaPS, the fruitfly orthologue. The gene is expressed during all developmental stages and it is found in all body parts, including the midgut. Finally, the expression of the gene does not seem to be modulated during blood meals, except for a substantial increase 48 h posthaematophagy, when digestion is nearly complete. PMID:11437913

  18. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  19. [The Anopheles fauna and the transmission of human malaria in Kinshasa (Zaire)].

    PubMed

    Karch, S; Asidi, N; Manzambi, Z M; Salaun, J J

    1992-01-01

    A longitudinal epidemiological study of malaria and its vectors was conducted in Kinshasa. 264 night-bite collections on human bait (1,056 man nights) and 384 collections of the house-resting fauna were carried out from April 1989 to October 1990. The anophelian fauna was identified and inventoried, 7 Anopheles species were found: Anopheles gambiae, An. funestus, An. paludis, An. hancocki, An. counstani, An. brunnipes, and An. nili. A single species, An. gambiae s. l. is responsible for the transmission of malaria, it represents 93.27% of the anopheline fauna. The average number of anophele bites man day was 16.28 bites/man/night, it varied between 1 b/m/n in urban area to 26.05 b/m/n in semi-rural area. The average of the sporozoite index for An. gambiae was 3.3%, but it varied from 0% in the urban area to 6.52% in the semi-rural area. The entomological inoculation rate (h) was 197 infective bites per year. This rate fluctuated from 1 infective bite each 128 nights in urban area to 1.7 infective night-bite in semi-rural area. Other epidemiological index were also determined: the level of daily survival rate (p = 8.75 days), the vectorial capacity of 17.97 and the Macdonald's stability 3.5 bites on man taken by a vector during its entire lifetime.

  20. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    PubMed

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  1. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    PubMed Central

    Pirmohammadi, Masoumeh; Shayeghi, Mansoureh; Vatandoost, Hassan; Abaei, Mohammad Reza; Mohammadi, Ali; Bagheri, Akbar; Khoobdel, Mehdi; Bakhshi, Hasan; Pirmohammadi, Maryam; Tavassoli, Maryam

    2016-01-01

    Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mosquito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection. Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition. Results: The mean assessed protection time and efficacy for A. vermiculata was 2.16 and 3.16 hours respectively and the obtained ED50 and ED90 for this plant was 5.67 and 63 μl/cm2 respectively. The figured for S. hortensis was 4.16 and 5 hours respectively. ED50 and ED90 for this plant were 5.63 and 45.75μl/cm2 respectively. Conclusion: Results of investigation showed that S. hortensis plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes. PMID:27308278

  2. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission

    PubMed Central

    Depinay, Jean-Marc O; Mbogo, Charles M; Killeen, Gerry; Knols, Bart; Beier, John; Carlson, John; Dushoff, Jonathan; Billingsley, Peter; Mwambi, Henry; Githure, John; Toure, Abdoulaye M; Ellis McKenzie, F

    2004-01-01

    Background Malaria is one of the oldest and deadliest infectious diseases in humans. Many mathematical models of malaria have been developed during the past century, and applied to potential interventions. However, malaria remains uncontrolled and is increasing in many areas, as are vector and parasite resistance to insecticides and drugs. Methods This study presents a simulation model of African malaria vectors. This individual-based model incorporates current knowledge of the mechanisms underlying Anopheles population dynamics and their relations to the environment. One of its main strengths is that it is based on both biological and environmental variables. Results The model made it possible to structure existing knowledge, assembled in a comprehensive review of the literature, and also pointed out important aspects of basic Anopheles biology about which knowledge is lacking. One simulation showed several patterns similar to those seen in the field, and made it possible to examine different analyses and hypotheses for these patterns; sensitivity analyses on temperature, moisture, predation and preliminary investigations of nutrient competition were also conducted. Conclusions Although based on some mathematical formulae and parameters, this new tool has been developed in order to be as explicit as possible, transparent in use, close to reality and amenable to direct use by field workers. It allows a better understanding of the mechanisms underlying Anopheles population dynamics in general and also a better understanding of the dynamics in specific local geographic environments. It points out many important areas for new investigations that will be critical to effective, efficient, sustainable interventions. PMID:15285781

  3. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania.

    PubMed

    Kabula, B; Tungu, P; Malima, R; Rowland, M; Minja, J; Wililo, R; Ramsan, M; McElroy, P D; Kafuko, J; Kulkarni, M; Protopopoff, N; Magesa, S; Mosha, F; Kisinza, W

    2014-09-01

    The development of insecticide resistance is a threat to the control of malaria in Africa. We report the findings of a national survey carried out in Tanzania in 2011 to monitor the susceptibility of malaria vectors to pyrethroid, organophosphate, carbamate and DDT insecticides, and compare these findings with those identified in 2004 and 2010. Standard World Health Organization (WHO) methods were used to detect knock-down and mortality rates in wild female Anopheles gambiae s.l. (Diptera: Culicidae) collected from 14 sentinel districts. Diagnostic doses of the pyrethroids deltamethrin, lambdacyhalothrin and permethrin, the carbamate propoxur, the organophosphate fenitrothion and the organochlorine DDT were used. Anopheles gambiae s.l. was resistant to permethrin in Muleba, where a mortality rate of 11% [95% confidence interval (CI) 6-19%] was recorded, Muheza (mortality rate of 75%, 95% CI 66-83%), Moshi and Arumeru (mortality rates of 74% in both). Similarly, resistance was reported to lambdacyhalothrin in Muleba, Muheza, Moshi and Arumeru (mortality rates of 31-82%), and to deltamethrin in Muleba, Moshi and Muheza (mortality rates of 28-75%). Resistance to DDT was reported in Muleba. No resistance to the carbamate propoxur or the organophosphate fenitrothion was observed. Anopheles gambiae s.l. is becoming resistant to pyrethoids and DDT in several parts of Tanzania. This has coincided with the scaling up of vector control measures. Resistance may impair the effectiveness of these interventions and therefore demands close monitoring and the adoption of a resistance management strategy.

  4. Rubidium marking of Anopheles mosquitoes detectable by field-capable X-ray spectrometry.

    PubMed

    Wilkins, E E; Smith, S C; Roberts, J M; Benedict, M

    2007-06-01

    We present a mosquito marking technique suitable for mark-release-recapture that can be used with a hand-held, portable X-ray fluorescence (XRF) spectrometer, which is practical for field measurements. Third instar Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and Anopheles stephensi Liston larvae were cultured to pupation in water containing rubidium (Rb) Cl at concentrations up to 1000 p.p.m. Rb. Anopheles gambiae larvae survived to adulthood at concentrations as high as 1000 p.p.m. Rb but suffered pupal mortality and reduced adult longevity at high concentrations. We were able to culture An. stephensi at Rb concentrations as high as 300 p.p.m. The presence of Rb in adults was evaluated using a portable XRF analyser, and we were able to reliably detect Rb above background levels in 10-day-old females and 4-day-old males at concentrations causing minimal pupal or adult mortality. We observed that Rb marking was not permanent, and the concentration declined significantly as adults aged. The low cost of labelling with RbCl and the field portability of the spectrometer provide a useful means for labelling mosquitoes via breeding sites or in the laboratory for mark-release-recapture experiments.

  5. The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Teklu, B. M.; Tekie, H.; McCartney, M.; Kibret, S.

    2010-12-01

    Entomological studies to determine the effect of the physical characteristics of mosquito larval breeding water bodies and reservoir water level changes on the occurrence of Anopheles mosquito larvae were conducted in two villages at Koka reservoir in central Ethiopia between August and December 2007. Of the two study villages, Ejersa is located close to the reservoir, and Kuma is 5 km away from it. Data on the type, number and physical characteristics of Anopheles larval breeding habitat, species composition and densities of anopheles mosquitoes in and around the study villages were investigated and recorded. Meteorological and reservoir water level data were compared with availability of Anopheles larval breeding sites and densities. Entomological data, derived from weekly larval collections, showed that Anopheles pharoensis Theobald, Anopheles gambiae s.l. Giles, Anopheles coustani Laveran and Anopheles squamosus Theobald were breeding in the study area. The mean larval density of An. gambiae s.l. in this study was higher in slightly turbid and shallow aquatic habitat than in turbid and relatively deep aquatic habitat. The density of An. pharoensis in habitat with floating vegetation and with relatively shady conditions was significantly higher than that of less shaded aquatic habitat and greater emergent vegetation. There was also a positive correlation between the occurrence of Anopheles larvae with the water and daily minimum atmospheric temperature. Similarly at Ejersa, over the sampling period, there was a positive correlation between falling reservoir water levels and the number of positive breeding habitats. These results confirm that physical characteristics of the water bodies play an important role in the species composition, total Anopheles larval count, and the density of Anopheles mosquitoes. Suitable breeding habitat in the vicinity of the reservoir village was strongly associated with the reservoir. This is particularly important for An

  6. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns

    PubMed Central

    2013-01-01

    Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were

  7. Differential acquisition of human antibody responses to Plasmodium falciparum according to intensity of exposure to Anopheles bites.

    PubMed

    Sarr, Jean Biram; Samb, Badara; Sagna, Andre Barembaye; Fortin, Sonia; Doucoure, Souleymane; Sow, Cheikh; Senghor, Simon; Gaayeb, Lobna; Guindo, Soihibou; Schacht, Anne-Marie; Rogerie, François; Hermann, Emmanuel; Dia, Ibrahima; Konate, Lassana; Riveau, Gilles; Remoue, Franck

    2012-08-01

    Malaria immunity is modulated by many environmental and epidemiological factors. This study evaluates the influence of a hitherto unstudied environmental-epidemiological factor, namely the impact of human exposure to Anopheles bites on the isotype profile of acquired antibody responses to Plasmodium falciparum. In two Senegalese villages where the intensity of exposure to Anopheles bites was markedly different (high and low exposure), specific IgG1 and IgG3 responses to P. falciparum whole schizont extract (WSE) and circumsporozoite protein (CSP) were evaluated at the peak of Anopheles exposure (September) and later (December) in a cohort of 120 children aged 3-8 years. Multivariate analysis showed a significantly lower IgG1 response against P. falciparum WSE and CSP in children highly exposed to Anopheles bites (Gankette) compared to those who were weakly exposed (Mboula). In contrast, in both villages, parasitemia and increasing age were strongly associated with higher IgG1 and IgG3 levels. We hypothesize that high exposure to Anopheles bites could inhibit IgG1-dependent responsiveness to P. falciparum known to induce protective immune responses against malaria. The impact of mosquito saliva on the regulation of specific protective immunity may need to be taken into account in epidemiological studies and trials for malaria vaccines.

  8. Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa.

    PubMed

    Rahola, Nil; Makanga, Boris; Yangari, Patrick; Jiolle, Davy; Fontenille, Didier; Renaud, François; Ollomo, Benjamin; Ayala, Diego; Prugnolle, Franck; Paupy, Christophe

    2014-12-01

    The genus Anopheles includes mosquito vectors of human malaria and arboviruses. In sub-Saharan Africa, the anopheline fauna is rich of nearly 150 species, few of which are anthropophilic and capable of transmitting pathogens to humans. Some of the remaining species are found in forests far from human environments and are vectors of wildlife pathogens. The diversity and the biology of these species have yet to be fully described. As a contribution to furthering knowledge of sylvan Anophelinae, using morphological and molecular tools we describe a new Anopheles species collected in Gabon (Central Africa), which we have named Anopheles gabonensis n. sp. We also molecularly screened this species to detect infections by Plasmodium parasites. The results showed the species to have been infected by Plasmodium vinckei, a rodent parasite. We discuss the role of An. gabonensis n. sp. in the transmission of P. vinckei in the rainforest areas of Central Africa and its potential to transfer pathogens to humans.

  9. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  10. Retrospective study of malaria prevalence and Anopheles genus in the area of influence of the Binational Itaipu Reservoir.

    PubMed

    Falavigna-Guilherme, Ana Lucia; Silva, Allan Martins da; Guilherme, Edson Valdemar; Morais, Dina Lúcia

    2005-01-01

    The importance of hydroelectric dams beside the human interchange in the maintenance of malarious foci and the occurrence of the Anopheles genus on the Binational Itaipu Reservoir were the main points of this retrospective study. Data were collected from existing registrations at National, State and Municipal Health Departments and literature systematic overview, from January 1984 to December 2003. The occurrence of some outbreak of malaria, mainly by Plasmodium vivax, and the prevalence of species of the Anopheles genus different from Anopheles darlingi in the region are discussed. The malaria in the left bank of Paraná River is a focal problem, which must be approached locally through health, educational and social actions to prevent the continuity of outbreaks in the area. Concomitantly, it is necessary to plan and apply effective surveillance measures in the influence area of the Itaipu Reservoir.

  11. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    PubMed Central

    Abdullah, Mohd Amir F; Valaitis, Algimantas P; Dean, Donald H

    2006-01-01

    Background Aminopeptidase N (APN) type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt) toxin-binding proteins (receptors) for Cry toxins. We examined brush border membrane vesicle (BBMV) proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100) was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba. PMID:16716213

  12. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Cheah, Shao-Xiong; Tay, Jia-Wei; Chan, Lai-Keng; Jaal, Zairi

    2013-09-01

    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.

  13. Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand.

    PubMed

    Polsomboon, Suppaluck; Grieco, John P; Achee, Nicole L; Chauhan, Kamlesh R; Tanasinchayakul, Somchai; Pothikasikorn, Jinrapa; Chareonviriyaphap, Theeraphap

    2008-12-01

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions.

  14. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana

    PubMed Central

    2013-01-01

    Background With high DDT resistance present throughout much of West Africa, carbamates and organophosphates are increasingly important alternatives to pyrethroids for indoor residual spraying (IRS). Though less widespread, resistance to both of these alternative insecticide classes has also been documented within the Anopheles gambiae species pair (formerly the M and S molecular forms) in West Africa. To manage insecticide efficacy, it is important to predict how and where resistance is likely to occur and spread, which could be aided by using molecular diagnostics with high predictive value. Methods Anopheles coluzzii and An. gambiae s.s. were collected from 18 sites throughout southern Ghana and bioassayed with bendiocarb, the most commonly applied carbamate, and an organophosphate, fenitrothion. The Ace-1 target site substitution G119S was genotyped by qPCR. Results Fenitrothion induced higher mortality than bendiocarb, though phenotypes correlated strongly across populations. Ace-1 119S was found at much higher frequency in An. gambiae s.s than An. coluzzii, exceeding 90% in a population from Greater Accra, the highest frequency reported to date. Ace-1 G119S was very strongly associated with resistance to both insecticides, providing high predictive power for diagnosis, though with some evidence for a differential effect between molecular forms for bendiocarb. Sequencing of the gene revealed a lack of variation in resistant alleles precluding determination of origin, but Ace-1 copy number variation was detected for the first time in Ghana. Conclusions The results validate G119S as a useful diagnostic of organophosphate and carbamate resistance within and among populations, whilst highlighting the potential for an aggregate nature of Ace-1 genotypes, which may comprise both single-copy and duplicated genes. Further work is now required to determine the distribution and resistance-association of Ace-1 duplication. PMID:24206629

  15. Cytogenetic, crossing and molecular evidence of two cytological forms of Anopheles argyropus and three cytological forms of Anopheles pursati (Diptera: Culicidae) in Thailand.

    PubMed

    Thongsahuan, S; Otsuka, Y; Baimai, V; Saeung, A; Hempolchom, C; Taai, K; Srisuka, W; Dedkhad, W; Sor-suwan, S; Choochote, W

    2014-12-01

    Nine and 11 isolines of Anopheles argyropus and Anopheles pursati, respectively, were established from individual females collected from cow-baited traps, and the characteristics of metaphase chromosomes were investigated in their F1-progenies. As determined by the different amounts of extra heterochromatin on sex chromosomes, 2 types of X (X1, X2) and Y (Y1,Y2), and 2 types of X (X1, X2) and 3 types of Y (Y1, Y2, Y3) chromosomes were obtained from An. argyropus and An. pursati, respectively. These types of sex chromosomes comprised 2 [Forms A (X1, Y1) and B (X1, X2, Y2)] and 3 [Forms A (X1, X2, Y1), B (X1, X2, Y2) and C (X2, Y3)] karyotypic forms of An. argyropus and An. pursati, respectively. All karyotypic forms acquired from An. pursati are new one that were discovered in this study, of which Forms A, B and C were found generally in Chiang Mai Province, while only 1 isoline of Form B was obtained in Ratchaburi Province. Form A was recovered from An. argyropus only in Ubon Ratchathani Province, whereas Form B from that species was found commonly in both Ubon Rathchathani and Nakhon Si Thammarat Provinces. Crossing experiments among the 2 and 3 isolines representing 2 and 3 karyotypic forms of An. argyropus and An. pursati, respectively, indicated genetic compatibility in yielding viable progenies and synaptic salivary gland polytene chromosomes through F2-generations. The conspecific natures of these karyotypic forms in both species were further supported by very low intraspecific sequence variations (average genetic distance: An. argyropus = 0.003-0.007, An. pursati = 0-0.005) of ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII).

  16. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.

    1998-01-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  17. Ecotope-based entomological surveillance and molecular xenomonitoring of multidrug resistant malaria parasites in anopheles vectors.

    PubMed

    Sorosjinda-Nunthawarasilp, Prapa; Bhumiratana, Adisak

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  18. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  19. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon

    PubMed Central

    2014-01-01

    Background Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. Methods Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. Results An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). Conclusions An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality. PMID

  20. The physical gene Hsp70 map on polytene chromosomes of Anopheles darlingi from the Brazilian Amazon.

    PubMed

    Rafael, Míriam Silva; Tadei, Wanderli Pedro; Hunter, Fiona F

    2004-05-01

    In situ hybridization was used to determine the physical location of the Hsp70 genes in salivary polytene chromosomes of Anopheles darlingi from Manaus and Macapá, Brazil, and to assess the usefulness of the Hsp70 locus as a genetic marker in A. darlingi populations. In both populations, the double markings corresponding to the Hsp70-12A and Hsp70-14A genes were located on the right arm of chromosome 2. The Hsp70 locus was considered to be an excellent marker for studying chromosomal evolution and relationships among A. darlingi populations. PMID:15098741

  1. Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania.

    PubMed

    Trigg, J K

    1996-06-01

    A eucalyptus-based insect repellent (PMD) with the principal active ingredient p-menthane-3,8-diol was evaluated in the field in comparison with deet. In human landing catches in Tanzania, 3 formulations of PMD were tested against Anopheles gambiae and An. funestus. Repellents, applied to the legs and feet at doses chosen as used in practice, gave complete protection from biting for between 6 and 7.75 h, depending upon the formulation type, with no significant difference between PMD and deet in terms of efficacy and duration of protection. PMID:8827599

  2. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    PubMed Central

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  3. Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi.

    PubMed

    François, G; Van Looveren, M; Timperman, G; Chimanuka, B; Aké Assi, L; Holenz, J; Bringmann, G

    1996-11-01

    The larvicidal activity of dionocophylline A, a naphthylisoquinoline alkaloid derived from the tropical vine Triphyophyllum peltatum (Dioncophyllaceae), was investigated against the malaria vector Anopheles stephensi. In direct and indirect inhibition assays it was demonstrated that the younger larval stages were very sensitive towards this natural product, with LC50 values below 1 mg/l. Pronounced effects were observed within 4 h of exposure. Aging larvae, however, were less sensitive, while pupae were totally insensitive to the action of dioncophylline A. The transformations from larvae to pupae and from pupae to adult mosquitoes remained unaffected. Therefore, dioncophylline A can be regarded as a promising specific larvicide.

  4. Influence of moonlight on light trap catches of the malaria vector Anopheles nuneztovari in Venezuela.

    PubMed

    Rubio-Palis, Y

    1992-06-01

    A significant effect (P = 0.002) of moonlight on light trap catches of Anopheles nuneztovari females was observed during a longitudinal study in western Venezuela. The catch with no moon was 1.86 times larger than with full moon. Nevertheless, moonlight does not seem to have any effect on the composition of adult mosquito population since the difference in the parous rate of females collected during full moon and during no moon was not significant (P greater than 0.05). PMID:1431859

  5. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    PubMed Central

    2011-01-01

    Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the

  6. Habitat discrimination by gravid Anopheles gambiae sensu lato – a push-pull system

    PubMed Central

    2014-01-01

    Background The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. Methods Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. Results Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. Conclusion Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit

  7. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands.

    PubMed

    Afrane, Yaw A; Githeko, Andrew K; Yan, Guiyun

    2012-02-01

    Climate change is expected to lead to latitudinal and altitudinal temperature increases. High-elevation regions such as the highlands of Africa and those that have temperate climate are most likely to be affected. The highlands of Africa generally exhibit low ambient temperatures. This restricts the distribution of Anopheles mosquitoes, the vectors of malaria, filariasis, and O'nyong'nyong fever. The development and survival of larval and adult mosquitoes are temperature dependent, as are mosquito biting frequency and pathogen development rate. Given that various Anopheles species are adapted to different climatic conditions, changes in climate could lead to changes in species composition in an area that may change the dynamics of mosquito-borne disease transmission. It is important to consider the effect of climate change on rainfall, which is critical to the formation and persistence of mosquito breeding sites. In addition, environmental changes such as deforestation could increase local temperatures in the highlands; this could enhance the vectorial capacity of the Anopheles. These experimental data will be invaluable in facilitating the understanding of the impact of climate change on Anopheles.

  8. Genome Sequence of Stenotrophomonas maltophilia Strain SmAs1, Isolated From the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    An isolate of Stenotrophomonas maltophilia was cultured from the Asian malaria vector Anopheles stephensi. Here, we present the annotated draft genome sequence of this S. maltophilia strain. This genomic resource will facilitate further characterization of bacteria associated with mosquitoes. PMID:26966198

  9. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  10. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  11. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  12. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae)

    PubMed Central

    Linton, Yvonne-Marie; Ruiz-Lopez, J. Freddy; Conn, Jan E.; Sallum, Maria Anice M.; Póvoa, Marinete M.; Bergo, Eduardo S.; Oliveira, Tatiane M. P.; Sucupira, Izis; Wilkerson, Richard C.

    2015-01-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  13. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    PubMed

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex.

  14. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae.

    PubMed

    Thailayil, Janis; Magnusson, Kalle; Godfray, H Charles J; Crisanti, Andrea; Catteruccia, Flaminia

    2011-08-16

    Anopheles gambiae sensu stricto is the major vector of malaria, a disease with devastating consequences for human health. Given the constant spread of the disease, alternative approaches to the use of insecticides are urgently needed to control vector populations. Females of this species undergo large behavioral changes after mating, which include a life-long refractoriness to further insemination and the induction of egg laying in blood-fed individuals. Genetic control strategies aimed at impacting Anopheles fertility through the release of sterile males are being advocated to reduce the size of mosquito field populations. Such strategies depend on the ability of the released sterile males to mate successfully with wild females and to switch off the female receptivity to further copulation. Here we evaluate the role of sperm in regulating female behavioral responses after mating in An. gambiae. We developed spermless males by RNAi silencing of a germ cell differentiation gene. These males mated successfully and preserved standard accessory gland functions. Females mated to spermless males exhibited normal postcopulatory responses, which included laying large numbers of eggs upon blood feeding and becoming refractory to subsequent insemination. Moreover, spermless males induced transcriptional changes in female reproductive genes comparable to those elicited by fertile males. Our data demonstrate that, in contrast to Drosophila, targeting sperm in An. gambiae preserves normal male and female reproductive behavior for the traits and time frame analyzed and validate the use of approaches based on incapacitation or elimination of sperm for genetic control of vector populations to block malaria transmission. PMID:21825136

  15. Unassisted isolated-pair mating of Anopheles gambiae (Diptera: Culicidae) mosquitoes.

    PubMed

    Benedict, Mark Q; Rafferty, Cristina S

    2002-11-01

    Female Anopheles mosquitoes usually mate only once, but mating is seldom seen in small containers containing only one female and male. Therefore, matings are often performed among many adults in large cages or by forced copulation. Isolated-pair mating of Anopheles gambiae G3 strain-derived mosquitoes without forced copulation in small vials is described. We observed that the experimental variables eye color and male number were significant factors in the mating frequency. Females mated more frequently when three males were present over only one male. White-eyed females were more likely to be mated than wild-eyed females, but wild males mated more frequently than did white-eyed males. Experiments were also conducted to determine when mating was occurring by using wild-eye-color mosquitoes in isolated pairs. Almost no matings were observed before day 6 rather than the frequencies typically observed after 1-2 d in standard large-cage matings among large numbers of adults.

  16. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Manguin, S.; Roberts, D. R.; Andre, R. G.; Rejmankova, E.; Hakre, S.

    1996-01-01

    Surveys for larvae of Anopheles darlingi Root were conducted in April, May, and August 1994 in riverine habitats of central Belize (Cayo and Belize districts). An. darlingi was present during both the dry and wet seasons. Larvae were encountered most frequently in patches of floating debris along river margins. The floating mats were often formed by bamboo hanging over the banks and dense submersed bamboo roots. Larvae were found less frequently in lake margins, small lagoons, and ground pools with submersed roots and patches of floating leaves or vegetation. In addition to their association with floating debris, larvae of An. darlingi were associated positively with shade and submersed plants in riverine environments. Samples from river habitats showed the larvae of Anopheles albimanus Wiedemann to be strongly associated with sun-exposed sites containing green or blue-green algae. Unlike An. darlingi, An. albimanus was an ubiquitous mosquito, the immatures of which occurred in a wide variety of riverine and nonriverine aquatic habitats. Based on published reports and our experience, the association of An. darlingi with river systems was verified, and its distribution in Central America and Mexico was mapped.

  17. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  18. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  19. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    PubMed Central

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  20. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  1. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    PubMed Central

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  2. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village.

    PubMed

    Huestis, Diana L; Yaro, Alpha S; Traoré, Adama I; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-07-15

    In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.

  3. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.

    PubMed

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  4. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    PubMed

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species.

  5. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs.

  6. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  7. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  8. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae

    PubMed Central

    Thailayil, Janis; Magnusson, Kalle; Godfray, H. Charles J.; Crisanti, Andrea; Catteruccia, Flaminia

    2011-01-01

    Anopheles gambiae sensu stricto is the major vector of malaria, a disease with devastating consequences for human health. Given the constant spread of the disease, alternative approaches to the use of insecticides are urgently needed to control vector populations. Females of this species undergo large behavioral changes after mating, which include a life-long refractoriness to further insemination and the induction of egg laying in blood-fed individuals. Genetic control strategies aimed at impacting Anopheles fertility through the release of sterile males are being advocated to reduce the size of mosquito field populations. Such strategies depend on the ability of the released sterile males to mate successfully with wild females and to switch off the female receptivity to further copulation. Here we evaluate the role of sperm in regulating female behavioral responses after mating in An. gambiae. We developed spermless males by RNAi silencing of a germ cell differentiation gene. These males mated successfully and preserved standard accessory gland functions. Females mated to spermless males exhibited normal postcopulatory responses, which included laying large numbers of eggs upon blood feeding and becoming refractory to subsequent insemination. Moreover, spermless males induced transcriptional changes in female reproductive genes comparable to those elicited by fertile males. Our data demonstrate that, in contrast to Drosophila, targeting sperm in An. gambiae preserves normal male and female reproductive behavior for the traits and time frame analyzed and validate the use of approaches based on incapacitation or elimination of sperm for genetic control of vector populations to block malaria transmission. PMID:21825136

  9. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    PubMed Central

    2011-01-01

    Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées). While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized. PMID:21223582

  10. Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes

    PubMed Central

    2013-01-01

    Background Success of sterile insect technique (SIT) is dependent upon the mass rearing and release of quality insects, the production of which is directly related to the suitability of the diet ingredients used. Commercial diets used for small-scale culture of mosquitoes are expensive and thus not feasible for mass production. Methods A series of low cost globally available diet ingredients including, wheat, rice, corn, chickpeas, and beans along with liver, were provided to 4 h larvae (L1) of Anopheles stephensi (Liston) to see their effect on fitness parameters including larval duration, percent emergence, survival, adult wing size and female fecundity. Different quantities of the candidate diet ingredients were then mixed together to work out a combination diet with a balanced nutritive value that can be used for efficient rearing of the mosquito larvae at relatively lower costs. Results Fastest larval and pupal development and highest survival rates were recorded using a combination diet of bean, corn, wheat, chickpea, rice, and bovine liver at 5 mg/day. The diet is easy to prepare, and much cheaper than the diets reported earlier. The estimated cost of the reported diet is 14.7 US$/ 1.3 kg for rearing one million larvae. Conclusions A combination diet with ingredients from cereals and legumes mixed with liver is a low cost balanced larval diet with the potential for use in both small scale laboratory rearing and mass production of Anopheles in SIT control programs. PMID:23570246

  11. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis

    PubMed Central

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level. PMID:26588704

  12. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae).

    PubMed

    Foley, Desmond H; Linton, Yvonne-Marie; Ruiz-Lopez, J Freddy; Conn, Jan E; Sallum, Maria Anice M; Póvoa, Marinete M; Bergo, Eduardo S; Oliveira, Tatiane M P; Sucupira, Izis; Wilkerson, Richard C

    2014-06-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group.

  13. Diversity of Anopheles mosquitoes in Binh Phuoc and Dak Nong Provinces of Vietnam and their relation to disease

    PubMed Central

    2014-01-01

    Background Human malaria is still a burden in Dak Nong and Binh Phuoc Provinces in south-central Vietnam that border Cambodia. Several Anopheles species that transmit human malarial Plasmodium may also transmit Wuchereria bancrofti, the nematode that causes Bancroftian lymphatic filariasis. The objective of this study was to investigate the role of Anopheles species in the transmission of these two pathogens in the two highly malaria endemic provinces of Vietnam. Methods Anopheles mosquitoes were collected in Dak Nong and Binh Phuoc Provinces in November and December of 2010 and 2011. Human landing catches, paired collections on human and buffalo, and resting captures were made with mouth aspirators. Collections were also made with light traps. Morphological and PCR-based methods were used to identify the species. Real-time PCR was used to detect Plasmodium species and W. bancrofti in individual mosquitoes. Results Twenty-four Anopheles species were identified among 797 captured mosquitoes. Anopheles dirus was found in both provinces and was the predominant species in Binh Phuoc Province; An. maculatus was the most prevalent species in Dak Nong Province. Anopheles minimus was collected only in Binh Phuoc Province. Some specimens of An. minimus and An. pampanai were misidentified based on morphology. Four specimens of An. scanloni were identified, and this is the first report of this species of the Dirus Complex in Vietnam. Two females, one An. dirus and one An. pampanai, collected in Binh Phuoc Province were infected with P. vivax, for an overall infection rate of 0.41% (2/486): 0.28% for An. dirus (1/361) and 20% for An. pampanai (1/5). No mosquitoes were found to be infected with P. falciparum, P. knowlesi or W. bancrofti in either province. Conclusion A diversity of Anopheles species occurs in Dak Nong and Binh Phuoc Provinces of Vietnam, several of which are considered to be actual and potential vectors of malarial protozoa and microfilariae. It is highly

  14. Human Antibody Response to Anopheles Saliva for Comparing the Efficacy of Three Malaria Vector Control Methods in Balombo, Angola

    PubMed Central

    Brosseau, Laura; Drame, Papa Makhtar; Besnard, Patrick; Toto, Jean-Claude; Foumane, Vincent; Le Mire, Jacques; Mouchet, François; Remoue, Franck; Allan, Richard; Fortes, Filomeno; Carnevale, Pierre; Manguin, Sylvie

    2012-01-01

    Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008–2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS) - Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL – Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale. PMID:23028499

  15. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  16. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  17. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    PubMed

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity.

  18. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  19. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae).

    PubMed

    Finlayson, Catherine; Saingamsook, Jassada; Somboon, Pradya

    2015-12-01

    This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5cm diameter glass petri dish with 5cm(2) Parafilm M (Bemis(®)) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2±21.5% and 35.7±18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0±1.0% for AF compared to 70.7±20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks. PMID:26440474

  20. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae).

    PubMed

    Finlayson, Catherine; Saingamsook, Jassada; Somboon, Pradya

    2015-12-01

    This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5cm diameter glass petri dish with 5cm(2) Parafilm M (Bemis(®)) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2±21.5% and 35.7±18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0±1.0% for AF compared to 70.7±20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks.

  1. Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax.

    PubMed

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A; Maguina, Paula; Conn, Jan E; Vinetz, Joseph M

    2014-04-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector-pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi-Plasmodium interactions.

  2. Cytogenetic evidence for a species complex within Anopheles pseudopunctipennis theobald (Diptera: Culicidae).

    PubMed

    Coetzee, M; Estrada-Franco, J G; Wunderlich, C A; Hunt, R H

    1999-04-01

    Anopheles pseudopunctipennis was collected from Acapulco, Mexico and Sallee River, Grenada, West Indies and used in cross-mating experiments. Larvae from the cross, Mexico female X Grenada male, died in the third instar. However, adult progeny were obtained from the reciprocal cross Grenada female x Mexico male. These hybrid males had testes with apparently normal appearance but some without viable sperm. Polytene chromosomes obtained from hybrid females exhibited extensive asynapsis of the X chromosomes. Previously undescribed fixed inversion differences between the two populations were noted on the X chromosome. It is concluded that the two populations belong to different species. The Grenada population is designated An. pseudopunctipennis species C, since it is the third taxon recognized in this species complex.

  3. Molecular taxonomy provides new insights into anopheles species of the neotropical arribalzagia series.

    PubMed

    Gómez, Giovan F; Bickersmith, Sara A; González, Ranulfo; Conn, Jan E; Correa, Margarita M

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  4. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles.

    PubMed

    Riandey, M F; Sannier, C; Peltre, G; Monteny, N; Cavaleyra, M

    1996-06-01

    Lactate dehydrogenase (Ldh) electrophoresis showed the presence of Plasmodium yoelii yoelii in Anopheles stephensi and An. gambiae. The Ldh appeared as an additional band (pLdh) whose activity was more intense with 3-acetyl pyridine adenine dinucleotide as coenzyme than with beta nicotin-amide adenine dinucleotide. Several allelic forms occurred both in the vector and the host. The isoelectric point of Ldh, similar in the vector and host, differed from those of Ldh from mosquito and mouse. The presence of pLdh was detected from the 2nd to the 28th day of infection. The pLdh appeared to be proportional to the number of sporozoites present in infected salivary glands. However, pLdh was not found in salivary glands or midguts, but it was detected in the rest of the corresponding mosquito. The origin and use of pLdh as a marker of Plasmodium in its vector is discussed. PMID:8827592

  5. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection

    PubMed Central

    Dimopoulos, George; Christophides, George K.; Meister, Stephan; Schultz, Jörg; White, Kevin P.; Barillas-Mury, Carolina; Kafatos, Fotis C.

    2002-01-01

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  6. The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis.

    PubMed

    Slotman, M; Della Torre, A; Powell, J R

    2004-05-01

    Male hybrids between Anopheles gambiae and An. arabiensis suffer from hybrid sterility, and inviability effects are sometimes present as well. We examined the genetic basis of these reproductive barriers between the two species, using 21 microsatellite markers. Generally, recessive inviability effects were found on the X chromosome of gambiae that are incompatible with at least one factor on each arabiensis autosome. Inviability is complete when the gambiae and arabiensis inviability factors are hemi- or homozygous. Using a QTL mapping approach, regions that contribute to male hybrid sterility were also identified. The X chromosome has a disproportionately large effect on male hybrid sterility. Additionally, several moderate-to-large autosomal QTL were found in both species. The effect of these autosomal QTL is contingent upon the presence of an X chromosome from the other species. Substantial regions of the autosomes do not contribute markedly to male hybrid sterility. Finally, no evidence for epistatic interactions between conspecific sterility loci was found.

  7. Morphological and chromosomal descriptions of new species in the Anopheles subpictus complex.

    PubMed

    Suguna, S G; Rathinam, K G; Rajavel, A R; Dhanda, V

    1994-01-01

    Anopheles subpictus Grassi is shown to comprise four reproductively distinct species, designated A, B, C and D, occurring sympatrically in villages of Pondicherry, southeast India. Adult females were reared individually from wild larvae and examined for their morphological and chromosomal characters. Paracentric fixed inversions on the X-chromosome serve to distinguish the species cytogenetically, with no inversion heterozygotes (i.e. no interspecific hybrids) among totals of 717 species A (X+a, +b), 1863 species B (Xa, b), 869 species C (Xa, +b) and 1365 species D (X+a, b) identified. Morphologically, diagnostic characters for each of the four species are seen in the egg float ridge number, larval mesothoracic seta 4, pupal seta 7-I and the palpi of female adults. Species A, C and D immatures inhabit freshwater, whereas the malaria vector species B breeds in saltwater and was found only in coastal villages.

  8. Scanning electron microscopic observations and differentiation of eggs of the Anopheles dirus complex.

    PubMed

    Damrongphol, P; Baimai, V

    1989-12-01

    Microscopic observations have revealed differences among the eggs of species A, B, C and D of the Anopheles dirus complex. The eggs of species A and C are similar in size and shape. They are intermediate in size between the eggs of species B, which is the largest, and that of species D, which is the smallest. The pattern of outer chorionic cells between the frill and the float is species specific. The pattern consists of rows of irregularly shaped cells in species D and different numbers of rows of regularly shaped cells in species A, B and C. Scanning electron microscopy revealed that the deck tubercles are arranged in aggregates which are more widely spaced in species A than in species B. The aggregates are large in species C, of moderate size in species A and B, and small in species D. The egg characters may be useful in separating species A, B, C and D of the An. dirus complex.

  9. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles).

    PubMed

    Wilkerson, R C; Parsons, T J; Albright, D G; Klein, T A; Braun, M J

    1993-01-01

    The usefulness of random amplified polymorphic DNA (RAPD) was examined as a potential tool to differentiate cryptic mosquito species. It proved to be a quick, effective means of finding genetic markers to separate two laboratory populations of morphologically indistinguishable African malaria vectors, Anopheles gambiae and An. arabiensis. In an initial screening of fifty-seven RAPD primers, 377 bands were produced, 295 of which differed between the two species. Based on criteria of interpretability, simplicity and reproducibility, thirteen primers were chosen for further screening using DNA from thirty individuals of each species. Seven primers produced diagnostic bands, five of which are described here. Some problematic characteristics of RAPD banding patterns are discussed and approaches to overcome these are suggested. PMID:8269099

  10. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    PubMed Central

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  11. The impact of insecticides management linked with resistance expression in Anopheles spp. populations.

    PubMed

    Silva, Guilherme Liberato da; Pereira, Thiago Nunes; Ferla, Noeli Juarez; Silva, Onilda Santos da

    2016-06-01

    The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks. PMID:27383351

  12. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae).

    PubMed

    Malafronte, R S; Marrelli, M T; Marinotti, O

    1999-09-01

    Specimens of Anopheles darlingi Root, the major vector of malaria in Brazil, were collected from several states in Brazil: Sao Paulo (Dourado), Bahia (Itabela), Rondônia (Porto Velho), Roraima (Boa Vista), and Acre (Plácido de Castro). Sequence divergence in the 2nd internal transcribed spacer (ITS2) was examined. The ITS2 sequences of mosquitoes captured in the Amazon region (Porto Velho, Boa Vista and Plácido de Castro) and in the northeast of Brazil (Itabela) were almost identical; however, a 4-5% sequence divergence was observed in the ITS2 of mosquitoes captured in the southeast (Dourado). Further analysis is needed to determine if these differences indicate that Dourado population may be a separate species.

  13. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  14. Selective Introgression of Paracentric Inversions between Two Sibling Species of the Anopheles Gambiae Complex

    PubMed Central

    Torre, A. D.; Merzagora, L.; Powell, J. R.; Coluzzi, M.

    1997-01-01

    The Anopheles gambiae complex includes the major vectors of malaria in sub-Saharan Africa where >80% of all world-wide cases occur. These mosquitoes are characterized by chromosomal inversions associated to the speciation process and to intraspecific ecological and behavioral flexibility. It has been postulated that introgressive hybridization has selectively transferred inversions on the second chromosome between A. gambiae and A. arabiensis, the two most important vectors of malaria. Here we directly test this hypothesis with laboratory experiments in which hybrid populations were established and the fate of chromosomal inversions were followed. Consistent with the hypothesis, ``foreign'' X chromosomes were eliminated within two generations, while some ``foreign'' second chromosomes persisted for the duration of the experiments and, judging from the excess of heterozygotes, established stable heterotic polymorphisms. Only those second chromosome inversions found naturally in the species could be introgressed. PMID:9136013

  15. Two genes encoding midgut-specific maltase-like polypeptides from Anopheles gambiae.

    PubMed

    Zheng, L; Whang, L H; Kumar, V; Kafatos, F C

    1995-11-01

    Full-length cDNA clones of two genes have been isolated from the African malaria vector mosquito, Anopheles gambiae. These genes, designated Agm1 and Agm2, encode maltase-like polypeptides of 498 and 599 residues, respectively. Deduced amino acid sequences contain a putative signal peptide sequence and four potential glycosylation sites. Agm1 and Agm2 show highest similarities to the Mal1 gene from Aedes aegypti and three clustered maltase genes from Drosophila melanogaster. Both genes are located at position 46D, in the terminal division of the left arm of the third chromosome. Agm2 has very strict tissue and temporal specificity, being expressed exclusively in the adult midgut. The specificity of Agm1 is similar but appears slightly broader; transcripts of this gene are detected at a low level in the pupae, and occasionally in the adult carcass after removal of the midgut.

  16. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.

    PubMed

    Aivazi, Ali-Ashraf; Vijayan, V A

    2009-06-01

    There is a growing interest in the use of botanical insecticides to reduce the use of synthetic pesticides in order to avoid environmental side effects. Anopheles stephensi is the primary vector of urban malaria, an endemic disease in India. So, an effort to assay An. stephensi larvae with gall extracts of Quercus infectoria was made under laboratory conditions at Mysore. Ethyl-acetate extract was found to be the most effective of all the five extracts tested for larvicidal activity against the fourth instar larvae, with LC(50) of 116.92 ppm followed by gallotannin, n-butanol, acetone, and methanol with LC(50) values of 124.62, 174.76, 299.26, and 364.61 ppm, respectively. The efficacy in killing mosquito larvae may make this plant promising for the development of new botanical larvicide.

  17. Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae

    PubMed Central

    Merrill, C. E.; Riesgo-Escovar, J.; Pitts, R. J.; Kafatos, F. C.; Carlson, J. R.; Zwiebel, L. J.

    2002-01-01

    Arrestins are important components for desensitization of G protein-coupled receptor cascades that mediate neurotransmission as well as olfactory and visual sensory reception. We have isolated AgArr1, an arrestin-encoding cDNA from the malaria vector mosquito, Anopheles gambiae, where olfaction is critical for vectorial capacity. Analysis of AgArr1 expression revealed an overlap between chemosensory and photoreceptor neurons. Furthermore, an examination of previously identified arrestins from Drosophila melanogaster exposed similar bimodal expression, and Drosophila arrestin mutants demonstrate impaired electrophysiological responses to olfactory stimuli. Thus, we show that arrestins in Drosophila are required for normal olfactory physiology in addition to their previously described role in visual signaling. These findings suggest that individual arrestins function in both olfactory and visual pathways in Dipteran insects; these genes may prove useful in the design of control strategies that target olfactory-dependent behaviors of insect disease vectors. PMID:11792843

  18. Changes in Genetic Diversity from Field to Laboratory During Colonization of Anopheles darlingi Root (Diptera: Culicidae).

    PubMed

    Lainhart, William; Bickersmith, Sara A; Moreno, Marta; Rios, Carlos Tong; Vinetz, Joseph M; Conn, Jan E

    2015-11-01

    The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of Anopheles darlingi, the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory An. darlingi had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this An. darlingi colony need to be interpreted cautiously.

  19. Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Mullai, K; Jebanesan, A; Pushpanathan, T

    2008-04-01

    The benzene extract of Citrullus vulgaris was tested against Anopheles stephensi and Aedes aegypti for the larvicidal activity and ovicidal properties. The crude benzene extract was found to be more effective against A. stephensi than A. aegypti. The LC50 values were 18.56 and 42.76 ppm respectively. The LC50 values for silica gel fractions (bioactive fractions I, II, III and IV) were 11.32, 14.12, 14.53 and 16.02 ppm respectively. The mean per cent hatchability of the egg rafts were observed after 48 h post treatment. The crude extract of benzene exerted 100% mortality at 250 ppm against A. stephensi and at 300 ppm against A. aegypti. The silica gel fractions I and II afforded 100% mortality at 100 ppm and III and IV exerted the hatchability rate of 4.9 and 5.3% at the same concentration against A. stephensi.

  20. Attractiveness of pregnant women to the malaria vector, Anopheles arabiensis, in Sudan.

    PubMed

    Himeidan, Y E; Elbashir, M I; Adam, I

    2004-09-01

    The attractiveness of pregnant women for mosquitoes was investigated in a peri-urban site in New Halfa, eastern Sudan, in September-October 2003. For 20 nights, the mosquitoes feeding on nine pregnant and nine non-pregnant women sleeping under untreated bednets were collected. The women slept outdoors, in the yards of nine houses, each yard holding one pregnant and one non-pregnant woman. In general, each pregnant woman attracted significantly more Anopheles arabiensis (the main vector of Plasmodium falciparum in the area) than each non-pregnant women, with mean biting rates of 0.94 and 0.49 bites/woman-night, respectively (P = 0.005). In contrast, the two groups of women attracted similar numbers of the other mosquito species collected, which were all culicine. Impregnated bednets need to be used in the study area, at least by the pregnant women (who appear to be at particularly high risk of acquiring malaria).

  1. [Historical review of the distribution of Anopheles (Nyssorhynchus) darlingi (Diptera: Culicidae) in the Peruvian Amazon].

    PubMed

    Fernández, Roberto; Vera, Hubert; Calderón, Guillermo

    2014-04-01

    Anopheles (Nyssorhynchus) darlingi has been reported since 1931 in border areas of the department of Loreto, mainly along the borders with Brazil and Colombia. In 1994, during an outbreak of malaria, An. darlingi was found in neighboring towns to Iquitos. At present, its distribution has expanded considerably in Loreto. This paper reviews literature available for all possible information on the distribution of mosquitoes, particularly anopheline in the Amazon region of the country, with special emphasis on An darlingi. Entomological collections were also conducted in the departments of Madre de Dios and Ucayali in order to know and verify the distribution of An. darlingi. At present, the distribution of the species is confined to localities in southeastern Peru with Bolivia border towns, in a town near the Abujao River in the department of Ucayali, and widely in the northeastern region of the Amazon basin of Loreto in Peru. PMID:25123872

  2. Assessing the Drosophila melanogaster and Anopheles gambiae Genome Annotations Using Genome-Wide Sequence Comparisons

    PubMed Central

    Jaillon, Olivier; Dossat, Carole; Eckenberg, Ralph; Eiglmeier, Karin; Segurens, Béatrice; Aury, Jean-Marc; Roth, Charles W.; Scarpelli, Claude; Brey, Paul T.; Weissenbach, Jean; Wincker, Patrick

    2003-01-01

    We performed genome-wide sequence comparisons at the protein coding level between the genome sequences of Drosophila melanogaster and Anopheles gambiae. Such comparisons detect evolutionarily conserved regions (ecores) that can be used for a qualitative and quantitative evaluation of the available annotations of both genomes. They also provide novel candidate features for annotation. The percentage of ecores mapping outside annotations in the A. gambiae genome is about fourfold higher than in D. melanogaster. The A. gambiae genome assembly also contains a high proportion of duplicated ecores, possibly resulting from artefactual sequence duplications in the genome assembly. The occurrence of 4063 ecores in the D. melanogaster genome outside annotations suggests that some genes are not yet or only partially annotated. The present work illustrates the power of comparative genomics approaches towards an exhaustive and accurate establishment of gene models and gene catalogues in insect genomes. PMID:12840038

  3. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes.

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    Since ancient times, plant products were used in various aspects. However, their use against pests decreased when chemical products became developed. Recently, concerns increased with respect to public health and environmental security requiring detection of natural products that may be used against insect pests. In this study, 41 plant extracts and 11 oil mixtures were evaluated against the yellow fever mosquito, Aedes aegypti (Linnaeus), the malaria vector, Anopheles stephensi (Liston), and the filariasis and encephalitis vector, Culex quinquefasciatus (Say) (Diptera: Culicidae) using the skin of human volunteers to find out the protection time and repellency. The five most effective oils were those of Litsea (Litsea cubeba), Cajeput (Melaleuca leucadendron), Niaouli (Melaleuca quinquenervia), Violet (Viola odorata), and Catnip (Nepeta cataria), which induced a protection time of 8 h at the maximum and a 100% repellency against all three species. This effect needs, however, a peculiar formulation to fix them on the human skin. PMID:16642384

  4. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  5. Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus

    PubMed Central

    Brogdon, W. G.; Beach, R. F.; Stewart, J. M.; Castanaza, L.

    1988-01-01

    Simple microplate assay methods for determining the frequency of insecticide resistance in single mosquitos were used to study the distribution and localization of organophosphate and carbamate resistance in field populations of Anopheles albimanus Weidemann in Guatemala, where such resistance, caused by heavy use of agricultural pesticides, has long been assumed to be widespread. Areas of complete susceptibility to organophosphates and carbamates were observed, as well as areas where the resistant phenotypes represented up to 98% of the population. Overall, the resistance levels were lower and more localized than expected. Two mechanisms of resistance were identified by the microassay methods. These were the elevated esterase (nonspecific esterase) and insensitive acetylcholinesterase mechanisms which were selected independently, the former (documented for the first time in Central American anophelines) being predominant. These methods represent a promising new technology for the detection and assessment of resistance and will facilitate improved control strategy decisions. PMID:3262440

  6. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  7. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Nathan, Sengottayan Senthil; Kalaivani, Kandaswamy; Murugan, Kadarkarai

    2005-10-01

    The effects of the neem (Azadirachta indica A. Juss) limonoids azadirachtin, salannin, deacetylgedunin, gedunin, 17-hydroxyazadiradione and deacetylnimbin on Anopheles stephensi Liston (Diptera: Culicidae) were investigated. In exploring advantages of pure neem limonoids, we studied the larvicidal, pupicidal, adulticidal and antiovipositional activity of neem limonoids. Azadirachtin, salannin and deacetylgedunin showed high bioactivity at all doses, while the rest of the neem limonoids were less active, and were only biologically active at high doses. Azadirachtin was the most potent in all experiments and produced almost 100% larval mortality at 1 ppm concentration. In general, first to third larval instars were more susceptible to the neem limonoids. Neem products may have benefits in mosquito control programs. PMID:16112073

  8. [The mosquitocidal efficacy of microcapsules of alpha-cypermethrin against Anopheles sinensis].

    PubMed

    Pan, K Y; Ye, B H; Zhi, C L

    1994-01-01

    The efficacy of spraying of alpha-cypermethrin microcapsule for the control of Anopheles sinensis was investigated when alpha-cypermethrin microcapsule was sprayed at 0.5 g/m2, the KT50 was 7.9 min and a 100% of 24 hours' mortality of An. sinensis, the efficacy being similar to that of the emulsion. 180 days after spray, the KT50 was 28.2 min, the 24 hours' mortality was 85.7%, the residual efficacy was 3 times over that of the emulsion. In the mimic field experiment, similar results were obtained. In the field trial, the residual efficacy of the alpha-cypermethrin microcapsule was 5.9 times that of the emulsion. Alpha-cypermethrin microcapsules is recommended as a good formulation of mosquitocide for mosquito control, considering its mosquitocidal efficacy and residual efficacy.

  9. A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae

    PubMed Central

    Danielli, Alberto; Loukeris, Thanasis G.; Lagueux, Marie; Müller, Hans-Michael; Richman, Adam; Kafatos, Fotis C.

    2000-01-01

    Sp22D, a modular serine protease encompassing chitin binding, low density lipoprotein receptor, and scavenger receptor cysteine-rich domains, was identified by molecular cloning in the malaria vector, Anopheles gambiae. It is expressed in multiple body parts and during much of development, most intensely in hemocytes. The protein appears to be posttranslationally modified. Its integral, putatively glycosylated form is secreted in the hemolymph, whereas a smaller form potentially generated by proteolytic processing is associated with the tissues. Bacterial challenge or wounding result in low-level RNA induction, but the protein does not bind to bacteria, nor is its processing affected by infection. However, Sp22D binds to chitin with high affinity and undergoes transient changes in processing during pupal to adult metamorphosis; it may respond to exposure to naked chitin during tissue remodeling or damage. PMID:10860981

  10. In vitro and in vivo host range of Anopheles gambiae densovirus (AgDNV)

    PubMed Central

    Suzuki, Yasutsugu; Barik, Tapan K.; Johnson, Rebecca M.; Rasgon, Jason L.

    2015-01-01

    AgDNV is a powerful gene transduction tool and potential biological control agent for Anopheles mosquitoes. Using a GFP reporter virus system, we investigated AgDNV host range specificity in four arthropod cell lines (derived from An. gambiae, Aedes albopictus and Drosophila melanogaster) and six mosquito species from 3 genera (An. gambiae, An. arabiensis, An. stephensi, Ae. albopictus, Ae. aegypti and Culex tarsalis). In vitro, efficient viral invasion, replication and GFP expression was only observed in MOS55 An. gambiae cells. In vivo, high levels of GFP were observed in An. gambiae mosquitoes. Intermediate levels of GFP were observed in the closely related species An. arabiensis. Low levels of GFP were observed in An. stephensi, Ae. albopictus, Ae. aegypti and Cx. tarsalis. These results suggest that AgDNV is a specific gene transduction tool for members of the An. gambiae species complex, and could be potentially developed into a biocontrol agent with minimal off-target effects. PMID:26220140

  11. Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax

    PubMed Central

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A.; Maguina, Paula; Conn, Jan E.; Vinetz, Joseph M.

    2014-01-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions. PMID:24534811

  12. A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae.

    PubMed

    Danielli, A; Loukeris, T G; Lagueux, M; Müller, H M; Richman, A; Kafatos, F C

    2000-06-20

    Sp22D, a modular serine protease encompassing chitin binding, low density lipoprotein receptor, and scavenger receptor cysteine-rich domains, was identified by molecular cloning in the malaria vector, Anopheles gambiae. It is expressed in multiple body parts and during much of development, most intensely in hemocytes. The protein appears to be posttranslationally modified. Its integral, putatively glycosylated form is secreted in the hemolymph, whereas a smaller form potentially generated by proteolytic processing is associated with the tissues. Bacterial challenge or wounding result in low-level RNA induction, but the protein does not bind to bacteria, nor is its processing affected by infection. However, Sp22D binds to chitin with high affinity and undergoes transient changes in processing during pupal to adult metamorphosis; it may respond to exposure to naked chitin during tissue remodeling or damage. PMID:10860981

  13. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    PubMed

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  14. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

    PubMed Central

    Gómez, Giovan F.; Bickersmith, Sara A.; González, Ranulfo; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  15. SMonitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

    PubMed Central

    Casimiro, Sonia LR; Hemingway, Janet; Sharp, Brian L; Coleman, Michael

    2007-01-01

    Background Indoor residual spraying (IRS) has again become popular for malaria control in Africa. This combined with the affirmation by WHO that DDT is appropriate for use in the absence of longer lasting insecticide formulations in some malaria endemic settings, has resulted in an increase in IRS with DDT as a major malaria vector control intervention in Africa. DDT was re-introduced into Mozambique's IRS programme in 2005 and is increasingly becoming the main insecticide used for malaria vector control in Mozambique. The selection of DDT as the insecticide of choice in Mozambique is evidence-based, taking account of the susceptibility of Anopheles funestus to all available insecticide choices, as well as operational costs of spraying. Previously lambda cyhalothrin had replaced DDT in Mozambique in 1993. However, resistance appeared quickly to this insecticide and, in 2000, the pyrethroid was phased out and the carbamate bendiocarb introduced. Low level resistance was detected by biochemical assay to bendiocarb in 1999 in both An. funestus and Anopheles arabiensis, although this was not evident in WHO bioassays of the same population. Methods Sentinel sites were established and monitored for insecticide resistance using WHO bioassays. These assays were conducted on 1–3 day old F1 offspring of field collected adult caught An. funestus females to determine levels of insecticide resistance in the malaria vector population. WHO biochemical assays were carried out to determine the frequency of insecticide resistance genes within the same population. Results In surveys conducted between 2002 and 2006, low levels of bendiocarb resistance were detected in An. funestus, populations using WHO bioassays. This is probably due to significantly elevated levels of Acetylcholinesterase levels found in the same populations. Pyrethroid resistance was also detected in populations and linked to elevated levels of p450 monooxygenase activity. One site had shown reduction in

  16. Composition and Biting Activity of Anopheles (Diptera: Culicidae) in the Amazon Region of Colombia

    PubMed Central

    RODRÍGUEZ, MAURICIO; PÉREZ, LIGIA; CAICEDO, JUAN CARLOS; PRIETO, GUILLERMO; ARROYO, JOSÉ ANTONIO; KAUR, HARPARKASH; SUÁREZ-MUTIS, MARTHA; DE LA HOZ, FERNANDO; LINES, JO; ALEXANDER, NEAL

    2013-01-01

    To provide information for public health policy on mosquito nets in the Amazon region of Colombia, we conducted landing catches to estimate Anopheles species composition and biting activity. Two hundred twenty person-nights of catches were done in seven locations over a period of 14 mo. A total of 1,780 Anopheles mosquitoes were caught (8.1 per person-night). Among the nine species found, An. oswaldoi Peryassú was the most common (776 mosquitoes, 44%), followed by An. darlingi Root s.l. (498, 28%). An. oswaldoi was the most common species collected outdoors, where its biting rate dropped steadily from a peak of >15 bites/person-night at the start of the night (1800–1900 hours) to ≈2 bites/person-night before dawn. An. darlingi was the most common species collected indoors, with a biting rate of ≈3–4 bites/person-night until about midnight, when the rate dropped below 1 bite/person-night, before showing a secondary peak before dawn. Sixty-four mosquito nets were analyzed by the technique of high-performance liquid chromatography (HPLC) for levels of deltamethrin (DM). All but two (62) of these were reported by their owners to have been impregnated with insecticide, and 53 were found by HPLC to have deltamethrin. However, one half (32) of the nets had concentrations <4 mg/m2 and therefore were likely to have been inadequately protective. An inverse association was found between the reported time between washes and deltamethrin concentration. These findings show a need for additional protection from mosquitoes when not inside nets, as well as for more effective impregnation, possibly through wash-resistant insecticide formulation. PMID:19351081

  17. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    PubMed Central

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  18. Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species

    PubMed Central

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-01-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  19. Genome-Wide Patterns of Gene Expression during Aging in the African Malaria Vector Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; James, Anthony A.; Walker, Edward; Githure, John; Yan, Guiyun

    2010-01-01

    The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae. PMID:20967211

  20. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  1. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-01-01

    SUMMARY In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion. PMID:21697426

  2. Anopheles (Diptera: Culicidae) malaria vectors in the municipality of Puerto Carreno, Vichada, Colombia

    PubMed Central

    Jiménez, Pilar; Conn, Jan E.; Wirtz, Robert; Brochero, Helena

    2013-01-01

    Introduction The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s. s. PMID:23235809

  3. Composition and biting activity of Anopheles (Diptera: Culicidae) in the Amazon region of Colombia.

    PubMed

    Rodríguez, Mauricio; Pérez, Ligia; Caicedo, Juan Carlos; Prieto, Guillermo; Arroyo, José Antonio; Kaur, Harparkash; Suárez-Mutis, Martha; de La Hoz, Fernando; Lines, Jo; Alexander, Neal

    2009-03-01

    To provide information for public health policy on mosquito nets in the Amazon region of Colombia, we conducted landing catches to estimate Anopheles species composition and biting activity. Two hundred twenty person-nights of catches were done in seven locations over a period of 14 mo. A total of 1,780 Anopheles mosquitoes were caught (8.1 per person-night). Among the nine species found, An. oswaldoi Peryassú was the most common (776 mosquitoes, 44%), followed by An. darlingi Root s.l. (498, 28%). An. oswaldoi was the most common species collected outdoors, where its biting rate dropped steadily from a peak of >15 bites/person-night at the start of the night (1800-1900 hours) to approximately equal to 2 bites/person-night before dawn. An. darlingi was the most common species collected indoors, with a biting rate of approximately equal to 3-4 bites/person-night until about midnight, when the rate dropped below 1 bite/person-night, before showing a secondary peak before dawn. Sixty-four mosquito nets were analyzed by the technique of high-performance liquid chromatography (HPLC) for levels of deltamethrin (DM). All but two (62) of these were reported by their owners to have been impregnated with insecticide, and 53 were found by HPLC to have deltamethrin. However, one half (32) of the nets had concentrations <4 mg/m2 and therefore were likely to have been inadequately protective. An inverse association was found between the reported time between washes and deltamethrin concentration. These findings show a need for additional protection from mosquitoes when not inside nets, as well as for more effective impregnation, possibly through wash-resistant insecticide formulation.

  4. Visualizing Non Infectious and Infectious Anopheles gambiae Blood Feedings in Naive and Saliva-Immunized Mice

    PubMed Central

    Choumet, Valerie; Attout, Tarik; Chartier, Loïc; Khun, Huot; Sautereau, Jean; Robbe-Vincent, Annie; Brey, Paul; Huerre, Michel; Bain, Odile

    2012-01-01

    Background Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding. Methods Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice. Results The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite. Conclusion This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission. PMID

  5. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  6. Environmental covariates of Anopheles arabiensis in a rice agroecosystem in Mwea, Central Kenya.

    PubMed

    Mwangangi, Joseph M; Muturi, Ephantus J; Shililu, Josephat I; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John I; Novak, Robert J

    2007-12-01

    Water quality of aquatic habitats is an important determinant of female mosquito oviposition and successful larval development. This study examined the influence of environmental covariates on Anopheles arabiensis mosquito abundance in the Mwea Irrigation Scheme, Central Province of Kenya, prior to implementation of a malaria vector control program. Experimental rice plots were used to examine the environmental covariates responsible for regulating abundance and diversity of the aquatic stages of malaria vectors. Mosquito larval sampling and water quality analysis were done weekly from the flooding stage to the rice maturation stage. Sampling for mosquito larvae was conducted using standard dipping technique. During each larval collection, environmental covariates such as pH, temperature, conductivity, salinity, dissolved oxygen, water depth, and rice stage were measured. Anopheles arabiensis larval density was highest between 1 wk before transplanting and 4 wk after transplanting with peaks at weeks 0, 3, and 8. The fluctuation in values of the various environmental covariates showed characteristic patterns in different rice growth phases depending on the changes taking place due to the agronomic practices. Using a backward linear regression model, the factors that were found to be associated with abundance of An. arabiensis larvae at any of the rice growing phases included the following: dissolved oxygen, pH, turbidity, water depth, rice height, number of rice tillers, salinity, conductivity, and temperature. The environmental covariates associated with abundance of An. arabiensis were associated with early vegetative stage of the rice growth. For effective control of developmental stages of mosquito larvae, the application of larvicides should be done at the vegetative stage and the larvicides should persist until the beginning of the reproductive stage of the rice. PMID:18240512

  7. Tibet Orbivirus, a Novel Orbivirus Species Isolated from Anopheles maculatus Mosquitoes in Tibet, China

    PubMed Central

    Zhao, Guoyan; Fu, Shihong; Wang, David; Wang, Zhiyu; Liang, Guodong

    2014-01-01

    Background The genus Orbivirus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV). In this study we describe the isolation and characterization of an Orbivirus strain isolated from Anopheles maculatus mosquitoes collected in Tibet, China. Methods and Results Initial viral screening identified a viral strain (XZ0906) that caused significant cytopathic effect (CPE) in BHK-21 cells, including rounding, cell rupture, and floating. Although CPE was not observed in insect cells (C6/36), these cells supported viral replication. Polyacrylamide gel analysis revealed a genome consisting of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. 454 high throughput sequencing of culture supernatant was used for viral identification. Complete genome sequencing was performed by Sanger sequencing in combination with 5′-RACE and 3′-RACE. Sequence analysis demonstrated that all 5′- and 3′- untranslated regions (UTRs) for each of the 10 genome segments contained a series of six highly conserved nucleotides. In addition, homology analysis and phylogenetic analysis based on amino acid sequence was completed, and all results show that virus XZ0906 was not a member of any known species or serotype of Orbivirus, indicating it to be a new species within the genus Orbivirus. Conclusions The isolated Orbivirus strain was designated Tibet Orbivirus, TIBOV to denote the location from which it was isolated. TIBOV is a novel orbivirus species which is isolated from Anopheles maculatus mosquitoes collected in Tibet, China. PMID:24533145

  8. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.

    PubMed

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-06-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  9. Pyrethroid Resistance in Anopheles gambiae, in Bomi County, Liberia, Compromises Malaria Vector Control

    PubMed Central

    Temu, Emmanuel A.; Maxwell, Caroline; Munyekenye, Godwil; Howard, Annabel F. V.; Munga, Stephen; Avicor, Silas W.; Poupardin, Rodolphe; Jones, Joel J.; Allan, Richard; Kleinschmidt, Immo; Ranson, Hilary

    2012-01-01

    Background Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia. Methods Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance. Results Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed. Conclusion High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors

  10. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    PubMed

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae. PMID:27439866

  11. Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins

    PubMed Central

    Ghosh, Anil K.; Devenport, Martin; Jethwaney, Deepa; Kalume, Dario E.; Pandey, Akhilesh; Anderson, Vernon E.; Sultan, Ali A.; Kumar, Nirbhay; Jacobs-Lorena, Marcelo

    2009-01-01

    SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites. PMID:19148273

  12. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host.

  13. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands.

    PubMed

    Foley, D H; Bryan, J H

    2000-03-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (SST) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No. 7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the SST should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead. PMID:10759320

  14. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands [corrected].

    PubMed

    Foley, D H; Bryan, J H

    2000-12-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (STT) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No.7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the STT should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead [corrected]. PMID:11129712

  15. Methods to collect Anopheles mosquitoes and evaluate malaria transmission: A comparative study in two villages in Senegal

    PubMed Central

    2011-01-01

    Background Various methods have been studied as replacement of human landing catches (HLC) for mosquito sampling in entomological studies on malaria transmission. Conflicting results have been obtained in comparing relative efficiency of alternative methods, according to the area, the species present and their density. The aim of this study was to compare the number and characteristics of mosquitoes sampled in two areas of Senegal by three different methods: HLC, light traps adjacent to an occupied bed net (LT/N), pyrethrum spray catches (PSC). Methods Collections were performed in two villages: Dielmo (Soudan savanna) and Bandafassi (Soudan Guinean savanna), two or three nights per month for a 4-5 months period during the maximal transmission season in 2001-2002. Species were identified and Plasmodium infection determined by ELISA. The specific composition, circumsporozoite protein rate and entomological inoculation rate were calculated. Results The diversity of mosquito species captured was maximal with LT/N, minimal with PSC. The mean number of anopheles captures each night was significantly different according to the method used and the species. PSC displayed a significantly lower anopheles density. HLC was the most efficient sampling method when Anopheles gambiae was the main vector (in Bandafassi); LT/N when it was Anopheles funestus (in Dielmo). A significant correlation was found between HLC and LT/M but correlation parameters were different according to the species. Circumsporozoite protein rates were not significantly different between methods or species. The entomological inoculation rate varied along with vector density and thus with methods and species. Conclusions The choice of sampling method influenced entomological data recorded. Therefore, the sampling technique has to be chosen according to the vector studied and the aim of the study. Only HLC must be considered as the reference method, but in some conditions LT/N can be used as an alternative

  16. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia.

    PubMed

    Stoops, Craig A; Gionar, Yoyo R; Shinta; Sismadi, Priyanto; Rachmat, Agus; Elyazar, Iqbal F; Sukowati, Supratman

    2008-06-01

    Land use patterns and the occurrence of Anopheles species larvae were studied in Sukabumi District, West Java, Indonesia, from October 2004 to September 2005. Two land use maps derived using remote sensing were used. One map derived from Quickbird satellite images of 150 km2 of the Simpenan and Ciemas subdistricts (106 degrees 27' 53"-106 degrees 38' 38" E and 6 degrees 59' 59"-7 degrees 8' 46" S) in Sukabumi and one using ASTER images covering 4,000 km2 of Sukabumi District from 106 degrees 22' 15"-107 degrees 4' 1" E and 6 degrees 42' 50" - 7 degrees 26' 13" S. There was a total of 11 Anopheles spp. collected from 209 sampling locations in the area covered by the Quickbird image and a total of 15 Anopheles spp. collected from 1,600 sampling locations in the area covered by the ASTER map. For the area covered by the land use maps, ten species were found to have statistically positive relationships between land use class and species presence: Anopheles aconitus, An. annularis, An. barbirostris. An. flavirostris, An. insulaeflorum, An. kochi, An. maculatus, An. subpictus, An. sundaicus, and An. vagus. Quickbird and ASTER satellite images both produced land maps that were adequate for predicting species presence in an area. The land use classes associated with malaria vector breeding were rice paddy (An. aconitus, An. subpictus), plantation located near or adjacent to human settlements (An. maculatus), bush/shrub (An. aconitus, An. maculatus, An. sundaicus), bare land, and water body land use on the coast located < or = 250 m of the beach (An. sundaicus). Understanding the associations of habitat and species in one area, predictions of species presence or absence can be made prior to a ground survey allowing for accurate vector survey and control planning.

  17. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to resistance, high operational costs and adverse non-target effects. Nowadays, plant-borne mosquitocides may serve as suitable alternative in the fight against mosquito vectors. In this study, the mosquito larvicidal activity of Origanum vulgare (Lamiaceae) leaf essential oil (EO) and its major chemical constituents was evaluated against the malaria vectors Anopheles stephensi and An. subpictus, the filariasis vector Culex quinquefasciatus and the Japanese encephalitis vector Cx. tritaeniorhynchus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of O. vulgare contained 17 compounds. The major chemical components were carvacrol (38.30%) and terpinen-4-ol (28.70%). EO had a significant toxic effect against early third-stage larvae of An. stephensi, An. subpictus, Cx. quinquefasciatus and Cx. tritaeniorhynchus, with LC50 values of 67.00, 74.14, 80.35 and 84.93 μg/ml. The two major constituents extracted from the O. vulgare EO were tested individually for acute toxicity against larvae of the four mosquito vectors. Carvacrol and terpinen-4-ol appeared to be most effective against An. stephensi (LC50=21.15 and 43.27 μg/ml, respectively) followed by An. subpictus (LC50=24.06 and 47.73 μg/ml), Cx. quinquefasciatus (LC50=26.08 and 52.19 μg/ml) and Cx. tritaeniorhynchus (LC50=27.95 and 54.87 μg/ml). Overall, this research adds knowledge to develop newer and safer natural larvicides against malaria, filariasis and Japanese encephalitis mosquito vectors. PMID:26850541

  18. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools.

    PubMed

    Lobo, Neil F; St Laurent, Brandyce; Sikaala, Chadwick H; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M; Mueller, Jonathan D; Deason, Nicholas A; Hoang, Quynh T; Boldt, Heather L; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H

    2015-12-09

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.

  19. Gut Content Identification of Larvae of the Anopheles gambiae Complex in Western Kenya Using a Barcoding Approach

    PubMed Central

    Garros, C.; Ngungi, N.; Githeko, A.E.; Tuno, N.; Yan, G.

    2013-01-01

    Although larvae feeding and food source are vital to the development, survival and population regulation of African malaria vectors, the prey organisms of Anopheles gambiae larvae in the natural environment have not been well studied. This study used a molecular barcoding approach to investigate the natural diets of Anopheles gambiae s.l. larvae in Western Kenya. Gut contents from third- and fourth-instar larvae from natural habitats were dissected and DNA was extracted. The 18S ribosomal DNA gene was amplified, the resulting clones were screened using a RFLP method and non-mosquito clones were sequenced. Homology search and phylogenetic analyses were then conducted using the sequences of non-mosquito clones to identify the putative microorganisms ingested. The phylogenetic analyses clustered ingested microorganisms in four clades, including two clades of green algae (Chlorophyta, Chlorophyceae Class, Chlamydomonadales and Chlorococcales families), one fungal clade, and one unknown eukaryote clade. In parallel, using the same approach, an analysis of the biodiversity present in the larval habitats was done. This present study demonstrated the feasibility of the barcoding approach to infer the natural diets of Anopheles gambiae larvae. Our analysis suggests that despite the wide range of microorganisms available in natural habitats, mosquito larvae fed on specific groups of algae. The novel tools developed from this study can be used to improve our understanding of the larval ecology of African malaria vectors and to facilitate the development of new mosquito control tools. PMID:21585828

  20. Spatio-temporal variations of Anopheles coluzzii and An. gambiae and their Plasmodium infectivity rates in Lobito, Angola.

    PubMed

    Carnevale, Pierre; Toto, Jean-Claude; Besnard, Patrick; Santos, Maria Adelaide Dos; Fortes, Filomeno; Allan, Richard; Manguin, Sylvie

    2015-06-01

    From 2003 to 2007, entomological surveys were conducted in Lobito town (Benguela Province, Angola) to determine which Anopheles species were present and to identify the vectors responsible for malaria transmission in areas where workers of the Sonamet Company live. Two types of surveys were conducted: (1) time and space surveys in the low and upper parts of Lobito during the rainy and dry periods; (2) a two-year longitudinal study in Sonamet workers' houses provided with long-lasting insecticide-treated nets (LLIN), "PermaNet," along with the neighboring community. Both species, An. coluzzii (M molecular form) and An. gambiae (S molecular form), were collected. Anopheles coluzzii was predominant during the dry season in the low part of Lobito where larvae develop in natural ponds and temporary pools. However, during the rainy season, An. gambiae was found in higher proportions in the upper part of the town where larvae were collected in domestic water tanks built near houses. Anopheles melas and An. listeri were captured in higher numbers during the dry season and in the low part of Lobito where larvae develop in stagnant brackish water pools. The infectivity rates of An. gambiae s.l. varied from 0.90% to 3.41%.

  1. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole.

  2. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota.

    PubMed

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D

    2015-01-13

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.

  3. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in Córdoba and Antioquia states in northwestern Colombia

    PubMed Central

    Gutiérrez, Lina A; González, John J; Gómez, Giovan F; Castro, Martha I; Rosero, Doris A; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2011-01-01

    Malaria is a serious health problem in Córdoba and Antioquia states in northwestern Colombia, where 64.4% of the total Colombian cases were reported in 2007. Because little entomological information is available in this region, the aim of this work was to identify the Anopheles species composition and natural infectivity of mosquitoes distributed in seven localities with the highest malaria transmission. A total of 1,768 Anopheles mosquitoes were collected using human landing catches from March 2007 to July 2008. Ten species were identified; overall, An. nuneztovari s.l. was the most widespread (62%) and showed the highest average human biting rates. There were six other species of the Nyssorhynchus subgenus: An. albimanus (11.6%), An. darlingi (9.8%), An. braziliensis (6.6%), An. triannulatus s.l. (3.5%), An. albitarsis s.l. and An. oswaldoi s.l. at <1%; and three of the Anopheles subgenus: An. punctimacula, An. pseudopunctipennis s.l. and An. neomaculipalpus at <1% each. Two species from Córdoba, An. nuneztovari and An. darlingi, were detected naturally infected by Plasmodium vivax VK247 using ELISA and confirmed by nested PCR. All species were active indoors and outdoors. These results provide basic information for targeted vector control strategies in these localities. PMID:20140372

  4. Multiplex Assay for Species Identification and Monitoring of Insecticide Resistance in Anopheles punctulatus Group Populations of Papua New Guinea

    PubMed Central

    Henry-Halldin, Cara N.; Nadesakumaran, Kogulan; Keven, John Bosco; Zimmerman, Allison M.; Siba, Peter; Mueller, Ivo; Hetzel, Manuel W.; Kazura, James W.; Thomsen, Edward; Reimer, Lisa J.; Zimmerman, Peter A.

    2012-01-01

    Anopheles punctulatus sibling species (An. punctulatus s.s., Anopheles koliensis, and Anopheles farauti species complex [eight cryptic species]) are principal vectors of malaria and filariasis in the Southwest Pacific. Given significant effort to reduce malaria and filariasis transmission through insecticide-treated net distribution in the region, effective strategies to monitor evolution of insecticide resistance among An. punctulatus sibling species is essential. Mutations in the voltage-gated sodium channel (VGSC) gene have been associated with knock-down resistance (kdr) to pyrethroids and DDT in malarious regions. By examining VGSC sequence polymorphism we developed a multiplex assay to differentiate wild-type versus kdr alleles and query intron-based polymorphisms that enable simultaneous species identification. A survey including mosquitoes from seven Papua New Guinea Provinces detected no kdr alleles in any An. punctulatus species. Absence of VGSC sequence introgression between species and evidence of geographic separation within species suggests that kdr must be monitored in each An. punctulatus species independently. PMID:22232465

  5. Evaluation of environmental data for identification of Anopheles (Diptera: Culicidae) aquatic larval habitats in Kisumu and Malindi, Kenya.

    PubMed

    Jacob, Benjamin G; Arheart, Kristopher L; Griffith, Daniel A; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Novak, Robert; Beier, John C

    2005-09-01

    This research evaluates the extent to which use of environmental data acquired from field and satellite surveys enhances predictions of urban mosquito counts. Mosquito larval habitats were sampled, and multispectral thermal imager (MTI) satellite data in the visible spectrum at 5-m resolution were acquired for Kisumu and Malindi, Kenya, during February and March 2001. All entomological parameters were collected from January to May 2001, June to August 2002, and June to August 2003. In a Poisson model specification, for Anopheles funestus Giles, shade was the best predictor, whereas substrate was the best predictor for Anopheles gambiae, and vegetation for Anopheles arabensis Patton. The top predictors found with a logistic regression model specification were habitat size for An. gambiae Giles, pollution for An. arabensis, and shade for An. funestus. All other coefficients for canopy, debris, habitat nature, permanency, emergent plants, algae, pollution, turbidity, organic materials, all MTI waveband frequencies, distance to the nearest house, distance to the nearest domestic animal, and all land use land cover changes were nonsignificant. MTI data at 5-m spatial resolution do not have an additional predictive value for mosquito counts when adjusted for field-based ecological data. PMID:16365996

  6. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  7. Characterization of the Rel2-regulated transcriptome and proteome of Anopheles stephensi identifies new anti-Plasmodium factors.

    PubMed

    Pike, Andrew; Vadlamani, Alekhya; Sandiford, Simone L; Gacita, Anthony; Dimopoulos, George

    2014-09-01

    Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens, including the Plasmodium spp. parasites responsible for human malaria. The Anopheles immune deficiency (IMD) innate immune signaling pathway confers resistance to Plasmodium falciparum. While some previously identified Anopheles anti-Plasmodium effectors are regulated through signaling by Rel2, the transcription factor of the IMD pathway, many components of this defense system remain uncharacterized. To begin to better understand the regulation of immune effector proteins by the IMD pathway, we used oligonucleotide microarrays and iTRAQ to analyze differences in mRNA and protein expression, respectively, between transgenic Anopheles stephensi mosquitoes exhibiting blood meal-inducible overexpression of an active recombinant Rel2 and their wild-type conspecifics. Numerous genes were differentially regulated at both the mRNA and protein levels following induction of Rel2. While multiple immune genes were up-regulated, a majority of the differentially expressed genes have no known immune function in mosquitoes. Selected up-regulated genes from multiple functional categories were tested for both anti-Plasmodium and anti-bacterial action using RNA interference (RNAi). Based on our experimental findings, we conclude that increased expression of the IMD immune pathway-controlled transcription factor Rel2 affects the expression of numerous genes with diverse functions, suggesting a broader physiological impact of immune activation and possible functional versatility of Rel2. Our study has also identified multiple novel genes implicated in anti-Plasmodium defense. PMID:24998399

  8. A New Role for an Old Antimicrobial: Lysozyme c-1 Can Function to Protect Malaria Parasites in Anopheles Mosquitoes

    PubMed Central

    Li, Bin; Luckhart, Shirley; Li, Jianyong; Paskewitz, Susan M.

    2011-01-01

    Background Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge. Methodology/Principal Findings A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito. Conclusions/Significance This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts. PMID:21573077

  9. Evaluation of environmental data for identification of Anopheles (Diptera: Culicidae) aquatic larval habitats in Kisumu and Malindi, Kenya.

    PubMed

    Jacob, Benjamin G; Arheart, Kristopher L; Griffith, Daniel A; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Novak, Robert; Beier, John C

    2005-09-01

    This research evaluates the extent to which use of environmental data acquired from field and satellite surveys enhances predictions of urban mosquito counts. Mosquito larval habitats were sampled, and multispectral thermal imager (MTI) satellite data in the visible spectrum at 5-m resolution were acquired for Kisumu and Malindi, Kenya, during February and March 2001. All entomological parameters were collected from January to May 2001, June to August 2002, and June to August 2003. In a Poisson model specification, for Anopheles funestus Giles, shade was the best predictor, whereas substrate was the best predictor for Anopheles gambiae, and vegetation for Anopheles arabensis Patton. The top predictors found with a logistic regression model specification were habitat size for An. gambiae Giles, pollution for An. arabensis, and shade for An. funestus. All other coefficients for canopy, debris, habitat nature, permanency, emergent plants, algae, pollution, turbidity, organic materials, all MTI waveband frequencies, distance to the nearest house, distance to the nearest domestic animal, and all land use land cover changes were nonsignificant. MTI data at 5-m spatial resolution do not have an additional predictive value for mosquito counts when adjusted for field-based ecological data.

  10. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools

    PubMed Central

    Lobo, Neil F.; Laurent, Brandyce St.; Sikaala, Chadwick H.; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M.; Mueller, Jonathan D.; Deason, Nicholas A.; Hoang, Quynh T.; Boldt, Heather L.; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H.

    2015-01-01

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination. PMID:26648001

  11. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes

    PubMed Central

    2014-01-01

    Background Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. Methods Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. Results Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. Conclusions Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation. PMID:24970701

  12. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon

    PubMed Central

    2012-01-01

    Background Studies on vector behaviour should be conducted in order to evaluate the effectiveness of vector control measures on malaria protection in endemic areas of Latin America, where P. vivax predominates. This work aims to investigate the fauna of anopheline mosquitoes and verify the impact of integrated vector management in two colonization projects in the Careiro Municipality, Western Brazilian Amazon. Methods Four mosquitoes’ captures were carried out from August 2008 to March 2010, with an interval of six months between each collection. Since September 2009 a large programme to reduce the burden of malaria has started in the two communities by distribution of insecticide-treated bed nets (ITN) and intensification of indoor residual spraying (IRS). Human biting rates (HBRs), entomological inoculation rates (EIRs), malaria incidence rate (MIR) and Plasmodium carrier’s prevalence were used as outcomes to estimate the impact of the control measures. Results A total of 3,189 anophelines were collected, belonging to 13 species. Anopheles darlingi was the predominant species in the period (42.6%), followed by Anopheles albitarsis (38.4%). An. darlingi HBRs showed a notable decreasing trend from the start to the end of the study. Conversely, An. albitarsis increased its contribution to overall HBRs throughout the study. For An. darlingi there was a significant positive correlation between HBRs and MIR (p = 0.002). Anopheles albitarsis HBRs showed a significant negative correlation with the corresponding MIR (p = 0.045). EIR from total anophelines and from An. darlingi and An. albitarsis presented decreasing patterns in the successive collections. Four species of anophelines (An. darlingi, An. albitarsis, Anopheles braziliensis and Anopheles nuneztovari) were naturally infected with Plasmodium, albeit at very low infection rates. There were a decrease in the MIR for both vivax and falciparum malaria and in the prevalence of Plasmodium vivax and

  13. [Highest mosquito records (Diptera: Culicidae) in Venezuela].

    PubMed

    Navarro, Juan-Carlos; Del Ventura, Fabiola; Zorrilla, Adriana; Liria, Jonathan

    2010-03-01

    Mosquitoes (Diptera: Culicidae) are holometabolous insects with aquatic immature stages, which use a broad variety of larval habitats, from ground water bodies to Phytothelmata (water deposits in plants) and artificial deposits. The availability of breeding sites often determines the upper limits of mosquito ranges. We built a database with 9,607 records with 432 localities, 19 genera and 254 species. The Andean mountains have 77% of the highest mosquito records including Aedes euris with record at 3,133 m, followed by three species of Anopheles--subgenera Kerteszia--with the upper limit of 2,680 m. Wyeomyia bicornis and Culex daumastocampa at 2,550 m were the highest records in the Central-Coastal cordillera, while the highest record in Pantepui was Wyeomyia zinzala at 2,252 m. The species associated with phytothelmata (Bromeliaceae and Sarraceniaceae) represent 60% of the records. The upper limits of Culex quinquefasciatus and Anopheles (Kerteszia) species could represent the theoretical limit for transmission of filariasis or arboviruses, by Culex, and malaria by Anopheles (Kerteszia) in Venezuela. Similarly, a vector of Dengue, Aedes aegypti, has not been not recorded above 2,000 m.

  14. Identification of three members of the Anopheles funestus (Diptera: Culicidae) group and their role in malaria transmission in two ecological zones in Nigeria.

    PubMed

    Awolola, T S; Oyewole, I O; Koekemoer, L L; Coetzee, M

    2005-07-01

    The role of the Anopheles funestus group in malaria transmission was investigated in two ecological zones in Nigeria. Sampling was carried out at four sites each around Ibadan (forest) and Ilorin (savanna). Human landing catches were supplemented with indoor and outdoor resting collections. PCR was used to identify 1848 A. funestus group mosquitoes to species level (749 in the savanna, 1099 in the forest) and three species were identified. In the forest, A. funestus s.s. predominated (55.4%), followed by A. rivulorum (27.6%) and A. leesoni (17.0%). Anopheles funestus was found mostly indoors. Anopheles rivulorum and A. leesoni predominated in outdoor collections (P<0.001). Only Anopheles funestus s.s. was found in the savanna. ELISA analysis of 803 blood meal-positive specimens showed that over half of the blood meals were taken from humans in both ecotypes. The human blood index in A. funestus from the two study areas was similar. Anopheles funestus s.s. was the only species found positive for Plasmodium falciparum using ELISA, with overall infection rates of 2.3% and 1.0% in the forest and savanna respectively. The presence of three A. funestus species in Nigeria emphasizes the desirability of correct species identification within a malaria vector control programme.

  15. Whole-genome sequencing reveals absence of recent gene flow and separate demographic histories for Anopheles punctulatus mosquitoes in Papua New Guinea

    PubMed Central

    LOGUE, KYLE; SMALL, SCOTT T.; CHAN, ERNEST R.; REIMER, LISA; SIBA, PETER M.; ZIMMERMAN, PETER A.; SERRE, DAVID

    2015-01-01

    Anopheles mosquitoes are the vectors of several human diseases including malaria. In many malaria endemic areas, several species of Anopheles coexist, sometimes in the form of related sibling species that are morphologically indistinguishable. Determining the size and organization of Anopheles populations, and possible ongoing gene flow among them is important for malaria control and, in particular, for monitoring the spread of insecticide resistance alleles. However, these parameters have been difficult to evaluate in most Anopheles species due to the paucity of genetic data available. Here, we assess the extent of contemporary gene flow and historical variations in population size by sequencing and de novo assembling the genomes of wild-caught mosquitoes from four species of the Anopheles punctulatus group of Papua New Guinea. Our analysis of more than 50 Mb of orthologous DNA sequences revealed no evidence of contemporary gene flow among these mosquitoes. In addition, investigation of the demography of two of the An. punctulatus species revealed distinct population histories. Overall, our analyses suggest that, despite their similarities in morphology, behaviour and ecology, contemporary sympatric populations of An. punctulatus are evolving independently. PMID:25677924

  16. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina.

    PubMed

    Dantur Juri, María Julia; Estallo, Elizabet; Almirón, Walter; Santana, Mirta; Sartor, Paolo; Lamfri, Mario; Zaidenberg, Mario

    2015-06-01

    Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas. PMID:26047182

  17. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    PubMed Central

    Manda, Hortance; Gouagna, Louis C; Foster, Woodbridge A; Jackson, Robert R; Beier, John C; Githure, John I; Hassanali, Ahmed

    2007-01-01

    Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans) and one of the less preferred species (Lantana camara). The mosquitoes were monitored daily for survival. Sugar solution (glucose 6%) and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i) only one blood meal (number of eggs oviposited), and (ii) after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs), was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus) lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was associated mainly with

  18. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus

    PubMed Central

    Vallejo, Andrés F.; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R.; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2016-01-01

    Introduction Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. Methods/Principal Findings A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. Conclusions We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated

  19. [Malaria, anopheles, the anti-malaria campaign in French Guyana: between dogmatism and judgment].

    PubMed

    Raccurt, C P

    1997-01-01

    The recrudescence of malaria in French Guiana involves both border regions. One notes the predominance of Plasmodium falciparum along the Maroni River on the Surinam frontier and the transmission of both Plasmodium falciparum and Plasmodium vivax in amerindian settlements along the Oyapock River on the Brazilian frontier. The main mosquito vector is the endoexophile species, Anopheles darlingi. The role of man-biting forest anophelines in malaria transmission is still unclear. At the present time, malaria control is based on curative treatment of the confirmed cases (approximately 4,000 cases a year by active and passive screening). Vector control is supported by annual houses insecticides spraying and, to a lesser degree, use of insecticide-impregnated bednets. The main limiting factors for successful control have been difficulty in implementing a strategy adapted to the cultures of the amerindian and bushnegro populations living on either side of the river-frontiers and in organizing effective cross-border cooperation. The alleged role of immigration in transmission dynamics has been more speculative than real. However the growth of the population and the increase of human activities inside rain forest areas have favorized Anopheles darlingi breeding by uncontrolled deforestation. This situation need to be monitored closely. Information campaigns to improve public awareness could be useful. Following measures could improve control in sparsely populated, remote areas: to promote an integrated preventive program for a real community-wide distribution of primary health care; to discontinue insecticides spraying in houses which is poorly accepted by the bushnegro population and unsuitable to the amerindian dwellings; to support the use of personal protection; to initiate an effective anopheline larvae control; to determine the impact of the transmission during day-time activities especially among very small settlements far from the main villages where members of the

  20. Assessment of alternative mating strategies in Anopheles gambiae: Does mating occur indoors?

    PubMed Central

    Dao, Adama; Adamou, Abdoulaye; Yaro, Alpha Seydou; Maïga, Hamidou Moussa; Kassogue, Yaya; Traoré, Sékou Fantamady; Lehmann, Tovi

    2016-01-01

    Mating in Anopheles gambiae has been observed only in outdoor swarms. Here we evaluate if mating also occurs indoors. Mark release recapture of virgin males and females in natural houses showed that mating occurred over a single day even when mosquitoes can leave the house through exit traps and without adaptation to laboratory conditions. In these experiments, insemination rate in the M molecular form of An. gambiae (and An. arabiensis) was higher than that of the S form (15% vs. 6%). Under these conditions, smaller females of the M form mated more frequently than larger females of that form. Sampling mosquitoes throughout the day showed that both sexes enter houses around sunrise and leave around sunset, staying indoors together from dawn to dusk. In an area dominated by the M form, the daily rate of insemination in samples from exit traps was approximately 5% higher than in those from entry traps, implying that mating occurred indoors. Importantly, frequency of cross mating between the molecular forms was as high as that between members of the same form, indicating that indoors - assortative mating breaks down. Altogether, these results suggest that indoor mating is an alternative mating strategy of the M molecular form of An. gambiae. Because naturally occurring mating couples have not yet been observed indoors, this conclusion awaits validation. PMID:18714863

  1. Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis.

    PubMed

    Dias-Lopes, Geovane; Borges-Veloso, Andre; Saboia-Vahia, Leonardo; Padrón, Gabriel; de Faria Castro, Cássia Luana; Guimarães, Ana Carolina Ramos; Britto, Constança; Cuervo, Patricia; De Jesus, Jose Batista

    2016-05-01

    Anopheles (Nyssorhynchus) aquasalis is a malaria vector mainly distributed along the coastal regions of South and Central America. In the absence of an effective vaccine against malaria, strategies for controlling the vector are the main tool for interrupting parasite transmission. Mechanisms of oogenesis and embryogenesis in anautogenous mosquitoes are mainly modulated by blood feeding. However, the expression, at the protein level, of genes involved in such mechanisms in sugar-fed females is unknown. In this work, total protein extracts of the reproductive tract of female An. aquasalis that were fed sugar were analyzed using liquid chromatography followed by mass spectrometry for protein identification and bioinformatic tools for data mining. We identified 922 proteins expressed in the organ, and using several databases, we attributed biological meaning for several of them. Remarkably, nine proteins involved in oogenesis were identified in females fed sugar. Putative vitellogenins, vitellogenin receptor, lipid storage droplet, transferrin, ferritin, and apolipoprotein, identified here, are proteins involved in egg development. Proteins involved in embryonic development, such as paxillin, exuperantia, several growth factors, and dorsal switch protein, were identified. Interestingly, in this study, we identified 15 peptidases of various classes such as aminopeptidases, carboxypeptidases, serine protease, cathepsin, and metalloprotease that could potentially interact with male seminal components. Here, we demonstrated that the reproductive tract of female An. aquasalis fed on sugar expresses proteins involved in oogenesis and embryonic development. These findings reveal unknown aspects of the physiology of this organ under the given nutritional conditions.

  2. Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies

    PubMed Central

    Sharma, Punita; Sharma, Swati; Mishra, Ashwani Kumar; Thomas, Tina; Das De, Tanwee; Rohilla, Suman Lata; Singh, Namita; Pandey, Kailash C.; Valecha, Neena; Dixit, Rajnikant

    2015-01-01

    ABSTRACT Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on how adult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3–4 day-old sugar and blood fed Anopheles culicifacies mosquitoes. Comprehensive functional annotation analysis of 10,931 contigs unraveled that salivary glands may encode diverse nature of proteins in response to distinct physiological feeding status. Digital gene expression analysis and PCR validation indicated that first blood meal significantly alters the molecular architecture of the salivary glands. Comparative microscopic analysis also revealed that first blood meal uptake not only causes an alteration of at least 12–22% of morphological features of the salivary glands but also results in cellular changes e.g. apoptosis, confirming together that adult female salivary glands are specialized organs to manage meal specific responses. Unraveling the underlying mechanism of mosquito salivary gene expression, controlling dual feeding associated responses may provide a new opportunity to control vector borne diseases. PMID:26163527

  3. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  4. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  5. Multilocus population genetic analysis of the Southwest Pacific malaria vector Anopheles punctulatus.

    PubMed

    Seah, Ignatius M; Ambrose, Luke; Cooper, Robert D; Beebe, Nigel W

    2013-09-01

    The population structure and history of the cryptic malaria vector species, Anopheles punctulatus (Doenitz), was investigated throughout Papua New Guinea and the Solomon Islands with the aim of detailing genetic subdivisions and the potential for movement through this biogeographically complex region. We obtained larval collections from over 80 sites and utilised a diverse array of molecular markers that evolve through different processes. Individuals were initially identified to species and genotyped using the ribosomal DNA second internal transcribed spacer. DNA sequencing of a single copy nuclear ribosomal protein S9 and the mitochondrial cytochrome oxidase I loci were then investigated and 12 nuclear microsatellite markers were developed and analysed. Our data revealed three genetically distinct populations--one in Papua New Guinea, the second on Buka Island (Bougainville Province, Papua New Guinea), and the third on Guadalcanal Island (Solomon Islands). Genetic differentiation within Papua New Guinea was much lower than that found in studies of other closely related species in the region. The data does suggest that A. punctulatus has undergone a population bottleneck followed by a recent population and range expansion in Papua New Guinea. Humans and regional economic growth may be facilitating this population expansion, as A. punctulatus is able to rapidly occupy human modified landscapes and traverse unsealed roads. We therefore anticipate extensive movement of this species through New Guinea--particularly into the highlands, with a potential increase in malaria frequency in a warming climate--as well as relatively unrestricted gene flow of advantageous alleles that may confound vector control efforts.

  6. Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfly Drosophila melanogaster.

    PubMed

    Koutsos, Anastasios C; Blass, Claudia; Meister, Stephan; Schmidt, Sabine; MacCallum, Robert M; Soares, Marcelo B; Collins, Frank H; Benes, Vladimir; Zdobnov, Evgeny; Kafatos, Fotis C; Christophides, George K

    2007-07-01

    The African mosquito Anopheles gambiae is the major vector of human malaria. We report a genome-wide survey of mosquito gene expression profiles clustered temporally into developmental programs and spatially into adult tissue-specific patterns. Global expression analysis shows that genes that belong to related functional categories or that encode the same or functionally linked protein domains are associated with characteristic developmental programs or tissue patterns. Comparative analysis of our data together with data published from Drosophila melanogaster reveal an overall strong and positive correlation of developmental expression between orthologous genes. The degree of correlation varies, depending on association of orthologs with certain developmental programs or functional groups. Interestingly, the similarity of gene expression is not correlated with the coding sequence similarity of orthologs, indicating that expression profiles and coding sequences evolve independently. In addition to providing a comprehensive view of temporal and spatial gene expression during the A. gambiae life cycle, this large-scale comparative transcriptomic analysis has detected important evolutionary features of insect transcriptomes.

  7. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis.

    PubMed

    Zhong, Daibin; Chang, Xuelian; Zhou, Guofa; He, Zhengbo; Fu, Fengyang; Yan, Zhentian; Zhu, Guoding; Xu, Tielong; Bonizzoni, Mariangela; Wang, Mei-Hui; Cui, Liwang; Zheng, Bin; Chen, Bin; Yan, Guiyun

    2013-01-01

    Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations.

  8. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae.

    PubMed

    Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C; Christophides, George K

    2013-01-01

    Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679

  9. Avoidance Behavior to Essential Oils by Anopheles minimus, a Malaria Vector in Thailand.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Chauhan, Kamal; Tantakom, Siripun; Eiden, Amanda L; Chareonviriyaphap, Theeraphap

    2016-03-01

    Essential oils extracted from 4 different plant species--citronella (Cymbopogon nardus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), and vetiver (Vetiveria zizanioides)-were investigated for their irritant and repellent activities against Anopheles minimus, using an excito-repellency test system. Pure essential oils were used in absolute ethanol at the concentrations of 0.5%, 1%, 2.5%, and 5% (v/v) compared with deet. At the lowest concentration of 0.5%, hairy basil displayed the best irritant and repellent effects against An. minimus. Citronella and vetiver at 1-5% showed strong irritant effects with>80% escape, while repellent effects of both oils were observed at 1% and 2.5% citronella (73-89% escape) and at 5% vetiver (83.9% escape). Sweet basil had only moderate irritant action at 5% concentration (69.6% escape) and slightly repellent on test mosquitoes (<50% escape). The results found that hairy basil, citronella, and vetiver are promising potential mosquito repellent products for protection against An. minimus.

  10. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control. PMID:22284012

  11. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi.

    PubMed

    Rajkumar, S; Jebanesan, A

    2007-12-01

    In recent years, use of environment friendly and biodegradable natural insecticides of plant origin have received renewed attention as agents for vector control. In this study, essential oils extracted by steam distillation from leaves of five plant species Centella asiatica L., Ipomoea cairica L., Momordica charantia L., Psidium guajava L. and Tridax procumbens L. were evaluated for their topical repellency effects against malarial vector Anopheles stephensi in mosquito cages. All essential oils were tested at three different concentrations (2, 4 and 6%). Of these, the essential oils of I. cairica, M. charantia and T. procumbens exhibited relatively high repellency effect (>300 minutes at 6% concentration), followed by C. asiatica and P. guajava which showed less effective (< 150 minutes at 6 % concentration). However, the ethanol applied arm served as control provided maximum 8.0 minutes repellency in this study. In general, clear dose-response relationships were established in all essential oils, with the highest concentration of 6% provided high repellency effect. The results obtained from this study suggest that essential oils of I. cairica, M. charantia and T. procumbens are promising as repellents at 6% concentration against An. stephensi and could be useful in the search for new natural repellent compounds.

  12. Site-specific genetic engineering of the Anopheles gambiae Y chromosome.

    PubMed

    Bernardini, Federica; Galizi, Roberto; Menichelli, Miriam; Papathanos, Philippos-Aris; Dritsou, Vicky; Marois, Eric; Crisanti, Andrea; Windbichler, Nikolai

    2014-05-27

    Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control.

  13. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    PubMed Central

    Barillas-Mury, C; Charlesworth, A; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-01-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and Cecropin promoters is also induced in larval nuclear extracts following infection. Gambif1 has the ability to bind to kappaB-like sites in vitro. Co-transfection assays in Drosophila mbn-2 cells show that Gambif1 can activate transcription by interacting with the Drosophila Diptericin regulatory elements, but is not functionally equivalent to Dorsal in this assay. Gambif1 protein translocation to the nucleus and the appearance of kappaB-like DNA binding activity can serve as molecular markers of activation of the immune system and open up the possibility of studying the role of defence reactions in determining mosquito susceptibility/refractoriness to malaria infection. Images PMID:8887560

  14. Analysis of the metabolome of Anopheles gambiae mosquito after exposure to Mycobacterium ulcerans

    PubMed Central

    Hoxmeier, J. Charles; Thompson, Brice D.; Broeckling, Corey D.; Small, Pamela; Foy, Brian D.; Prenni, Jessica; Dobos, Karen M.

    2015-01-01

    Infection with Mycobacterium ulcerans causes Buruli Ulcer, a neglected tropical disease. Mosquito vectors are suspected to participate in the transmission and environmental maintenance of the bacterium. However, mechanisms and consequences of mosquito contamination by M. ulcerans are not well understood. We evaluated the metabolome of the Anopheles gambiae mosquito to profile the metabolic changes associated with bacterial colonization. Contamination of mosquitoes with live M. ulcerans bacilli results in disruptions to lipid metabolic pathways of the mosquito, specifically the utilization of glycerolipid molecules, an affect that was not observed in mosquitoes exposed to dead M. ulcerans. These results are consistent with aberrations of lipid metabolism described in other mycobacterial infections, implying global host-pathogen interactions shared across diverse saprophytic and pathogenic mycobacterial species. This study implicates features of the bacterium, such as the putative M. ulcerans encoded phospholipase enzyme, which promote virulence, survival, and active adaptation in concert with mosquito development, and provides significant groundwork for enhanced studies of the vector-pathogen interactions using metabolomics profiling. Lastly, metabolic and survival data suggest an interaction which is unlikely to contribute to transmission of M. ulcerans by A. gambiae and more likely to contribute to persistence of M. ulcerans in waters cohabitated by both organisms. PMID:25784490

  15. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  16. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution

    PubMed Central

    Rothschild, Jeremy B.; Tsimiklis, Panagiotis; Siggia, Eric D.; François, Paul

    2016-01-01

    Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve. PMID:27227405

  17. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes. PMID:26099947

  18. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes.

  19. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    PubMed

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M; Zwiebel, Laurence J

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  20. Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis.

    PubMed

    Subbarao, S K; Vasantha, K; Adak, T; Sharma, V P; Curtis, C F

    1987-07-01

    Eight Indian laboratory stocks of Anopheles stephensi Liston could be grouped into three categories with, respectively, 14-22, 12-17 and 9-15 ridges on the egg-floats. The mode number of ridges among the eggs laid by individual females in these stocks was 16-19, 13-16 and 10-14, respectively. The category with the highest egg-float ridge number corresponded with the type-form and the lowest with var. mysorensis Sweet and Rao; the new egg-float category with ridge number modes of thirteen to sixteen was designated as 'intermediate'. All three forms, i.e. type-form, intermediate and myosorensis were observed in semi-urban areas while only intermediate and mysorensis were seen in rural areas. Breeding experiments indicated no post-copulatory barriers between the populations. Likelihood analysis of the results of crosses and back crosses indicated that variation in ridge number is controlled by more than one genetic factor. The stocks with different ridge numbers are best considered as 'ecological variants'.

  1. Comparative morphometry and morphology of Anopheles aconitus Form B and C eggs under scanning electron microscope.

    PubMed

    Junkum, Anuluck; Jitpakdi, Atchariya; Komalamisra, Narumon; Jariyapan, Narissara; Somboon, Pradya; Bates, Paul A; Choochote, Wej

    2004-01-01

    Comparative morphometric and morphological studies of eggs under scanning electron microscope (SEM) were undertaken in the three strains of two karyotypic forms of Anopheles aconitus, i.e., Form B (Chiang Mai and Phet Buri strains) and Form C (Chiang Mai and Mae Hong Son strains). Morphometric examination revealed the intraspecific variation with respect to the float width [36.77 +/- 2.30 microm (Form C: Chiang Mai strain) = 38.49 +/- 2.78 microm (Form B: Chiang Mai strain) = 39.06 +/- 2.37 microm (Form B: Phet Buri strain) > 32.40 +/- 3.52 microm (Form C: Mae Hong Son strain)] and number of posterior tubercles on deck [2.40 +/- 0.52 (Form B: Phet Buri strain) = 2.70 +/- 0.82 (Form B: Chiang Mai strain) < 3.10 +/- 0.32 (Form C: Chiang Mai strain) = 3.20 +/- 0.42 (Form C: Mae Hong Son strain)], whereas the surface topography of eggs among the three strains of two karyotypic forms were morphologically similar.

  2. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    PubMed Central

    Xue, Ping; Rasgon, Jason L.

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria. PMID:22558418

  3. Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences.

    PubMed

    Van Bortel, W; Trung, H D; Manh, N D; Roelants, P; Verlé, P; Coosemans, M

    1999-04-01

    Elucidating the complex taxonomic status of the major malaria vector taxa and characterising the individual species within each complex is important for understanding the complexity of the vector system in the south-east Asian region and will allow to estimate the impact of vector control measures. This applies to countries such as Laos, Cambodia and Vietnam that spend about 60% of their malaria control budget on implementing vector control activities. We used isozyme electrophoresis to clarify the Anopheles minimus s.l. species composition in northern Vietnam and identify behavioural divergences of individual species. Using different collection methods, adult mosquitoes were caught at monthly intervals from June to November 1995 in four villages. An. minimus s.l. could be distinguished from closely related species, An. aconitus and An. jeyporiensis, at the Octanol dehydrogenase (Odh) enzyme locus. Significant positive Fis values gave clear evidence of nonrandom mating within the An. minimus s.l. population. The highest heterozygote deficiency was observed at locus Odh, which was diagnostic for 2 sympatric An. minimus species in Vietnam similar to the An. minimus A and C species known from Thailand. We found no evidence for restricted gene flow between monthly samples, villages, or collection methods in either of the two An. minimus species. They occurred in sympatry, but in different proportions depending on the collection site, and had dissimilar resting and biting behaviours. Thus a vector control strategy will have a nonuniform effect on the various components of this diverse vector system.

  4. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston.

    PubMed

    Anyanwu, G I; Davies, D H; Molyneux, D H; Phillips, A; Milligan, P J

    1993-06-01

    Cuticular lipids were removed from adult female Anopheles stephensi Liston and the hydrocarbons present were separated and quantified by gas chromatography. Comparison was made between the hydrocarbons of four An. stephensi strains: Russ, sensitive to DDT and malathion and originally isolated in the former U.S.S.R.; Beech, a DDT-resistant Indian strain with high sensitivity to Plasmodium species; St Mal, a strain from Pakistan shown to be resistant to malathion; and Iraq, a DDT-susceptible strain from Iraq. Discriminant analysis indicated that the four groups were distinct and that, on average, 78% of the population could be separated on the basis of the quantities of some of the cuticular hydrocarbons. The profiles of Beech and Russ or Russ and St Mal could be separated in 98% of the cases. There was reduced segregation between the profiles of St. Mal and Iraq, suggesting greater similarity in the hydrocarbons of these two strains. The usefulness of cuticular hydrocarbon in determining species relationships is discussed. PMID:8257238

  5. Isolation of Bacillus sphaericus from Lombok Island, Indonesia, and Their Toxicity against Anopheles aconitus.

    PubMed

    Suryadi, Bambang Fajar; Yanuwiadi, Bagyo; Ardyati, Tri; Suharjono

    2015-01-01

    Malaria is endemic to Lombok Island, Indonesia. One approach to suppress malaria spread is to eliminate anopheline larvae in their habitat and the environmentally safe agent is bacteria, that is, Bacillus sphaericus. However, there is no information regarding local isolate of B. sphaericus that is toxic to mosquito larvae from Lombok. The aims of the study were to isolate B. sphaericus from soil in areas close to beach surrounding Lombok Island and to test their toxicity against 3rd instar Anopheles aconitus larvae. Soil samples were collected from 20 different sampling locations from Lombok Island and homogenized with sterile physiological salt solution. Suspension was heat-shocked at 80°C for 30 minutes and then spread onto antibiotic-supplemented NYSM solid medium. Colonies grown were characterized and subjected to initial toxicity test against anopheline larvae. Isolates with more than 50% killing percentage were subjected to bioassay testing against anopheline larvae. From 20 locations, 1 isolate showed mild toxicity (namely, isolate MNT) and 2 isolates showed high toxicity (namely, isolates SLG and TJL2) against An. aconitus. Those 3 isolates were potentially useful isolates, as they killed almost all larvae in 24 hours. The discovery of toxic indigenous isolates of B. sphaericus from Lombok Island opens opportunity to develop a biopesticide from local resources. PMID:26788061

  6. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae).

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    Mosquitoes in the larval stage are attractive targets for pesticides because mosquitoes breed in water, and thus, it is easy to deal with them in this habitat. The use of conventional pesticides in the water sources, however, introduces many risks to people and/or the environment. Natural pesticides, especially those derived from plants, are more promising in this aspect. Aromatic plants and their essential oils are very important sources of many compounds that are used in different respects. In this study, the oils of 41 plants were evaluated for their effects against third-instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. At first, the oils were surveyed against A. aegypti using a 50-ppm solution. Thirteen oils from 41 plants (camphor, thyme, amyris, lemon, cedarwood, frankincense, dill, myrtle, juniper, black pepper, verbena, helichrysum and sandalwood) induced 100% mortality after 24 h, or even after shorter periods. The best oils were tested against third-instar larvae of the three mosquito species in concentrations of 1, 10, 50, 100 and 500 ppm. The lethal concentration 50 values of these oils ranged between 1 and 101.3 ppm against A. aegypti, between 9.7 and 101.4 ppm for A. stephensi and between 1 and 50.2 ppm for C. quinquefasciatus.

  7. The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency.

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    The aim of this study was to detect the role of some mosquito organs in their sensation of repellent materials. A total of 250 females (15 days old) of the target species Aedes aegypti and Anopheles stephensi were prepared and divided into five groups: group 1, without antenna; group 2, without maxillary bulbs; group 3, without proboscis; group 4, without frontal tarsus; and group 5, normal females as control. A mixture of five oils containing Litsea cubeba 1%, Melaleuca leucadendron 1%, Melaleuca quinquenervia 1%, Viola odorata 1%, and Nepeta cataria 1% was included in a complex solvent containing 20% genapol, 10% polyethylene glycol, 20% ethanol, and 50% water. Furthermore, Bayrepel was used in this experiment at a 20% concentration in the same solvent. Pure water was used as control in this study. The test was carried out by spreading 100 microl of the repellent material or water on a 30-cm2 exposure area of a human volunteer's arm. In A. aegypti, the biting and landing percentages increased significantly in those mosquito groups that lacked some organs (especially maxillary bulbs), while in A. stephensi, it became not clear which organ is responsible for perception of repellents.

  8. Detection of Plasmodium sp.-infested Anopheles hyrcanus (Pallas 1771) (Diptera: Culicidae) in Austria, 2012.

    PubMed

    Seidel, Bernhard; Silbermayr, Katja; Kolodziejek, Jolanta; Indra, Alexander; Nowotny, Norbert; Allerberger, Franz

    2013-03-01

    On July 15, 2012, adult Anopheles hyrcanus (Pallas 1771) mosquitoes were caught next to a farm barn near Rust, Burgenland, close to Lake Neusiedl National Park in eastern Austria. Six weeks later, adults of this invasive species were also found in a sheep shelter outside the village of Oggau and another 2 weeks later, in a horse barn in Mörbisch. The morphological typing was confirmed genetically by amplification and sequencing of a 1,404-bp-long fragment within the 5.8S ribosomal RNA gene, the internal transcribed spacer 2, and the 28S ribosomal RNA gene. Out of two A. hyrcanus pools analyzed, one was found positive for Plasmodium sp. A 460-bp-long sequence within the mitochondrial cytochrome b region revealed 100 % identity to a sequence of a Plasmodium parasite identified in a New Zealand bellbird (Anthornis melanura). The Austrian finding sites are close to the Hungarian border. In Hungary, the occurrence of A. hyrcanus was already reported in 1963. A. hyrcanus is considered the most important potential vector of malaria in southern France today. In Austria, sporadic autochthonous malaria cases could emerge, caused by immigration from malaria-endemic countries and heavy tourism. However, the broad population coverage of the Austrian health care system makes the reestablishment of endemic areas for malaria unlikely.

  9. Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi.

    PubMed

    Chauhan, Nitin; Malik, Anushree; Sharma, Satyawati; Dhiman, R C

    2016-06-01

    The larvicidal activity of Mentha piperita, Cymbopogan citratus (lemongrass), Eucalyptus globulus and Citrus sinensis (orange) essential oils and their combinations was evaluated against Musca domestica (housefly) and Anopheles stephensi (mosquitoes) through contact toxicity assay. Among all the tested essential oils/combinations, Me. piperita was found to be the most effective larvicidal agent against Mu. domestica and An. stephensi with LC50 values of 0.66 μl/cm(2) and 44.66 ppm, respectively, after 48 h. The results clearly highlighted that the addition of mentha oil to other oils (1:1 ratio) improved their larvicidal activity. The order of effectiveness of essential oils/combinations indicated that the pattern for An. stephensi follows the trend as mentha > mentha + lemongrass > lemongrass > mentha + eucalyptus > eucalyptus > mentha + orange > orange and for Mu. domestica as mentha > mentha + lemongrass > lemongrass > mentha + orange > orange > mentha + eucalyptus > eucalyptus. The images obtained from scanning electron microscopy (SEM) analysis indicated the toxic effect of Me. piperita as the treated larvae were observed to be dehydrated and deformed. This study demonstrates the effectiveness of tested essential oils/combinations against the larval stages of Mu. domestica and An. stephensi and has the potential for development of botanical formulations. PMID:26920567

  10. Efficacy of three insect repellents against the malaria vector Anopheles arabiensis.

    PubMed

    Govere, J; Durrheim, D N; Baker, L; Hunt, R; Coetzee, M

    2000-12-01

    Three commercial repellents marketed in South Africa: Bio-Skincare (BSC, oils of coconut, jojoba, rapeseed and vitamin E), Mosiguard towelletes with 0.574 g quwenling (p-menthane-3,8-diol, PMD) and the standard deet (15% diethyl-3-methylbenzamide, Tabard lotion), were compared against a laboratory colony of the mosquito Anopheles arabiensis Patton (Diptera: Culicidae), the predominant malaria vector in South Africa. Human forearms were treated with 1.2 g BSC, 0.8 g PMD towelette or 0.5 g deet and exposed to 200 hungry An. arabiensis females for 1 min, at intervals of 1-6 h post-treatment. Tests were conducted by three adult male volunteers (aged 30-45 years, crossover controlled test design for 3 consecutive days), using their left arm for treatment and right arm for untreated control. Biting rates averaged 39-52 bites/min on untreated arms. All three repellents provided complete protection against An. arabiensis for up to 3-4 h post-application; deet and PMD gave 90-100% protection up to 5-6h, but BSC declined to only 52% protection 6h post-treatment. These results are interpreted to show that all three repellent products give satisfactory levels of personal protection against An. arabiensis for 4-5 h, justifying further evaluation in the field.

  11. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa.

    PubMed Central

    Taylor, C; Touré, Y T; Carnahan, J; Norris, D E; Dolo, G; Traoré, S F; Edillo, F E; Lanzaro, G C

    2001-01-01

    The population structure of the Anopheles gambiae complex is unusual, with several sibling species often occupying a single area and, in one of these species, An. gambiae sensu stricto, as many as three "chromosomal forms" occurring together. The chromosomal forms are thought to be intermediate between populations and species, distinguishable by patterns of chromosome gene arrangements. The extent of reproductive isolation among these forms has been debated. To better characterize this structure we measured effective population size, N(e), and migration rates, m, or their product by both direct and indirect means. Gene flow among villages within each chromosomal form was found to be large (N(e)m > 40), was intermediate between chromosomal forms (N(e)m approximately 3-30), and was low between species (N(e)m approximately 0.17-1.3). A recently developed means for distinguishing among certain of the forms using PCR indicated rates of gene flow consistent with those observed using the other genetic markers. PMID:11156993

  12. Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Kamaraj, C; Abdul Rahman, A; Bagavan, A; Abduz Zahir, A; Elango, G; Kandan, P; Rajakumar, G; Marimuthu, S; Santhoshkumar, T

    2010-08-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Natural products of plant origin with insecticidal properties have been used in recent years for control of a variety of pest insects and vectors. The present study was based on assessments of the larvicidal activity to determine the efficacies of hexane, chloroform, ethyl acetate, acetone and methanol extracts of ten medicinal plants tested against fourth instar larvae of malaria vector, Anopheles stephensi Liston and lymphatic filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). The larvicidal activity was assessed by the procedure of WHO with some modification. The highest larval mortality was found in leaf acetone of Adhatoda vasica, bark ethyl acetate of Annona squamosa, methanol leaf and flower of Cassia auriculata, leaf ethyl acetate of Hydrocotyle javanica, methanol leaf and seed of Solanum torvum and leaf hexane extracts of Vitex negundo against the fourth instar larvae of An. stephensi and Cx. quinquefasciatus. The calculated LC90 for acetone, ethyl acetate, methanol and hexane extracts of dried leaf and bark of A. vasica, A. squamosa, S. torvum, and V. negundo were in the range of 70.38-210.68 ppm. Our results suggest that the leaf methanol extract of S.torvum and bark ethyl acetate extract of A. squamosa from Southern India have the potential for use to control mosquitoes. Therefore, this study provides the larvicidal activity against An. stephensi and Cx. quinquefasciatus of plant extracts. PMID:20962718

  13. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi.

    PubMed

    Ha, Young-Ran; Lee, Seung-Chul; Seo, Seung-Jun; Ryu, Jeongeun; Lee, Dong-Kyu; Lee, Sang-Joon

    2015-01-01

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using synchrotron X-ray microscopic computed tomography. In addition, the feeding behaviors of their pumping organs were also investigated using a 2D X-ray micro-imaging technique. An. sinensis, a malarial vector mosquito, had a larger feeding pump volume than Ae. togoi in the static or resting position. Interestingly, the two species of mosquitoes exhibited different feeding behaviors. Ae. togoi had a higher feeding frequency and expansion ratio than An. sinensis. Ae. togoi also exhibited F-actin localization more clearly. These distinctive variations in feeding volumes and behaviors provide essential insight into the blood-feeding mechanisms of female mosquitoes as vectors for tropical diseases. PMID:26464043

  14. Morphological Differentiation May Mediate Mate-Choice between Incipient Species of Anopheles gambiae s.s.

    PubMed Central

    Sanford, Michelle R.; Demirci, Berna; Marsden, Clare D.; Lee, Yoosook; Cornel, Anthony J.; Lanzaro, Gregory C.

    2011-01-01

    The M and S molecular forms of Anopheles gambiae s.s. have been considered incipient species for more than ten years, yet the mechanism underlying assortative mating of these incipient species has remained elusive. The discovery of the importance of harmonic convergence of wing beat frequency in mosquito mating and its relation to wing size have laid the foundation for exploring phenotypic divergence in wing size of wild populations of the two forms. In this study, wings from field collected mosquitoes were measured for wing length and wing width from two parts of the sympatric distribution, which differ with respect to the strength of assortative mating. In Mali, where assortative mating is strong, as evidenced by low rates of hybridization, mean wing lengths and wing widths were significantly larger than those from Guinea-Bissau. In addition, mean wing widths in Mali were significantly different between molecular forms. In Guinea-Bissau, assortative mating appears comparatively reduced and wing lengths and widths did not differ significantly between molecular forms. The data presented in this study support the hypothesis that wing beat frequency may mediate assortative mating in the incipient species of A. gambiae and represent the first documentation of a morphological difference between the M and S molecular forms. PMID:22132169

  15. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures.

    PubMed

    Achinko, D; Thailayil, J; Paton, D; Mireji, P O; Talesa, V; Masiga, D; Catteruccia, F

    2016-03-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro-tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory-reared insects prior to their release. The present study evaluated whether large semi-field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory-reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi-field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory-bred males in field-like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies. PMID:26508420

  16. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection

    PubMed Central

    Liu, Kun; Dong, Yuemei; Huang, Yuzheng; Rasgon, Jason L.; Agre, Peter

    2013-01-01

    Anopheles gambiae is a major vector mosquito for Plasmodium falciparum, the deadly pathogen causing most human malaria in sub-Saharan Africa. Synthesized in the fat body, trehalose is the predominant sugar in mosquito hemolymph. It not only provides energy but also protects the mosquito against desiccation and heat stresses. Trehalose enters the mosquito hemolymph by the trehalose transporter AgTreT1. In adult female A. gambiae, AgTreT1 is predominantly expressed in the fat body. We found that AgTreT1 expression is induced by environmental stresses such as low humidity or elevated temperature. AgTreT1 RNA silencing reduces the hemolymph trehalose concentration by 40%, and the mosquitoes succumb sooner after exposure to desiccation or heat. After an infectious blood meal, AgTreT1 RNA silencing reduces the number of P. falciparum oocysts in the mosquito midgut by over 70% compared with mock-injected mosquitoes. These data reveal important roles for AgTreT1 in stress adaptation and malaria pathogen development in a major vector mosquito. Thus, AgTreT1 may be a potential target for malaria vector control. PMID:24101462

  17. The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency.

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    The aim of this study was to detect the role of some mosquito organs in their sensation of repellent materials. A total of 250 females (15 days old) of the target species Aedes aegypti and Anopheles stephensi were prepared and divided into five groups: group 1, without antenna; group 2, without maxillary bulbs; group 3, without proboscis; group 4, without frontal tarsus; and group 5, normal females as control. A mixture of five oils containing Litsea cubeba 1%, Melaleuca leucadendron 1%, Melaleuca quinquenervia 1%, Viola odorata 1%, and Nepeta cataria 1% was included in a complex solvent containing 20% genapol, 10% polyethylene glycol, 20% ethanol, and 50% water. Furthermore, Bayrepel was used in this experiment at a 20% concentration in the same solvent. Pure water was used as control in this study. The test was carried out by spreading 100 microl of the repellent material or water on a 30-cm2 exposure area of a human volunteer's arm. In A. aegypti, the biting and landing percentages increased significantly in those mosquito groups that lacked some organs (especially maxillary bulbs), while in A. stephensi, it became not clear which organ is responsible for perception of repellents. PMID:16642383

  18. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-05-28

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors.

  19. Crystal structure of native Anopheles gambiae Serpin-2, a negative regulator of melanization in mosquitoes

    PubMed Central

    An, Chunju; Lovell, Scott; Kanost, Michael R.; Battaile, Kevin P.; Michel, Kristin

    2011-01-01

    Serpins are the dominant group of protease inhibitors in metazoans that control a wide variety of biological processes including major innate immune reactions. One of these inhibitors, SRPN2, controls melanization in mosquitoes – a powerful, arthropod-specific innate immune response. SRPN2 depletion from the hemolymph of adult female mosquitoes significantly reduces longevity and therefore this serpin is a potential target for novel insecticides. We report here the crystal structure of SRPN2 in its native conformation from the African malaria mosquito, Anopheles gambiae to 1.75 Å resolution. SRPN2 adopts a similar fold as observed for other serpins with a core of three β-sheets surrounded by nine α-helices with an exposed reactive center loop (RCL) that extends from the protein body. Similar to other native serpin structures, several residues within the reactive center loop were disordered and could not be modeled. Intriguingly, the N-terminal hinge of the RCL in SRPN2 was found to be inserted into β-sheet A, suggesting a potential activation mechanism analogous to heparin-mediated activation of Antithrombin III. PMID:21465556

  20. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.

    PubMed

    Mongkol, Watcharakorn; Arunyawat, Uraiwan; Surat, Wunrada; Kubera, Anchanee

    2015-11-01

    Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity.

  1. Antennal-Expressed Ammonium Transporters in the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Pulous, Fadi E.; Zwiebel, Laurence J.

    2014-01-01

    The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming better understood, many questions remain unanswered. In this study, we have identified and characterized two candidate ammonium transporter genes, AgAmt and AgRh50 that are expressed in the mosquito antenna and may contribute to physiological and behavioral responses to ammonia, which is an important host kairomone for vector mosquitoes. AgAmt transcripts are highly enhanced in female antennae while a splice variant of AgRh50 appears to be antennal-specific. Functional expression of AgAmt in Xenopus laevis oocytes facilitates inward currents in response to both ammonium and methylammonium, while AgRh50 is able to partially complement a yeast ammonium transporter mutant strain, validating their conserved roles as ammonium transporters. We present evidence to suggest that both AgAmt and AgRh50 are in vivo ammonium transporters that are important for ammonia sensitivity in An. gambiae antennae, either by clearing ammonia from the sensillar lymph or by facilitating sensory neuron responses to environmental exposure. Accordingly, AgAmt and AgRh50 represent new and potentially important targets for the development of novel vector control strategies. PMID:25360676

  2. Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae.

    PubMed

    Matasyoh, Josphat C; Dittrich, Birger; Schueffler, Anja; Laatsch, Hartmut

    2011-03-01

    In a screening for natural products with mosquito larvicidal activities, the endophytic fungus Podospora sp. isolated from the plant Laggera alata (Asteraceae) was conspicuous. Two xanthones, sterigmatocystin (1) and secosterigmatocystin (2), and an anthraquinone derivative (3) 13-hydroxyversicolorin B were isolated after fermentation on M(2) medium. These compounds were characterised using spectroscopic and X-ray analysis and examined against third instar larvae of Anopheles gambiae. The results demonstrated that compound 1 was the most potent one with LC(50) and LC(90) values of 13.3 and 73.5 ppm, respectively. Over 95% mortality was observed at a concentration 100 ppm after 24 h. These results compared farvorably with the commercial larvicide pylarvex® that showed 100% mortality at the same concentration. Compound 3 was less potent and had an LC(50) of 294.5 ppm and over 95% mortality was achieved at a concentration of 1,000 ppm. Secosterigmatocystin (2) revealed relatively weak activity and therefore LC values were not determined.

  3. Computational identification of novel microRNAs and their targets in the malarial vector, Anopheles stephensi.

    PubMed

    Krishnan, Remya; Kumar, Vinod; Ananth, Vivek; Singh, Shailja; Nair, Achuthsankar S; Dhar, Pawan K

    2015-06-01

    MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito. PMID:25972985

  4. oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti.

    PubMed

    Juhn, J; James, A A

    2006-06-01

    A disease control strategy based on the introduction into mosquito populations of a gene conferring a pathogen-refractory phenotype is currently under investigation. This population replacement approach requires a drive system that will quickly spread and fix antipathogen effector genes in target populations. Modified transposable elements containing the control sequences of developmentally regulated genes may provide the basis for a gene drive system that regulates gene mobilization in a sex- and stage-restrictive manner. Screening of a Drosophila melanogaster database for genes whose products localize exclusively in the future germ cells during early embryonic development resulted in the identification of several candidate genes. The regulatory sequences of these genes could be used to drive transposition. Mosquito orthologous genes of oskar were identified based on sequence homology and characterized further. The tissue- and sex-specific expression profiles and hybridizations in situ show that oskar orthologous transcripts in Anopheles gambiae and Aedes aegypti accumulate in developing oocytes of adult females and localize to the posterior poles of early embryos. These characteristics potentiate the use of the regulatory sequences of mosquito oskar genes for the control of modified transposable elements.

  5. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos.

    PubMed

    Windbichler, Nikolai; Papathanos, Philippos Aris; Catteruccia, Flaminia; Ranson, Hilary; Burt, Austin; Crisanti, Andrea

    2007-01-01

    Homing endonuclease genes (HEGs) are 'selfish' genetic elements that combine the capability to selectively disrupt specific gene sequences with the ability to rapidly spread from a few individuals to an entire population through homologous recombination repair events. Because of these properties, HEGs are regarded as promising candidates to transfer genetic modifications from engineered laboratory mosquitoes to wild-type populations including Anopheles gambiae the vector of human malaria. Here we show that I-SceI and I-PpoI homing endonucleases cleave their recognition sites with high efficiency in A. gambiae cells and embryos and we demonstrate HEG-induced homologous and non-homologous repair events in a variety of functional assays. We also propose a gene drive system for mosquitoes that is based on our finding that I-PpoI cuts genomic rDNA located on the X chromosome in A. gambiae, which could be used to selectively incapacitate X-carrying spermatozoa thereby imposing a severe male-biased sex ratio.

  6. Laboratory evaluation of methylated coconut oil as a larvicide for Anopheles farauti and Culex annulirostris.

    PubMed

    Foley, Desmond H; Frances, Stephen P

    2005-12-01

    The toxicity of methylated coconut oil (MCO) was compared with a commercially available oil larvicide (Golden Bear Oil GB-1111) in laboratory bioassays of 4th-stage larvae of Anopheles farauti Laveran and Culex annulirostris Skuse. Both larvicides were more toxic to Cx. annulirostris than to An. farauti and the LD50 (dose lethal to 50% of the test organisms) after 24 h exposure indicated that MCO was more toxic than GB-1111 for both An. farauti (LD50 = 8.6 microl versus 13.0 microl/156 cm2) and Cx. annulirostris (LD50 = 1.2 microl versus 3.6 microl/156 cm2). However, for LD95 GB-1111 was more toxic than MCO for both An. farauti (LD95 = 29 microl versus 48.0 microl/156 cm2) and Cx. annulirostris (LD95 = 7.2 microl versus 18.0 microl/156 cm2). Further study of MCO is warranted and may determine whether the addition of surfactant to MCO will lower the LD95. The possibility of community participation in the production and use of coconut products including MCO for malaria vector control is discussed.

  7. Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston).

    PubMed

    Senthilkumar, N; Varma, Pushkala; Gurusubramanian, G

    2009-01-01

    The present study was undertaken to test the efficacy of 11 commonly available medicinal plants and compare its efficacy in relation to larvicidal and mosquitocidal activities against larvae and adults of Anopheles stephensi (Liston). All the medicinal plants and the mixture were effective against larvae of A. stephensi as evidenced by low lethal concentration and lethal time. The lethality varied in adults and plant extracts of mixture; Eucalyptus globulus, Cymbopogan citratus, Artemisia annua, Justicia gendarussa, Myristica fragrans, Annona squamosa, and Centella asiatica were found to be most effective. Larval mortality between 80% and 100% was observed in mixture treatment, C. asiatica and E. globulus. The adults that emerged from all the treatments were malformed. Further, the treated larvae showed significant decrement in the levels of protein, carbohydrate, and lipids and affect negatively the presence of certain amino acids. The present findings have important implications in the practical control of mosquito larvae and adults in the aquatic ecosystem as the medicinal plants studied are commonly available in large quantities. These plant extracts are easy to prepare, inexpensive, and safe for mosquito control which might be used directly as larvicidal and mosquitocidal agents in small volume aquatic habitats or breeding sites of around human dwellings. PMID:18787842

  8. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Macias, V; Coleman, J; Bonizzoni, M; James, A A

    2014-01-01

    The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. PMID:24947897

  9. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi.

    PubMed

    Sharma, Anil; Dhayal, Devender; Singh, O P; Adak, T; Bhatnagar, Raj K

    2013-10-01

    The midgut of parasite transmitting vector, Anopheles stephensi is a physiologically dynamic ecological niche of resident microbes. The gut resident microbes of anisomorphic and physiologically variable male and female A. stephensi mosquitoes were different (Rani et al., 2009). To understand the possible interaction of gut microbes and mosquito host, we examined the contribution of the microbe community on the fitness of the adult mosquitoes and their ability to permit development of the malaria parasite. A. stephensi mosquitoes were fed with antibiotic to sterilize their gut to study longevity, blood meal digestion, egg laying and maturation capacity, and consequently ability to support malaria parasite development. The sterilization of gut imparted reduction in longevity by a median of 5 days in male and 2 days in female mosquitoes. Similarly, the sterilization also diminished the reproductive potential probably due to increased rate of the resorption of follicles in ovaries coupled with abated blood meal digestion in gut-sterilized females. Additionally, gut sterilization also led to increased susceptibility to oocyst development upon feeding on malaria infected blood. The susceptibility to malaria parasite introduced upon gut sterilization of A. stephensi was restored completely upon re-colonization of gut by native microbes. The information provided in the study provides insights into the role of the gut-resident microbial community in various life events of the mosquito that may be used to develop alternate malaria control strategies, such as paratransgenesis.

  10. Survivorship and distribution of immature Anopheles gambiae s.l. (Diptera: Culicidae) in Banambani village, Mali.

    PubMed

    Edillo, Frances E; Touré, Yeya T; Lanzaro, Gregory C; Dolo, Guimogo; Taylor, Charles E

    2004-05-01

    We observed the survivorship and distribution of larvae and pupae of Anopheles gambiae s.l. Giles immature stages in three habitats (rock pools, swamp, and puddles) in Banambani village. Mali, West Africa, during the mid-rainy season of 2000. Horizontal life tables were constructed for immatures in the laboratory. Times spent in the various immature stages were determined, and laboratory survival was measured. Vertical life tables were obtained from each habitat. We found large day-to-day variation for age class composition within habitats across days. The swamp samples had small but statistically significant different distributions in some instar stages compared with rock pools and puddles as affected by precipitation history. There were obviously unstable age distributions in the swamp and puddles and to some extent in rock pools. There were more individuals in some later age classes than in earlier ones. The daily survival estimates using an exponential decay model were 0.807 in rock pools, 0.899 in the swamp, 0.818 in puddles, and 0.863 in the overall village. Possible reasons for the departure from stable age distribution were cannibalism, predation and other complex interactions, rainfall effects, sampling bias, and differences in physicochemical properties of the water in the habitats. PMID:15185933

  11. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya.

    PubMed

    Wang, Ying; Gilbreath, Thomas M; Kukutla, Phanidhar; Yan, Guiyun; Xu, Jiannong

    2011-01-01

    The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.

  12. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi.

    PubMed

    Ha, Young-Ran; Lee, Seung-Chul; Seo, Seung-Jun; Ryu, Jeongeun; Lee, Dong-Kyu; Lee, Sang-Joon

    2015-10-14

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using synchrotron X-ray microscopic computed tomography. In addition, the feeding behaviors of their pumping organs were also investigated using a 2D X-ray micro-imaging technique. An. sinensis, a malarial vector mosquito, had a larger feeding pump volume than Ae. togoi in the static or resting position. Interestingly, the two species of mosquitoes exhibited different feeding behaviors. Ae. togoi had a higher feeding frequency and expansion ratio than An. sinensis. Ae. togoi also exhibited F-actin localization more clearly. These distinctive variations in feeding volumes and behaviors provide essential insight into the blood-feeding mechanisms of female mosquitoes as vectors for tropical diseases.

  13. Analysis of the genitalia rotation in the male Anopheles funestus (Diptera: Culicidae).

    PubMed

    Dahan, Yael Leah; Koekemoer, Lizette Leonie

    2014-04-01

    Anopheles funestus is a major malaria vector in Africa. Insecticide resistance has developed in populations of this species in several African countries, prompting the need to develop additional vector control methods such as the sterile insect technique (SIT). This technique requires an understanding of those underlying physiological events that lead to sexual maturity of An. funestus males, the rotation of their genitalia in particular. The aim of this study was to qualitatively and quantitatively describe genital rotation in An. funestus males as it is an essential function of sexual maturation. Genital rotation of all the males reached its final rotation stage (135-180° rotation) 36 h post emergence at 23 ± 1 °C in laboratory colonised An. funestus males. These males had a comparable rotation rate to wild caught An. funestus at the same temperature setting. A temperature change (either 18 ± 1 °C or 29 ± 1 °C versus 23 ± 1 °C) significantly influenced the genital rotation rate such that this rate increased with increasing temperature. This information enhances our knowledge of the An. funestus male biology. This is important in terms of applying the sterile insect technique as the understanding and manipulation of the rate of sexual maturation in males has implications for the timing of sterile male release.

  14. Linear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus.

    PubMed Central

    Sharakhov, I V; Sharakhova, M V; Mbogo, C M; Koekemoer, L L; Yan, G

    2001-01-01

    Anopheles funestus Giles is one of the major malaria vectors in Africa, but little is known about its genetics. Lack of a cytogenetic map characterized by regions has hindered the progress of genetic research with this important species. This study developed a cytogenetic map of An. funestus using ovarian nurse cell polytene chromosomes. We demonstrate an important application with the cytogenetic map for characterizing various chromosomal inversions for specimens collected from coastal Kenya. The linear and spatial organization of An. funestus polytene chromosomes was compared with the best-studied malaria mosquito, An. gambiae Giles. Comparisons of chromosome morphology between the two species have revealed that the most extensive chromosomal rearrangement occurs in pericentromeric heterochromatin of autosomes. Differences in pericentromeric heterochromatin types correlate with nuclear organization differences between An. funestus and An. gambiae. Attachments of chromosomes to the nuclear envelope strongly depend on the presence of diffusive beta-heterochromatin. Thus, An. funestus and An. gambiae exhibit species-specific characteristics in chromosome-linear and -spatial organizations. PMID:11560898

  15. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  16. Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae.

    PubMed

    Mutunga, James M; Anderson, Troy D; Craft, Derek T; Gross, Aaron D; Swale, Daniel R; Tong, Fan; Wong, Dawn M; Carlier, Paul R; Bloomquist, Jeffrey R

    2015-06-01

    Insecticide resistance in the malaria vector, Anopheles gambiae, is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a "pseudo-pyrethroid." There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  17. Knockdown Resistance (kdr) Mutations in Indian Anopheles stephensi (Diptera: Culicidae) Populations.

    PubMed

    Dykes, Cherry L; Das, Manoj K; Eapen, Alex; Batra, Chandra P; Ghosh, Susanta K; Vijayan, V A; Mishra, Shobhna; Singh, Om P

    2016-03-01

    Knockdown resistance (kdr) in insects resulting from mutation(s) in the voltage-gated sodium channel (VGSC) gene is one of the mechanisms of resistance against DDT and the pyrethroid group of insecticides. Earlier, we reported the presence of two classic kdr mutations, i.e., L1014F and L1014S in Anopheles stephensi Liston, a major Indian malaria vector affecting mainly urban areas. This report presents the distribution of these alleles in different An. stephensi populations. Seven populations of An. stephensi from six states of India were screened for the presence of two alternative kdr mutations L1014F and L1014S using allele-specific polymerase chain reaction assays. We recorded the presence of both kdr mutations in northern Indian populations (Alwar and Gurgaon), with the preponderance of L1014S, whereas only L1014F was present in Raipur (central India) and Chennai (southern India). None of the kdr mutations were found in Ranchi in eastern India and in Mangaluru and Mysuru in southern India. This study provides evidence for a focal pattern of distribution of kdr alleles in India. PMID:26747858

  18. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2013-11-01

    The biological activity of essential oil extracted from the leaves of Polygonum hydropiper and a compound, confertifolin, isolated from this plant was bioassayed against larva of mosquitoes, Anopheles stephensi and Culex quinquefasciatus. The essential oil showed the LC50 values of 189 and 243ppm; 217 and 242ppm, confertifolin (6,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-c]furan-3(1H)-one) showed the LC50 values of 2.40 and 3.09ppm; 4.07 and 4.18ppm against the second and fourth instar larvae of An. stephensi and Cx. quinquefasciatus, respectively. At 10ppm confertifolin showed ovicidal activity of 100, 98.6 and 86.4% against An. stephensi and 100, 100 and 75.2% against Cx. quinquefasciatus on 0-6, 6-12 and 12-18h old eggs; the repellent activity persisted for 314.6 and 319.0min; oviposition deterrent activity was 97.2 and 99% and adulticidal activity was 100 and 100% against An. stephensi and Cx. quinquefasciatus, respectively. The results were statistically significant. Confertifolin could be considered for use in the control of human vector mosquitoes. PMID:23942240

  19. Fumigant toxicity of the essential oils of some African plants against Anopheles gambiae sensu stricto.

    PubMed

    Omolo, M O; Okinyo, D; Ndiege, I O; Lwande, W; Hassanali, A

    2005-03-01

    The essential oils from 15 species of African plants selected by ethnobotanical considerations and field inspection (odour and presence of insects) were screened for fumigant toxicity to Anopheles gambiae s.s. in the laboratory. Essential oils from 6 species showed varying levels of toxicity, with Conyza newii (Compositae) and Plectranthus marruboides (Labiateae) being the most potent. Fifty compounds representing approximately 74% of the essential oil of C. newii were identified by GC-MS and GC-coinjection (for available standards). The major and some of the minor constituents of the two oils were assayed at different doses. Two compounds, from C. newii, perillaldehyde and perillyl alcohol, exhibited higher fumigant toxicity (LD50 = 1.05 x 10(-4) and 2.52 x 10(-4) mg cm(-3), respectively) than the parent oil (2.0 x 10(-3) mg cm(-3)). GC-MS analysis of the essential oil of P. marruboides gave results similar to that previously reported. Interestingly, none of its components were active, suggesting that the insecticidal activity of the oil results from either some of the minor components or as a blend effect of some of the major constituents. PMID:15830848

  20. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi.

    PubMed

    Rajkumar, S; Jebanesan, A

    2007-12-01

    In recent years, use of environment friendly and biodegradable natural insecticides of plant origin have received renewed attention as agents for vector control. In this study, essential oils extracted by steam distillation from leaves of five plant species Centella asiatica L., Ipomoea cairica L., Momordica charantia L., Psidium guajava L. and Tridax procumbens L. were evaluated for their topical repellency effects against malarial vector Anopheles stephensi in mosquito cages. All essential oils were tested at three different concentrations (2, 4 and 6%). Of these, the essential oils of I. cairica, M. charantia and T. procumbens exhibited relatively high repellency effect (>300 minutes at 6% concentration), followed by C. asiatica and P. guajava which showed less effective (< 150 minutes at 6 % concentration). However, the ethanol applied arm served as control provided maximum 8.0 minutes repellency in this study. In general, clear dose-response relationships were established in all essential oils, with the highest concentration of 6% provided high repellency effect. The results obtained from this study suggest that essential oils of I. cairica, M. charantia and T. procumbens are promising as repellents at 6% concentration against An. stephensi and could be useful in the search for new natural repellent compounds. PMID:18209711

  1. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  2. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  3. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa

    PubMed Central

    Sanford, Michelle R.; Cornel, Anthony J.; Nieman, Catelyn C.; Dinis, Joao; Marsden, Clare D.; Weakley, Allison M.; Han, Sarah; Rodrigues, Amabelia; Lanzaro, Gregory C.; Lee, Yoosook

    2014-01-01

    Presence of Plasmodium falciparum circumsporozoite protein (CSP) was detected by enzyme linked immunosorbent assay (ELISA) in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall; confidence interval (CI): 7.45-13.6%) was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%). The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % (CI: 8.88-17.6) across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3% (CI:0.98-12.4), 4.1% (CI:0.35-14.5), 11.1% (CI:1.86-34.1) and 33.3% (CI:9.25-70.4) respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18) and A. pharoensis (N=6) and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets. PMID:25383188

  4. Characterization of Anopheles gambiae Transglutaminase 3 (AgTG3) and Its Native Substrate Plugin*

    PubMed Central

    Le, Binh V.; Nguyen, Jennifer B.; Logarajah, Shankar; Wang, Bo; Marcus, Jacob; Williams, Hazel P.; Catteruccia, Flaminia; Baxter, Richard H. G.

    2013-01-01

    Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the “mating plug” by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (∼30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca2+-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10−2 units mg−1. AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8–10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae. PMID:23288850

  5. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi

    PubMed Central

    Sedaghat, MM; Dehkordi, A Sanei; Abai, MR; Khanavi, M; Mohtarami, F; Abadi, Y Salim; Rafi, F; Vatandoost, H

    2011-01-01

    Background: Plant extracts and oils may act as alternatives to conventional pesticides for malaria vector control. The aim of this study was to evaluate the larvicidal activity of essential oils of three plants of Apiaceae family against Anopheles stephensi, the main malaria vector in Iran. Methods: Essential oils from Heracleum persicum, Foeniculum vulgare and Coriandrum sativum seeds were hydro distillated, then their larvicidal activity were evaluated against laboratory-reared larvae of An. stephensi according to standard method of WHO. After susceptibility test, results were analysis using Probit program. Results: Essential oils were separated from H. persicum, F. vulgare and C. sativum plants and their larvicidal activities were tested. Result of this study showed that F. vulgare oil was the most effective against An. stephensi with LC50 and LC90 values of 20.10 and 44.51 ppm, respectively. Conclusion: All three plants essential oil can serve as a natural larvicide against An. stephensi. F. vulgare oil exhibited more larvicidal properties. PMID:22808418

  6. Evarcha culicivora chooses blood-fed Anopheles mosquitoes but other East African jumping spiders do not.

    PubMed

    Jackson, R R; Nelson, X J

    2012-06-01

    Previous research using computer animation and lures made from dead prey has demonstrated that the East African salticid Evarcha culicivora Wesolowska & Jackson (Araneae: Salticidae) feeds indirectly on vertebrate blood by actively choosing blood-carrying female mosquitoes as prey, and also that it singles out mosquitoes of the genus Anopheles (Diptera: Culicidae) by preference. Here, we demonstrate that E. culicivora's preference is expressed when the species is tested with living prey and that it is unique to E. culicivora. As an alternative hypothesis, we considered the possibility that the preference for blood-fed female anopheline mosquitoes might be widespread in East African salticids. When live-prey choice tests were carried out in 19 additional species, there were no instances in which blood-carrying mosquitoes were chosen significantly more often than other prey. Combined with the findings of previous work, these results suggest that it is possible that specialized predators play a role in the biological control of disease vectors. PMID:22032682

  7. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae.

    PubMed

    Manoukis, Nicholas C; Powell, Jeffrey R; Touré, Mahamoudou B; Sacko, Adama; Edillo, Frances E; Coulibaly, Mamadou B; Traoré, Sekou F; Taylor, Charles E; Besansky, Nora J

    2008-02-26

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via "ecotypification," a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019

  8. Suitability of monotypic and mixed diets for Anopheles hermsi larval development.

    PubMed

    Beasley, Donald A; Walton, William E

    2016-06-01

    The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets.

  9. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.

    PubMed

    Mitchell, Sara N; Rigden, Daniel J; Dowd, Andrew J; Lu, Fang; Wilding, Craig S; Weetman, David; Dadzie, Samuel; Jenkins, Adam M; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A T; Ranson, Hilary; Paine, Mark J I; Mayans, Olga; Donnelly, Martin J

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.

  10. Anopheles species associations in Southeast Asia: indicator species and environmental influences

    PubMed Central

    2013-01-01

    Background Southeast Asia presents a high diversity of Anopheles. Environmental requirements differ for each species and should be clarified because of their influence on malaria transmission potential. Monitoring projects collect vast quantities of entomological data over the whole region and could bring valuable information to malaria control staff but collections are not always standardized and are thus difficult to analyze. In this context studying species associations and their relation to the environment offer some opportunities as they are less subject to sampling error than individual species. Methods Using asymmetrical similarity coefficients, indirect clustering and the search of indicator species, this paper identified species associations. Environmental influences were then analysed through canonical and discriminant analysis using climatic and topographic data, land cover in a 3 km buffer around villages and vegetation indices. Results Six groups of sites characterized the structure of the species assemblage. Temperature, rainfall and vegetation factors all play a role. Four out of the six groups of sites based on species similarities could be discriminated using environmental information only. Conclusions Vegetation indices derived from satellite imagery proved very valuable with one variable explaining more variance of the species dataset than any other variable. The analysis could be improved by integrating seasonality in the sampling and collecting at least 4 consecutive days. PMID:23642279

  11. Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis.

    PubMed

    Marsden, Clare Diana; Lee, Yoosook; Kreppel, Katharina; Weakley, Allison; Cornel, Anthony; Ferguson, Heather M; Eskin, Eleazar; Lanzaro, Gregory C

    2014-01-10

    Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, Anopheles arabiensis, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the An. arabiensis genome, with ~800,000 high-confidence, single- nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within An. arabiensis decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes.

  12. Current insecticide susceptibility status of Malaysian Anopheles maculatus Theobald to malathion, permethrin, DDT and deltamethrin.

    PubMed

    Rohani, A; Aziz, I; Zurainee, M N; Rohana, S H; Zamree, I; Lee, H L

    2014-03-01

    Chemical insecticides are still considered as important control agents for malaria vector control. However, prolonged use of these chemicals may select mosquito vectors for resistance. In this study, susceptibility status of adult Anopheles maculatus collected from 9 localities in peninsular Malaysia, viz., Jeli, Temerloh, Pos Banun, Senderut, Jeram Kedah, Segamat, Kota Tinggi, Kluang and Pos Lenjang were determined using the standard WHO bioassay method in which the adult mosquitoes were exposed to standard insecticide impregnated papers malathion, permethrin, DDT and deltamethrin--at pre-determined diagnostic dosage. Deltamethrin was most effective insecticide among the four insecticides tested, with the LT50 of 29.53 min, compared to malathion (31.67 min), DDT (47.76 min) and permethrin (48.01 min). The effect of all insecticides on the laboratory strain was greater (with all insecticides demonstrated LT50 < 1 hour) than the field strains (deltamethrin 32.7, malathion 53.0, permethrin 62.0, DDT 67.4 min). An. maculatus exhibited low degree of resistance to all test insecticides, indicating that these chemical insecticides are still effective in the control of malaria vector.

  13. Life on the edge: African malaria mosquito (Anopheles gambiae s. l.) larvae are amphibious

    NASA Astrophysics Data System (ADS)

    Miller, James R.; Huang, Juan; Vulule, John; Walker, Edward D.

    2007-03-01

    Anopheles gambiae s.l. is the main vector of malaria in Sub-Saharan Africa. Here, an estimated 1 million people die every year from this disease. Despite considerable research on An. gambiae that increasingly explores sub-organismal phenomena, important facets of the field biology of this deadly insect are yet being discovered. In the current study, we used simple observational tools to reveal that the habitat of larval An. gambiae is not limited within the boundaries of temporary mud puddles, as has been the accepted generalization. Thus, control tactics aimed at immatures must consider zones larger than puddles per se. In fact, eggs are more likely to be found outside than inside puddles. Eggs can develop and larvae can emerge on mud. Larvae are then capable of three distinct modes of terrestrial displacement (two active and one passive), whereby, they can reach standing water. On mud bearing a film of water, larvae actively displace backwards by sinusoidal undulations shown to be only a slight variation of the swimming motor program. On drying mud, larvae switch to a slower and forward form of active locomotion resembling that of a crawling caterpillar. During rains, small larvae may be passively displaced by flowing rainwater so as to be deposited into puddles. These capabilities for being amphibious, along with very rapid growth and development, help explain how An. gambiae thrives in a highly uncertain and often hostile larval environment.

  14. Triple insecticide resistance in Anopheles culicifacies: a practical impediment for malaria control in Odisha State, India

    PubMed Central

    Sahu, S.S.; Gunasekaran, K.; Vijayakumar, T.; Jambulingam, P.

    2015-01-01

    Background & objectives: In Odisha State, the control of malaria vectors has become dependent on synthetic pyrethroids, which are used for treatment of all approved long-lasting insecticidal nets (LLINs). The vast use of just one class of insecticide has led to the problem of resistance to insecticides in malaria vectors. One of the major malaria vectors in Odisha State is Anopheles culicifacies Giles. The aim of this study was to determine the resistance status of An. culicifacies to deltamethrin, a synthetic pyrethroid and other common insecticides used by the National Vector Borne Diseases Control Programme (NVBDCP) for indoor residual spraying in Odisha State. Methods: Mosquitoes were collected during April 2014 - June 2014 from 15 randomly selected villages in five Plasmodium falciparum endemic southern districts of Odisha State. The blood-fed wild caught females were exposed to the diagnostic dosage of DDT (4.0%), malathion (5.0%) and deltamethrin (0.05%) for one hour. Mortality was recorded at 24 h after the exposure. Results: Results indicated that An. culicifacies was resistant to all the three insecticides used in the malaria control programme in the five districts of Odisha State. Interpretation & conclusions: Resistance management strategy by appropriate rotation of different groups of insecticides including carbamates and incorporating a synergist with synthetic pyrethroids for treating mosquito nets should be considered for the control of malaria vectors in the area, especially where An. culicifacies is predominant. Periodical monitoring of susceptibility/resistance status of An. culicifacies to different insecticides is warranted. PMID:26905243

  15. Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi.

    PubMed

    Chauhan, Nitin; Malik, Anushree; Sharma, Satyawati; Dhiman, R C

    2016-06-01

    The larvicidal activity of Mentha piperita, Cymbopogan citratus (lemongrass), Eucalyptus globulus and Citrus sinensis (orange) essential oils and their combinations was evaluated against Musca domestica (housefly) and Anopheles stephensi (mosquitoes) through contact toxicity assay. Among all the tested essential oils/combinations, Me. piperita was found to be the most effective larvicidal agent against Mu. domestica and An. stephensi with LC50 values of 0.66 μl/cm(2) and 44.66 ppm, respectively, after 48 h. The results clearly highlighted that the addition of mentha oil to other oils (1:1 ratio) improved their larvicidal activity. The order of effectiveness of essential oils/combinations indicated that the pattern for An. stephensi follows the trend as mentha > mentha + lemongrass > lemongrass > mentha + eucalyptus > eucalyptus > mentha + orange > orange and for Mu. domestica as mentha > mentha + lemongrass > lemongrass > mentha + orange > orange > mentha + eucalyptus > eucalyptus. The images obtained from scanning electron microscopy (SEM) analysis indicated the toxic effect of Me. piperita as the treated larvae were observed to be dehydrated and deformed. This study demonstrates the effectiveness of tested essential oils/combinations against the larval stages of Mu. domestica and An. stephensi and has the potential for development of botanical formulations.

  16. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission.

    PubMed

    Akinosoglou, Karolina A; Bushell, Ellen S C; Ukegbu, Chiamaka Valerie; Schlegelmilch, Timm; Cho, Jee-Sun; Redmond, Seth; Sala, Katarzyna; Christophides, George K; Vlachou, Dina

    2015-02-01

    The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut.

  17. Conserved boundary elements from the Hox complex of mosquito, Anopheles gambiae.

    PubMed

    Ahanger, Sajad H; Srinivasan, Arumugam; Vasanthi, Dasari; Shouche, Yogesh S; Mishra, Rakesh K

    2013-01-01

    The conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior-posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae. Several potential boundary elements were identified that could be tested for their functional conservation. Comparative analysis revealed that like Drosophila, the bithorax region in A. gambiae contains an extensive array of boundaries and enhancers organized into domains. We analysed a subset of candidate boundary elements and show that they function as enhancer blockers in Drosophila. The functional conservation of boundary elements from mosquito in fly suggests that regulation of hox genes involving chromatin domain boundaries is an evolutionary conserved mechanism and points to an important role of such elements in key developmentally regulated loci.

  18. Patterns of genetic variability in Anopheles quadrimaculatis (sensu stricto) (Diptera: Culicidae) populations in eastern Arkansas.

    PubMed

    Hilburn, Larry R; Cooksey, Lynita M

    2004-01-01

    Electrophoretically detectable isozyme differences in 15 populations of Anopheles quadrimaculatus (Say) (sensu stricto) from eastern Arkansas were compared to measure levels of genetic diversity and study the sources of the variation. All of the enzyme loci had 2-7 alleles. Average levels of polymorphism per population were 88.9%. Heterozygotes for alleles of at least 1 of the 9 loci made up an average overall loci of 0.323 +/- 0.078 of the individuals examined. F-statistic analysis suggested a small, but statistically significant interpopulation differentiation of heterozygote frequency. The reduced heterozygote frequency was not attributable to the presence of more than one species in any population nor to the preferential use of oviposition habitats by certain populations within the species. Nei's distance values for pairwise population comparisons were small (<0.06). Correlation between genetic and geographic distance matrices was not significant. Migration among populations in the agricultural areas of the Arkansas delta region is apparently sufficient to homogenize most of the genetic divergence arising because of habitat or geographic isolation between populations in the region.

  19. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae

    PubMed Central

    Gabrieli, Paolo; Kakani, Evdoxia G.; Mitchell, Sara N.; Mameli, Enzo; Want, Elizabeth J.; Mariezcurrena Anton, Ainhoa; Serrao, Aurelio; Baldini, Francesco; Catteruccia, Flaminia

    2014-01-01

    Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors. PMID:25368171

  20. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-06-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  1. Laser dosimetry for disabling anopheles stephensi mosquitoes in-flight (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Norton, Bryan J.; Rutschman, Phil; Farrar, David J.; Marvit, Maclen; Makagon, Artyom

    2016-03-01

    The Photonic Fence is a system designed to detect mosquitoes and other pestilent flying insects in an active region and to apply lethal doses of laser light to them. Previously, we determined lethal fluence levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the bugs were freely flying within transparent cages. Dose-response curves were created for various beam diameter, pulse width, and power conditions at 455 nm, 532 nm, 1064nm, and 1540 nm wavelengths. Besides mortality outcomes, the flight behavior of the bugs and the performance of the tracking system were monitored for consistency and to ensure that they had no impact on the mortality outcomes. As in anesthetized experiments, the visible wavelengths required significantly less fluence than near infrared wavelengths to reliably disable bugs. For the visible wavelengths, lethal fluence values were generally equivalent to those found in anesthetized dosing, while near infrared wavelengths required approximately twice the fluence compared with anesthetized experiments. The performance of the optical tracking system remained highly stable throughout the experiments, and it was found not to influence mortality results for pulse widths up to 25 ms. In general, keeping energy constant while decreasing power and increasing pulse width reduced mortality levels. The results of this study further affirm the practicality of using optical approaches to protect people and crops from flying insects.

  2. [Behavioral features of the imago of malaria mosquitoes (Diptera, Culicidae, Anopheles) in uzbekistan].

    PubMed

    Zhakhongirov, Sh M; Ponomarev, I M; Zvantsov, A B; Goriacheva, I I; Gordeev, M I; Fatullaeva, A A; Saĭfiev, Sh T; Ezhov, M N; Abdiev, T A

    2015-01-01

    Morphological, cytogenetic, and molecular genetic analyses made in the Fergana, Chirchik-Akhangaran, Mirzachul, and Zarafshan physicogeographical districts of Uzbekistan revealed the closely related species An. artemievi malaria mosquito from the An. maculipennis complex. In the human settlements and natural biotopes under their canopy of 7 physicogeographical districts of Uzbekistan, there were 6 Anopheles mosquito species (An. artemievi, An. claviger, An. hyrcanus, An.martinius, An. pulcherrimus, and An. superpictus); An. superpictus is a dominant species in the human settlements and An. artemievi in subdominant. An.pulcherrimus was dominant and An. superpictus was subdominant under natural canopy conditions. The latter is of widespread occurrence in the mountain and piedmont areas of Uzbekistan. It is encountered in all the physicogeographical districts. An. artemievi is distributed in the river valleys in the Fergana, Chirchik-Akhangaran, Mirzachul, and Zarafshan physicogeographical districts. An. pulcherrimus is common in the plain river valleys, except in the Qashqadaryo physicogeographical district. An. martinius is found in the Qashqadaryo and Nizhneamudryo physicogeographical districts. Livestock houses are the most attractive day's rests for mosquitoes; utility rooms rank next in mosquito density. Housing premises are slightly occupied by mosquitoes. The maximum size of aggressive mosquitoes is noted in July, August, and early September.

  3. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae

    PubMed Central

    Zhang, Xin; Zhang, Jianzhen; Park, Yoonseong; Zhu, Kun Yan

    2012-01-01

    Chitin synthase (CHS) represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely tuned chitin biosynthesis and this pathway is absent in humans and other vertebrates. Current knowledge on CHS in insects, especially their structures, functions, and regulations is still very limited. We report the identification and characterization of two chitin synthase genes, AgCHS1 and AgCHS2, in African malaria mosquito, Anopheles gambiae. AgCHS1 and AgCHS2 were predicted to encode proteins of 1,578 and 1,586 amino acid residues, respectively. Their deduced amino acid sequences show high similarities to other insect chitin synthases. Transcriptional analysis indicated that AgCHS1 was expressed in egg, larval, pupal and adult stages whereas AgCHS2 appeared to be expressed at relatively low levels, particularly during the larval stages as examined by reverse transcription (RT)-PCR and real-time quantitative PCR. Relatively high expression was detected in the carcass followed by the foregut and hindgut for AgCHS1, and the foregut (cardia included) followed by the midgut for AgCHS2. Fluorescence in situ hybridization (FISH) and immunohistochemical analysis revealed new information including the localization of the two enzymes in the ommatidia of the compound eyes, and AgCHS2 in the thoracic and abdominal inter-segmental regions of pupal integument. PMID:22683441

  4. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suwanchaichinda, C; Brattsten, L B

    2014-01-01

    The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system.

  5. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  6. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    PubMed Central

    2009-01-01

    Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies. PMID:19822012

  7. Evidence to Support Karyotypic Variation of the Mosquito, Anopheles peditaeniatus in Thailand

    PubMed Central

    Choochote, Wej

    2011-01-01

    Eight isoline colonies of Anopheles peditaeniatus Leicester (Diptera: Culicidae) were established from wild-caught females collected from buffalo-baited traps at 8 localities in Thailand. They showed 2 types of X (X2, X3) and 4 types of Y (Y2, Y3, Y4, Y5) chromosomes based on the number and amount of major block(s) of heterochromatin present in the heterochromatic arm, and were tentatively designated as Forms B (X2, X3, Y2), C (X3, Y3), D (X3, Y4) and E (X2, X3, Y5). Form B was found in Nan, Ratchaburi, and Chumphon provinces; Form C was obtained in Chon Buri province; Form D was recovered in Kamphaeng Phet province; and Form E was acquired in Chiang Mai, Udon Thani, and Ubon Ratchathani provinces. Crossing studies among the 8 isoline colonies, which were representative of 4 karyotypic forms of An. peditaeniatus, revealed genetic compatibility in providing viable progenies and synaptic salivary gland polytene chromosomes through F2-generations, thus suggesting the conspecific nature of these karyotypic forms. These results were supported by the very low intraspecific sequence variations (0.0 – 1.1%) of the nucleotide sequences in ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) of the 4 forms. PMID:21521137

  8. Isolation of Bacillus sphaericus from Lombok Island, Indonesia, and Their Toxicity against Anopheles aconitus

    PubMed Central

    Suryadi, Bambang Fajar; Yanuwiadi, Bagyo; Ardyati, Tri; Suharjono

    2015-01-01

    Malaria is endemic to Lombok Island, Indonesia. One approach to suppress malaria spread is to eliminate anopheline larvae in their habitat and the environmentally safe agent is bacteria, that is, Bacillus sphaericus. However, there is no information regarding local isolate of B. sphaericus that is toxic to mosquito larvae from Lombok. The aims of the study were to isolate B. sphaericus from soil in areas close to beach surrounding Lombok Island and to test their toxicity against 3rd instar Anopheles aconitus larvae. Soil samples were collected from 20 different sampling locations from Lombok Island and homogenized with sterile physiological salt solution. Suspension was heat-shocked at 80°C for 30 minutes and then spread onto antibiotic-supplemented NYSM solid medium. Colonies grown were characterized and subjected to initial toxicity test against anopheline larvae. Isolates with more than 50% killing percentage were subjected to bioassay testing against anopheline larvae. From 20 locations, 1 isolate showed mild toxicity (namely, isolate MNT) and 2 isolates showed high toxicity (namely, isolates SLG and TJL2) against An. aconitus. Those 3 isolates were potentially useful isolates, as they killed almost all larvae in 24 hours. The discovery of toxic indigenous isolates of B. sphaericus from Lombok Island opens opportunity to develop a biopesticide from local resources. PMID:26788061

  9. Ecophysiology of Anopheles gambiae s.l.: Persistence in the Sahel

    PubMed Central

    Huestis, Diana L.; Lehmann, Tovi

    2014-01-01

    The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy. PMID:24933461

  10. Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae

    PubMed Central

    Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.

    2015-01-01

    Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  11. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    PubMed

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  12. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi

    PubMed Central

    Ha, Young-Ran; Lee, Seung-Chul; Seo, Seung-Jun; Ryu, Jeongeun; Lee, Dong-Kyu; Lee, Sang-Joon

    2015-01-01

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using synchrotron X-ray microscopic computed tomography. In addition, the feeding behaviors of their pumping organs were also investigated using a 2D X-ray micro-imaging technique. An. sinensis, a malarial vector mosquito, had a larger feeding pump volume than Ae. togoi in the static or resting position. Interestingly, the two species of mosquitoes exhibited different feeding behaviors. Ae. togoi had a higher feeding frequency and expansion ratio than An. sinensis. Ae. togoi also exhibited F-actin localization more clearly. These distinctive variations in feeding volumes and behaviors provide essential insight into the blood-feeding mechanisms of female mosquitoes as vectors for tropical diseases. PMID:26464043

  13. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae

    PubMed Central

    Rund, Samuel S. C.; Bonar, Nicolle A.; Champion, Matthew M.; Ghazi, John P.; Houk, Cameron M.; Leming, Matthew T.; Syed, Zainulabeuddin; Duffield, Giles E.

    2013-01-01

    We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae. PMID:23986098

  14. Survivorship and distribution of immature Anopheles gambiae s.l. (Diptera: Culicidae) in Banambani village, Mali.

    PubMed

    Edillo, Frances E; Touré, Yeya T; Lanzaro, Gregory C; Dolo, Guimogo; Taylor, Charles E

    2004-05-01

    We observed the survivorship and distribution of larvae and pupae of Anopheles gambiae s.l. Giles immature stages in three habitats (rock pools, swamp, and puddles) in Banambani village. Mali, West Africa, during the mid-rainy season of 2000. Horizontal life tables were constructed for immatures in the laboratory. Times spent in the various immature stages were determined, and laboratory survival was measured. Vertical life tables were obtained from each habitat. We found large day-to-day variation for age class composition within habitats across days. The swamp samples had small but statistically significant different distributions in some instar stages compared with rock pools and puddles as affected by precipitation history. There were obviously unstable age distributions in the swamp and puddles and to some extent in rock pools. There were more individuals in some later age classes than in earlier ones. The daily survival estimates using an exponential decay model were 0.807 in rock pools, 0.899 in the swamp, 0.818 in puddles, and 0.863 in the overall village. Possible reasons for the departure from stable age distribution were cannibalism, predation and other complex interactions, rainfall effects, sampling bias, and differences in physicochemical properties of the water in the habitats.

  15. Suitability of monotypic and mixed diets for Anopheles hermsi larval development.

    PubMed

    Beasley, Donald A; Walton, William E

    2016-06-01

    The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets. PMID:27232128

  16. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae.

    PubMed

    Manoukis, Nicholas C; Powell, Jeffrey R; Touré, Mahamoudou B; Sacko, Adama; Edillo, Frances E; Coulibaly, Mamadou B; Traoré, Sekou F; Taylor, Charles E; Besansky, Nora J

    2008-02-26

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via "ecotypification," a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species.

  17. Molecular taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and malaria epidemiology in southern Amazonian Peru.

    PubMed

    Conn, Jan E; Moreno, Marta; Saavedra, Marlon; Bickersmith, Sara A; Knoll, Elisabeth; Fernandez, Roberto; Vera, Hubert; Burrus, Roxanne G; Lescano, Andres G; Sanchez, Juan Francisco; Rivera, Esteban; Vinetz, Joseph M

    2013-02-01

    Anopheline specimens were collected in 2011 by human landing catch, Shannon and CDC traps from the malaria endemic localities of Santa Rosa and San Pedro in Madre de Dios Department, Peru. Most specimens were either Anopheles (Nyssorhynchus) benarrochi B or An. (Nys.) rangeli, confirmed by polymerase chain reaction-restriction fragment length polymorphism-internal transcribed spacer 2 (PCR-RFLP-ITS2) and, for selected individuals, ITS2 sequences. A few specimens from Lupuna, Loreto Department, northern Amazonian Peru, were also identified as An. benarrochi B. A statistical parsimony network using ITS2 sequences confirmed that all Peruvian An. benarrochi B analyzed were identical to those in GenBank from Putumayo, southern Colombia. Sequences of the mtDNA COI BOLD region of specimens from all three Peruvian localities were connected using a statistical parsimony network, although there were multiple mutation steps between northern and southern Peruvian sequences. A Bayesian inference of concatenated Peruvian sequences of ITS2 + COI detected a single clade with very high support for all An. benarrochi B except one individual from Lupuna that was excluded. No samples were positive for Plasmodium by CytB-PCR.

  18. The Anopheles-midgut APN1 structure reveals a new malaria transmission-blocking vaccine epitope.

    PubMed

    Atkinson, Sarah C; Armistead, Jennifer S; Mathias, Derrick K; Sandeu, Maurice M; Tao, Dingyin; Borhani-Dizaji, Nahid; Tarimo, Brian B; Morlais, Isabelle; Dinglasan, Rhoel R; Borg, Natalie A

    2015-07-01

    Mosquito-based malaria transmission-blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasite's obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however, AnAPN1's role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission have remained elusive. Here we present the 2.65-Å crystal structure of AnAPN1 and the immunoreactivity and transmission-blocking profiles of three monoclonal antibodies (mAbs) to AnAPN1, including mAb 4H5B7, which effectively blocks transmission of natural strains of Plasmodium falciparum. Using the AnAPN1 structure, we map the conformation-dependent 4H5B7 neoepitope to a previously uncharacterized region on domain 1 and further demonstrate that nonhuman-primate neoepitope-specific IgG also blocks parasite transmission. We discuss the prospect of a new biological function of AnAPN1 as a receptor for Plasmodium in the mosquito midgut and the implications for redesigning the AnAPN1 mTBV. PMID:26075520

  19. Brazilian Anopheles darlingi Root (Diptera: Culicidae) Clusters by Major Biogeographical Region

    PubMed Central

    Bergo, Eduardo S.; Randel, Melissa A.

    2015-01-01

    The major drivers of the extensive biodiversity of the Neotropics are proposed to be geological and tectonic events together with Pliocene and Pleistocene environmental and climatic change. Geographical barriers represented by the rivers Amazonas/Solimões, the Andes and the coastal mountain ranges in eastern Brazil have been hypothesized to lead to diversification within the primary malaria vector, Anopheles (Nyssorhynchus) darlingi Root, which primarily inhabits rainforest. To test this biogeographical hypothesis, we analyzed 786 single nucleotide polymorphisms (SNPs) in 12 populations of An. darlingi from across the complex Brazilian landscape. Both model-based (STRUCTURE) and non-model-based (Principal Components and Discriminant Analysis) analysis of population structure detected three major genetic clusters that correspond with newly described Neotropical biogeographical regions: 1) Atlantic Forest province (= southeast population); 2) Parana Forest province (= West Atlantic forest population, with one Chacoan population - SP); and 3) Brazilian dominion population (= Amazonian population with one Chacoan population - TO). Significant levels of pairwise genetic divergences were found among the three clusters, allele sharing among clusters was negligible, and geographical distance did not contribute to differentiation. We infer that the Atlantic forest coastal mountain range limited dispersal between the Atlantic Forest province and the Parana Forest province populations, and that the large, diagonal open vegetation region of the Chacoan dominion dramatically reduced dispersal between the Parana and Brazilian dominion populations. We hypothesize that the three genetic clusters may represent three putative species. PMID:26172559

  20. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes

    PubMed Central

    2014-01-01

    Background Most hematophagous insects use host odours as chemical cues. The odour components, some physiological parameters and host attractiveness are affected by several conditions, including infection by parasites, e.g., plasmodia and, therefore, change the epidemiological scenario. This study evaluated the attractiveness of individuals with vivax malaria before, during (7 days) and after treatment (14 days) with specific antimalarial drugs. Findings Mosquito attractiveness to vivax-infected patients was assessed using a vertical olfactometer using the foot as a source of body odour. The ratio of Anopheles darlingi mosquitoes in the lower chamber of the olfactometer was used to calculate the attractiveness, and patient temperature was measured using a digital thermometer. An increased attractiveness was found only in patients bearing vivax gametocytes during the first experiment (early infection) (P < 0.001). Patients in the first experiment tended to have a higher body temperature, but grouping patients into fever and non-fever resulted in a higher attractiveness only in the fever group of gametocyte carriers, suggesting a synergistic effect of temperature and gametocytes in the host attractiveness to A. darlingi. Conclusions Gametocyte presence and fever in vivax malaria patients increased short distance host attractiveness to An. darlingi. PMID:24885914

  1. Avoidance Behavior to Essential Oils by Anopheles minimus, a Malaria Vector in Thailand.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Chauhan, Kamal; Tantakom, Siripun; Eiden, Amanda L; Chareonviriyaphap, Theeraphap

    2016-03-01

    Essential oils extracted from 4 different plant species--citronella (Cymbopogon nardus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), and vetiver (Vetiveria zizanioides)-were investigated for their irritant and repellent activities against Anopheles minimus, using an excito-repellency test system. Pure essential oils were used in absolute ethanol at the concentrations of 0.5%, 1%, 2.5%, and 5% (v/v) compared with deet. At the lowest concentration of 0.5%, hairy basil displayed the best irritant and repellent effects against An. minimus. Citronella and vetiver at 1-5% showed strong irritant effects with>80% escape, while repellent effects of both oils were observed at 1% and 2.5% citronella (73-89% escape) and at 5% vetiver (83.9% escape). Sweet basil had only moderate irritant action at 5% concentration (69.6% escape) and slightly repellent on test mosquitoes (<50% escape). The results found that hairy basil, citronella, and vetiver are promising potential mosquito repellent products for protection against An. minimus. PMID:27105214

  2. Molecular Taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and Malaria Epidemiology in Southern Amazonian Peru

    PubMed Central

    Conn, Jan E.; Moreno, Marta; Saavedra, Marlon; Bickersmith, Sara A.; Knoll, Elisabeth; Fernandez, Roberto; Vera, Hubert; Burrus, Roxanne G.; Lescano, Andres G.; Sanchez, Juan Francisco; Rivera, Esteban; Vinetz, Joseph M.

    2013-01-01

    Anopheline specimens were collected in 2011 by human landing catch, Shannon and CDC traps from the malaria endemic localities of Santa Rosa and San Pedro in Madre de Dios Department, Peru. Most specimens were either Anopheles (Nyssorhynchus) benarrochi B or An. (Nys.) rangeli, confirmed by polymerase chain reaction-restriction fragment length polymorphism-internal transcribed spacer 2 (PCR-RFLP-ITS2) and, for selected individuals, ITS2 sequences. A few specimens from Lupuna, Loreto Department, northern Amazonian Peru, were also identified as An. benarrochi B. A statistical parsimony network using ITS2 sequences confirmed that all Peruvian An. benarrochi B analyzed were identical to those in GenBank from Putumayo, southern Colombia. Sequences of the mtDNA COI BOLD region of specimens from all three Peruvian localities were connected using a statistical parsimony network, although there were multiple mutation steps between northern and southern Peruvian sequences. A Bayesian inference of concatenated Peruvian sequences of ITS2+COI detected a single clade with very high support for all An. benarrochi B except one individual from Lupuna that was excluded. No samples were positive for Plasmodium by CytB-PCR. PMID:23243107

  3. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    PubMed Central

    2012-01-01

    Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol) (1:1), methanol and purified water) of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo), an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool. PMID:22963538

  4. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2013-11-01

    The biological activity of essential oil extracted from the leaves of Polygonum hydropiper and a compound, confertifolin, isolated from this plant was bioassayed against larva of mosquitoes, Anopheles stephensi and Culex quinquefasciatus. The essential oil showed the LC50 values of 189 and 243ppm; 217 and 242ppm, confertifolin (6,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-c]furan-3(1H)-one) showed the LC50 values of 2.40 and 3.09ppm; 4.07 and 4.18ppm against the second and fourth instar larvae of An. stephensi and Cx. quinquefasciatus, respectively. At 10ppm confertifolin showed ovicidal activity of 100, 98.6 and 86.4% against An. stephensi and 100, 100 and 75.2% against Cx. quinquefasciatus on 0-6, 6-12 and 12-18h old eggs; the repellent activity persisted for 314.6 and 319.0min; oviposition deterrent activity was 97.2 and 99% and adulticidal activity was 100 and 100% against An. stephensi and Cx. quinquefasciatus, respectively. The results were statistically significant. Confertifolin could be considered for use in the control of human vector mosquitoes.

  5. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas

    PubMed Central

    2013-01-01

    Background Over the past decade, a sharp decline of malaria burden has been observed in several countries. Consequently, the conventional entomological methods have become insufficiently sensitive and probably under-estimate micro-geographical heterogeneity of exposure and subsequent risk of malaria transmission. In this study, we investigated whether the human antibody (Ab) response to Anopheles salivary gSG6-P1 peptide, known as a biomarker of Anopheles exposure, could be a sensitive and reliable tool for discriminating human exposure to Anopheles bites in area of low and seasonal malaria transmission. Methods A multi-disciplinary survey was performed in Northern Senegal where An. gambiae s.l. is the main malaria vector. Human IgG Ab response to gSG6-P1 salivary peptide was compared according to the season and villages in children from five villages in the middle Senegal River valley, known as a low malaria transmission area. Results IgG levels to gSG6-P1 varied considerably according to the villages, discriminating the heterogeneity of Anopheles exposure between villages. Significant increase of IgG levels to gSG6-P1 was observed during the peak of exposure to Anopheles bites, and decreased immediately after the end of the exposure season. In addition, differences in the season-dependent specific IgG levels between villages were observed after the implementation of Long-Lasting Insecticidal Nets by The National Malaria Control Program in this area. Conclusion The gSG6-P1 salivary peptide seems to be a reliable tool to discriminate the micro-geographical heterogeneity of human exposure to Anopheles bites in areas of very low and seasonal malaria transmission. A biomarker such as this could also be used to monitor and evaluate the possible heterogeneous effectiveness of operational vector control programs in low-exposure areas. PMID:23497646

  6. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota

    PubMed Central

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D.

    2015-01-01

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o’nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens. PMID:25548172

  7. PCR identification of five species from the Anopheles maculipennis complex (Diptera: Culicidae) in North-Eastern Romania.

    PubMed

    Ivanescu, Maria-Larisa; Acatrinei, Dumitru; Pavel, Ionuţ; Sulesco, Tatiana; Miron, Liviu

    2015-06-01

    The members of the Anopheles maculipennis complex have been incriminated for the transmission of the malaria in Europe, which was endemic until the middle of the century. The global warming and the intensification of the intercontinental travel constitute a risk of the re-emergence of the malaria in Europe, given the presence of the Anopheles vectors. The study has attempted the identification by using the PCR (Polymerase Chain Reaction) of the members of the Anopheles maculipennis complex from the North-eastern area of Romania from the city of Iaşi. In total there have been identified by using the PCR amplifying the ITS2 sequence of the ribosomal DNA, 217 specimens belonging to the complex of A. maculipennis among which: 58 A. atroparvus, 18 A. melanoon, 2 A. labranchiae, 52 A. maculipennis and 87 A. messeae. The ITS2 sequences of the ribosomal DNA have been compared to those of the species belonging to the A. maculipennis available in GenBank. The Species A. labranchiae is reported for the first time in Romania, being identified in the larval stage IV. The adaptation of a new species to the climatic conditions present in the North-eastern Romania, confirms the phenomenon of global warming and also the intensification of the travelling. As a result of the analysis of the A. labranchiae sequence, this one corresponds to the extent of 96% to the species from Italy, registered in GenBank, given the fact that a high number of the inhabitants of the municipality of Iaşi are working in this country. PMID:26203997

  8. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria.

    PubMed

    Kajla, Mithilesh; Choudhury, Tania P; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  9. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito.

  10. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  11. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control

    PubMed Central

    2011-01-01

    Background Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. Methods To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. Results The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) Vmax with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate). Conclusions The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting

  12. PCR identification of five species from the Anopheles maculipennis complex (Diptera: Culicidae) in North-Eastern Romania.

    PubMed

    Ivanescu, Maria-Larisa; Acatrinei, Dumitru; Pavel, Ionuţ; Sulesco, Tatiana; Miron, Liviu

    2015-06-01

    The members of the Anopheles maculipennis complex have been incriminated for the transmission of the malaria in Europe, which was endemic until the middle of the century. The global warming and the intensification of the intercontinental travel constitute a risk of the re-emergence of the malaria in Europe, given the presence of the Anopheles vectors. The study has attempted the identification by using the PCR (Polymerase Chain Reaction) of the members of the Anopheles maculipennis complex from the North-eastern area of Romania from the city of Iaşi. In total there have been identified by using the PCR amplifying the ITS2 sequence of the ribosomal DNA, 217 specimens belonging to the complex of A. maculipennis among which: 58 A. atroparvus, 18 A. melanoon, 2 A. labranchiae, 52 A. maculipennis and 87 A. messeae. The ITS2 sequences of the ribosomal DNA have been compared to those of the species belonging to the A. maculipennis available in GenBank. The Species A. labranchiae is reported for the first time in Romania, being identified in the larval stage IV. The adaptation of a new species to the climatic conditions present in the North-eastern Romania, confirms the phenomenon of global warming and also the intensification of the travelling. As a result of the analysis of the A. labranchiae sequence, this one corresponds to the extent of 96% to the species from Italy, registered in GenBank, given the fact that a high number of the inhabitants of the municipality of Iaşi are working in this country.

  13. BIONOMICS AND ECOLOGY OF ANOPHELES LITORALIS ON BONGAO ISLAND, TAWI-TAWI PROVINCE, PHILIPPINES: IMPLICATIONS FOR VECTOR CONTROL.

    PubMed

    Salazar, Ferdinand V; Torno, Majhalia M; Galang, Cristina; Baquilod, Mario; Bangs, Michael J

    2015-05-01

    Entomological surveys were conducted to identify Anopheles malaria vector species, their feeding and resting behaviors, and characterization of larval habitats on Bongao Island, Tawi-tawi Province, in July and November, 2007. Survey parameters included all-evening human-landing collections (HLC), evening buffalo-baited trap (BBT) collections, daytime indoor and outdoor adult resting collections, adult female age-grading, identification of natural Plasmodium infections in mosquitoes, larval habitat identification and physical/biological characterization, and adult insecticide susceptibility assays. Both surveys revealed the predominant and putative malaria vector species on Bongao Island is Anopheles litoralis. Anophelesflavirostris was collected on only one occasion. The HLC during the July survey produced approximately 4 mosquitoes/human/night (mhn). The November survey yielded 1.27 mhn due, in part, to inclement weather conditions during time of sampling. Anopheles litoralis host seeking behavior occurred throughout the evening (06:00 PM - 06:00 AM) with peak biting between 10:00 PM and 04:00 AM. This species exhibited stronger zoophilic behavior based on comparison of HLC and BBT data. HLC showed a slightly greater exophagic (outdoor) behavior (1.4:1 ratio). During the July collection, an older adult population was present (75% parous) compared to the lower numbers of An. litoralis dissected in November (25% parous). Albeit a small sample size (n=19), 10.5% of An. litoralis dissected contained midgut oocysts of Plasmodium. Daytime adult resting harborages included biotic and abiotic sites in and around partially shaded, brackish water habitats where immature stages were common. Anopheles litoralis was found susceptible to pirimiphos-methyl and four different synthetic pyrethroids. This survey provides further epidemiological evidence of the importance of An. litoralis in malaria transmission on Bongao Island, and presumably throughout much of the Sulu

  14. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Barasa, Stephen S; Ndiege, Isaiah O; Lwande, Wilber; Hassanali, Ahmed

    2002-09-01

    Four stereoisomers of p-menthane-3,8-diol, which make up the natural product obtained from Eucalyptus citriodora, were synthesized through stereoselective procedures. Repellency assays showed that all the four were equally active against Anopheles gambiae s.s. Racemic blends and the diastereoisomeric mixture of all the four isomers were also equally repellent. 1-alpha-terpeneol, with a single hydroxyl function at C-8 and unsaturation at C-8, and menthol, with a single hydroxyl function at C-3, were not repellent. The practical implication of these results is discussed. PMID:12349856

  15. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s

    PubMed Central

    Caputo, Beniamino; Nwakanma, Davis; Jawara, Musa; Adiamoh, Majidah; Dia, Ibrahima; Konate, Lassana; Petrarca, Vincenzo; Conway, David J; della Torre, Alessandra

    2008-01-01

    Background The geographic and temporal distribution of M and S molecular forms of the major Afrotropical malaria vector species Anopheles gambiae s.s. at the western extreme of their range of distribution has never been investigated in detail. Materials and methods Collections of indoor-resting An. gambiae s.l. females were carried out along a ca. 400 km west to east transect following the River Gambia from the western coastal region of The Gambia to south-eastern Senegal during 2005 end of rainy season/early dry season and the 2006 rainy season. Specimens were identified to species and molecular forms by PCR-RFLP and the origin of blood-meal of fed females was determined by ELISA test. Results Over 4,000 An. gambiae s.l. adult females were collected and identified, 1,041 and 3,038 in 2005 and 2006, respectively. M-form was mainly found in sympatry with Anopheles melas and S-form in the western part of the transect, and with Anopheles arabiensis in the central part. S-form was found to prevail in rural Sudan-Guinean savannah areas of Eastern Senegal, in sympatry with An. arabiensis. Anopheles melas and An. arabiensis relative frequencies were generally lower in the rainy season samples, when An. gambiae s.s. was prevailing. No large seasonal fluctuations were observed for M and S-forms. In areas where both M and S were recorded, the frequency of hybrids between them ranged from to 0.6% to 7%. Discussion The observed pattern of taxa distribution supports the hypothesis of a better adaptation of M-form to areas characterized by water-retaining alluvial deposits along the Gambia River, characterized by marshy vegetation, mangrove woods and rice cultivations. In contrast, the S-form seems to be better adapted to free-draining soil, covered with open woodland savannah or farmland, rich in temporary larval breeding sites characterizing mainly the eastern part of the transect, where the environmental impact of the Gambia River is much less profound and agricultural

  16. BIONOMICS AND ECOLOGY OF ANOPHELES LITORALIS ON BONGAO ISLAND, TAWI-TAWI PROVINCE, PHILIPPINES: IMPLICATIONS FOR VECTOR CONTROL.

    PubMed

    Salazar, Ferdinand V; Torno, Majhalia M; Galang, Cristina; Baquilod, Mario; Bangs, Michael J

    2015-05-01

    Entomological surveys were conducted to identify Anopheles malaria vector species, their feeding and resting behaviors, and characterization of larval habitats on Bongao Island, Tawi-tawi Province, in July and November, 2007. Survey parameters included all-evening human-landing collections (HLC), evening buffalo-baited trap (BBT) collections, daytime indoor and outdoor adult resting collections, adult female age-grading, identification of natural Plasmodium infections in mosquitoes, larval habitat identification and physical/biological characterization, and adult insecticide susceptibility assays. Both surveys revealed the predominant and putative malaria vector species on Bongao Island is Anopheles litoralis. Anophelesflavirostris was collected on only one occasion. The HLC during the July survey produced approximately 4 mosquitoes/human/night (mhn). The November survey yielded 1.27 mhn due, in part, to inclement weather conditions during time of sampling. Anopheles litoralis host seeking behavior occurred throughout the evening (06:00 PM - 06:00 AM) with peak biting between 10:00 PM and 04:00 AM. This species exhibited stronger zoophilic behavior based on comparison of HLC and BBT data. HLC showed a slightly greater exophagic (outdoor) behavior (1.4:1 ratio). During the July collection, an older adult population was present (75% parous) compared to the lower numbers of An. litoralis dissected in November (25% parous). Albeit a small sample size (n=19), 10.5% of An. litoralis dissected contained midgut oocysts of Plasmodium. Daytime adult resting harborages included biotic and abiotic sites in and around partially shaded, brackish water habitats where immature stages were common. Anopheles litoralis was found susceptible to pirimiphos-methyl and four different synthetic pyrethroids. This survey provides further epidemiological evidence of the importance of An. litoralis in malaria transmission on Bongao Island, and presumably throughout much of the Sulu

  17. EMS Student Handbook.

    ERIC Educational Resources Information Center

    Ogle, Patrick

    This student guide is one of a series of self-contained materials for students enrolled in an emergency medical services (EMS) training program. Discussed in the individual sections of the guide are the following topics: the purpose and history of EMS professionals; EMS training, certification and examinations (national and state certification and…

  18. Identification of the Temperature Induced Larvicidal Efficacy of Agave angustifolia against Aedes, Culex, and Anopheles Larvae.

    PubMed

    Kajla, Mithilesh; Bhattacharya, Kurchi; Gupta, Kuldeep; Banerjee, Ujjwal; Kakani, Parik; Gupta, Lalita; Kumar, Sanjeev

    2015-01-01

    Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 μg/ml) against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae within a short exposure of 12 h. The larvicidal activity of A. angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April-August, when outside temperature is between 30 and 50°C) and it was significantly reduced during winter season (December-February, when the outside temperature falls to ~4°C or lower). Thus, we hypothesized that the larvicidal components of A. angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of A. angustifolia was induced when plants were maintained at 37°C in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of A. angustifolia extract at 100°C for 1 h killed 60% larvae in 12 h, which gradually increased to 100% mortality after 24 h. In addition, the dry powder formulation of A. angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that A. angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently. PMID:26793700

  19. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes.

    PubMed

    An, Chunju; Hiromasa, Yasuaki; Zhang, Xin; Lovell, Scott; Zolkiewski, Michal; Tomich, John M; Michel, Kristin

    2012-01-01

    Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases. PMID:23152794

  20. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae.

    PubMed

    Christophides, George K; Vlachou, Dina; Kafatos, Fotis C

    2004-04-01

    In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.

  1. Multilocus nuclear DNA markers and genetic parameters in an Indian Anopheles minimus population.

    PubMed

    Dixit, Jyotsana; Srivastava, Hemlata; Singh, O P; Saksena, D N; Das, Aparup

    2011-04-01

    Estimation of population genetic parameters is highly dependent on the choice of genetic markers. Furthermore, inferences based on single genes could lead to erroneous conclusions and population genetic outcomes, thus usage of multiple loci is suggested. Considering malaria is a highly fatal vector-borne infectious disease, inference on population genetic structure and demography could be of help in the long run for malaria vector management and control. Using the published genome sequence information of Anopheles gambiae we designed EPIC primers to amplify DNA fragments in An. minimus nuclear genome. Eight such DNA fragments could be successfully amplified and sequenced and homology to corresponding genes of An. gambiae was established. All the eight DNA fragments were found to be polymorphic for single nucleotide polymorphisms (SNPs) in a population sample of An. minimus from India. Several tests of neutrality confirmed that all the eight fragments evolve under a standard neutral model of molecular evolution. Furthermore, multilocus linkage disequilibrium studies revealed that the DNA fragments were not genetically linked to each other and thus are independently evolving. Tests of past population demographic events clearly revealed that this Indian population of An. minimus follows demographic equilibrium model, without any significant recent population bottleneck or expansion. The eight multilocus nuclear DNA fragments thus could be considered as 'putatively neutral' and be used to infer population structure and demographic history of An. minimus, a major malaria vector in the Southeast Asia and India. Moreover, the estimations of population demography using these putatively neutral markers can provide a baseline against which, test for the role of natural selection in functionally relevant genes of An. minimus would be possible.

  2. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    PubMed

    Magnusson, Kalle; Mendes, Antonio M; Windbichler, Nikolai; Papathanos, Philippos-Aris; Nolan, Tony; Dottorini, Tania; Rizzi, Ermanno; Christophides, George K; Crisanti, Andrea

    2011-01-01

    In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  3. A grid-based infrastructure for ecological forecasting of rice land Anopheles arabiensis aquatic larval habitats

    PubMed Central

    Jacob, Benjamin G; Muturi, Ephantus J; Funes, Jose E; Shililu, Josephat I; Githure, John I; Kakoma, Ibulaimu I; Novak, Robert J

    2006-01-01

    Background For remote identification of mosquito habitats the first step is often to construct a discrete tessellation of the region. In applications where complex geometries do not need to be represented such as urban habitats, regular orthogonal grids are constructed in GIS and overlaid on satellite images. However, rice land vector mosquito aquatic habitats are rarely uniform in space or character. An orthogonal grid overlaid on satellite data of rice-land areas may fail to capture physical or man-made structures, i.e paddies, canals, berms at these habitats. Unlike an orthogonal grid, digitizing each habitat converts a polygon into a grid cell, which may conform to rice-land habitat boundaries. This research illustrates the application of a random sampling methodology, comparing an orthogonal and a digitized grid for assessment of rice land habitats. Methods A land cover map was generated in Erdas Imagine V8.7® using QuickBird data acquired July 2005, for three villages within the Mwea Rice Scheme, Kenya. An orthogonal grid was overlaid on the images. In the digitized dataset, each habitat was traced in Arc Info 9.1®. All habitats in each study site were stratified based on levels of rice stage Results The orthogonal grid did not identify any habitat while the digitized grid identified every habitat by strata and study site. An analysis of variance test indicated the relative abundance of An. arabiensis at the three study sites to be significantly higher during the post-transplanting stage of the rice cycle. Conclusion Regions of higher Anopheles abundance, based on digitized grid cell information probably reflect underlying differences in abundance of mosquito habitats in a rice land environment, which is where limited control resources could be concentrated to reduce vector abundance. PMID:17062142

  4. Evidence for X-linked introgression between molecular forms of Anopheles gambiae from Angola.

    PubMed

    Choi, K S; Townson, H

    2012-06-01

    The M and S molecular forms of the African malaria vector Anopheles gambiae (Diptera: Culicidae) are morphologically identical incipient species in which reproductive isolation is incomplete, enabling low-level gene flow between forms. In an attempt to find differences between the M and S forms, sequence variation was studied at loci along the X chromosome in adult female An. gambiae from Angola. A high proportion of M form specimens from Angola (79% of the 456 X chromosomes sampled) were found to contain a 16-bp insertion in intron 4 of the X-linked GPRCCK1 locus, relative to the AgamP3 release of the An. gambiae PEST genome sequence. The insertion was in Hardy-Weinberg equilibrium in Angolan M form populations. The same insertion was found in all S form specimens examined, regardless of where in Africa they were sampled, but was absent from a sample of M form specimens collected in Ghana, Bioko and Mali. In M form specimens from Angola, there was an association between alleles at the GPRCCK1 locus and those at a microsatellite locus, AGXH678, close to the centromere of the X chromosome, with significant linkage disequilibrium between loci separated by 0.472 Mbp (P < 0.033). We show that the insertion results from introgression from the S form into the M form, rather than from the retention of an ancestral character. Gene flow from the S to M form could allow genes of adaptive value to be transferred, including those conferring insecticide resistance and others influencing ecology and behaviour, and thus malaria transmission and control. We discuss factors that may have led to this introgression event.

  5. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing.

    PubMed

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V; Reimer, Lisa; Siba, Peter; Walker, Edward D; Zimmerman, Peter A; Serre, David

    2016-03-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  6. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya

    PubMed Central

    Manda, H.; Gouagna, L. C.; Nyandat, E.; Kabiru, E. W.; Jackson, R. R.; Foster, W. A.; Githure, J. I.; Beier, J. C.; Hassanali, A.

    2009-01-01

    Anopheles gambiae Giles s.s. (Diptera: Culicidae) is known to feed on plant sugars, but this is the first experimental study to consider whether it discriminates between plant species. Thirteen perennial plant species were selected on the basis of their local availability within the vicinity of human dwellings and larval habitats of An. gambiae s.s. in western Kenya. Groups of 100 or 200 mosquitoes were released into cages either with a cutting of one plant type at a time (single-plant assay) or with cuttings of all 13 plants simultaneously (choice assay), respectively, and left overnight. In the choice assay, direct observations of the percentages of mosquitoes perching or feeding on each plant were recorded over four 1-h periods each night. For both types of assay, mosquitoes were recaptured and the percentage that had fed on plants was assessed by testing them individually for the presence of fructose. To identify which plants the choice-assay mosquitoes had fed on, gas chromatography (GC) profiles of samples of mosquito homogenates were compared with GC profiles of extracts from relevant parts of each plant. Four of the plants that were observed to have been fed on most frequently in the choice assay (Parthenium hysterophorus L., Tecoma stans L., Ricinus communis L., and Senna didymobotrya Fresen) were also shown to have been ingested most often by mosquitoes in both types of assay, suggesting that An. gambiae is differentially responsive to this range of plants, regardless of whether the plants were presented singly or mixed together. Significantly more females than males fed on plants, with the exception of P. hysterophorus L., one of the plants most frequently fed on. For most plant species (ten of 13), GC profiles indicated that An. gambiae obtained sugars primarily from flowers. The exceptions were P. hysterophorus L., Lantana camara L. and R. communis L., on which An. gambiae fed more often from leaves and stems than from flowers. PMID:17373953

  7. [Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari].

    PubMed

    Rojas, J E; Mazzarri, M; Sojo, M; García-A, G Y

    2001-06-01

    A study, under laboratory and field conditions, was conducted to evaluate the effectiveness, persistence in the time and some factors that can affect the larvicidal action of the Griselef formulation of the sporogenous bacteria Bacillus sphaericus strain 2362, on the larvae population of the Anopheles nuñeztovari Gabaldón, the main malaria vector in western Venezuela. The degree of susceptibility of this species to the Bacillus sphaericus was determined to be at a LD50 in 0.07 ppm a LD95 in 0.69 ppm. The pH ranges of the water, as tested in the laboratory, showed that values between 7.0 and 9.0 did not affect the action of the larvicide, producing more than 95% of mortality after 72 hours of observation. Under controlled field conditions, the high susceptibility of the An. nuñeztovari larvae to the larvicidal action of the product was demonstrated. With a dose of 5 ml/m2, a 100% mortality was obtained after 72 hours of exposure. In the field, it was determined that after 12 hours, solar radiation decreased the effectiveness of the B. sphaericus in 30% and that the presence of vegetation reduced the biolarvicidal effect between 5 and 12%. Under natural field conditions, it was shown that the larvicide was effective, since a 100% larval mortality was obtained in the two treated breeding places. This effect persisted up to 4 months of observation, with more than 85% of larvae reduction, showing that it is capable or remaining in the natural environment.

  8. Laboratory determination of protection time in four chemical repellents against Anopheles stephensi.

    PubMed

    Khoobdel, Mehdi; Jonaidi, Nematollah

    2007-08-15

    In the present study we determined the Protection Time (PT) and Failure Time (FT) of the DMP lotion, which is synthesized and formulated in Iran and it was compared with other products such as MIP60 and Dimp31.7 lotions (commercial and current formulations of dimethyl phthalate) and trench pomade (a popular local repellent in Iran) against Anopheles stephensi Liston (main malaria vector in south of Iran) in laboratory condition. In this research which is an interventional and experimental study, the screen cage method was used to estimate PT and FT of repellents against An. stephensi. The following commercial formulations of chemical repellents were tested: Iranian DMP lotion (DMP60) (contains 60% dimethyl phthalate, 25% isopropyl alcohol, 5% twine 80 and 10% water), MIP60 and Dimp31.7 lotions contains 60 and 31.7% active ingredient of dimethyl phthalate and trench pomade (a combination of N,N-diethyl-m-toluamide (DEET) and DMP). Test was done on human volunteers. In this test some defined amount of repellents applied on human volunteer's forearm and then was inserted in cage against mosquitoes biting to determine PT and FT. According to the results of this research, the PT of Iranian DMP60 lotion against An. stephensi was determined about 274 min (SE = ++/-.04), which didn't have any significant difference with MIP60 and trench pomade, but it was significantly more than Dimp31.7. Furthermore the FT of DMP60 against An. stephensi was determined about 327 min (SE = +/-10.47), that in this case it had a significant deference with MIP60 lotion and trench pomade. The failure time of DMP60 was less than another two repellents. The Iranian DMP60 lotion can potentially compete with MIP60 and Dimp31.7, but to increase the FT rate, its formulation need to be improved.

  9. Repellent effects on Anopheles arabiensis biting humans in Kruger Park, South Africa.

    PubMed

    Govere, J; Braack, L E; Durrheim, D N; Hunt, R H; Coetzee, M

    2001-09-01

    Distribution of biting sites on the human body by the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) was investigated near a source of mosquitoes in the Kruger National Park, South Africa. Eight adult male volunteers (2 teams x 2 pairs of subjects) conducted human bait collections while seated on camp chairs in the open-air, wearing only short trousers (no shirt, socks or shoes). Mosquito collections during 18.30-22.30 hours on five consecutive nights in April 1998 yielded a total of 679 An. arabiensis females biting subjects with or without their ankles and feet treated with deet insect repellent (15% diethyl-3-methylbenzamide, Tabard lotion). On subjects whose feet and ankles were smeared with repellent, 160 An. arabiensis females were captured biting in 60 manhours: 88.1% on the legs, 1.4% on the arms and 1.2% on other parts of the body, but none on the repellent-treated feet or ankles. On subjects without repellent treatment, 519 An. arabiensis were caught biting in 60 man-hours: 81.1% on feet and ankles, 16.4% on legs, 1.4% on arms and 1.2% on the rest of the body. For individual subjects, the reduction of An. arabiensis bites ranged from 36.4 to 78.2% (mean protection 69.2%). Results of this study confirm previous findings that, in this part of South Africa - inhabited only by wildlife - when people sit outside during the evening An. arabiensis prefers to bite their lower limbs: 97.5% below the knees. Overall, the number of bites by the malaria vector An. arabiensis was reduced more than three-fold (from 26 to 8/person/evening), simply by treating ankles and feet with a consumer brand of deet repellent. Whether or not this provides a satisfactory degree of protection against malaria risk would depend on the malaria sporozoite rate in the malaria vector population.

  10. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    PubMed

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.

  11. Importance of algal biomass to growth and development of Anopheles gambiae larvae.

    PubMed

    Kaufman, Michael G; Wanja, Elizabeth; Maknojia, Shahnaz; Bayoh, M Nabie; Vulule, John M; Walker, Edward D

    2006-07-01

    We conducted experiments to investigate the importance of algal food resources for larval growth and adult emergence of Anopheles gambiae Giles s.s. in simulated larval habitats in Kenya, and in greenhouse and laboratory microcosms in the United States. In the first experiment, we used shading to reduce algal biomass, and because algal production and larval development might be a function of underlying soil nutrients, we crossed sun-shade treatments with soils of two distinct types collected near larval habitats. Shading reduced pupation rates and total adult biomass of An. gambiae by approximately 50%. Soil type had no significant effect on mosquito production, but it did significantly affect concentrations of phosphorus and chlorophyll a in the surface microlayer. In a subsequent experiment conducted in the greenhouse to reduce temperature differences found between the shaded and sunlit treatments, <1% of larvae in the shaded treatments reached the pupal stage. There was a marked reduction of chlorophyll a levels as a function of shading and larval density. In a third experiment, larvae receiving material harvested from sunlit surface microlayers performed as well as those receiving liver powder, whereas those receiving surface microlayer from shaded habitats suffered >90% mortality and failed to pupate. In a fourth experiment, glucose was added to shaded microcosms to stimulate bacterial activity in the absence of algae. Bacterial growth rates were 2 to 3 times higher, and larval development was enhanced in glucose-amended treatments. However, pupation rates and adult weights in glucose-amended shaded microcosms were still poor compared with those in nonamended sunlit microcosms. Overall, these results demonstrate the importance of algal biomass in the surface microlayers of larval habitats to development and adult production of An. gambiae.

  12. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae)

    PubMed Central

    Prabhu, K; Murugan, K; Nareshkumar, A; Ramasubramanian, N; Bragadeeswaran, S

    2011-01-01

    Objective To evaluate the larvicidal and pupicidal potential of the methanolic extracts from Moringa oleifera (M. oleifera) plant seeds against malarial vector Anopheles stephensi (A. stephensi) mosquitoes at different concentrations (20, 40, 60, 80 and 100 ppm). Methods M. oleifera was collected from the area of around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electrical blender. From each sample, 100 g of the plant material were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. The extracts were evaporated to dryness in rotary vacuum evaporator to yield 122 mg and 110 mg of dark greenish material (residue) from Arcang amara and Ocimum basilicum, respectively. One gram of the each plant residue was dissolved separately in 100 mL of acetone (stock solution) from which different concentrations, i.e., 20, 40, 60, 80 and 100 ppm were prepared. Results Larvicidal activity of M. oleifera exhibited in the first to fourth instar larvae of the A. stephensi, and the LC50 and LC90 values were 57.79 ppm and 125.93 ppm for the first instar, 63.90 ppm and 133.07 ppm for the second instar, 72.45 ppm and 139.82 ppm for the third instar, 78.93 ppm and 143.20 ppm for the fourth instar, respectively. During the pupal stage the methanolic extract of M. oleifera showed that the LC50 and LC90 values were 67.77 ppm and 141.00 ppm, respectively. Conclusions The present study indicates that the phytochemicals derived from M. oleifera seeds extracts are effective mosquito vector control agents and the plant extracts may be used for further integrated pest management programs. PMID:23569741

  13. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    NASA Astrophysics Data System (ADS)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  14. The Role of Reactive Oxygen Species in Anopheles aquasalis Response to Plasmodium vivax Infection

    PubMed Central

    Bahia, Ana C.; Oliveira, José Henrique M.; Kubota, Marina S.; Araújo, Helena R. C.; Lima, José B. P.; Ríos-Velásquez, Claudia Maria; Lacerda, Marcus Vinícius G.; Oliveira, Pedro L.

    2013-01-01

    Malaria affects millions of people worldwide and hundreds of thousands of people each year in Brazil. The mosquito Anopheles aquasalis is an important vector of Plasmodium vivax, the main human malaria parasite in the Americas. Reactive oxygen species (ROS) have been shown to have a role in insect innate immune responses as a potent pathogen-killing agent. We investigated the mechanisms of free radicals modulation after A. aquasalis infection with P. vivax. ROS metabolism was evaluated in the vector by studying expression and activity of three key detoxification enzymes, one catalase and two superoxide dismutases (SOD3A and SOD3B). Also, the involvement of free radicals in the mosquito immunity was measured by silencing the catalase gene followed by infection of A. aquasalis with P. vivax. Catalase, SOD3A and SOD3B expression in whole A. aquasalis were at the same levels of controls at 24 h and upregulated 36 h after ingestion of blood containing P. vivax. However, in the insect isolated midgut, the mRNA for these enzymes was not regulated by P. vivax infection, while catalase activity was reduced 24 h after the infectious meal. RNAi-mediated silencing of catalase reduced enzyme activity in the midgut, resulted in increased P. vivax infection and prevalence, and decreased bacterial load in the mosquito midgut. Our findings suggest that the interactions between A. aquasalis and P. vivax do not follow the model of ROS-induced parasite killing. It appears that P. vivax manipulates the mosquito detoxification system in order to allow its own development. This can be an indirect effect of fewer competitive bacteria present in the mosquito midgut caused by the increase of ROS after catalase silencing. These findings provide novel information on unique aspects of the main malaria parasite in the Americas interaction with one of its natural vectors. PMID:23441231

  15. Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae.

    PubMed

    Omondi, Bonaventure Aman; Majeed, Shahid; Ignell, Rickard

    2015-08-01

    Olfactory information drives several behaviours critical for the survival and persistence of insect pests and vectors. Insect behaviour is variable, linked to their biological needs, and regulated by physiological dynamics. For mosquitoes, CO2 is an important cue that signifies the presence of a host, and which elicits activation and attraction. To investigate the genetic basis of olfactory modulation in mosquitoes, we assayed changes in CO2 detection from receptor gene expression through physiological function to behaviour, associated with the onset of host seeking in the malaria vector, Anopheles gambiae. The gene encoding a subunit of the CO2 receptor, AgGr22, was found to be significantly up-regulated in host-seeking females, consistent with a significant increase in sensitivity of CO2-responsive neurons (cpA) housed in capitate peg sensilla of the maxillary palp. In addition, the odorant receptor AgOr28, which is expressed in cpC neurons, was significantly up-regulated. In contrast, AgOr8, which is expressed in cpB neurons, was not affected by this change in physiological state, in agreement with results for the obligate co-receptor Orco. Moreover, the sensitivity of the cpB neuron to (R)-1-octen-3-ol, a well-known mammalian kairomone, did not change in response to the onset of host seeking. The concentration of CO2 flux influenced both the propensity of A. gambiae to take off into the wind and the speed with which this activation occurred. Female A. gambiae mosquitoes responded to CO2 whether mature for host seeking or not, but onset of host seeking enhanced sensitivity and speed of activation at relevant doses of CO2.

  16. Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential

    PubMed Central

    Gu, Weidong; Müller, Günter; Schlein, Yosef; Novak, Robert J.; Beier, John C.

    2011-01-01

    An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens. PMID:21283732

  17. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  18. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Roberts, D. R.; Pawley, A.; Manguin, S.; Polanco, J.

    1995-01-01

    Remote sensing is particularly helpful for assessing the location and extent of vegetation formations, such as herbaceous wetlands, that are difficult to examine on the ground. Marshes that are sparsely populated with emergent macrophytes and dense cyanobacterial mats have previously been identified as very productive Anopheles albimanus larval habitats. This type of habitat was detectable on a classified multispectral System Probatoire d'Observation de la Terre image of northern Belize as a mixture of two isoclasses. A similar spectral signature is characteristic for vegetation of river margins consisting of aquatic grasses and water hyacinth, which constitutes another productive larval habitat. Based on the distance between human settlements (sites) of various sizes and the nearest marsh/river exhibiting this particular class combination, we selected two groups of sites: those located closer than 500 m and those located more than 1,500 m from such habitats. Based on previous adult collections near larval habitats, we defined a landing rate of 0.5 mosquitoes/human/min from 6:30 PM to 8:00 PM as the threshold for high (> or = 0.5 mosquitoes/human/min) versus low (< 0.5 mosquitoes/human/min) densities of An. albimanus. Sites located less than 500 m from the habitat were predicted as having values higher than this threshold, while lower values were predicted for sites located greater than 1,500 m from the habitat. Predictions were verified by collections of mosquitoes landing on humans. The predictions were 100% accurate for sites in the > 1,500-m category and 89% accurate for sites in the < 500-m category.

  19. Anopheles gambiae Antiviral Immune Response to Systemic O'nyong-nyong Infection

    PubMed Central

    Waldock, Joanna; Olson, Kenneth E.; Christophides, George K.

    2012-01-01

    Background Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV). Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches. Methodology/Principal Findings We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load. Conclusions/Significance This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The

  20. Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus

    PubMed Central

    Kamaraj, C.; Bagavan, A.; Elango, G.; Zahir, A. Abduz; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquitoes transmit serious human diseases, causing millions of deaths every year and the development of resistance to chemical insecticides resulting in rebounding vectorial capacity. Plants may be alternative sources of mosquito control agents. The present study assessed the role of larvicidal activities of hexane, chloroform, ethyl acetate, acetone, and methanol dried leaf and bark extracts of Annona squamosa L., Chrysanthemum indicum L., and Tridax procumbens L. against the fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Methods: Larvicidal activities of three medicinal plant extracts were studied in the range of 4.69 to 1000 mg/l in the laboratory bioassays against early 4th instar larvae of An. subpictus and Cx. tritaeniorhynchus. The mortality data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) to kill 50 and 90 per cent of the treated larvae of the respective species. Results: All plant extracts showed moderate effects after 24 h of exposure; however, the highest toxic effect of bark methanol extract of A. squamosa, leaf ethyl acetate extract of C. indicum and leaf acetone extract of T. procumbens against the larvae of An. subpictus (LC50 = 93.80, 39.98 and 51.57 mg/l) and bark methanol extract of A. squamosa, leaf methanol extract of C. indicum and leaf ethyl acetate extract of T. procumbens against the larvae of Cx. tritaeniorhynchus (LC50 =104.94, 42.29 and 69.16 mg/l) respectively. Interpretation & Conclusions: Our data suggest that the bark ethyl acetate and methanol extract of A. squamosa, leaf ethyl acetate and methanol extract of C. indicum, acetone and ethyl acetate extract of T. procumbens have the potential to be used as an ecofriendly approach for the control of the An. subpictus, and Cx. tritaeniorhynchus. PMID:21808141

  1. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  2. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae

    PubMed Central

    2013-01-01

    Background Two sibling members of the Anopheles gambiae species complex display notable differences in female blood meal preferences. An. gambiae s.s. has a well-documented preference for feeding upon human hosts, whereas An. quadriannulatus feeds on vertebrate/mammalian hosts, with only opportunistic feeding upon humans. Because mosquito host-seeking behaviors are largely driven by the sensory modality of olfaction, we hypothesized that hallmarks of these divergent host seeking phenotypes will be in evidence within the transcriptome profiles of the antennae, the mosquito’s principal chemosensory appendage. Results To test this hypothesis, we have sequenced antennal mRNA of non-bloodfed females from each species and observed a number of distinct quantitative and qualitative differences in their chemosensory gene repertoires. In both species, these gene families show higher rates of sequence polymorphisms than the overall rates in their respective transcriptomes, with potentially important divergences between the two species. Moreover, quantitative differences in odorant receptor transcript abundances have been used to model potential distinctions in volatile odor receptivity between the two sibling species of anophelines. Conclusion This analysis suggests that the anthropophagic behavior of An. gambiae s.s. reflects the differential distribution of olfactory receptors in the antenna, likely resulting from a co-option and refinement of molecular components common to both species. This study improves our understanding of the molecular evolution of chemoreceptors in closely related anophelines and suggests possible mechanisms that underlie the behavioral distinctions in host seeking that, in part, account for the differential vectorial capacity of these mosquitoes. PMID:24182346

  3. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus.

    PubMed

    Zhu, Liang; Tian, Yingjuan

    2013-03-01

    Artemisia gilvescens, a traditional Chinese medicinal plant, is chiefly distributed in the middle and lower reaches of the Yangtze River, China. Chemical composition of hydrodistilled essential oil from A. gilvescens was investigated by gas chromatography and mass spectroscopy (GC-MS), and larvicidal activity of the oil and its six main compounds against Anopheles anthropophagus was carried out by WHO method. In total, 56 compounds corresponding to 98.20 % of the total oil were identified and the major compounds identified were camphor (13.49 %), eucalyptol (12.13 %), terpine-4-ol (9.65 %), germacrene D (8.62 %), caryophyllene oxide (4.65 %), and caryophyllene (4.29 %). Essential oil induced 8, 46, 80, 85, 94, and 100 % larval mortality at the concentrations of 25, 50, 75, 100, 125, and 150 mg/l, and the LC(50) and LC(90) values were 49.95 and 97.36 mg/l, respectively. Among the six compounds, the most potent larvicidal compound was caryophyllene oxide and germacrene D, with LC(50) values of 49.46 and 49.81 mg/l and LC(90) values of 115.38 and 106.19 mg/l, respectively. Terpine-4-ol had LC(50) and LC(90) values of 76.70 and 139.42 mg/l followed by camphor which showed LC(50) and LC(90) values of 129.17 and 192.42 mg/l, respectively. The least potent among the six compounds were eucalyptol and caryophyllene, with and LC(50) value exceeding 200 mg/l. In general, it also shows a dose-dependent effect on mortality, with increasing concentrations of essential oil and compounds increasing mortality of the larvae. The essential oil of A. gilvescens and its several major compounds may have potential for use in control of A. anthropophagus. PMID:23263328

  4. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  5. Identification of the Temperature Induced Larvicidal Efficacy of Agave angustifolia against Aedes, Culex, and Anopheles Larvae

    PubMed Central

    Kajla, Mithilesh; Bhattacharya, Kurchi; Gupta, Kuldeep; Banerjee, Ujjwal; Kakani, Parik; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 μg/ml) against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae within a short exposure of 12 h. The larvicidal activity of A. angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April–August, when outside temperature is between 30 and 50°C) and it was significantly reduced during winter season (December–February, when the outside temperature falls to ~4°C or lower). Thus, we hypothesized that the larvicidal components of A. angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of A. angustifolia was induced when plants were maintained at 37°C in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of A. angustifolia extract at 100°C for 1 h killed 60% larvae in 12 h, which gradually increased to 100% mortality after 24 h. In addition, the dry powder formulation of A. angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that A. angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently. PMID:26793700

  6. Delayed egg hatching of Anopheles gambiae (Diptera: Culicidae) pending water agitation.

    PubMed

    Ebrahimi, Babak; Shakibi, Sanam; Foster, Woodbridge A

    2014-05-01

    Mosquito eggs laid on water surfaces typically hatch spontaneously soon after the embryos within them become fully formed first-instar larvae. However, we have found that Anopheles gambiae Giles, an important vector of malaria in Africa, exhibits delayed hatching until the water surface is agitated, a feature overlooked in most laboratory colonies. Agitation within 24 h postoviposition, before embryonation was complete, failed to stimulate delayed postembryonic hatching of isolated eggs on the following day (day 2), when < 1% had hatched spontaneously. However, 5 min of water agitation of these dormant pharate first-instar larvae on day 2 resulted in an almost immediate hatch of 63.3 versus 0% of nonagitated controls, plus another 3.9 versus 0.3%, respectively, during the following 24 h. With daily agitation, installment hatching occurred mainly during 2-6 d postoviposition. The mean cumulative hatch after 7 d of daily agitation was 83.1 versus 1.1% of nonagitated eggs. Experiments with eggs in groups demonstrated that egg density and activity of already-hatched larvae had no stimulatory effect. Eggs stored 1-4 wk at 25.5 or at 15.5 degrees C, and then agitated daily for 6 d at 25.5 degrees C, showed a gradual decline in viability. Viability was sustained longer at the lower temperature. Implications of agitation-induced egg hatching for rainy-season and dry-season ecology of An. gambiae are discussed. Suspended hatching and cool storage already are proving convenient for efficient mass rearing and accurate modeling of weather-based population dynamics.

  7. Autosomal inheritance of alphamethrin, a synthetic pyrethroid, resistance in Anopheles stephensi-Liston, a malaria mosquito.

    PubMed

    Prasad, T P N Hari; Shetty, N J

    2013-10-01

    Anopheles stephensi–Liston (Culicidae: Diptera) is an important urban malarial vector in the Indian sub-continent, accounting for about 15% of the total annual malaria incidence. Chemical control represents a key strategy in the management of this insect vector. However, owing to erratic and continuous application of insecticides, resistance has become a common phenomenon among them and their control has become an uphill task. The genetics of alphamethrin, a synthetic pyrethroid resistance was studied to determine its mode of inheritance. The late third instar larvae were selectively inbred for 27 and ten generations to synthesize homozygous resistant (R) and susceptible (S) stocks, respectively, to the diagnostic dose of 0.12 mg l−1. The log-dosage probit mortality relationships and degree of dominance (D) were calculated. Resistance was observed in both sexes, the dosage-mortality (d-m) line of F 1 was towards the resistant parent and the ‘D’ value was found to be 0.8 indicating alphamethrin resistant (amr) gene to be autosomal and incompletely dominant. The d-m lines of F 2/backcross exhibited a clear plateau of mortality across a range of doses indicating monogenic resistance. The null hypothesis for monogenic resistance was tested from mortality data of backcross progeny compared with theoretical expectations using the χ2 test and was found to be non-significant. Understanding genetics of insecticide resistance is significant in prediction and management of resistant insects. The amr genes can be used as genetic marker in A. stephensi, which can be used in several applications in conducting basic and applied genetic research.

  8. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    PubMed Central

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V.; Reimer, Lisa; Siba, Peter; Walker, Edward D.; Zimmerman, Peter A.; Serre, David

    2016-01-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  9. Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies

    PubMed Central

    Rodrigues, Janneth; Agrawal, Neema; Sharma, Anil; Malhotra, Pawan; Adak, Tridibes; Chauhan, Virander S; Bhatnagar, Raj K

    2007-01-01

    Background The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax; Results Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain; Conclusion The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population. PMID:17502004

  10. Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Sullivan, Lucinda I.; Nguyen, Thi D. T.; Dai, Huaien; Arakane, Yasuyuki; Dittmer, Neal T.; Syed, Lateef U.; Li, Jun; Hua, Duy H.; Kanost, Michael R.

    2011-01-01

    Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 – 550 min−1 mM−1. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 – 30 min−1 mM−1; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min−1 mM−1. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions. PMID:22198355

  11. Multicopper Oxidase-3 Is a Laccase Associated with the Peritrophic Matrix of Anopheles gambiae

    PubMed Central

    Lang, Minglin; Kanost, Michael R.; Gorman, Maureen J.

    2012-01-01

    The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol), the five o-diphenols tested, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs), except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion. PMID:22479493

  12. Pyrethroid susceptibility and behavioral avoidance in Anopheles epiroticus, a malaria vector in Thailand.

    PubMed

    Ritthison, Wanapa; Titgratog, Rungarun; Tainchum, Krajana; Bangs, Michael J; Manguin, Sylvie; Chareonviriyaphap, Theeraphap

    2014-06-01

    The physiological susceptibility to insecticides and the behavioral responses of four wild-caught populations of female Anopheles epiroticus to synthetic pyrethroids (deltamethrin, permethrin, and alpha-cypermethrin) were assessed. Test populations were collected from different localities along the eastern coast, Trat (TR), Songkhla (SK), and Surat Thani (ST) and one population from the western coast, Phang Nga (PN). Results showed that all four populations of An. epiroticus were susceptible to all three synthetic pyrethroids tested. Behavioral responses to test compounds were characterized for all four populations using an excito-repellency test system. TR displayed the strongest contact excitation ('irritancy') escape response (76.8% exposed to deltamethrin, 74.1% permethrin, and 78.4% alpha-cypermethrin), followed by the PN population (24.4% deltamethrin, 35% permethrin, and 34.4% for alpha-cypermethrin) by rapidly escaping test chambers after direct contact with surfaces treated with each active ingredient compared with match-paired untreated controls. Moderate non-contact repellency responses to all three compounds were observed in the TR population but were comparatively weaker than paired contact tests. Few mosquitoes from the SK and ST populations escaped from test chambers, regardless of insecticide tested or type of trial. We conclude that contact excitation was a major behavioral response in two populations of An. epiroticus, whereas two other populations showed virtually no escape response following exposure to the three pyrethroids. The explanation for these large unexpected differences in avoidance responses between pyrethroid-susceptible populations of the same species is unclear and warrants further investigation.

  13. Survival and emergence of immature Anopheles arabiensis mosquitoes in market-gardener wells in Dakar, Senegal.

    PubMed

    Awono-Ambéné, H P; Robert, V

    1999-06-01

    Anopheles arabiensis is the unique species of the An. gambiae complex observed in the wells dug by market-gardeners in the Dakar area. In order to relate the numbers of immature stages and emerging adults mosquitoes, population measurements were performed in eight wells in which An. arabiensis was the only mosquito species. Mean density of immature stages was measured using two sampling methods, the dipping with a tray by giving 50 dips in each well, and the quadrat with a frame on 2 or 3 m2 in each well. The absolute number of emergent adults was obtained by collecting mosquitoes under net-trap covering entirely each wells. The dipping method was quicker and more operational than quadrat method. Density estimations of larvae at stage I to IV did not significantly differed using dipping or quadrat methods. On the contrary, pupal density was underestimated when measured by dipping. Mosquito nets placed over wells increased significantly emergence rate of adults, thus measurement of emerging mosquitoes was possible only the first day following the net putting up. The total number of immature stages in each well was significantly correlated with the number of emergent mosquitoes. The mean number of mosquitoes emerging daily from one well corresponded to 5% of the total number of immature stages. Stage distribution for larvae I to IV and pupae, estimated by quadrat, was respectively 29%, 28%, 22%, 16% et 5% (total = 100%). Taking account the mean duration of various immature stages and the number of emerging mosquitoes by day, the equation of the survivorship curve from larval hatch (excluded) to emergence included was: y = 427.2-136.8 Log x. Therefore the mean mortality at immature stages was 80% i.e. an emerging rate of 20%. The results of this study, associated with those of previous ones, permit to evaluate the average productivity of malaria vectors in market-gardener wells in the Dakar area.

  14. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.

    PubMed

    Dennison, Nathan J; BenMarzouk-Hidalgo, Omar J; Dimopoulos, George

    2015-03-01

    Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.

  15. Landscape Movements of Anopheles gambiae Malaria Vector Mosquitoes in Rural Gambia

    PubMed Central

    Thomas, Christopher J.; Cross, Dónall E.; Bøgh, Claus

    2013-01-01

    Background For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. Methods/Principal Findings We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a ‘heavy-tailed’ distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Conclusions/Significance Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development. PMID:23874719

  16. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya

    PubMed Central

    Chen, Hong; Minakawa, Noboru; Beier, John; Yan, Guiyun

    2004-01-01

    Background Understanding the genetic structure of island Anopheles gambiae populations is important for the current tactics in mosquito control and for the proposed strategy using genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are a potential site for testing GMM. The objective of this study was to determine the genetic structure of A. gambiae populations on the islands in Lake Victoria, western Kenya. Methods The genetic diversity and the population genetic structures of 13 A. gambiae populations from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba District were examined using six microsatellite markers. The distance range of sampling sites varied between 2.5 and 35.1 km. Results A similar level of genetic diversity between island mosquito populations and adjacent mainland populations was found. The average number of alleles per locus was 7.3 for the island populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32 and 0.28 for the island and mainland populations, respectively. A low but statistically significant genetic structure was detected among the island populations (FST = 0.019) and between the island and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them were from the island populations. Conclusion A level of genetic differentiation between the island and mainland populations was found. Large extent of gene flow between the island and mainland mosquito populations may result from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site for the release program of GMM, mosquito dispersal between the islands and between the island and the mainland should be vigorously monitored. PMID:15581429

  17. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Dieter, Kathryne L.; Nwagbara, Juliette I.; Bowie, Aleah C.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2012-01-01

    SUMMARY Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season. PMID:22623189

  18. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  19. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae

    PubMed Central

    Meyers, Jacob I.; Gray, Meg; Kuklinski, Wojtek; Johnson, Lucas B.; Snow, Christopher D.; Black, William C.; Partin, Kathryn M.; Foy, Brian D.

    2015-01-01

    ABSTRACT The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM. PMID:25994631

  20. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea

    PubMed Central

    2005-01-01

    Extensive previous studies on taxonomy, behavior/bionomics and control of Anopheles sinensis are reviewed and summarized. Recent molecular identification revealed that the population of An. sinensis complex includes An. sinensis, An. pullus, An. lesteri and at least two new species, and An. yatsushiroensis is synonmy of An. pullus. An. sinensis is the main vector specie of vivax malaria in Korea. Larvae of An. sinensis breed in wide range of habitats which are naturally-made clean water, stagnant or flowing; main habitats include rice fields, ditches, streams, irrigation cannals, marshes, ponds, ground pools, etc. Their host preferences are highly zoophilic. Human blood rate is very low (0.7-1.7%); nevertheless An. sinensis readily feeds on man when domestic animals are not found near by. They feed on hosts throughout the night from dusk to dawn with a peak period of 02:00-04:00 hours; they are slightly more exophagic (biting outdoors); much larger numbers come into the room when light is on. Main resting places are outdoors such as grasses, vegetable fields and rice fields. A mark-release-recapture study resulted that 37.1% was recaptured within 1 km, 29.4% at 1-3 km, 21.1% at 3-6 km, 10.3% at 6-9 km and 2.1% at 9-12 km distance. An. sinensis hibernate outdoors (mostly under part of dense grasses) during October-March. At the end of the hibernation period (March-April) they feed on cows at daytime. Until today any single measure to effectively control An. sinensis population has not been found. Indoor residual spray with a long-lasting insecticide can not reduce vector population densities, but shorten their life spans in some degree, so contributes to malaria control. PMID:16192749

  1. Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae.

    PubMed

    Omondi, Bonaventure Aman; Majeed, Shahid; Ignell, Rickard

    2015-08-01

    Olfactory information drives several behaviours critical for the survival and persistence of insect pests and vectors. Insect behaviour is variable, linked to their biological needs, and regulated by physiological dynamics. For mosquitoes, CO2 is an important cue that signifies the presence of a host, and which elicits activation and attraction. To investigate the genetic basis of olfactory modulation in mosquitoes, we assayed changes in CO2 detection from receptor gene expression through physiological function to behaviour, associated with the onset of host seeking in the malaria vector, Anopheles gambiae. The gene encoding a subunit of the CO2 receptor, AgGr22, was found to be significantly up-regulated in host-seeking females, consistent with a significant increase in sensitivity of CO2-responsive neurons (cpA) housed in capitate peg sensilla of the maxillary palp. In addition, the odorant receptor AgOr28, which is expressed in cpC neurons, was significantly up-regulated. In contrast, AgOr8, which is expressed in cpB neurons, was not affected by this change in physiological state, in agreement with results for the obligate co-receptor Orco. Moreover, the sensitivity of the cpB neuron to (R)-1-octen-3-ol, a well-known mammalian kairomone, did not change in response to the onset of host seeking. The concentration of CO2 flux influenced both the propensity of A. gambiae to take off into the wind and the speed with which this activation occurred. Female A. gambiae mosquitoes responded to CO2 whether mature for host seeking or not, but onset of host seeking enhanced sensitivity and speed of activation at relevant doses of CO2. PMID:26056246

  2. Distribution of cuticular proteins in different structures of adult Anopheles gambiae.

    PubMed

    Zhou, Yihong; Badgett, Majors J; Bowen, John Hunter; Vannini, Laura; Orlando, Ron; Willis, Judith H

    2016-08-01

    Anopheles gambiae devotes over 2% (295) of its protein coding genes to structural cuticular proteins (CPs) that have been classified into 13 different families plus ten low complexity proteins not assigned to families. Small groups of genes code for identical proteins reducing the total number of unique cuticular proteins to 282. Is the large number because different structures utilize different CPs, or are all of the genes widely expressed? We used LC-MS/MS to learn how many products of these genes were found in five adult structures: Johnston's organs, the remainder of the male antennae, eye lenses, legs, and wings. Data were analyzed against both the entire proteome and a smaller database of just CPs. We recovered unique peptides for 97 CPs and shared peptides for another 35. Members of 11 of the 13 families were recovered as well as some unclassified. Only 11 CPs were present exclusively in only one structure while 43 CPs were recovered from all five structures. A quantitative analysis, using normalized spectral counts, revealed that only a few CPs were abundant in each structure. When the MS/MS data were run against the entire proteome, the majority of the top hits were to CPs, but peptides were recovered from an additional 467 proteins. CP peptides were frequently recovered from chitin-binding domains, confirming that protein-chitin interactions are not mediated by covalent bonds. Comparison with three other MS/MS analyses of cuticles or cuticle-rich structures augmented the current analysis. Our findings provide new insights into the composition of different mosquito structures and reveal the complexity of selection and utilization of genes coding for structural cuticular proteins.

  3. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi

    PubMed Central

    Nacer, Adéla; Walker, Karen; Hurd, Hilary

    2008-01-01

    Background Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. Results An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. Conclusion We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear. PMID:18808667

  4. Gene Flow–Dependent Genomic Divergence between Anopheles gambiae M and S Forms

    PubMed Central

    Weetman, David; Wilding, Craig S.; Steen, Keith; Pinto, João; Donnelly, Martin J.

    2012-01-01

    Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric “genomic islands” suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0–25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere–proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited. PMID:21836185

  5. Ecological Genomics of Anopheles gambiae Along a Latitudinal Cline: A Population-Resequencing Approach

    PubMed Central

    Cheng, Changde; White, Bradley J.; Kamdem, Colince; Mockaitis, Keithanne; Costantini, Carlo; Hahn, Matthew W.; Besansky, Nora J.

    2012-01-01

    The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria vector, Anopheles gambiae, is associated with a latitudinal cline in aridity in Cameroon; a large inversion on chromosome 2L of this mosquito shows large differences in frequency along this cline, with high frequencies of the inverted karyotype present in northern, more arid populations and an almost complete absence of the inverted arrangement in southern populations. Here we use a genome resequencing approach to investigate patterns of population divergence along the cline. By sequencing pools of individuals from both ends of the cline as well as in the center of the cline—where the inversion is present in intermediate frequency—we demonstrate almost complete panmixia across collinear parts of the genome and high levels of differentiation in inverted parts of the genome. Sequencing of separate pools of each inversion arrangement in the center of the cline reveals large amounts of gene flux (i.e., gene conversion and double crossovers) even within inverted regions, especially away from the inversion breakpoints. The interplay between natural selection, migration, and gene flux allows us to identify several candidate genes responsible for the match between inversion frequency and environmental variables. These results, coupled with similar conclusions from studies of clinal variation in Drosophila, point to a number of important biological functions associated with local environmental adaptation. PMID:22209907

  6. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  7. Studies on the effects of sida acuta and vetiveria zizanioides against the malarial vector, anopheles stephensi and malarial parasite, plasmodium berghei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methanolic extracts of Sida acuta and Vetiveria zizanioides leaves and root were studied for toxicity to Anopheles stephensi mosquitoes and to the malaria parasite Plasmodium berghei in mice. The extracts reduced parasitemia levels in mice by 17-69%, depending on extract concentration. Median le...

  8. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito,Anopheles sundaicus, in Tamil Nadu, India

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were made of the extract of Sargassum wightii combined with Bacillus thuringiensis var. israelensis (Bti) for control of the malaria vector Anopheles sundaicus. Treatment of mosquito larvae with 0.001% S. wightii extract indicated median lethal concentrations (LC50) of 88, 73, 134, 156, and...

  9. Genome Sequences of Staphylococcus hominis Strains ShAs1, ShAs2, and ShAs3, Isolated from the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    Staphylococcus hominis is a culturable component of the bacterial microbiome of Anopheles stephensi. Here, we present the annotated draft genome sequences of three S. hominis isolates from A. stephensi. These genomic resources will facilitate experiments to further our understanding of the role of bacteria in mosquito biology. PMID:26966197

  10. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    PubMed Central

    2012-01-01

    Lymphatic Filariasis (LF) is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF). The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA) because of the inability of Anopheles species to transmit low-density microfilaraemia. Even though earlier studies have shown Anopheles species can exhibit the process of Facilitation in West Africa, observations point towards the process of Limitation in certain areas, in which case vector control is recommended. Studies on Anopheles species in West Africa have also shown genetic differentiation, cryptic taxa and speciation, insecticide resistance and the existence of molecular and chromosomal forms, all of which could influence the vectorial capacity of the mosquitoes and ultimately the elimination goal. This paper outlines the uniqueness of LF vectors in West Africa and the challenges it poses to the 2020 elimination goal, based on the current MDA strategies. PMID:23151383

  11. Genome Sequences of Staphylococcus hominis Strains ShAs1, ShAs2, and ShAs3, Isolated from the Asian Malaria Mosquito Anopheles stephensi.

    PubMed

    Hughes, Grant L; Raygoza Garay, Juan Antonio; Koundal, Vikas; Rasgon, Jason L; Mwangi, Michael M

    2016-03-10

    Staphylococcus hominis is a culturable component of the bacterial microbiome of Anopheles stephensi. Here, we present the annotated draft genome sequences of three S. hominis isolates from A. stephensi. These genomic resources will facilitate experiments to further our understanding of the role of bacteria in mosquito biology.

  12. Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (cucurbitaceae) against the malarial vector, Anopheles stephensi liston (diptera culicidae).

    PubMed

    Mullai, K; Jebanesan, A; Pushpanathan, T

    2008-01-01

    The efficacy of the Cucurbitaceous plant Citrullus vulgaris against the Anopheles stephensi was assessed in the present study. The leaf extract of Citrullus vulgaris with different solvents viz, benzene, petroleum ether, ethyl acetate and methanol were tested for larvicidial, ovicidal, repellent and insect growth regulatory activities against Anopheles stephensi. The larval mortality was observed after 24 h exposure. The LC50 values are 18.56, 48.51, 49.57 and 50.32 ppm respectively. The mean percent hatchability of the egg of Anopheles stephensi were observed after 48 h. 100 per cent mortality was exerted at 250 ppm with benzene extract and the other extracts exerted 100 percent mortality at 300 ppm. Skin repellent test at 1.0, 2.5 and 5.0 mg per cm2 concentration gave the mean complete protection time ranged from 119.17 to 387.83 minutes with the four different extracts tested. The Citrullus vulgaris plant extract have shown insect growth regulatory activity against Anopheles stephensi at five different test concentrations ranging from 10 to 150 ppm with different solvents and they exhibit the following EI50 values 28.99, 70.02, 106.33 and 84.25 ppm respectively.

  13. Preliminary Biological Studies on Larvae and Adult Anopheles Mosquitoes (Diptera: Culicidae) in Miraflores, a Malaria Endemic Locality in Guaviare Department, Amazonian Colombia

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    In the malaria endemic municipality of Miraflores in southeastern Amazonian Colombia, several aspects of the biology of local Anopheles species were investigated to supplement the limited entomological surveillance information available and to provide baseline data for malaria prevention and vector control. Anopheles darlingi Root, 1926 was the most abundant species (95.6%), followed by Anopheles braziliensis (Chagas) (3.6%) and Anopheles oswaldoi s.l. (Peryassu) (0.7%). During the dry season, exophagic activity was prevalent only between 1800–2100 hours; after this (2100–0600 hours) only endophagy was encountered. In contrast, during the rainy season, both endophagy and exophagy occurred throughout the collection period. The human biting rate for An. darlingi was 8.6. This species was positive for Plasmodium vivax VK210 with a sporozoite rate = 0.13 (1/788). Breeding sites corresponded to stream (n = 7), flooded excavations (n = 4), flooded forest (n = 1), wetlands (n = 2), and an abandoned water reservoir (n = 1). An. darlingi predominated in these sites in both seasons. Based on these data, An. darlingi is the main local malaria vector, and we recommend that local prevention and control efforts focus on strengthening entomological surveillance to determine potential changes of species biting behavior and time to reduce human–vector interactions. PMID:25276930

  14. Expression of metallothionein and α-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae)

    PubMed Central

    Mireji, Paul O.; Keating, Joseph; Hassanali, Ahmed; Impoinvil, Daniel E.; Mbogo, Charles M.; Njeri, Martha; Nyambaka, Hudson; Kenya, Eucharia; Githure, John I; Beier, John C.

    2009-01-01

    Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal responsive metallothionein and α-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC30 through five successive generations. Expression levels were determined in the fifth generation by semi quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F3, 11= 4.574, P = 0.038) and α-tubulin (F3,11= 12.961, P = 0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P = 0.012), and in cadmium than in lead treatments (P = 0.044). Expressions of α-tubulin were significantly higher in cadmium than in control treatments (P = 0.008). These results demonstrate capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated. PMID:19735939

  15. Review of Temephos Discriminating Concentration for Monitoring the Susceptibility of Anopheles labranchiae (Falleroni, 1926), Malaria Vector in Morocco.

    PubMed

    Faraj, C; Adlaoui, E; Elkohli, M; Herrak, T; Ameur, B; Chandre, F

    2010-01-01

    In Morocco, the resistance monitoring of Anopheles labranchiae larvae to temephos is done using discriminating concentration of 0.125 mg, which is half of the WHO recommended dose for Anopheles. However, this dosage seemed to be too high to allow an early detection of the resistance and its revision was found necessary. The present study was carried out during May-June 2008 and 2009 in nine provinces from the north-west of the country. The aim was to determine the lethal concentrations LC100 of temephos for the most susceptible populations and to define the discriminating dosage as the double of this value. The bioassays were conducted according to WHO standard operating protocol to establish the dose-mortality relationship and deduct the LC50 and LC95. The results of this study indicated that the LC100 obtained on the most susceptible populations was close to 0.05 mg/L. Therefore, the temephos discriminating dosage for susceptibility monitoring of An. labranchiae larvae in Morocco was set to be 0.1 mg/L.

  16. Organ-Specific Splice Variants of Aquaporin Water Channel AgAQP1 in the Malaria Vector Anopheles gambiae

    PubMed Central

    Tsujimoto, Hitoshi; Liu, Kun; Linser, Paul J.; Agre, Peter; Rasgon, Jason L.

    2013-01-01

    Background Aquaporin (AQP) water channels are important for water homeostasis in all organisms. Malaria transmission is dependent on Anopheles mosquitoes. Water balance is a major factor influencing mosquito survival, which may indirectly affect pathogen transmission. Methodology/Principal Findings We obtained full-length mRNA sequences for Anopheles gambiae aquaporin 1 (AgAQP1) and identified two splice variants for the gene. In vitro expression analysis showed that both variants transported water and were inhibited by Hg2+. One splice variant (AgAQP1A) was exclusively expressed in adult female ovaries indicating a function in mosquito reproduction. The other splice variant (AgAQP1B) was expressed in the midgut, malpighian tubules and the head in adult mosquitoes. Immunolabeling showed that in malpighian tubules, AgAQP1 is expressed in principal cells in the proximal portion and in stellate cells in the distal portion. Moreover, AgAQP1 is expressed in Johnston’s organ (the “ear”), which is important for courtship behavior. Conclusions And Significance These results suggest that AgAQP1 may play roles associated with mating (courtship) and reproduction in addition to water homeostasis in this important African malaria vector. PMID:24066188

  17. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Labeeba, Mohammed Aamina; Panneerselvam, Chellasamy; Dinesh, Devakumar; Suresh, Udaiyan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Nicoletti, Marcello; Benelli, Giovanni

    2015-10-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. We biosynthesized silver nanoparticles (AgNP) using Aristolochia indica extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. In laboratory, LC50 of A. indica extract against Anopheles stephensi ranged from 262.66 (larvae I) to 565.02 ppm (pupae). LC50 of AgNP against A. stephensi ranged from 3.94 (larvae I) to 15.65 ppm (pupae). In the field, the application of A. indica extract and AgNP (10 × LC50) leads to 100% larval reduction after 72 h. In laboratory, 24-h predation efficiency of Diplonychus indicus against A. stephensi larvae was 33% (larvae II) and 57% (larvae III). In AgNP-contaminated environment (1 ppm), it was 45.5% (larvae II) and 71.75% (larvae III). Overall, A. indica-synthesized AgNP may be considered as newer and safer control tools against Anopheles vectors.

  18. Genotyping of chloroquine resistant Plasmodium falciparum in wild caught Anopheles minimus mosquitoes in a malaria endemic area of Assam, India.

    PubMed

    Sarma, D K; Mohapatra, P K; Bhattacharyya, D R; Mahanta, J; Prakash, A

    2014-09-01

    We validated the feasibility of using Plasmodium falciparum, the human malaria parasite, DNA present in wild caught vector mosquitoes for the characterization of chloroquine resistance status. House frequenting mosquitoes belonging to Anopheles minimus complex were collected from human dwellings in a malaria endemic area of Assam, Northeast India and DNA was extracted from the head-thorax region of individual mosquitoes. Anopheles minimus complex mosquitoes were identified to species level and screened for the presence of Plasmodium sp. using molecular tools. Nested PCR-RFLP method was used for genotyping of P. falciparum based on K76T mutation in the chloroquine resistance transporter (pfcrt) gene. Three of the 27 wild caught An. minimus mosquitoes were harbouring P. falciparum sporozoites (positivity 11.1%) and all 3 were had 76T mutation in the pfcrt gene, indicating chloroquine resistance. The approach of characterizing antimalarial resistance of malaria parasite in vector mosquitoes can potentially be used as a surveillance tool for monitoring transmission of antimalarial drug resistant parasite strains in the community.

  19. Salivary Gland Proteome during Adult Development and after Blood Feeding of Female Anopheles dissidens Mosquitoes (Diptera: Culicidae)

    PubMed Central

    Phattanawiboon, Benjarat; Jariyapan, Narissara; Mano, Chonlada; Roytrakul, Sittiruk; Paemanee, Atchara; Sor-Suwan, Sriwatapron; Sriwichai, Patchara; Saeung, Atiporn; Bates, Paul A.

    2016-01-01

    Understanding changes in mosquito salivary proteins during the time that sporozoite maturation occurs and after blood feeding may give information regarding the roles of salivary proteins during the malarial transmission. Anopheles dissidens (formerly Anopheles barbirostris species A1) is a potential vector of Plasmodium vivax in Thailand. In this study, analyses of the proteomic profiles of female An. dissidens salivary glands during adult development and after blood feeding were carried out using two-dimensional gel electrophoresis coupled with nano-liquid chromatography-mass spectrometry. Results showed at least 17 major salivary gland proteins present from day one to day 21 post emergence at 8 different time points sampled. Although there was variation observed, the patterns of protein expression could be placed into one of four groups. Fifteen protein spots showed significant depletion after blood feeding with the percentages of the amount of depletion ranging from 8.5% to 68.11%. The overall results identified various proteins, including a putative mucin-like protein, an anti-platelet protein, a long form D7 salivary protein, a putative gVAG protein precursor, a D7-related 3.2 protein, gSG7 salivary proteins, and a gSG6 protein. These results allow better understanding of the changes of the salivary proteins during the adult mosquito development. They also provide candidate proteins to investigate any possible link or not between sporozoite maturation, or survival of skin stage sporozoites, and salivary proteins. PMID:27669021

  20. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    PubMed Central

    2011-01-01

    Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species. PMID:21649883