Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.
Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi
2010-10-01
This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
ERIC Educational Resources Information Center
Yung-Kuan, Chan; Hsieh, Ming-Yuan; Lee, Chin-Feng; Huang, Chih-Cheng; Ho, Li-Chih
2017-01-01
Under the hyper-dynamic education situation, this research, in order to comprehensively explore the interplays between Teacher Competence Demands (TCD) and Learning Organization Requests (LOR), cross-employs the data refined method of Descriptive Statistics (DS) method and Analysis of Variance (ANOVA) and Principal Components Analysis (PCA)…
Minimum number of measurements for evaluating Bertholletia excelsa.
Baldoni, A B; Tonini, H; Tardin, F D; Botelho, S C C; Teodoro, P E
2017-09-27
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of Brazil nut tree (Bertholletia excelsa) genotypes based on fruit yield. For this, we assessed the number of fruits and dry mass of seeds of 75 Brazil nut genotypes, from native forest, located in the municipality of Itaúba, MT, for 5 years. To better estimate r, four procedures were used: analysis of variance (ANOVA), principal component analysis based on the correlation matrix (CPCOR), principal component analysis based on the phenotypic variance and covariance matrix (CPCOV), and structural analysis based on the correlation matrix (mean r - AECOR). There was a significant effect of genotypes and measurements, which reveals the need to study the minimum number of measurements for selecting superior Brazil nut genotypes for a production increase. Estimates of r by ANOVA were lower than those observed with the principal component methodology and close to AECOR. The CPCOV methodology provided the highest estimate of r, which resulted in a lower number of measurements needed to identify superior Brazil nut genotypes for the number of fruits and dry mass of seeds. Based on this methodology, three measurements are necessary to predict the true value of the Brazil nut genotypes with a minimum accuracy of 85%.
Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.
Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf
2016-09-20
Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.
Vina, Andres; Peters, Albert J.; Ji, Lei
2003-01-01
There is a global concern about the increase in atmospheric concentrations of greenhouse gases. One method being discussed to encourage greenhouse gas mitigation efforts is based on a trading system whereby carbon emitters can buy effective mitigation efforts from farmers implementing conservation tillage practices. These practices sequester carbon from the atmosphere, and such a trading system would require a low-cost and accurate method of verification. Remote sensing technology can offer such a verification technique. This paper is focused on the use of standard image processing procedures applied to a multispectral Ikonos image, to determine whether it is possible to validate that farmers have complied with agreements to implement conservation tillage practices. A principal component analysis (PCA) was performed in order to isolate image variance in cropped fields. Analyses of variance (ANOVA) statistical procedures were used to evaluate the capability of each Ikonos band and each principal component to discriminate between conventional and conservation tillage practices. A logistic regression model was implemented on the principal component most effective in discriminating between conventional and conservation tillage, in order to produce a map of the probability of conventional tillage. The Ikonos imagery, in combination with ground-reference information, proved to be a useful tool for verification of conservation tillage practices.
Quantitation of flavonoid constituents in citrus fruits.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-09-01
Twenty-four flavonoids have been determined in 66 Citrus species and near-citrus relatives, grown in the same field and year, by means of reversed phase high-performance liquid chromatography analysis. Statistical methods have been applied to find relations among the species. The F ratios of 21 flavonoids obtained by applying ANOVA analysis are significant, indicating that a classification of the species using these variables is reasonable to pursue. Principal component analysis revealed that the distributions of Citrus species belonging to different classes were largely in accordance with Tanaka's classification system.
Chen, Pei; Harnly, James M.; Lester, Gene E.
2013-01-01
Spectral fingerprints were acquired for Rio Red grapefruit using flow injection electrospray ionization with ion trap and time-of-flight mass spectrometry (FI-ESI-IT-MS and FI-ESI-TOF-MS). Rio Red grapefruits were harvested 3 times a year (early, mid, and late harvests) in 2005 and 2006 from conventionally and organically grown trees. Data analysis using analysis of variance principal component analysis (ANOVA-PCA) demonstrated that, for both MS systems, the chemical patterns were different as a function of farming mode (conventional vs organic), as well as growing year and time of harvest. This was visually obvious with PCA and was shown to be statistically significant using ANOVA. The spectral fingerprints provided a more inclusive view of the chemical composition of the grapefruit and extended previous conclusions regarding the chemical differences between conventionally and organically grown Rio Red grapefruit. PMID:20337420
Sun, Xiaochun; Ma, Ping; Mumm, Rita H
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.
Sun, Xiaochun; Ma, Ping; Mumm, Rita H.
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression. PMID:23226325
ERIC Educational Resources Information Center
Alizor, John O.
2012-01-01
The purpose of this quantitative study, using the three-way repeated measures ANOVA, was to identify certain leadership styles used by effective and ineffective charter high school principals that impact the students' academic achievement. Principal ratings and school demographic characteristics were gathered from 19 charter schools. The study's…
Menéndez, Lumila Paula
2017-05-01
Intraobserver error (INTRA-OE) is the difference between repeated measurements of the same variable made by the same observer. The objective of this work was to evaluate INTRA-OE from 3D landmarks registered with a Microscribe, in different datasets: (A) the 3D coordinates, (B) linear measurements calculated from A, and (C) the six-first principal component axes. INTRA-OE was analyzed by digitizing 42 landmarks from 23 skulls in three events two weeks apart from each other. Systematic error was tested through repeated measures ANOVA (ANOVA-RM), while random error through intraclass correlation coefficient. Results showed that the largest differences between the three observations were found in the first dataset. Some anatomical points like nasion, ectoconchion, temporosphenoparietal, asterion, and temporomandibular presented the highest INTRA-OE. In the second dataset, local distances had higher INTRA-OE than global distances while the third dataset showed the lowest INTRA-OE. © 2016 American Academy of Forensic Sciences.
Geurts, Brigitte P; Neerincx, Anne H; Bertrand, Samuel; Leemans, Manja A A P; Postma, Geert J; Wolfender, Jean-Luc; Cristescu, Simona M; Buydens, Lutgarde M C; Jansen, Jeroen J
2017-04-22
Revealing the biochemistry associated to micro-organismal interspecies interactions is highly relevant for many purposes. Each pathogen has a characteristic metabolic fingerprint that allows identification based on their unique multivariate biochemistry. When pathogen species come into mutual contact, their co-culture will display a chemistry that may be attributed both to mixing of the characteristic chemistries of the mono-cultures and to competition between the pathogens. Therefore, investigating pathogen development in a polymicrobial environment requires dedicated chemometric methods to untangle and focus upon these sources of variation. The multivariate data analysis method Projected Orthogonalised Chemical Encounter Monitoring (POCHEMON) is dedicated to highlight metabolites characteristic for the interaction of two micro-organisms in co-culture. However, this approach is currently limited to a single time-point, while development of polymicrobial interactions may be highly dynamic. A well-known multivariate implementation of Analysis of Variance (ANOVA) uses Principal Component Analysis (ANOVA-PCA). This allows the overall dynamics to be separated from the pathogen-specific chemistry to analyse the contributions of both aspects separately. For this reason, we propose to integrate ANOVA-PCA with the POCHEMON approach to disentangle the pathogen dynamics and the specific biochemistry in interspecies interactions. Two complementary case studies show great potential for both liquid and gas chromatography - mass spectrometry to reveal novel information on chemistry specific to interspecies interaction during pathogen development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Perry, Teresa
2012-01-01
This study examined the perceptions of principals and teachers regarding mental health provider's impact on student achievement and behavior in high poverty schools using descriptive statistics, t-test, and two-way ANOVA. Respondents in this study shared similar views concerning principal and teacher satisfaction and levels of support for the…
Galeazzi, A; Franceschina, E; Cautela, J; Holmes, G R; Sakano, Y
1998-02-01
The Italian form of the Adolescent Reinforcement Survey Schedule (ARSS-I) was administered to (N = 648) high school boys and girls from northern and central Italy. Their responses were factor analyzed using a principal component. VARIMAX rotation procedure (SAS Institute, Inc., 1990). The 10 interpretable factors from the Italian data were compared and contrasted to factor analytic results from Holmes (1991, 1994) studies using American and Japanese students. Additionally, the Italian data analyses includes an examination by gender using t tests for each of the ARSS-I items and an ANOVA for age and age-gender effects on responses to the ARSS-I.
Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles
2012-10-12
The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. Multilinear regressions showed that 45 to 80% of the Young's modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.
Oliveira, Tássia Boeno de; Azevedo Peixoto, Leonardo de; Teodoro, Paulo Eduardo; Alvarenga, Amauri Alves de; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability.
de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380
Leadership Styles and School Performance: Is There a Gender Difference in Expectations for Teachers?
ERIC Educational Resources Information Center
Magee, Iris Denise
2012-01-01
In this paper, the research on the perceptions of gender differences in leadership styles is explored. The study also attempts to determine whether there are differences in overall school performance for male versus female school principals. The methodology involved a mixed-model ANOVA analysis of findings from 31 principals and 236 teachers…
NASA Astrophysics Data System (ADS)
Bisyri Husin Musawi Maliki, Ahmad; Razali Abdullah, Mohamad; Juahir, Hafizan; Muhamad, Wan Siti Amalina Wan; Afiqah Mohamad Nasir, Nur; Muazu Musa, Rabiu; Musliha Mat-Rasid, Siti; Adnan, Aleesha; Azura Kosni, Norlaila; Abdullah, Farhana; Ain Shahirah Abdullah, Nurul
2018-04-01
The main purpose of this study was to develop Anthropometric, Growth and Maturity Index (AGaMI) in soccer and explore its differences to soccer player physical attributes, fitness, motivation and skills. A total 223 adolescent soccer athletes aged 12 to 18 years old were selected as respondent. AGaMI was develop based on anthropometric components (bicep, tricep, subscapular, suprailiac, calf circumference and muac) with growth and maturity component using tanner scale. Meanwhile, relative performance namely physical, fitness, motivation and skills attributes of soccer were measured as dependent variables. The Principal Component Analysis (PCA) and Analysis of Variance (ANOVA) are used to achieve the objective in this study. AGaMI had categorized players into three different groups namely; high (5 players), moderate (88 players) and low (91 players). PCA revealed a moderate to very strong dominant range of 0.69 to 0.90 of factor loading on AGaMI. Further analysis assigned AGaMI groups as treated as independent variables (IV) and physical, fitness, motivation and skills attributes were treated as dependent variables (DV). Finally, ANOVA showed that flexibility, leg power, age, weight, height, sitting height, short and long pass are the most significant parameters statistically differentiate by the groups of AGaMI (p<0.05). As a summary, body fat mass, growth and maturity are an essential component differentiating the output of the soccer players relative performance. In future, information of the AGaMI model are useful to the coach and players for identifying the suitable biological and physiological demand reflects more comprehensive means of youth soccer relative performance. This study further highlights the importance of assessing AGaMI when identifying soccer relative performance.
Farrell, John M.; Kapuscinski, Kevin L.; Underwood, Harold
2014-01-01
Radio telemetry of stocked muskellunge (n = 6) and wild northern pike (n = 6) was used to track late summer and fall movements from a common release point in a known shared nursery bay to test the hypothesis that age-1 northern pike and stocked muskellunge segregate and have different habitat affinities. Water depth, temperature, substrate and aquatic vegetation variables were estimated for each muskellunge (n = 103) and northern pike (n = 131) position and nested ANOVA comparisons by species indicated differences in habitat use. Muskellunge exhibited a greater displacement from the release point and used habitat in shallower water depths (mean = 0.85 m, SE = 0.10) than northern pike (mean = 1.45 m, SE = 0.08). Both principal components analysis (PCA) and principal components ordination (PCO) were used to interpret underlying gradients relative to fish positions in two-dimensional space. Our analysis indicated that a separation of age-1 northern pike and muskellunge occurred 7 d post-release. This first principal component explained 48% of the variation in habitat use. Northern pike locations were associated with deeper habitats that generally had softer silt substrates and dense submersed vegetation. Muskellunge locations post-acclimation showed greater association with shallower habitats containing firmer sandy and clay substrates and emergent vegetation. The observed differences in habitat use suggest that fine-scale ecological separation occurred between these stocked muskellunge and wild northern pike, but small sample sizes and potential for individual variation limit extension of these conclusions. Further research is needed to determine if these patterns exist between larger samples of fishes over a greater range of habitats.
Pujol, Aniol; Rissech, Carme; Ventura, Jacint; Badosa, Joaquim; Turbón, Daniel
2014-01-01
In this study we describe the development of the female femur based on the analysis of high-resolution radiographic images by means of geometric morphometrics, while assessing the usefulness of this method in these kinds of studies. The material analysed consisted of digital images in DICOM format (telemetries), corresponding to 184 left femora in anterior view, obtained from the database of the Hospital Sant Joan de Déu of Barcelona (Spain). Bones analysed corresponded to individuals from 9 to 14 years old. Size and shape variation of the entire femur was quantified by 22 two-dimensional landmarks. Landmark digitisation errors were assessed using Procrustes anova test. Centroid size (CS) variation with age was evaluated by an anova test. Shape variation was assessed by principal component analysis. A mancova test between the first five principal components and age, using the CS as covariable, was applied. Results indicated that both size and shape vary significantly with age. Several age-related shape changes remained significant after removing the allometric effect. In general, an increase in the robustness of the bone and noticeable phenotypic changes in certain areas of the femur were observed. During growth in the proximal region of the femur, the collo-diaphyseal angle decreases, the neck of the femur widens and the fovea moves to a lower position, standing more in line with the plane of the neck. Likewise, the size of the greater and lesser trochanters increase. In the distal region, a significant increase of epiphyseal dimensions was recorded, mainly in the medial condyle. The angular remodelling of the neck and the bicondylar region of the femur in females continues until 13 years old. The information provided in the present study increases our knowledge on the timing and morphology of the femur during development, and in particular the morphology of the different femoral ossification centres during development. PMID:24975495
Sensory characteristics and consumer preference for chicken meat in Guinea.
Sow, T M A; Grongnet, J F
2010-10-01
This study identified the sensory characteristics and consumer preference for chicken meat in Guinea. Five chicken samples [live village chicken, live broiler, live spent laying hen, ready-to-cook broiler, and ready-to-cook broiler (imported)] bought from different locations were assessed by 10 trained panelists using 19 sensory attributes. The ANOVA results showed that 3 chicken appearance attributes (brown, yellow, and white), 5 chicken odor attributes (oily, intense, medicine smell, roasted, and mouth persistent), 3 chicken flavor attributes (sweet, bitter, and astringent), and 8 chicken texture attributes (firm, tender, juicy, chew, smooth, springy, hard, and fibrous) were significantly discriminating between the chicken samples (P<0.05). Principal component analysis of the sensory data showed that the first 2 principal components explained 84% of the sensory data variance. The principal component analysis results showed that the live village chicken, the live spent laying hen, and the ready-to-cook broiler (imported) were very well represented and clearly distinguished from the live broiler and the ready-to-cook broiler. One hundred twenty consumers expressed their preferences for the chicken samples using a 5-point Likert scale. The hierarchical cluster analysis of the preference data identified 4 homogenous consumer clusters. The hierarchical cluster analysis results showed that the live village chicken was the most preferred chicken sample, whereas the ready-to-cook broiler was the least preferred one. The partial least squares regression (PLSR) type 1 showed that 72% of the sensory data for the first 2 principal components explained 83% of the chicken preference. The PLSR1 identified that the sensory characteristics juicy, oily, sweet, hard, mouth persistent, and yellow were the most relevant sensory drivers of the Guinean chicken preference. The PLSR2 (with multiple responses) identified the relationship between the chicken samples, their sensory attributes, and the consumer clusters. Our results showed that there was not a chicken category that was exclusively preferred from the other chicken samples and therefore highlight the existence of place for development of all chicken categories in the local market.
Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd
2016-01-01
To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.
Morphological evidence for discrete stocks of yellow perch in Lake Erie
Kocovsky, Patrick M.; Knight, Carey T.
2012-01-01
Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
Krüger, Stephanie; Bagby, R Michael; Höffler, Jürgen; Bräunig, Peter
2003-01-01
Catatonia is a frequent psychomotor syndrome, which has received increasing recognition over the last decade. The assessment of the catatonic syndrome requires systematic rating scales that cover the complex spectrum of catatonic motor signs and behaviors. The Catatonia Rating Scale (CRS) is such an instrument, which has been validated and which has undergone extensive reliability testing. In the present study, to further validate the CRS, the items composing this scale were submitted to principal components factor extraction followed by a varimax rotation. An analysis of variance (ANOVA) was performed to assess group differences on the extracted factors in patients with schizophrenia, pure mania, mixed mania, and major depression (N=165). Four factors were extracted, which accounted for 71.5% of the variance. The factors corresponded to the clinical syndromes of (1) catatonic excitement, (2) abnormal involuntary movements/mannerisms, (3) disturbance of volition/catalepsy, and (4) catatonic inhibition. The ANOVA revealed that each of the groups showed a distinctive catatonic symptom pattern and that the overlap between diagnostic groups was minimal. We conclude that this four-factor symptom structure of catatonia challenges the current conceptualization, which proposes only two symptom subtypes.
Effect of the statin therapy on biochemical laboratory tests--a chemometrics study.
Durceková, Tatiana; Mocák, Ján; Boronová, Katarína; Balla, Ján
2011-01-05
Statins are the first-line choice for lowering total and LDL cholesterol levels and very important medicaments for reducing the risk of coronary artery disease. The aim of this study is therefore assessment of the results of biochemical tests characterizing the condition of 172 patients before and after administration of statins. For this purpose, several chemometric tools, namely principal component analysis, cluster analysis, discriminant analysis, logistic regression, KNN classification, ROC analysis, descriptive statistics and ANOVA were used. Mutual relations of 11 biochemical laboratory tests, the patient's age and gender were investigated in detail. Achieved results enable to evaluate the extent of the statin treatment in each individual case. They may also help in monitoring the dynamic progression of the disease. Copyright © 2010 Elsevier B.V. All rights reserved.
Functional morphology of the douc langur (Pygathrix spp.) scapula.
Bailey, Katie E; Lad, Susan E; Pampush, James D
2017-06-01
Most colobine monkeys primarily move through their arboreal environment quadrupedally. Douc langurs (Pygathrix spp.), however, are regularly observed to use suspensory behaviors at the Endangered Primate Rescue Center (EPRC) in Northern Vietnam. Previous work has linked variation in scapular morphology to different modes of primate arboreal locomotion. Here we investigate whether the shape of the Pygathrix scapula resembles obligate brachiators (gibbons) or obligate arboreal quadrupeds (other cercopithecoids). Using a MicroScribe G2X 3D digitizer, the positions of 17 landmarks were recorded on 15 different species of nonhuman primates (n = 100) from three categories of locomotor behavior: brachiator, arboreal quadruped, and unknown (Pygathrix). All analyses were conducted in the R package geomorph. A Procrustes analysis uniformly scaled the shape data and placed specimens into the same morphospace. A Principal Component Analysis was used to examine scapular shape and a Procrustes ANOVA was conducted to test for shape difference in the scapulae. A pairwise analysis was used to compare the means of the locomotor categories and identify any statistically significant differences. A phylogenetically controlled Procrustes ANOVA was also conducted using a phylogeny from 10kTrees. Results show Pygathrix scapular morphology is significantly different from both arboreal colobine quadrupeds (p < 0.01) and hylobatid brachiators (p < 0.01). It does, however, share some features with each including a long vertebral border, like other cercopithecoids, and a more laterally projecting acromion process, like the hylobatids. The principal difference segregating Pygathrix from both the arboreal quadrupeds and the brachiators is the more medially placed superior angle. These nuanced morphological characteristics associated with suspensory behaviors may be useful for inferring suspensory locomotion in the primate fossil record. © 2017 Wiley Periodicals, Inc.
Wanda, Elijah M M; Nyoni, Hlengilizwe; Mamba, Bhekie B; Msagati, Titus A M
2017-01-13
The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province.
Wanda, Elijah M. M.; Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-01-01
The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province. PMID:28098799
Interlinking backscatter, grain size and benthic community structure
NASA Astrophysics Data System (ADS)
McGonigle, Chris; Collier, Jenny S.
2014-06-01
The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.
Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment
Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.
2018-01-01
Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732
McEvoy, Maureen Patricia; Williams, Marie T; Olds, Timothy Stephen
2010-01-01
Previous survey tools operationalising knowledge, attitudes or beliefs about evidence-based practice (EBP) have shortcomings in content, psychometric properties and target audience. This study developed and psychometrically assessed a self-report trans-professional questionnaire to describe an EBP profile. Sixty-six items were collated from existing EBP questionnaires and administered to 526 academics and students from health and non-health backgrounds. Principal component factor analysis revealed the presence of five factors (Relevance, Terminology, Confidence, Practice and Sympathy). Following expert panel review and pilot testing, the 58-item final questionnaire was disseminated to 105 subjects on two occasions. Test-retest and internal reliability were quantified using intra-class correlation coefficients (ICCs) and Cronbach's alpha, convergent validity against a commonly used EBP questionnaire by Pearson's correlation coefficient and discriminative validity via analysis of variance (ANOVA) based on exposure to EBP training. The final questionnaire demonstrated acceptable internal consistency (Cronbach's alpha 0.96), test-retest reliability (ICCs range 0.77-0.94) and convergent validity (Practice 0.66, Confidence 0.80 and Sympathy 0.54). Three factors (Relevance, Terminology and Confidence) distinguished EBP exposure groups (ANOVA p < 0.001-0.004). The evidence-based practice profile (EBP(2)) questionnaire is a reliable instrument with the ability to discriminate for three factors, between respondents with differing EBP exposures.
Sellés, Alberto J Núñez; Rodríguez, Maria D Durruthy; Balseiro, Eduardo Rodríguez; Gonzalez, Luis Nieto; Nicolais, Valeria; Rastrelli, Luca
2007-03-21
An aqueous decoction of mango (Mangifera indica L.) stem bark (MSB) has been developed in Cuba on an industrial scale to be used as a nutritional supplement, cosmetic, and phytomedicine, with antioxidant, anti-inflammatory, analgesic, and immunomodulatory properties. The concentration of major and trace elements was determined for 16 varieties of MSB belonging to two cultivars and grown in Cuba in the same soil (red ferralytic). Plants were classified into two groups, according to the tree age (12 and 26 year olds) and were analyzed for As, Ca, Cd, Cu, Fe, Hg, K, Mg, Pb, Se, and Zn content by means of ICP-AES technique. Experimental data were processed by ANOVA and principal component analysis in terms of elements, variety, and plant age, to choose the most adequate varieties for industrial purposes.
Jha, Dilip Kumar; Vinithkumar, Nambali Valsalan; Sahu, Biraja Kumar; Dheenan, Palaiya Sukumaran; Das, Apurba Kumar; Begum, Mehmuna; Devi, Marimuthu Prashanthi; Kirubagaran, Ramalingam
2015-07-15
Chidiyatappu Bay is one of the least disturbed marine environments of Andaman & Nicobar Islands, the union territory of India. Oceanic flushing from southeast and northwest direction is prevalent in this bay. Further, anthropogenic activity is minimal in the adjoining environment. Considering the pristine nature of this bay, seawater samples collected from 12 sampling stations covering three seasons were analyzed. Principal Component Analysis (PCA) revealed 69.9% of total variance and exhibited strong factor loading for nitrite, chlorophyll a and phaeophytin. In addition, analysis of variance (ANOVA-one way), regression analysis, box-whisker plots and Geographical Information System based hot spot analysis further simplified and supported multivariate results. The results obtained are important to establish reference conditions for comparative study with other similar ecosystems in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Ortiz-Villanueva, Elena; Tauler, Romà
2017-01-01
Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436
Enhanced PM10 bounded PAHs from shipping emissions
NASA Astrophysics Data System (ADS)
Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.
2015-05-01
Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.
Profiling elements in Puerh tea from Yunnan province, China.
Zhang, Jianyang; Ma, Guicen; Chen, Liyan; Liu, Ting; Liu, Xin; Lu, Chengyin
2017-09-01
Puerh tea, as the most representative Chinese dark tea, has attracted global interest in recent years. Profiling the levels of metal elements in Puerh tea is very important since its presence is related to human health. In this study, 41 elements in 98 Puerh tea samples from Yunnan province, China including Puerh raw tea and Puerh ripe tea were evaluated by microwave digestion combined with inductively coupled plasma mass spectrometry . The content of toxic elements, essential elements and rare earth elements of Puerh tea from different regions was discussed in detail. The concentrations of Ba, Cr, As, Pb, Bi, Fe, Zn, V, Mn, Be, Ag and Tl showed significant differences (p < 0.05) by ANOVA analysis. Principal component analysis and linear discriminant analysis were used to describe the relationship of Puerh tea from different regions. This study provided a comprehensive database for Puerh tea quality control and intake risk assessment.
A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting
LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.
2013-01-01
Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644
The impact of hybridization on the volatile and sensorial profile of Ocimum basilicum L.
da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; da Silva, Maria Aparecida Azevedo Pereira; Alves, Mércia Freitas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald
2014-01-01
The aim of the present study was to investigate the volatile and sensorial profile of basil (Ocimum basilicum L.) by quantitative descriptive analysis (QDA) of the essential oil of three hybrids ("Cinnamon" × "Maria Bonita," "Sweet Dani" × "Cinnamon," and "Sweet Dani" × "Maria Bonita"). Twelve descriptive terms were developed by a selected panel that also generated the definition of each term and the reference samples. The data were subjected to ANOVA, Tukey's test, and principal component analysis. The hybrid "Cinnamon" × "Maria Bonita" exhibited a stronger global aroma that was less citric than the other samples. Hybridization favored the generation of novel compounds in the essential oil of the hybrid "Sweet Dani" × "Maria Bonita," such as canfora and (E)-caryophyllene; (E)-caryophyllene also was a novel compound in the hybrid "Sweet Dani" × "Cinnamon"; this compound was not present in the essential oils of the parents.
Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.
1981-01-01
A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors
Zhang, Rong; Zhang, Tong; Ali, Ali Muhsen; Al Washih, Mohammed; Pickard, Benjamin; Watson, David G
2016-01-01
Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Torjusen, Hanne; Lieblein, Geir; Næs, Tormod; Haugen, Margaretha; Meltzer, Helle Margrete; Brantsæter, Anne Lise
2012-08-06
Little is known about the consumption of organic food during pregnancy. The aim of this study was to describe dietary characteristics associated with frequent consumption of organic food among pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). The present study includes 63 808 women who during the years 2002-2007 answered two questionnaires, a general health questionnaire at gestational weeks 15 and a food frequency questionnaire at weeks 17-22. The exploration of food patterns by Principal component analyses (PCA) was followed by ANOVA analyses investigating how these food patterns as well as intake of selected food groups were associated with consumption of organic food. The first principal component (PC1) identified by PCA, accounting for 12% of the variation, was interpreted as a 'health and sustainability component', with high positive loadings for vegetables, fruit and berries, cooking oil, whole grain bread and cereal products and negative loadings for meat, including processed meat, white bread, and cakes and sweets. Frequent consumption of organic food, which was reported among 9.1% of participants (n = 5786), was associated with increased scores on the 'health and sustainability component' (p < 0.001). The increase in score represented approximately 1/10 of the total variation and was independent of sociodemographic and lifestyle characteristics. Participants with frequent consumption of organic food had a diet with higher density of fiber and most nutrients such as folate, beta-carotene and vitamin C, and lower density of sodium compared to participants with no or low organic consumption. The present study showed that pregnant Norwegian women reporting frequent consumption of organically produced food had dietary pattern and quality more in line with public advice for healthy and sustainable diets. A methodological implication is that the overall diet needs to be included in future studies of potential health outcomes related to consumption of organic food during pregnancy.
Ecological characteristics of Simulium breeding sites in West Africa.
Cheke, Robert A; Young, Stephen; Garms, Rolf
2017-03-01
Twenty-nine taxa of Simulium were identified amongst 527 collections of larvae and pupae from untreated rivers and streams in Liberia (362 collections in 1967-71 & 1989), Togo (125 in 1979-81), Benin (35 in 1979-81) and Ghana (5 in 1980-81). Presence or absence of associations between different taxa were used to group them into six clusters using Ward agglomerative hierarchical cluster analysis. Environmental data associated with the pre-imaginal habitats were then analysed in relation to the six clusters by one way ANOVA. The results revealed significant effects in determining the clusters of maximum river width (all P<0.001 unless stated otherwise), water temperature, dry bulb air temperature, relative humidity, altitude, type of water (on a range from trickle to large river), water level, slope, current, vegetation, light conditions, discharge, length of breeding area, environs, terrain, river bed type (P<0.01), and the supports to which the insects were attached (P<0.01). When four non-significant contributors (wet bulb temperature, river features, height of waterfall and depth) were excluded and the reduced data-set analysed by principal components analysis (PCA), the first two principal components (PCs) accounted for 87% of the variance, with geographical features dominant in PC1 and hydrological characteristics in PC2. The analyses also revealed the ecological characteristics of each taxon's pre-imaginal habitats, which are discussed with particular reference to members of the Simulium damnosum species complex, whose breeding site distributions were further analysed by canonical correspondence analysis (CCA), a method also applied to the data on non-vector species. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel approach to identify genes that determine grain protein deviation in cereals.
Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J
2015-06-01
Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
On the Fallibility of Principal Components in Research
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Li, Tenglong
2017-01-01
The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…
Linking educational leadership styles to the HR architecture for new teachers in primary education.
Vekeman, Eva; Devos, Geert; Valcke, Martin
2016-01-01
This study aims to gain insight in the relationship between principals' leadership styles and the configuration of different HR practices for new teachers in primary education. Besides the longstanding interest in educational leadership as a key element in teacher and student performance, there is a growing interest in strategic human resource management (SHRM) in the educational sector. However, few educational studies link educational leadership to SHRM. In particular, this study examines the relationship between principals' instructional and transformational leadership style and principals' strategic and HR orientation in configuring HR practices for new teachers. Data were gathered using a mixed methods approach, including interviews with 75 principals as well as an online survey of 1058 teachers in Flemish primary education. Qualitative interview data were transformed and analysed together with the quantitative survey data using logistic regression and ANOVA analyses. The results indicate that both instructional and transformational leadership is associated with the strategic orientation of principals. The HR orientation, on the other hand, is not reflected in the principals' leadership style. Recommendations for further research in this area are discussed.
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.
Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S
2011-05-01
Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.
Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M
2012-05-01
Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
Levels of PCBs in Oysters Coming from Galicia Coast: Comparison to Mussels from the Same Region.
Carro, N; García, I; Ignacio, M; Mouteira, A
2016-05-01
PCBs were analyzed in two species of oyster (Crassostrea gigas and Ostrea edulis) cultured in intertidal beds and rafts coming from the Galician Rías during the period 2011-2014. PCBs were also analyzed in mussel (Mytilus galloprovincialis) collected in the same Rías during 2011. The main objective of this work is to investigate the distribution of PCBs in Galician oysters and to study their suitability as bioindicator in comparison to mussels. The levels of ΣPCBs (ten congeners) ranged from 5.58 to 179.49 ng g(-1) d.w. The effect of biological parameters (shell length, lipid content and condition index) on bioaccumulation of PCBs was also evaluated. ANOVA showed a statistically significant difference between species for higher chlorinated biphenyls (CBs 153 and 138). The spatial patterns were investigated. Principal Component Analysis (PCA) showed differences between geographical areas (Rías Altas, Centrales and Baixas) in the distribution of PCBs.
The Impact of Hybridization on the Volatile and Sensorial Profile of Ocimum basilicum L.
da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; da Silva, Maria Aparecida Azevedo Pereira; Alves, Mércia Freitas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald
2014-01-01
The aim of the present study was to investigate the volatile and sensorial profile of basil (Ocimum basilicum L.) by quantitative descriptive analysis (QDA) of the essential oil of three hybrids (“Cinnamon” × “Maria Bonita,” “Sweet Dani” × “Cinnamon,” and “Sweet Dani” × “Maria Bonita”). Twelve descriptive terms were developed by a selected panel that also generated the definition of each term and the reference samples. The data were subjected to ANOVA, Tukey's test, and principal component analysis. The hybrid “Cinnamon” × “Maria Bonita” exhibited a stronger global aroma that was less citric than the other samples. Hybridization favored the generation of novel compounds in the essential oil of the hybrid “Sweet Dani” × “Maria Bonita,” such as canfora and (E)-caryophyllene; (E)-caryophyllene also was a novel compound in the hybrid “Sweet Dani” × “Cinnamon”; this compound was not present in the essential oils of the parents. PMID:24558334
Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor
2018-04-01
This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.
Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.
Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas
2014-10-01
The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sheppard, P S; Stevenson, J M; Graham, R B
2016-05-01
The objective of the present study was to determine if there is a sex-based difference in lifting technique across increasing-load conditions. Eleven male and 14 female participants (n = 25) with no previous history of low back disorder participated in the study. Participants completed freestyle, symmetric lifts of a box with handles from the floor to a table positioned at 50% of their height for five trials under three load conditions (10%, 20%, and 30% of their individual maximum isometric back strength). Joint kinematic data for the ankle, knee, hip, and lumbar and thoracic spine were collected using a two-camera Optotrak motion capture system. Joint angles were calculated using a three-dimensional Euler rotation sequence. Principal component analysis (PCA) and single component reconstruction were applied to assess differences in lifting technique across the entire waveforms. Thirty-two PCs were retained from the five joints and three axes in accordance with the 90% trace criterion. Repeated-measures ANOVA with a mixed design revealed no significant effect of sex for any of the PCs. This is contrary to previous research that used discrete points on the lifting curve to analyze sex-based differences, but agrees with more recent research using more complex analysis techniques. There was a significant effect of load on lifting technique for five PCs of the lower limb (PC1 of ankle flexion, knee flexion, and knee adduction, as well as PC2 and PC3 of hip flexion) (p < 0.005). However, there was no significant effect of load on the thoracic and lumbar spine. It was concluded that when load is standardized to individual back strength characteristics, males and females adopted a similar lifting technique. In addition, as load increased male and female participants changed their lifting technique in a similar manner. Copyright © 2016. Published by Elsevier Ltd.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Jarque-Bou, N; Gracia-Ibáñez, V; Sancho-Bru, J L; Vergara, M; Pérez-González, A; Andrés, F J
2016-09-01
The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon(®) motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units
NASA Astrophysics Data System (ADS)
Rietmeijer, F. J. M.
1996-03-01
Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles.
Walker, Alejandro R; Grimes, Tyler L; Datta, Somnath; Datta, Susmita
2018-05-22
Microbial communities can be location specific, and the abundance of species within locations can influence our ability to determine whether a sample belongs to one city or another. As part of the 2017 CAMDA MetaSUB Inter-City Challenge, next generation sequencing (NGS) data was generated from swipe samples collected from subway stations in Boston, New York City hereafter New York, and Sacramento. DNA was extracted and Illumina sequenced. Sequencing data was provided for all cities as part of 2017 CAMDA contest challenge dataset. Principal component analysis (PCA) showed clear clustering of the samples for the three cities, with a substantial proportion of the variance explained by the first three components. We ran two different classifiers and results were robust for error rate (< 6%) and accuracy (> 95%). The analysis of variance (ANOVA) demonstrated that overall, bacterial composition across the three cities is significantly different. A similar conclusion was reached using a novel bootstrap based test using diversity indices. Last but not least, a co-abundance association network analyses for the taxonomic levels "order", "family", and "genus" found different patterns of bacterial networks for the three cities. Bacterial fingerprint can be useful to predict sample provenance. In this work prediction of provenance reported with over 95% accuracy. Association based network analysis, emphasized similarities between the closest cities sharing common bacterial composition. ANOVA showed different patterns of bacterial amongst cities, and these findings strongly suggest that bacterial signature across multiple cities are different. This work advocates a data analysis pipeline which could be followed in order to get biological insight from this data. However, the biological conclusions from this analysis is just an early indication out of a pilot microbiome data provided to us through CAMDA 2017 challenge and will be subject to change as we get more complete data sets in the near future. This microbiome data can have potential applications in forensics, ecology, and other sciences. This article was reviewed by Klas Udekwu, Alexandra Graf, and Rafal Mostowy.
Greenrod, William; Fenech, Michael
2003-03-01
We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro system.
ERP evidence suggests executive dysfunction in ecstasy polydrug users.
Roberts, C A; Fairclough, S H; Fisk, J E; Tames, F; Montgomery, C
2013-08-01
Deficits in executive functions such as access to semantic/long-term memory have been shown in ecstasy users in previous research. Equally, there have been many reports of equivocal findings in this area. The current study sought to further investigate behavioural and electro-physiological measures of this executive function in ecstasy users. Twenty ecstasy-polydrug users, 20 non-ecstasy-polydrug users and 20 drug-naïve controls were recruited. Participants completed background questionnaires about their drug use, sleep quality, fluid intelligence and mood state. Each individual also completed a semantic retrieval task whilst 64 channel Electroencephalography (EEG) measures were recorded. Analysis of Variance (ANOVA) revealed no between-group differences in behavioural performance on the task. Mixed ANOVA on event-related potential (ERP) components P2, N2 and P3 revealed significant between-group differences in the N2 component. Subsequent exploratory univariate ANOVAs on the N2 component revealed marginally significant between-group differences, generally showing greater negativity at occipito-parietal electrodes in ecstasy users compared to drug-naïve controls. Despite absence of behavioural differences, differences in N2 magnitude are evidence of abnormal executive functioning in ecstasy-polydrug users.
Nonlinear Principal Components Analysis: Introduction and Application
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.
2007-01-01
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
Components of variation of surface hoof strain with time.
Thomason, J J; Bignell, W W; Sears, W
2001-04-01
The relative contribution of a number of random and fixed variables to variation in surface strain magnitudes on the hoof capsule was assessed for healthy feet under normal conditions. Principal strains were recorded in vivo from 5 rosette gauges glued around the circumference of the right forefeet of 4 horses on 4 occasions over a 9 month period. Recordings were made at every other trimming and reshoeing. During each session, gauges were positioned with a template for repeatability. Strains were recorded at the trot and canter (at consistent speeds), for straight motion and turns, and before and after the hoof was trimmed and reset. Up to 30 strides were recorded for each combination of these variables. ANOVAs were performed on midstance strains of 7008 strides to determine the relative contributions to strain variation of individual horse, test day, gait and direction combined as one factor, gauge position on the hoof, trimming, interstride variability and the interactions among these factors. The ANOVA model explained 87% of the variation, of which approximately 84% was due to fixed effects and 16% to random effects. Circumferential position of the gauges and several of the interactions including this term were by far the greatest contributors to strain variation. Differences among gauge positions, individuals and gait + direction are consistent with previous work. This study has added the relative effects, which are small but significant, of trimming on a regular basis and of time. The change in strain magnitudes with trimming was different for each horse, which leads to the possibility that over- and underuse may have to be quantified on an individual basis.
David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette
2013-03-01
This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.
Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-11-01
This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2017-10-01
expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic
An Introductory Application of Principal Components to Cricket Data
ERIC Educational Resources Information Center
Manage, Ananda B. W.; Scariano, Stephen M.
2013-01-01
Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
40 CFR 60.2570 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
A comparison of teacher and principal perception of an outstanding biology teacher
NASA Astrophysics Data System (ADS)
Searles, William E.; Ng, Raymond W. M.
The purpose of this study was to ascertain the level of agreement or disagreement between principals and teachers when using established criteria to measure the effectiveness of a biology teacher. To obtain information regarding their perceptions of an outstanding biology teacher, twenty-two principals and forty-one biology teachers were chosen randomly from English-speaking high schools within a 50 km radius of metropolitan Montreal, Quebec, Canada. The measuring instrument was a modified version of Dieter's questionnaire that evolved from his doctoral study of the National Association of Biology Teachers-Outstanding Biology Teacher Award Program. The data collected from the two populations were tested using one-way ANOVA (analysis of variance) or by applying normal approximation. Results indicated that both the principals and teachers agree on the relative importance of most criteria, particularly those related to the teacher's classroom behavior and academic background in biology. From such results, it was possible to construct one stereotype of the outstanding biology teacher. A number of recommendations were made from the results of the study, which were directed to the (a) teachers and their professional organization, (b) principals and the school boards, (c) teacher training institutions, and (d) researchers in teacher evaluation.
Maisuradze, Gia G; Leitner, David M
2007-05-15
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
ERIC Educational Resources Information Center
Oplatka, Izhar
2017-01-01
Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2016-10-01
analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial fibroblasts migrated to a maximum depth of ~250...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L
2006-01-01
In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.
Shen, Fei; Wu, Jian; Ying, Yibin; Li, Bobin; Jiang, Tao
2013-12-15
Discrimination of Chinese rice wines from three well-known wineries ("Guyuelongshan", "Kuaijishan", and "Pagoda") in China has been carried out according to mineral element contents in this study. Nineteen macro and trace mineral elements (Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, As, Se, Mo, Cd, Ba and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS) in 117 samples. Then the experimental data were subjected to analysis of variance (ANOVA) and principal component analysis (PCA) to reveal significant differences and potential patterns between samples. Stepwise linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA) were applied to develop classification models and achieved correct classified rates of 100% and 97.4% for the prediction sample set, respectively. The discrimination could be attributed to different raw materials (mainly water) and elaboration processes employed. The results indicate that the element compositions combined with multivariate analysis can be used as fingerprinting techniques to protect prestigious wineries and enable the authenticity of Chinese rice wine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fernández-Navajas, Ángel; Merello, Paloma; Beltrán, Pedro; García-Diego, Fernando-Juan
2013-01-01
Cultural Heritage preventive conservation requires the monitoring of the parameters involved in the process of deterioration of artworks. Thus, both long-term monitoring of the environmental parameters as well as further analysis of the recorded data are necessary. The long-term monitoring at frequencies higher than 1 data point/day generates large volumes of data that are difficult to store, manage and analyze. This paper presents software which uses a free open source database engine that allows managing and interacting with huge amounts of data from environmental monitoring of cultural heritage sites. It is of simple operation and offers multiple capabilities, such as detection of anomalous data, inquiries, graph plotting and mean trajectories. It is also possible to export the data to a spreadsheet for analyses with more advanced statistical methods (principal component analysis, ANOVA, linear regression, etc.). This paper also deals with a practical application developed for the Renaissance frescoes of the Cathedral of Valencia. The results suggest infiltration of rainwater in the vault and weekly relative humidity changes related with the religious service schedules. PMID:23447005
Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis.
Dos Santos, Ana Maria Pinto; Dos Santos, Liz Oliveira; Brandao, Geovani Cardoso; Leao, Danilo Junqueira; Bernedo, Alfredo Victor Bellido; Lopes, Ricardo Tadeu; Lemos, Valfredo Azevedo
2015-07-01
In this work, a homogeneity study of a corn flour reference material candidate for inorganic analysis is presented. Seven kilograms of corn flour were used to prepare the material, which was distributed among 100 bottles. The elements Ca, K, Mg, P, Zn, Cu, Fe, Mn and Mo were quantified by inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion procedure. The method accuracy was confirmed by analyzing the rice flour certified reference material, NIST 1568a. All results were evaluated by analysis of variance (ANOVA) and principal component analysis (PCA). In the study, a sample mass of 400mg was established as the minimum mass required for analysis, according to the PCA. The between-bottle test was performed by analyzing 9 bottles of the material. Subsamples of a single bottle were analyzed for the within-bottle test. No significant differences were observed for the results obtained through the application of both statistical methods. This fact demonstrates that the material is homogeneous for use as a laboratory reference material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Nasal airway and septal variation in unilateral and bilateral cleft lip and palate.
Starbuck, John M; Friel, Michael T; Ghoneima, Ahmed; Flores, Roberto L; Tholpady, Sunil; Kula, Katherine
2014-10-01
Cleft lip and palate (CLP) affects the dentoalveolar and nasolabial facial regions. Internal and external nasal dysmorphology may persist in individuals born with CLP despite surgical interventions. 7-18 year old individuals born with unilateral and bilateral CLP (n = 50) were retrospectively assessed using cone beam computed tomography. Anterior, middle, and posterior nasal airway volumes were measured on each facial side. Septal deviation was measured at the anterior and posterior nasal spine, and the midpoint between these two locations. Data were evaluated using principal components analysis (PCA), multivariate analysis of variance (MANOVA), and post-hoc ANOVA tests. PCA results show partial separation in high dimensional space along PC1 (48.5% variance) based on age groups and partial separation along PC2 (29.8% variance) based on CLP type and septal deviation patterns. MANOVA results indicate that age (P = 0.007) and CLP type (P ≤ 0.001) significantly affect nasal airway volume and septal deviation. ANOVA results indicate that anterior nasal volume is significantly affected by age (P ≤ 0.001), whereas septal deviation patterns are significantly affected by CLP type (P ≤ 0.001). Age and CLP type affect nasal airway volume and septal deviation patterns. Nasal airway volumes tend to be reduced on the clefted sides of the face relative to non-clefted sides of the face. Nasal airway volumes tend to strongly increase with age, whereas septal deviation values tend to increase only slightly with age. These results suggest that functional nasal breathing may be impaired in individuals born with the unilateral and bilateral CLP deformity. © 2014 Wiley Periodicals, Inc.
Conti, Marcelo Enrique; Stripeikis, Jorge; Campanella, Luigi; Cucina, Domenico; Tudino, Mabel Beatriz
2007-01-01
Background The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined. Results Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe. Conclusion In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification. PMID:17880749
Brouwers, Livia A M; Engels, Josephine A; Heerkens, Yvonne F; van der Beek, Allard J
2015-06-16
Most validated sustainable employability questionnaires are extensive and difficult to obtain. Our objective was to develop a usable and valid tool, a Vitality Scan, to determine possible signs of stagnation in one's functioning related to sustainable employability and to establish the instrument's internal consistency and construct validity. A literature review was performed and expert input was obtained to develop an online survey of 31 items. A sample of 1722 Dutch employees was recruited. Internal consistency was assessed by Cronbach's alpha. The underlying theoretical concepts were extracted by factor analysis using a principal component method. For construct validity, a priori hypotheses were defined for expected differences between known subgroups: 1) older workers would report more stagnation than younger workers, and 2) less educated workers would report more problems than the highly educated ones. Both hypotheses were statistically tested using ANOVA. Internal consistency measures and factor analysis resulted in five subscales with acceptable to good reliability (Cronbach's alpha 0.72-0.87). These subscales included: balance and competence, motivation and involvement, resilience, mental and physical health, and social support at work. Three items were removed following these analyses. In accordance with our a priori hypothesis 1, the ANOVA showed that older workers reported the most problems, while younger workers reported the least problems. However, hypothesis 2 was not confirmed: no significant differences were found for education level. The developed Vitality Scan - with the 28 remaining items - showed good measurement properties. It is applicable as a user-friendly, evaluative instrument for worker's sustainable employability. The scan's value for determining whether or not the employee is at risk for a decrease in functioning during present and future work, should be further tested.
Yong, Robin; Ranjitkar, Sarbin; Lekkas, Dimitra; Halazonetis, Demetrios; Evans, Alistair; Brook, Alan; Townsend, Grant
2018-06-01
This study aimed to investigate size and shape variation of human premolars between Indigenous Australians and Australians of European ancestry, and to assess whether sex and ancestry could be differentiated between these groups using 3D geometric morphometrics. Seventy dental casts from each group, equally subdivided by sex, were scanned using a structured-light scanner. The 3D meshes of upper and lower premolars were processed using geometric morphometric methods. Seventy-two landmarks were recorded for upper premolars and 50 landmarks for lower premolars. For each tooth type, two-way ANOVA was used to assess group differences in centroid size. Shape variations were explored using principal component analysis and visualized using 3D morphing. Two-way Procrustes ANOVA was applied to test group differences for ancestry and sex, and a "leave-one-out" discriminant function was applied to assess group assignment. Centroid size and shape did not display significant difference between the sexes. Centroid size was larger in Indigenous Australians for upper premolars and lower second premolars compared to the Australians of European ancestry. Significant shape variation was noted between the two ancestral groups for upper premolars and the lower first premolar. Correct group assignment of individual teeth to their ancestral groups ranged between 80.0 and 92.8% for upper premolars and 60.0 and 75.7% for lower premolars. Our findings provide evidence of significant size and shape variation in human premolars between the two ancestral groups. High classification rates based on shape analysis of upper premolars highlight potential application of geometric morphometrics in anthropological, bioarcheological and forensic contexts. © 2018 Wiley Periodicals, Inc.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...
Which statistics should tropical biologists learn?
Loaiza Velásquez, Natalia; González Lutz, María Isabel; Monge-Nájera, Julián
2011-09-01
Tropical biologists study the richest and most endangered biodiversity in the planet, and in these times of climate change and mega-extinctions, the need for efficient, good quality research is more pressing than in the past. However, the statistical component in research published by tropical authors sometimes suffers from poor quality in data collection; mediocre or bad experimental design and a rigid and outdated view of data analysis. To suggest improvements in their statistical education, we listed all the statistical tests and other quantitative analyses used in two leading tropical journals, the Revista de Biología Tropical and Biotropica, during a year. The 12 most frequent tests in the articles were: Analysis of Variance (ANOVA), Chi-Square Test, Student's T Test, Linear Regression, Pearson's Correlation Coefficient, Mann-Whitney U Test, Kruskal-Wallis Test, Shannon's Diversity Index, Tukey's Test, Cluster Analysis, Spearman's Rank Correlation Test and Principal Component Analysis. We conclude that statistical education for tropical biologists must abandon the old syllabus based on the mathematical side of statistics and concentrate on the correct selection of these and other procedures and tests, on their biological interpretation and on the use of reliable and friendly freeware. We think that their time will be better spent understanding and protecting tropical ecosystems than trying to learn the mathematical foundations of statistics: in most cases, a well designed one-semester course should be enough for their basic requirements.
Statistical analysis of fNIRS data: a comprehensive review.
Tak, Sungho; Ye, Jong Chul
2014-01-15
Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG), since it can directly measure blood oxygenation level changes related to neural activation with high temporal resolution. However, fNIRS signals are highly corrupted by measurement noises and physiology-based systemic interference. Careful statistical analyses are therefore required to extract neuronal activity-related signals from fNIRS data. In this paper, we provide an extensive review of historical developments of statistical analyses of fNIRS signal, which include motion artifact correction, short source-detector separation correction, principal component analysis (PCA)/independent component analysis (ICA), false discovery rate (FDR), serially-correlated errors, as well as inference techniques such as the standard t-test, F-test, analysis of variance (ANOVA), and statistical parameter mapping (SPM) framework. In addition, to provide a unified view of various existing inference techniques, we explain a linear mixed effect model with restricted maximum likelihood (ReML) variance estimation, and show that most of the existing inference methods for fNIRS analysis can be derived as special cases. Some of the open issues in statistical analysis are also described. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Atherton, Daniel
Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the most mildly diseased plants. Of the analysis methods attempted, cluster analysis and vegetative indices were the most promising. The results show the potential of hyperspectral remote sensing for the detection of early blight in potato plants.
Capra, Gian Franco; Tidu, Simona; Lovreglio, Raffaella; Certini, Giacomo; Salis, Michele; Bacciu, Valentina; Ganga, Antonio; Filzmoser, Peter
2018-05-15
Sardinia (Italy), the second largest island of the Mediterranean Sea, is a fire-prone land. Most Sardinian environments over time were shaped by fire, but some of them are too intrinsically fragile to withstand the currently increasing fire frequency. Calcareous pedoenvironments represent a significant part of Mediterranean areas, and require important efforts to prevent long-lasting degradation from fire. The aim of this study was to assess through an integrated multiple approach the impact of a single and highly severe wildland fire on limestone-derived soils. For this purpose, we selected two recently burned sites, Sant'Antioco and Laconi. Soil was sampled from 80 points on a 100×100m grid - 40 in the burned area and 40 in unburned one - and analyzed for particle size fractions, pH, electrical conductivity, organic carbon, total N, total P, and water repellency (WR). Fire behavior (surface rate of spread (ROS), fireline intensity (FLI), flame length (FL)) was simulated by BehavePlus 5.0.5 software. Comparisons between burned and unburned areas were done through ANOVA as well as deterministic and stochastic interpolation techniques; multiple correlations among parameters were evaluated by principal factor analysis (PFA) and differences/similarities between areas by principal component analysis (PCA). In both sites, fires were characterized by high severity and determined significant changes to some soil properties. The PFA confirmed the key ecological role played by fire in both sites, with the variability of a four-modeled components mainly explained by fire parameters, although the induced changes on soils were mainly site-specific. The PCA revealed the presence of two main "driving factors": slope (in Sant'Antioco), which increased the magnitude of ROS and FLI; and soil properties (in Laconi), which mostly affected FL. In both sites, such factors played a direct role in differentiating fire behavior and sites, while they played an indirect role in determining some effects on soil. Copyright © 2017 Elsevier B.V. All rights reserved.
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Principals' Perceptions Regarding Their Supervision and Evaluation
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann
2015-01-01
This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, D. L.; Borden, F. Y.
1977-01-01
Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.
Constrained Principal Component Analysis: Various Applications.
ERIC Educational Resources Information Center
Hunter, Michael; Takane, Yoshio
2002-01-01
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2018-06-01
The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko
2017-12-01
Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas
Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D.
2017-01-01
The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl2, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard (Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil. PMID:29295511
Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D
2014-12-01
The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka
2016-01-01
Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388
Niveditha, Vedavyas R; Sridhar, Kandikere R
2014-11-01
The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p < 0.001). The EC50 values in fermented beans of both legumes were significantly lowest compared to raw and cooked beans (p < 0.001). In principal component analysis, total phenolics along with antioxidant activities (total antioxidant, ferrous-ion chelating and free radical-scavenging activities) of fermented beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.
Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas.
Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D
2017-12-23
The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.
Söderström, M; Boldemann, C; Sahlin, U; Mårtensson, F; Raustorp, A; Blennow, M
2013-01-01
To test how the quality of the outdoor environment of child day care centres (DCCs) influences children's health. The environment was assessed using the Outdoor Play Environmental Categories (OPEC) tool, time spent outdoors and physical activity as measured by pedometer. 172/253 (68%) of children aged 3.0-5.9 from nine DCCs participated in Southern Sweden. Health data collected were body mass index, waist circumference, saliva cortisol, length of night sleep during study, and symptoms and well-being which were scored (1-week diary - 121 parent responders). Also, parent-rated well-being and health of their child were scored (questionnaire, 132 parent responders). MANOVA, ANOVA and principal component analyses were performed to identify impacts of the outdoor environment on health. High-quality outdoor environment at DCCs is associated with several health aspects in children such as leaner body, longer night sleep, better well-being and higher mid-morning saliva cortisol levels. The quality of the outdoor environment at DCCs influenced the health and well-being of preschool children and should be given more attention among health care professionals and community planners. ©2012 The Author(s)/Acta Paediatrica ©2012 Foundation Acta Paediatrica.
NASA Astrophysics Data System (ADS)
Saad, Ahmed S.; Hamdy, Abdallah M.; Salama, Fathy M.; Abdelkawy, Mohamed
2016-10-01
Effect of data manipulation in preprocessing step proceeding construction of chemometric models was assessed. The same set of UV spectral data was used for construction of PLS and PCR models directly and after mathematically manipulation as per well known first and second derivatives of the absorption spectra, ratio spectra and first and second derivatives of the ratio spectra spectrophotometric methods, meanwhile the optimal working wavelength ranges were carefully selected for each model and the models were constructed. Unexpectedly, number of latent variables used for models' construction varied among the different methods. The prediction power of the different models was compared using a validation set of 8 mixtures prepared as per the multilevel multifactor design and results were statistically compared using two-way ANOVA test. Root mean squares error of prediction (RMSEP) was used for further comparison of the predictability among different constructed models. Although no significant difference was found between results obtained using Partial Least Squares (PLS) and Principal Component Regression (PCR) models, however, discrepancies among results was found to be attributed to the variation in the discrimination power of adopted spectrophotometric methods on spectral data.
Biometric approach in selecting plants for phytoaccumulation of uranium.
Stojanović, Mirjana; Pezo, Lato; Lačnjevac, Časlav; Mihajlović, Marija; Petrović, Jelena; Milojković, Jelena; Stanojević, Marija
2016-01-01
This paper promotes the biometric classification system of plant cultivars, unique characteristics, in terms of the uranium (U) uptake, primarily in the function of the application for phytoremediation. It is known that the degree of adoption of U depends on the plant species and its morphological and physiological properties, but it is less known what impact have plants cultivars, sorts, and hybrids. Therefore, we investigated the U adoption in four cultivars of three plant species (corn, sunflower and soy bean). "Vegetation experiments were carried out in a plastic-house filled with soil (0.66 mgU) and with tailing (15.3 mgU kg(-1)) from closed uranium mine Gabrovnica-Kalna southeast of Serbia". Principal Component Analysis (PCA), Cluster Analysis (CA) and analysis of variance (ANOVA) were used for assessing the effect of different substrates cultivars, plant species and plant organs (root or shoot) on U uptake. Obtained results showed that a difference in U uptake by three investigated plant species depends not only of the type of substrate types and plant organs but also of their cultivars. Biometrics techniques provide a good opportunity for a better understanding the behavior of plants and obtaining much more useful information from the original data.
Dascălu, Cristina Gena; Antohe, Magda Ecaterina
2009-01-01
Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Long, J.M.; Fisher, W.L.
2006-01-01
We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.
Bae, Jin-Hyuk; Yi, Jaeyoung; Kim, Sungtae; Shim, June-Sung; Lee, Keun-Woo
2014-01-01
Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. The cutting efficiencies of diamond rotary instruments with different designs and particle sizes showed a decreasing trend after repeated cuts but did not show any change after various disinfecting procedures. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
2017-01-01
Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649
Ravenscroft, John; Wazny, Kerri; Davis, John M
2017-01-01
This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.
Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch
2014-03-01
Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Msimanga, Huggins Z; Ollis, Robert J
2010-06-01
Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.
Introduction to uses and interpretation of principal component analyses in forest biology.
J. G. Isebrands; Thomas R. Crow
1975-01-01
The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
ERIC Educational Resources Information Center
Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine
1997-01-01
A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class
Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...
EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES
An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar
2017-06-01
We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Putilov, Arcady A; Donskaya, Olga G
2016-01-01
Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Rosacea assessment by erythema index and principal component analysis segmentation maps
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis
2017-12-01
RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.
Bagley, C
1980-03-01
The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.
ERIC Educational Resources Information Center
McCormick, Ernest J.; And Others
The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…
ERIC Educational Resources Information Center
Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn
2012-01-01
Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…
2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.
Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen
2017-09-19
A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
Dalton, Hillary A; Wood, Benjamin J; Widowski, Tina M; Guerin, Michele T; Torrey, Stephanie
2017-01-01
The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96-54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment.
2012-01-01
Background Little is known about the consumption of organic food during pregnancy. The aim of this study was to describe dietary characteristics associated with frequent consumption of organic food among pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Methods The present study includes 63 808 women who during the years 2002–2007 answered two questionnaires, a general health questionnaire at gestational weeks 15 and a food frequency questionnaire at weeks 17-22. The exploration of food patterns by Principal component analyses (PCA) was followed by ANOVA analyses investigating how these food patterns as well as intake of selected food groups were associated with consumption of organic food. Results The first principal component (PC1) identified by PCA, accounting for 12% of the variation, was interpreted as a ‘health and sustainability component’, with high positive loadings for vegetables, fruit and berries, cooking oil, whole grain bread and cereal products and negative loadings for meat, including processed meat, white bread, and cakes and sweets. Frequent consumption of organic food, which was reported among 9.1% of participants (n = 5786), was associated with increased scores on the ‘health and sustainability component’ (p < 0.001). The increase in score represented approximately 1/10 of the total variation and was independent of sociodemographic and lifestyle characteristics. Participants with frequent consumption of organic food had a diet with higher density of fiber and most nutrients such as folate, beta-carotene and vitamin C, and lower density of sodium compared to participants with no or low organic consumption. Conclusion The present study showed that pregnant Norwegian women reporting frequent consumption of organically produced food had dietary pattern and quality more in line with public advice for healthy and sustainable diets. A methodological implication is that the overall diet needs to be included in future studies of potential health outcomes related to consumption of organic food during pregnancy. PMID:22862737
Sirri, F; Zampiga, M; Berardinelli, A; Meluzzi, A
2018-05-01
The aim of this study was to investigate the variability and relationships between some egg physical (egg weight, width, length, shape index, and surface area) and eggshell parameters (weight and percentage, thickness, breaking strength, and L*, a*, and b* values) during the entire laying hen cycle. A total of 8,000 eggs was collected every 5 wk, from 30 to 81 wk of hen age (10 samplings of 400 eggs/house), in 2 identical poultry houses equipped with enriched cages. For the statistical analysis, ANOVA, Bivariate Correlation, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis were used. An increase of egg weight, length, and eggshell lightness (L*) associated with a reduction of eggshell percentage, breaking strength, and redness (a*) was observed as the hen aged (P < 0.05). Overall, the coefficients of variation resulted in <5% in width, length, shape index, and egg surface area; from 5 to 10% of egg weight, shell weight, shell percentage, shell thickness, L*, and b*; and >10% of eggshell breaking strength and a*. According to the PCA, the highest changes during the laying cycle are related to egg physical parameters (32%) and to eggshell breaking strength, percentage, and thickness (26%). The egg physical parameters appeared to be strongly correlated to each other, whereas a slight correlation between eggshell breaking strength and color attributes were evidenced (-0.231 and 0.289, respectively, for L* and a*; P < 0.01). Hierarchical cluster analysis, based on principal components of the overall egg attributes, is hereby considered, and evidenced dissimilarities for eggs laid from peak production up for 39 wk of hen age from the eggs laid afterwards. The latter group could also be divided into 2 subgroups, one comprising eggs laid from 44 and 53 wk of hen age and the other from 58 wk to the end. In conclusion, the large dataset created in this study allowed to extrapolate some robust information regarding the variability and correlations of the egg physical and eggshell quality attributes throughout the entire laying hen cycle.
Widowski, Tina M.; Guerin, Michele T.
2017-01-01
The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96–54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment. PMID:28934330
Xie, Lin; Wu, Huiquan; Shen, Meiyu; Augsburger, Larry L; Lyon, Robbe C; Khan, Mansoor A; Hussain, Ajaz S; Hoag, Stephen W
2008-10-01
The objective of this study was to examine the effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powders measured by the ASTM D 6940-04 segregation tester using design of experiments (DOE) approaches. The test blends consisted of 4% aspirin (ASP) and 96% microcrystalline cellulose (MCC) with and without magnesium stearate (MgS). The segregation tendency of a blend was determined by measuring the last/first (L/F) ratio, the ratio of aspirin concentrations between the first and last samples discharged from the tester. A 2(2) factorial design was used to determine the effects of measurement parameters [amount of material loaded (W), number of segregation cycles] with number of replicates 6. ANOVA showed that W was a critical parameter for segregation testing. The L/F value deviated further from 1 (greater segregation tendency) with increasing W. A 2(3) full factorial design was used to assess the effects of formulation variables: grade of ASP (unmilled, milled), grade of MCC, and amount of lubricant, MgS. MLR and ANOVA showed that the grade of ASP was the main effect contributing to segregation tendency. Principal Component Regression Analysis established a correlation between L/F and the physical properties of the blend related to ASP and MCC, the ASP/MCC particle size ratio (PSR) and powder cohesion. The physical properties of the blend related to density and flow were not influenced by the grade of ASP and were not related to the segregation tendency of the blend. The direct relationship between L/F and PSR was determined by univariate analysis. Segregation tendency increased as the ASP to MCC particle size increased. This study highlighted critical test parameters for segregation testing and identified critical physical properties of the blends that influence segregation tendency. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Nissen, Lise R; Byrne, Derek V; Bertelsen, Grete; Skibsted, Leif H
2004-11-01
Antioxidative efficiency of extracts of rosemary, green tea, coffee and grape skin in precooked pork patties was investigated during storage under retail conditions (10 days, 4 °C, atmospheric air), using descriptive sensory profiling following reheating and quantitative measurements of hexanal, thiobarbituric acid reactive substances (TBARS) and vitamin E as indicators of lipid oxidation. The initial oxidative status of pork patties (evaluated by ANOVA) showed a significant lower level of secondary oxidation products and higher levels of vitamin E in patties with extracts incorporated, indicating that the extracts retarded lipid oxidation during processing of the meat. Data analysis for the storage study was based on qualitative overview of sensory/chemical variation by principal component analysis (PCA) and quantitative ANOVA-PLSR for determination of the relationship between design variables (days of chill-storage, extract treatment) versus sensory-chemical variables and PLSR for elucidating the predictive ability of the chemical methods for sensory terms. Lipid oxidation was seen to involve a decrease in perception of meat flavour/odour and a concomitant increase in the off-flavour/odours linseed, rancid. TBARS, hexanal and vitamin E were all significant predictive indices (P<0.05) for the majority of the sensory terms, while vitamin E through negative correlation with TBARS and hexanal displayed its antioxidative effect and thus, its ability to preserve sensory fresh meat flavour/odour. The effect of the various extracts incorporated in the product was clearly related to the degree of lipid oxidation and an overall ranking of the antioxidative efficiency of extracts in declining order became apparent: Rosemary>Grape skin>Tea>Coffee>Reference. Furthermore, the relation between extracts and vitamin E indicated that the extracts, to some extent, interacted with the vitamin and prevented it from degrading. In conclusion, the rosemary extract displayed potential for maintaining sensory eating quality in processed pork products.
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.
2017-06-01
The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Bahrami, Nasim; Sharif, Saeed Pahlevan; Sharif Nia, Hamid
2016-10-01
In this study, 398 Iranian cancer patients completed the 15-item Templer's Death Anxiety Scale (TDAS). Tests of internal consistency, principal components analysis, and confirmatory factor analysis were conducted to assess the internal consistency and factorial validity of the Persian TDAS. The construct reliability statistic and average variance extracted were also calculated to measure construct reliability, convergent validity, and discriminant validity. Principal components analysis indicated a 3-component solution, which was generally supported in the confirmatory analysis. However, acceptable cutoffs for construct reliability, convergent validity, and discriminant validity were not fulfilled for the three subscales that were derived from the principal component analysis. This study demonstrated both the advantages and potential limitations of using the TDAS with Persian-speaking cancer patients.
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...
Incremental principal component pursuit for video background modeling
Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt
2017-03-14
An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.
Dynamic competitive probabilistic principal components analysis.
López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel
2009-04-01
We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-28
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
NASA Astrophysics Data System (ADS)
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-01
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Principals' Perceptions of Collegial Support as a Component of Administrative Inservice.
ERIC Educational Resources Information Center
Daresh, John C.
To address the problem of increasing professional isolation of building administrators, the Principals' Inservice Project helps establish principals' collegial support groups across the nation. The groups are typically composed of 6 to 10 principals who meet at least once each month over a 2-year period. One collegial support group of seven…
Training the Trainers: Learning to Be a Principal Supervisor
ERIC Educational Resources Information Center
Saltzman, Amy
2017-01-01
While most principal supervisors are former principals themselves, few come to the role with specific training in how to do the job effectively. For this reason, both the Washington, D.C., and Tulsa, Oklahoma, principal supervisor programs include a strong professional development component. In this article, the author takes a look inside these…
ERIC Educational Resources Information Center
Rodrigue, Christine M.
2011-01-01
This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…
ERIC Educational Resources Information Center
Ackermann, Margot Elise; Morrow, Jennifer Ann
2008-01-01
The present study describes the development and initial validation of the Coping with the College Environment Scale (CWCES). Participants included 433 college students who took an online survey. Principal Components Analysis (PCA) revealed six coping strategies: planning and self-management, seeking support from institutional resources, escaping…
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
NASA Astrophysics Data System (ADS)
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.
2007-01-01
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.1580 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the model rule? 60.1580 Section 60.1580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines..., 1999 Use of Model Rule § 60.1580 What are the principal components of the model rule? The model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
Students' Perceptions of Teaching and Learning Practices: A Principal Component Approach
ERIC Educational Resources Information Center
Mukorera, Sophia; Nyatanga, Phocenah
2017-01-01
Students' attendance and engagement with teaching and learning practices is perceived as a critical element for academic performance. Even with stipulated attendance policies, students still choose not to engage. The study employed a principal component analysis to analyze first- and second-year students' perceptions of the importance of the 12…
ERIC Educational Resources Information Center
Hunley-Jenkins, Keisha Janine
2012-01-01
This qualitative study explores large, urban, mid-western principal perspectives about cyberbullying and the policy components and practices that they have found effective and ineffective at reducing its occurrence and/or negative effect on their schools' learning environments. More specifically, the researcher was interested in learning more…
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
ERIC Educational Resources Information Center
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Learning Principal Component Analysis by Using Data from Air Quality Networks
ERIC Educational Resources Information Center
Perez-Arribas, Luis Vicente; Leon-González, María Eugenia; Rosales-Conrado, Noelia
2017-01-01
With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information…
Applications of Nonlinear Principal Components Analysis to Behavioral Data.
ERIC Educational Resources Information Center
Hicks, Marilyn Maginley
1981-01-01
An empirical investigation of the statistical procedure entitled nonlinear principal components analysis was conducted on a known equation and on measurement data in order to demonstrate the procedure and examine its potential usefulness. This method was suggested by R. Gnanadesikan and based on an early paper of Karl Pearson. (Author/AL)
ERIC Educational Resources Information Center
Hendrix, Dean
2010-01-01
This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…
NASA Astrophysics Data System (ADS)
Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.
2010-03-01
This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese Characters.
Tao, Dapeng; Lin, Xu; Jin, Lianwen; Li, Xuelong
2016-03-01
Chinese character font recognition (CCFR) has received increasing attention as the intelligent applications based on optical character recognition becomes popular. However, traditional CCFR systems do not handle noisy data effectively. By analyzing in detail the basic strokes of Chinese characters, we propose that font recognition on a single Chinese character is a sequence classification problem, which can be effectively solved by recurrent neural networks. For robust CCFR, we integrate a principal component convolution layer with the 2-D long short-term memory (2DLSTM) and develop principal component 2DLSTM (PC-2DLSTM) algorithm. PC-2DLSTM considers two aspects: 1) the principal component layer convolution operation helps remove the noise and get a rational and complete font information and 2) simultaneously, 2DLSTM deals with the long-range contextual processing along scan directions that can contribute to capture the contrast between character trajectory and background. Experiments using the frequently used CCFR dataset suggest the effectiveness of PC-2DLSTM compared with other state-of-the-art font recognition methods.
Dynamic of consumer groups and response of commodity markets by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Alam, Shafiqul; Lee, Jae Woo
2017-09-01
This study investigates financial states and group dynamics by applying principal component analysis to the cross-correlation coefficients of the daily returns of commodity futures. The eigenvalues of the cross-correlation matrix in the 6-month timeframe displays similar values during 2010-2011, but decline following 2012. A sharp drop in eigenvalue implies the significant change of the market state. Three commodity sectors, energy, metals and agriculture, are projected into two dimensional spaces consisting of two principal components (PC). We observe that they form three distinct clusters in relation to various sectors. However, commodities with distinct features have intermingled with one another and scattered during severe crises, such as the European sovereign debt crises. We observe the notable change of the position of two dimensional spaces of groups during financial crises. By considering the first principal component (PC1) within the 6-month moving timeframe, we observe that commodities of the same group change states in a similar pattern, and the change of states of one group can be used as a warning for other group.
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.
Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao
2011-01-01
The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra
NASA Astrophysics Data System (ADS)
Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.
2011-07-01
We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.
Seeing wholes: The concept of systems thinking and its implementation in school leadership
NASA Astrophysics Data System (ADS)
Shaked, Haim; Schechter, Chen
2013-12-01
Systems thinking (ST) is an approach advocating thinking about any given issue as a whole, emphasising the interrelationships between its components rather than the components themselves. This article aims to link ST and school leadership, claiming that ST may enable school principals to develop highly performing schools that can cope successfully with current challenges, which are more complex than ever before in today's era of accountability and high expectations. The article presents the concept of ST - its definition, components, history and applications. Thereafter, its connection to education and its contribution to school management are described. The article concludes by discussing practical processes including screening for ST-skilled principal candidates and developing ST skills among prospective and currently performing school principals, pinpointing three opportunities for skills acquisition: during preparatory programmes; during their first years on the job, supported by veteran school principals as mentors; and throughout their entire career. Such opportunities may not only provide school principals with ST skills but also improve their functioning throughout the aforementioned stages of professional development.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Mooibroek, D; Hoogerbrugge, R; Stoffelsen, B H G; Dijkman, E; Berkhoff, C J; Hogendoorn, E A
2002-10-25
Two less laborious extraction methods, viz. (i) a simplified liquid extraction using light petroleum or (ii) microwave-assisted solvent extraction (MASE), for the analysis of polycyclic aromatic hydrocarbons (PAHs) in samples of the compost worm Eisenia andrei, were compared with a reference method. After extraction and concentration, analytical methodology consisted of a cleanup of (part) of the extract with high-performance gel permeation chromatography (HPGPC) and instrumental analysis of 15 PAHs with reversed-phase liquid chromatography with fluorescence detection (RPLC-FLD). Comparison of the methods was done by analysing samples with incurred residues (n=15, each method) originating from an experiment in which worms were exposed to a soil contaminated with PAHs. Simultaneously, the performance of the total lipid determination of each method was established. Evaluation of the data by means of principal component analysis (PCA) and analysis of variance (ANOVA) revealed that the performance of the light petroleum method for both the extraction of PAHs (concentration range 1-30 ng/g) and lipid content corresponds very well with the reference method. Compared to the reference method, the MASE method yielded somewhat lower concentrations for the less volatile PAHs, e.g., dibenzo[ah]anthracene and benzo[ghi]perylene and provided a significant higher amount of co-extracted material.
Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries)
Guo, Xiaofei; Wang, Xiangyu; Di, Ran; Liu, Qiuyue; Hu, Wenping; He, Xiaoyun; Yu, Jiarui; Zhang, Xiaosheng; Zhang, Jinlong; Broniowska, Katarzyna; Chen, Wei; Wu, Changxin; Chu, Mingxing
2018-01-01
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification. PMID:29439449
Quirk, D Adam; Hubley-Kozey, Cheryl L
2014-12-01
While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.
Leuconostoc strains isolated from dairy products: Response against food stress conditions.
D'Angelo, Luisa; Cicotello, Joaquín; Zago, Miriam; Guglielmotti, Daniela; Quiberoni, Andrea; Suárez, Viviana
2017-09-01
A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perception and practice regarding allergen labeling: focus on food-related employees.
Park, Si-Eun; Kwon, Yong-Seok; Paik, Jin-Kyoung; Kwak, Tong-Kyung; Hong, Wan-Soo
2016-08-01
Most consumers are able to recognize allergenic foods. However, the frequency of checking such foods is reportedly low, resulting in higher prevalence of food-related allergic reactions in Korea compared to other countries. Thus, this study was performed to investigate the overall perception of allergenic food labeling and its practice level in food manufacturing company employees. The survey was administered to food safety employees and food development teams at food companies located in metropolitan areas. A total of 399 (93.8%) valid samples were used in the final analysis. Statistical analyses, including Frequency Analysis, t-test, Anova, PCA (Principal Component Analysis), and Pearson Correlation Analysis using SPSS ver. 21.0, were performed. The correct answer rate in the analysis of allergy-related knowledge level ranged from 15.0% to 89.7%. Analysis of differences in allergy-related perception by knowledge level showed significant differences in introduction of a food recall system, strengthening of relevant laws and regulations, content labeling, description of substitutional food, and differentiated package by age. It can be concluded that labeling of allergenic foods should be made easier and more convenient for checking by employees, developers, and consumers, and it is necessary to provide contents through the development of publicity, guidelines, or APP along with labeling.
Abbiati, Milena; Baroffio, Anne; Gerbase, Margaret W.
2016-01-01
Introduction A consistent body of literature highlights the importance of a broader approach to select medical school candidates both assessing cognitive capacity and individual characteristics. However, selection in a great number of medical schools worldwide is still based on knowledge exams, a procedure that might neglect students with needed personal characteristics for future medical practice. We investigated whether the personal profile of students selected through a knowledge-based exam differed from those not selected. Methods Students applying for medical school (N=311) completed questionnaires assessing motivations for becoming a doctor, learning approaches, personality traits, empathy, and coping styles. Selection was based on the results of MCQ tests. Principal component analysis was used to draw a profile of the students. Differences between selected and non-selected students were examined by Multivariate ANOVAs, and their impact on selection by logistic regression analysis. Results Students demonstrating a profile of diligence with higher conscientiousness, deep learning approach, and task-focused coping were more frequently selected (p=0.01). Other personal characteristics such as motivation, sociability, and empathy did not significantly differ, comparing selected and non-selected students. Conclusion Selection through a knowledge-based exam privileged diligent students. It did neither advantage nor preclude candidates with a more humane profile. PMID:27079886
Choca, J P; Shanley, L A; Peterson, C A; Van Denburg, E
1990-01-01
We studied the scores obtained on the Millon Clinical Multiaxial Inventory (MCMI) by Black and White male psychiatric inpatients to determine the presence or absence of racial bias. In predicting psychopathology for the two races, comparisons of MCMI performance indicated significant differences for all diagnoses except the personality disorders. The subjects were then matched into two groups of 209 patients each, according to DSM-III psychiatric diagnoses. The data were analyzed at the item, scale, and structural levels. At the item level, application of the Mantel-Haenszel Procedure revealed that 45 of the 175 items of the inventory were answered significantly different by the two racial groups. Because this number was higher than what could be expected by chance, the finding suggested possible deficiencies in terms of the culture-fairness of the items used in the test. At the scale level, an analysis of variance (ANOVA) demonstrated that the scores obtained by the Black and White groups were significantly different in 9 of the 20 scales (Histrionic, Narcissistic, Antisocial, Paraphrenia, Hypomania, Dysthymia, Alcohol Abuse, Drug Abuse, and Psychotic Delusion). With the exception of the Dysthymic scale, all of the differences were in the direction of the Blacks obtaining a higher score than the Whites. At the structural level, however, a principal components factor analysis performed on each group resulted in factor structures that looked identical.
Smoothing spline ANOVA frailty model for recurrent event data.
Du, Pang; Jiang, Yihua; Wang, Yuedong
2011-12-01
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.
Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.
2003-04-01
A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}
Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan
2017-03-01
An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Wolf, Ronald L.; Bilello, Michel; Verma, Ragini; O’Rourke, Donald M.
2014-01-01
Purpose To augment the analysis of dynamic susceptibility contrast material–enhanced magnetic resonance (MR) images to uncover unique tissue characteristics that could potentially facilitate treatment planning through a better understanding of the peritumoral region in patients with glioblastoma. Materials and Methods Institutional review board approval was obtained for this study, with waiver of informed consent for retrospective review of medical records. Dynamic susceptibility contrast-enhanced MR imaging data were obtained for 79 patients, and principal component analysis was applied to the perfusion signal intensity. The first six principal components were sufficient to characterize more than 99% of variance in the temporal dynamics of blood perfusion in all regions of interest. The principal components were subsequently used in conjunction with a support vector machine classifier to create a map of heterogeneity within the peritumoral region, and the variance of this map served as the heterogeneity score. Results The calculated principal components allowed near-perfect separability of tissue that was likely highly infiltrated with tumor and tissue that was unlikely infiltrated with tumor. The heterogeneity map created by using the principal components showed a clear relationship between voxels judged by the support vector machine to be highly infiltrated and subsequent recurrence. The results demonstrated a significant correlation (r = 0.46, P < .0001) between the heterogeneity score and patient survival. The hazard ratio was 2.23 (95% confidence interval: 1.4, 3.6; P < .01) between patients with high and low heterogeneity scores on the basis of the median heterogeneity score. Conclusion Analysis of dynamic susceptibility contrast-enhanced MR imaging data by using principal component analysis can help identify imaging variables that can be subsequently used to evaluate the peritumoral region in glioblastoma. These variables are potentially indicative of tumor infiltration and may become useful tools in guiding therapy, as well as individualized prognostication. © RSNA, 2014 PMID:24955928
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
Gao, Hao; Zhang, Yawei; Ren, Lei; Yin, Fang-Fang
2018-01-01
This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images. In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers. The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT. With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components. © 2017 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Lin, Mind-Dih
2012-01-01
Improving principal leadership is a vital component to the success of educational reform initiatives that seek to improve whole-school performance, as principal leadership often exercises positive but indirect effects on student learning. Because of the importance of principals within the field of school improvement, this article focuses on…
ERIC Educational Resources Information Center
Herrmann, Mariesa; Ross, Christine
2016-01-01
States and districts across the country are implementing new principal evaluation systems that include measures of the quality of principals' school leadership practices and measures of student achievement growth. Because these evaluation systems will be used for high-stakes decisions, it is important that the component measures of the evaluation…
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann; Mette, Ian M.
2015-01-01
This study examined the perspectives of novice and late career principals concerning instructional and organizational leadership within their performance evaluations. An online survey was sent to 251 principals with a return rate of 49%. Instructional leadership components of the evaluation that were most important to all principals were:…
ERIC Educational Resources Information Center
Chou, Yeh-Tai; Wang, Wen-Chung
2010-01-01
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
ERIC Educational Resources Information Center
Brusco, Michael J.; Singh, Renu; Steinley, Douglas
2009-01-01
The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…
Spiric, Aurelija; Trbovic, Dejana; Vranic, Danijela; Djinovic, Jasna; Petronijevic, Radivoj; Matekalo-Sverak, Vesna
2010-07-05
Studies performed on lipid extraction from animal and fish tissues do not provide information on its influence on fatty acid composition of the extracted lipids as well as on cholesterol content. Data presented in this paper indicate the impact of extraction procedures on fatty acid profile of fish lipids extracted by the modified Soxhlet and ASE (accelerated solvent extraction) procedure. Cholesterol was also determined by direct saponification method, too. Student's paired t-test used for comparison of the total fat content in carp fish population obtained by two extraction methods shows that differences between values of the total fat content determined by ASE and modified Soxhlet method are not statistically significant. Values obtained by three different methods (direct saponification, ASE and modified Soxhlet method), used for determination of cholesterol content in carp, were compared by one-way analysis of variance (ANOVA). The obtained results show that modified Soxhlet method gives results which differ significantly from the results obtained by direct saponification and ASE method. However the results obtained by direct saponification and ASE method do not differ significantly from each other. The highest quantities for cholesterol (37.65 to 65.44 mg/100 g) in the analyzed fish muscle were obtained by applying direct saponification method, as less destructive one, followed by ASE (34.16 to 52.60 mg/100 g) and modified Soxhlet extraction method (10.73 to 30.83 mg/100 g). Modified Soxhlet method for extraction of fish lipids gives higher values for n-6 fatty acids than ASE method (t(paired)=3.22 t(c)=2.36), while there is no statistically significant difference in the n-3 content levels between the methods (t(paired)=1.31). The UNSFA/SFA ratio obtained by using modified Soxhlet method is also higher than the ratio obtained using ASE method (t(paired)=4.88 t(c)=2.36). Results of Principal Component Analysis (PCA) showed that the highest positive impact to the second principal component (PC2) is recorded by C18:3 n-3, and C20:3 n-6, being present in a higher amount in the samples treated by the modified Soxhlet extraction, while C22:5 n-3, C20:3 n-3, C22:1 and C20:4, C16 and C18 negatively influence the score values of the PC2, showing significantly increased level in the samples treated by ASE method. Hotelling's paired T-square test used on the first three principal components for confirmation of differences in individual fatty acid content obtained by ASE and Soxhlet method in carp muscle showed statistically significant difference between these two data sets (T(2)=161.308, p<0.001). Copyright 2010 Elsevier B.V. All rights reserved.
Relaxation mode analysis of a peptide system: comparison with principal component analysis.
Mitsutake, Ayori; Iijima, Hiromitsu; Takano, Hiroshi
2011-10-28
This article reports the first attempt to apply the relaxation mode analysis method to a simulation of a biomolecular system. In biomolecular systems, the principal component analysis is a well-known method for analyzing the static properties of fluctuations of structures obtained by a simulation and classifying the structures into some groups. On the other hand, the relaxation mode analysis has been used to analyze the dynamic properties of homopolymer systems. In this article, a long Monte Carlo simulation of Met-enkephalin in gas phase has been performed. The results are analyzed by the principal component analysis and relaxation mode analysis methods. We compare the results of both methods and show the effectiveness of the relaxation mode analysis.
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.; Mueller, J. L.; Zwally, H. J.
1984-01-01
A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
Wongchai, C; Chaidee, A; Pfeiffer, W
2012-01-01
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Surzhikov, V D; Surzhikov, D V
2014-01-01
The search and measurement of causal relationships between exposure to air pollution and health state of the population is based on the system analysis and risk assessment to improve the quality of research. With this purpose there is applied the modern statistical analysis with the use of criteria of independence, principal component analysis and discriminate function analysis. As a result of analysis out of all atmospheric pollutants there were separated four main components: for diseases of the circulatory system main principal component is implied with concentrations of suspended solids, nitrogen dioxide, carbon monoxide, hydrogen fluoride, for the respiratory diseases the main c principal component is closely associated with suspended solids, sulfur dioxide and nitrogen dioxide, charcoal black. The discriminant function was shown to be used as a measure of the level of air pollution.
Priority of VHS Development Based in Potential Area using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Meirawan, D.; Ana, A.; Saripudin, S.
2018-02-01
The current condition of VHS is still inadequate in quality, quantity and relevance. The purpose of this research is to analyse the development of VHS based on the development of regional potential by using principal component analysis (PCA) in Bandung, Indonesia. This study used descriptive qualitative data analysis using the principle of secondary data reduction component. The method used is Principal Component Analysis (PCA) analysis with Minitab Statistics Software tool. The results of this study indicate the value of the lowest requirement is a priority of the construction of development VHS with a program of majors in accordance with the development of regional potential. Based on the PCA score found that the main priority in the development of VHS in Bandung is in Saguling, which has the lowest PCA value of 416.92 in area 1, Cihampelas with the lowest PCA value in region 2 and Padalarang with the lowest PCA value.
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
ERIC Educational Resources Information Center
National Association of Secondary School Principals, Reston, VA.
Preparation programs for principals should have excellent academic and performance based components. In examining the nature of performance based principal preparation this report finds that school administration programs must bridge the gap between conceptual learning in the classroom and the requirements of professional practice. A number of…
Principal component greenness transformation in multitemporal agricultural Landsat data
NASA Technical Reports Server (NTRS)
Abotteen, R. A.
1978-01-01
A data compression technique for multitemporal Landsat imagery which extracts phenological growth pattern information for agricultural crops is described. The principal component greenness transformation was applied to multitemporal agricultural Landsat data for information retrieval. The transformation was favorable for applications in agricultural Landsat data analysis because of its physical interpretability and its relation to the phenological growth of crops. It was also found that the first and second greenness eigenvector components define a temporal small-grain trajectory and nonsmall-grain trajectory, respectively.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L
2014-01-01
Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Hua, Yang; Liu, Zhanqiang
2018-05-24
Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.
Principal component analysis for designed experiments.
Konishi, Tomokazu
2015-01-01
Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.
B. Desta Fekedulegn; J.J. Colbert; R.R., Jr. Hicks; Michael E. Schuckers
2002-01-01
The theory and application of principal components regression, a method for coping with multicollinearity among independent variables in analyzing ecological data, is exhibited in detail. A concrete example of the complex procedures that must be carried out in developing a diagnostic growth-climate model is provided. We use tree radial increment data taken from breast...
ERIC Educational Resources Information Center
Rahayu, Sri; Sugiarto, Teguh; Madu, Ludiro; Holiawati; Subagyo, Ahmad
2017-01-01
This study aims to apply the model principal component analysis to reduce multicollinearity on variable currency exchange rate in eight countries in Asia against US Dollar including the Yen (Japan), Won (South Korea), Dollar (Hong Kong), Yuan (China), Bath (Thailand), Rupiah (Indonesia), Ringgit (Malaysia), Dollar (Singapore). It looks at yield…
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Principal component analysis of Raman spectra for TiO2 nanoparticle characterization
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion
2017-09-01
The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.
Sebro, Ronnie; Hoffman, Thomas J.; Lange, Christoph; Rogus, John J.; Risch, Neil J.
2013-01-01
Population stratification leads to a predictable phenomenon—a reduction in the number of heterozygotes compared to that calculated assuming Hardy-Weinberg Equilibrium (HWE). We show that population stratification results in another phenomenon—an excess in the proportion of spouse-pairs with the same genotypes at all ancestrally informative markers, resulting in ancestrally related positive assortative mating. We use principal components analysis to show that there is evidence of population stratification within the Framingham Heart Study, and show that the first principal component correlates with a North-South European cline. We then show that the first principal component is highly correlated between spouses (r=0.58, p=0.0013), demonstrating that there is ancestrally related positive assortative mating among the Framingham Caucasian population. We also show that the single nucleotide polymorphisms loading most heavily on the first principal component show an excess of homozygotes within the spouses, consistent with similar ancestry-related assortative mating in the previous generation. This nonrandom mating likely affects genetic structure seen more generally in the North American population of European descent today, and decreases the rate of decay of linkage disequilibrium for ancestrally informative markers. PMID:20842694
Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C
2016-02-01
Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
Matsen IV, Frederick A.; Evans, Steven N.
2013-01-01
Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415
Time Management Ideas for Assistant Principals.
ERIC Educational Resources Information Center
Cronk, Jerry
1987-01-01
Prioritizing the use of time, effective communication, delegating authority, having detailed job descriptions, and good secretarial assistance are important components of time management for assistant principals. (MD)
McSherry, Wilfred
2006-07-01
The aim of this study was to generate a deeper understanding of the factors and forces that may inhibit or advance the concepts of spirituality and spiritual care within both nursing and health care. This manuscript presents a model that emerged from a qualitative study using grounded theory. Implementation and use of this model may assist all health care practitioners and organizations to advance the concepts of spirituality and spiritual care within their own sphere of practice. The model has been termed the principal components model because participants identified six components as being crucial to the advancement of spiritual health care. Grounded theory was used meaning that there was concurrent data collection and analysis. Theoretical sampling was used to develop the emerging theory. These processes, along with data analysis, open, axial and theoretical coding led to the identification of a core category and the construction of the principal components model. Fifty-three participants (24 men and 29 women) were recruited and all consented to be interviewed. The sample included nurses (n=24), chaplains (n=7), a social worker (n=1), an occupational therapist (n=1), physiotherapists (n=2), patients (n=14) and the public (n=4). The investigation was conducted in three phases to substantiate the emerging theory and the development of the model. The principal components model contained six components: individuality, inclusivity, integrated, inter/intra-disciplinary, innate and institution. A great deal has been written on the concepts of spirituality and spiritual care. However, rhetoric alone will not remove some of the intrinsic and extrinsic barriers that are inhibiting the advancement of the spiritual dimension in terms of theory and practice. An awareness of and adherence to the principal components model may assist nurses and health care professionals to engage with and overcome some of the structural, organizational, political and social variables that are impacting upon spiritual care.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Sakuda, Yasunori; Honda, Toshio
2002-06-01
Spectral reflectance of most reflective objects such as natural objects and color hardcopy is relatively smooth and can be approximated by several numbers of principal components with high accuracy. Though the subspace spanned by those principal components represents a space in which reflective objects can exist, it dos not provide the bound in which the samples distribute. In this paper we propose to represent the gamut of reflective objects in more distinct form, i.e., as a polyhedron in the subspace spanned by several principal components. Concept of the polyhedral gamut representation and its application to calculation of metamer ensemble are described. Color-mismatch volume caused by different illuminant and/or observer for a metamer ensemble is also calculated and compared with theoretical one.
Evaluation of Low-Voltage Distribution Network Index Based on Improved Principal Component Analysis
NASA Astrophysics Data System (ADS)
Fan, Hanlu; Gao, Suzhou; Fan, Wenjie; Zhong, Yinfeng; Zhu, Lei
2018-01-01
In order to evaluate the development level of the low-voltage distribution network objectively and scientifically, chromatography analysis method is utilized to construct evaluation index model of low-voltage distribution network. Based on the analysis of principal component and the characteristic of logarithmic distribution of the index data, a logarithmic centralization method is adopted to improve the principal component analysis algorithm. The algorithm can decorrelate and reduce the dimensions of the evaluation model and the comprehensive score has a better dispersion degree. The clustering method is adopted to analyse the comprehensive score because the comprehensive score of the courts is concentrated. Then the stratification evaluation of the courts is realized. An example is given to verify the objectivity and scientificity of the evaluation method.
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
The Artistic Nature of the High School Principal.
ERIC Educational Resources Information Center
Ritschel, Robert E.
The role of high school principals can be compared to that of composers of music. For instance, composers put musical components together into a coherent whole; similarly, principals organize high schools by establishing class schedules, assigning roles to subordinates, and maintaining a safe and orderly learning environment. Second, composers…
ERIC Educational Resources Information Center
Odegard-Koester, Melissa A.; Watkins, Paul
2016-01-01
The working relationship between principals and school counselors have received some attention in the literature, however, little empirical research exists that examines specifically the components that facilitate a collaborative working relationship between the principal and school counselor. This qualitative case study examined the unique…
The Retention and Attrition of Catholic School Principals
ERIC Educational Resources Information Center
Durow, W. Patrick; Brock, Barbara L.
2004-01-01
This article reports the results of a study of the retention of principals in Catholic elementary and secondary schools in one Midwestern diocese. Findings revealed that personal needs, career advancement, support from employer, and clearly defined role expectations were key factors in principals' retention decisions. A profile of components of…
ERIC Educational Resources Information Center
Lawson, J. S.; Inglis, James
1984-01-01
A learning disability index (LDI) for the assessment of intellectual deficits on the Wechsler Intelligence Scale for Children-Revised (WISC-R) is described. The Factor II score coefficients derived from an unrotated principal components analysis of the WISC-R normative data, in combination with the individual's scaled scores, are used for this…
Perturbation analyses of intermolecular interactions
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Perturbation analyses of intermolecular interactions.
Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Inayama, T; Kashiwazaki, H; Sakamoto, M
1998-12-01
We tried to analyze synthetically teachers' view points associated with health education and roles of school lunch in primary education. For this purpose, a survey using an open-ended questionnaire consisting of eight items relating to health education in the school curriculum was carried out in 100 teachers of ten public primary schools. Subjects were asked to describe their view regarding the following eight items: 1) health and physical guidance education, 2) school lunch guidance education, 3) pupils' attitude toward their own health and nutrition, 4) health education, 5) role of school lunch in education, 6) future subjects of health education, 7) class room lesson related to school lunch, 8) guidance in case of pupil with unbalanced dieting and food avoidance. Subjects described their own opinions on an open-ended questionnaire response sheet. Keywords in individual descriptions were selected, rearranged and classified into categories according to their own meanings, and each of the selected keywords were used as the dummy variable. To assess individual opinions synthetically, a principal component analysis was then applied to the variables collected through the teachers' descriptions, and four factors were extracted. The results were as follows. 1) Four factors obtained from the repeated principal component analysis were summarized as; roles of health education and school lunch program (the first principal component), cooperation with nurse-teachers and those in charge of lunch service (the second principal component), time allocation for health education in home-room activity and lunch time (the third principal component) and contents of health education and school lunch guidance and their future plan (the fourth principal component). 2) Teachers regarded the role of school lunch in primary education as providing daily supply of nutrients, teaching of table manners and building up friendships with classmates, health education and food and nutrition education, and developing food preferences through eating lunch together with classmates. 3) Significant positive correlation was observed between "the teachers' opinion about the role of school lunch of providing opportunity to learn good behavior for food preferences through eating lunch together with classmates" and the first principal component "roles of health education and school lunch program" (r = 0.39, p < 0.01). The variable "the role of school lunch is health education and food and nutrition education" showed positive correlation with the principle component "cooperation with nurse-teachers and those in charge of lunch service" (r = 0.27, p < 0.01). Interesting relationships obtained were that teachers with longer educational experience tended to place importance in health education and food and nutrition education as the role of school lunch, and that male teachers regarded the roles of school lunch more importantly for future education in primary education than female teachers did.
Phenomenology of mixed states: a principal component analysis study.
Bertschy, G; Gervasoni, N; Favre, S; Liberek, C; Ragama-Pardos, E; Aubry, J-M; Gex-Fabry, M; Dayer, A
2007-12-01
To contribute to the definition of external and internal limits of mixed states and study the place of dysphoric symptoms in the psychopathology of mixed states. One hundred and sixty-five inpatients with major mood episodes were diagnosed as presenting with either pure depression, mixed depression (depression plus at least three manic symptoms), full mixed state (full depression and full mania), mixed mania (mania plus at least three depressive symptoms) or pure mania, using an adapted version of the Mini International Neuropsychiatric Interview (DSM-IV version). They were evaluated using a 33-item inventory of depressive, manic and mixed affective signs and symptoms. Principal component analysis without rotation yielded three components that together explained 43.6% of the variance. The first component (24.3% of the variance) contrasted typical depressive symptoms with typical euphoric, manic symptoms. The second component, labeled 'dysphoria', (13.8%) had strong positive loadings for irritability, distressing sensitivity to light and noise, impulsivity and inner tension. The third component (5.5%) included symptoms of insomnia. Median scores for the first component significantly decreased from the pure depression group to the pure mania group. For the dysphoria component, scores were highest among patients with full mixed states and decreased towards both patients with pure depression and those with pure mania. Principal component analysis revealed that dysphoria represents an important dimension of mixed states.
A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample
Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...
2012-01-01
Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Al-Shair, Khaled; Muldoon, Eavan G; Morris, Julie; Atherton, Graham T; Kosmidis, Chris; Denning, David W
2016-05-01
Fatigue is a prominent disabling symptom in several pulmonary diseases. Its impact on health status in patients with chronic pulmonary aspergillosis (CPA) has not been investigated. A total of 151 CPA patients attending the National Aspergillosis Centre completed Manchester COPD Fatigue Scale (MCFS), St. George's Respiratory Questionnaire (SGRQ) and Medical Research Council (MRC) dyspnoea score. Lung function and BMI were measured. Univariate, multivariate linear and binary analyses, and principal component analysis (PCA) were used. Female patients accounted for 44%. The mean (range) of age was 59.6 (31-83) years, FEV1% was 64 (14-140), BMI was 23.6 (16.3-43.4), SGRQ total score was 56 (4-96.2) and MCFS total score was 30.6 (0-54). PCA showed that 27 items of MCFS loaded on three components; physical, psychosocial and cognitive fatigue, explaining 78.4% of fatigue variance. MCFS score correlated strongly with total SGRQ score (r = 0.83, p < 0.001). Using linear multivariate analysis, fatigue was the strongest factor (beta = 0.7 p < 0.0001) associated with impaired health status, after adjusting for age, BMI, FEV1%, and MRC dyspnoea score. Using patients' 5 self-assessment grades of their health, one-way ANOVA showed that those with "very poor" health status had the highest fatigue scores (45 (±6) (p < 0.001)). Logistic regression analysis showed that fatigue score (OR = 0.9, 95% CI 0.84-0.97; p = 0.005) and FEV1% (OR = 1.03, 95% CI 1.01-1.07, p = 0.02) are significantly associated with self-assessed impaired health status after correcting for age, gender and DLCO%. Fatigue is a major component of impaired health status of CPA patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude
2003-01-01
Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.
HT-FRTC: a fast radiative transfer code using kernel regression
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Lewis, Warren
2016-09-01
The HT-FRTC is a principal component based fast radiative transfer code that can be used across the electromagnetic spectrum from the microwave through to the ultraviolet to calculate transmittance, radiance and flux spectra. The principal components cover the spectrum at a very high spectral resolution, which allows very fast line-by-line, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. The principal components are derived during a code training phase from line-by-line simulations for a diverse set of atmosphere and surface conditions. The derived principal components are sensor independent, i.e. no extra training is required to include additional sensors. During the training phase we also derive the predictors which are required by the fast radiative transfer code to determine the principal component scores from the monochromatic radiances (or fluxes, transmittances). These predictors are calculated for each training profile at a small number of frequencies, which are selected by a k-means cluster algorithm during the training phase. Until recently the predictors were calculated using a linear regression. However, during a recent rewrite of the code the linear regression was replaced by a Gaussian Process (GP) regression which resulted in a significant increase in accuracy when compared to the linear regression. The HT-FRTC has been trained with a large variety of gases, surface properties and scatterers. Rayleigh scattering as well as scattering by frozen/liquid clouds, hydrometeors and aerosols have all been included. The scattering phase function can be fully accounted for by an integrated line-by-line version of the Edwards-Slingo spherical harmonics radiation code or approximately by a modification to the extinction (Chou scaling).
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata
2017-03-17
An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee
2015-03-01
Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.
Leadership Coaching: A Multiple-Case Study of Urban Public Charter School Principals' Experiences
ERIC Educational Resources Information Center
Lackritz, Anne D.
2017-01-01
This multi-case study seeks to understand the experiences of New York City and Washington, DC public charter school principals who have experienced leadership coaching, a component of leadership development, beyond their novice years. The research questions framing this study address how experienced public charter school principals describe the…
The View from the Principal's Office: An Observation Protocol Boosts Literacy :eadership
ERIC Educational Resources Information Center
Novak, Sandi; Houck, Bonnie
2016-01-01
The Minnesota Elementary School Principals' Association offered Minnesota principals professional learning that placed a high priority on literacy instruction and developing a collegial culture. A key component is the literacy classroom visit, an observation protocol used to gather data to determine the status of literacy teaching and student…
ERIC Educational Resources Information Center
Agnew, David W.
2011-01-01
Public school principals must meet many challenges and make decisions concerning financial obligations while providing the best learning environment for students. A major challenge to principals is implementing technological components successfully while providing teachers the 21st century instructional skills needed to enhance students'…
Differential principal component analysis of ChIP-seq.
Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang
2013-04-23
We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-01-01
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement. PMID:29271947
The variance needed to accurately describe jump height from vertical ground reaction force data.
Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran
2014-12-01
In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-12-22
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement.
Jin, Hao; Mo, Lanxin; Pan, Lin; Hou, Qaingchaun; Li, Chuanjuan; Darima, Iaptueva; Yu, Jie
2018-05-09
Traditional fermented dairy foods including cottage cheese have been major components of the Buryatia diet for centuries. Buryatian cheeses have maintained not only their unique taste and flavor but also their rich natural lactic acid bacteria (LAB) content. However, relatively few studies have described their microbial communities or explored their potential to serve as LAB resources. In this study, the bacterial microbiota community of 7 traditional artisan cheeses produced by local Buryatian families was investigated using single-molecule, real-time sequencing. In addition, we compared the bacterial microbiota of the Buryatian cheese samples with data sets of cheeses from Kazakhstan and Italy. Furthermore, we isolated and preserved several LAB samples from Buryatian cheese. A total of 62 LAB strains (belonging to 6 genera and 14 species or subspecies) were isolated from 7 samples of Buryatian cheese. Full-length 16S rRNA sequencing of the microbiota revealed 145 species of 82 bacterial genera, belonging to 7 phyla. The most dominant species was Lactococcus lactis (43.89%). Data sets of cheeses from Italy and Kazakhstan were retrieved from public databases. Principal component analysis and multivariate ANOVA showed marked differences in the structure of the microbiota communities in the cheese data sets from the 3 regions. Linear discriminant analyses of the effect size identified 48 discriminant bacterial clades among the 3 groups, which might have contributed to the observed structural differences. Our results indicate that the bacterial communities of traditional artisan cheeses vary depending on geographic origin. In addition, we isolated novel and valuable LAB resources for the improvement of cottage cheese production. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran
2014-01-01
Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691
Bias and robustness of uncertainty components estimates in transient climate projections
NASA Astrophysics Data System (ADS)
Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal
2016-04-01
A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
Multivariate analysis of light scattering spectra of liquid dairy products
NASA Astrophysics Data System (ADS)
Khodasevich, M. A.
2010-05-01
Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.
James R. Wallis
1965-01-01
Written in Fortran IV and MAP, this computer program can handle up to 120 variables, and retain 40 principal components. It can perform simultaneous regression of up to 40 criterion variables upon the varimax rotated factor weight matrix. The columns and rows of all output matrices are labeled by six-character alphanumeric names. Data input can be from punch cards or...
Dihedral angle principal component analysis of molecular dynamics simulations.
Altis, Alexandros; Nguyen, Phuong H; Hegger, Rainer; Stock, Gerhard
2007-06-28
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {phi(n)} to the metric coordinate space {x(n)=cos phi(n),y(n)=sin phi(n)} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300 ns molecular dynamics simulation, a critical comparison of the various methods is given.
Dihedral angle principal component analysis of molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Altis, Alexandros; Nguyen, Phuong H.; Hegger, Rainer; Stock, Gerhard
2007-06-01
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {φn} to the metric coordinate space {xn=cosφn,yn=sinφn} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300ns molecular dynamics simulation, a critical comparison of the various methods is given.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-09-20
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-01-01
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836
Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.
2013-01-01
Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.
NASA Technical Reports Server (NTRS)
Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen
2005-01-01
Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.
Relationship between regional population and healthcare delivery in Japan.
Niga, Takeo; Mori, Maiko; Kawahara, Kazuo
2016-01-01
In order to address regional inequality in healthcare delivery in Japan, healthcare districts were established in 1985. However, regional healthcare delivery has now become a national issue because of population migration and the aging population. In this study, the state of healthcare delivery at the district level is examined by analyzing population, the number of physicians, and the number of hospital beds. The results indicate a continuing disparity in healthcare delivery among districts. We find that the rate of change in population has a strong positive correlation with that in the number of physicians and a weak positive correlation with that in the number of hospital beds. In addition, principal component analysis is performed on three variables: the rate of change in population, the number of physicians per capita, and the number of hospital beds per capita. This analysis suggests that the two principal components contribute 90.1% of the information. The first principal component is thought to show the effect of the regulations on hospital beds. The second principal component is thought to show the capacity to recruit physicians. This study indicates that an adjustment to the regulations on hospital beds as well as physician allocation by public funds may be key to resolving the impending issue of regionally disproportionate healthcare delivery.
Performance evaluation of PCA-based spike sorting algorithms.
Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George
2008-09-01
Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.
Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.
Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi
2016-03-15
Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Somatotype in 6-11-year-old Italian and Estonian schoolchildren.
Ventrella, A R; Semproli, S; Jürimäe, J; Toselli, S; Claessens, A L; Jürimäe, T; Brasili, P
2008-01-01
The study of somatotypes can contribute to the understanding of variability in human body build. The aim of this study was to compare the somatotypes of Italian and Estonian schoolchildren in order to evaluate factors that might lead to variability in somatotypes. The sample consisted of 762 Italian and 366 Estonian children aged 6-11 years. They were somatotyped by the Heath-Carter anthropometric method. Data on organised extra-curricular physical activity and hours of weekly training were also collected. One-way ANOVA was used to evaluate country-related variations of somatotype in each age/sex group, while factorial ANOVA was used to test the influence of country and organised physical activity on the variability of the anthropometric characteristics and somatotype components. There are significant differences in mean somatotypes between the Italian and Estonian children in many age classes and a different constitutional trend in children from the two different countries is observed. The Italian children are more endomorphic and less mesomorphic and ectomorphic than the Estonian children. On the other hand, it emerges from factorial ANOVA, that the somatotype components do not present significant variations related to organised physical activity and to the interaction between the country of origin and sport practice. Moreover, the results of the forward stepwise discriminant analyses show that mesomorphy is the best discriminator between the two countries, followed by ectomorphy. Our findings suggest that the observed differences between Italian and Estonian children could be related mainly to country rather than to the practice of organised physical activity in the two countries.
Description and typology of intensive Chios dairy sheep farms in Greece.
Gelasakis, A I; Valergakis, G E; Arsenos, G; Banos, G
2012-06-01
The aim was to assess the intensified dairy sheep farming systems of the Chios breed in Greece, establishing a typology that may properly describe and characterize them. The study included the total of the 66 farms of the Chios sheep breeders' cooperative Macedonia. Data were collected using a structured direct questionnaire for in-depth interviews, including questions properly selected to obtain a general description of farm characteristics and overall management practices. A multivariate statistical analysis was used on the data to obtain the most appropriate typology. Initially, principal component analysis was used to produce uncorrelated variables (principal components), which would be used for the consecutive cluster analysis. The number of clusters was decided using hierarchical cluster analysis, whereas, the farms were allocated in 4 clusters using k-means cluster analysis. The identified clusters were described and afterward compared using one-way ANOVA or a chi-squared test. The main differences were evident on land availability and use, facility and equipment availability and type, expansion rates, and application of preventive flock health programs. In general, cluster 1 included newly established, intensive, well-equipped, specialized farms and cluster 2 included well-established farms with balanced sheep and feed/crop production. In cluster 3 were assigned small flock farms focusing more on arable crops than on sheep farming with a tendency to evolve toward cluster 2, whereas cluster 4 included farms representing a rather conservative form of Chios sheep breeding with low/intermediate inputs and choosing not to focus on feed/crop production. In the studied set of farms, 4 different farmer attitudes were evident: 1) farming disrupts sheep breeding; feed should be purchased and economies of scale will decrease costs (mainly cluster 1), 2) only exercise/pasture land is necessary; at least part of the feed (pasture) must be home-grown to decrease costs (clusters 1 and 4), 3) providing pasture to sheep is essential; on-farm feed production decreases costs (mainly cluster 3), and 4) large-scale farming (feed production and cash crops) does not disrupt sheep breeding; all feed must be produced on-farm to decrease costs (mainly cluster 3). Conducting a profitability analysis among different clusters, exploring and discovering the most beneficial levels of intensified management and capital investment should now be considered. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
Maiorino, Leonardo; Farke, Andrew A; Kotsakis, Tassos; Teresi, Luciano; Piras, Paolo
2015-11-01
Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins. © 2015 Anatomical Society.
Kurt, Anita; Kincaid, Hope; Semler, Lauren; Jacoby, Jeanne L; Johnson, Melanie B; Careyva, Beth A; Stello, Brian; Friel, Timothy; Smulian, John C; Knouse, Mark C
2017-12-26
Our study investigates whether levels of motivation and barriers to participation in clinical trials vary with patients' education and income. A self-administered survey asked outpatients to rank potential influential factors on a "0" to "4" significance scale for their motivation to participate in clinical trials. Principal component analysis (PCA), analysis of variance (ANOVA), Kruskal-Wallis, and Mann-Whitney U tests analyzed the impact of race, education, and income on their motivation to participate. Analysis included 1841 surveys; most respondents had a high school education or some college, and listed annual income < $30,000. There was a significant interaction between race and income on our motivation scale 1 scores (p = .0261). Compared with their counterparts, subjects with less education/lower income ranked monetary compensation (p = .0420 and p < .0001, respectively) as a higher motivator. Minorities and patients with less education and lower income appear to be more influenced by their desire to please the doctor, the race and sex of the doctor, and the language spoken by the doctor being the same as theirs. For all races, education appeared to have a direct relationship with motivation to participate, except for African-Americans, whose motivation appeared to decline with more education. Income appeared to have an inverse relationship with motivation to participate for all races.
Carro, Nieves; García, Isabel; Ignacio, María; Mouteira, Ana
2015-12-15
PCBs were analyzed in raft mussels cultured in several polygons from Galician Rías (Rías of Ares-Betanzos, Muros-Noia, Arousa, Pontevedra and Vigo) during the period 1998-2013. The main aim of this work is study the quality of culture marine environment in relation to PCBs compounds. We report the results of a monitoring. The mean levels of ΣPCBs (ten congeners) ranged from 7.41 to 59.50ngg(-1)dw. The isomer concentrations in the Mytilus galloprovincialis cultured in raft were in the order hexachlorobiphenyls>pentachlorobiphenyls>tetrachlorbiphenyls>trichlorobiphenyls. Some biological parameters of mussel were also investigated (shell length, lipid content and condition index) in order to know their influence on ability of PCBs accumulation. ANOVA analysis confirms that levels of most of congeners had a significant relation (p<0.05) with shell length. The geographical patterns and temporal variations of PCBs were also investigated. Principal Component Analysis (PCA) showed differences between geographic areas (Rías) in the distribution of PCBs levels. Samples coming from Rías of Vigo and Ares-Betanzos presented the highest levels of PCBs and samples from Rías of Arousa and Muros-Noia had the lowest levels of these compounds. Time trends (linear regressions) showed a decline of levels of PCB congeners along the period 1998-2013. Copyright © 2015. Published by Elsevier B.V.
Tessem, May-Britt; Bathen, Tone F; Cejková, Jitka; Midelfart, Anna
2005-03-01
This study was conducted to investigate metabolic changes in aqueous humor from rabbit eyes exposed to either UV-A or -B radiation, by using (1)H nuclear magnetic resonance (NMR) spectroscopy and unsupervised pattern recognition methods. Both eyes of adult albino rabbits were irradiated with UV-A (366 nm, 0.589 J/cm(2)) or UV-B (312 nm, 1.667 J/cm(2)) radiation for 8 minutes, once a day for 5 days. Three days after the last irradiation, samples of aqueous humor were aspirated, and the metabolic profiles analyzed with (1)H NMR spectroscopy. The metabolic concentrations in the exposed and control materials were statistically analyzed and compared, with multivariate methods and one-way ANOVA. UV-B radiation caused statistically significant alterations of betaine, glucose, ascorbate, valine, isoleucine, and formate in the rabbit aqueous humor. By using principal component analysis, the UV-B-irradiated samples were clearly separated from the UV-A-irradiated samples and the control group. No significant metabolic changes were detected in UV-A-irradiated samples. This study demonstrates the potential of using unsupervised pattern recognition methods to extract valuable metabolic information from complex (1)H NMR spectra. UV-B irradiation of rabbit eyes led to significant metabolic changes in the aqueous humor detected 3 days after the last exposure.
Evaluation of natural mandibular shape asymmetry: an approach by using elliptical Fourier analysis.
Niño-Sandoval, Tania C; Morantes Ariza, Carlos F; Infante-Contreras, Clementina; Vasconcelos, Belmiro Ce
2018-04-05
The purpose of this study was to demonstrate that asymmetry is a natural occurring phenomenon in the mandibular shape by using elliptical Fourier analysis. 164 digital orthopantomographs from Colombian patients of both sexes aged 18 to 25 years were collected. Curves from left and right hemimandible were digitized. An elliptical Fourier analysis was performed with 20 harmonics. In the general sexual dimorphism a principal component analysis (PCA) and a hotelling T 2 from the multivariate warp space were employed. Exploratory analysis of general asymmetry and sexual dimorphism by side was made with a Procrustes Fit. A non-parametric multivariate analysis of variance (MANOVA) was applied to assess differentiation of skeletal classes of each hemimandible, and a Procrustes analysis of variance (ANOVA) was applied to search any relation between skeletal class and side in both sexes. Significant values were found in general asymmetry, general sexual dimorphism, in dimorphism by side (p < 0.0001), asymmetry by sex, and differences between Class I, II, and III (p < 0.005). However, a relation of skeletal classes and side was not found. The mandibular asymmetry by shape is present in all patients and should not be articulated exclusively to pathological processes, therefore, along with sexual dimorphism and differences between skeletal classes must be taken into account for improving mandibular prediction systems.
Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy
2012-01-01
The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha(-1) and 26 Mg·ha(-1)) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments.
Zhou, Jia; Zhang, Lei; Chang, Yuwei; Lu, Xin; Zhu, Zhen; Xu, Guowang
2012-08-03
Insecticide is always used to control the damage from pests, while the potential influence on plants is rarely known. Time-course metabolic changes of wild and Bacillus thuringiensis (Bt) transgenic rice (Oryza sativa L.) plants after insecticide treatment were investigated by using gas chromatography-mass spectrometry (GC-MS). A combined statistical strategy of 2-way ANOVA and multivariate analyses (principal component analysis and hierarchal cluster analysis) was performed to find the stress-associated effects. The results reveal that a wide range of metabolites were dynamically varied in both varieties as a response to insecticide, in multiple metabolic pathways, such as biosynthesis and metabolism of amino acids, carbohydrates, fatty acids, TCA cycle, and the shikimate/phenylpropanoid pathway, and most of the changes were correlated with the exposure time and dependent on the variety. A set of stress defenses were activated, including phytohormone signaling pathway, antioxidant defense system, shikimate-mediated secondary metabolism, and so on. In particular, insecticide led to much stronger regulations of signaling molecules (salicylate and the precursor of jasmonate) and antioxidants (α-tocopherol and dehydroascorbate/ascorbate) in Bt-transgenic variety at the early stage. Our results demonstrated that the Bt-transgenic rice had a more acute and drastic response to insecticide stress than its non-transgenic counterpart in antioxidant system and signaling regulation.
Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P B; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro
2017-09-21
The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals ( n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550-600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550-600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle.
Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P. B.; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro
2017-01-01
The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550–600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550–600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle. PMID:28934162
Sharma, Sakshi; Kaur, Inderpreet; Nagpal, Avinash Kaur
2017-08-01
In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06-0.11 mg/kg and 0.03-0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31-15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10 -6 , respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2 (1) = 17.280, p = 0.00003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, A.V.; Shea, D.; Moore, M.J.
2000-03-01
Contaminant exposure is widespread among marine mammals but is of unknown significance. This study characterized organochlorine bioaccumulation in pilot whales, and these bioaccumulation patterns are proposed as representative of Northwest (NW) Atlantic cetacea. Samples were collected from whales stranded in Massachusetts and caught in nets. Polychlorinated biphenyl (PCB) and chlorinated pesticide concentrations were determined via GC/ECD and found to be similar to those reported for other NW Atlantic odontocetes. The organochlorine in highest concentration was 4,4{prime}-DDE, followed by trans-nonachlor, 4,4{prime}-DDD, dieldrin, cis-chlordane, C14(52), C15(95), C15(101), C15(118), C16(138), C16(149), C16(153), C17(180), and C17(187). The concentration of 19 pesticides was higher inmore » blubber than liver. The concentration of 26 PCB congeners was also greater in blubber than liver. Principal component analysis and ANOVA indicated that blubber accumulated proportionately more of the most recalcitrant compounds, such as 4,4{prime}-DDE and nonmetabolizable PCBs, compared to liver. Whales that stranded together had more similar bioaccumulation than animals of the same gender or maturity. The high variation among individuals in tissue concentrations and the similarity within a stranding group suggest that pilot whale pods are exposed to a large range of pollutant sources, such as through different prey and feeding locations.« less
Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy
2012-01-01
The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006
ERIC Educational Resources Information Center
Watson, Pat; And Others
Survey responses from over half of Oklahoma City's 2,500 teachers indicated their views of the effectiveness and leadership of the city's 94 school principals. The survey's 82 items were selected from ideas suggested in the principal effectiveness literature and from the leadership component of Oklahoma City's prinipal evaluation forms. The…
ERIC Educational Resources Information Center
Klinker, JoAnn Franklin; Hackmann, Donald G.
High school principals confront ethical dilemmas daily. This report describes a study that examined how MetLife/NASSP secondary principals of the year made ethical decisions conforming to three dispositions from Standard 5 of the ISLLC standards and whether they could identify processes used to reach those decisions through Rest's Four Component…
The Middle Management Paradox of the Urban High School Assistant Principal: Making It Happen
ERIC Educational Resources Information Center
Jubilee, Sabriya Kaleen
2013-01-01
Scholars of transformational leadership literature assert that school-based management teams are a vital component in transforming schools. Many of these works focus heavily on the roles of principals and teachers, ignoring the contribution of Assistant Principals (APs). More attention is now being given to the unique role that Assistant…
E-Mentoring for New Principals: A Case Study of a Mentoring Program
ERIC Educational Resources Information Center
Russo, Erin D.
2013-01-01
This descriptive case study includes both new principals and their mentor principals engaged in e-mentoring activities. This study examines the components of a school district's mentoring program in order to make sense of e-mentoring technology. The literature review highlights mentoring practices in education, and also draws upon e-mentoring…
Salvatore, Stefania; Røislien, Jo; Baz-Lomba, Jose A; Bramness, Jørgen G
2017-03-01
Wastewater-based epidemiology is an alternative method for estimating the collective drug use in a community. We applied functional data analysis, a statistical framework developed for analysing curve data, to investigate weekly temporal patterns in wastewater measurements of three prescription drugs with known abuse potential: methadone, oxazepam and methylphenidate, comparing them to positive and negative control drugs. Sewage samples were collected in February 2014 from a wastewater treatment plant in Oslo, Norway. The weekly pattern of each drug was extracted by fitting of generalized additive models, using trigonometric functions to model the cyclic behaviour. From the weekly component, the main temporal features were then extracted using functional principal component analysis. Results are presented through the functional principal components (FPCs) and corresponding FPC scores. Clinically, the most important weekly feature of the wastewater-based epidemiology data was the second FPC, representing the difference between average midweek level and a peak during the weekend, representing possible recreational use of a drug in the weekend. Estimated scores on this FPC indicated recreational use of methylphenidate, with a high weekend peak, but not for methadone and oxazepam. The functional principal component analysis uncovered clinically important temporal features of the weekly patterns of the use of prescription drugs detected from wastewater analysis. This may be used as a post-marketing surveillance method to monitor prescription drugs with abuse potential. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Espeland, Mark A; Bray, George A; Neiberg, Rebecca; Rejeski, W Jack; Knowler, William C; Lang, Wei; Cheskin, Lawrence J; Williamson, Don; Lewis, C Beth; Wing, Rena
2009-10-01
To demonstrate how principal components analysis can be used to describe patterns of weight changes in response to an intensive lifestyle intervention. Principal components analysis was applied to monthly percent weight changes measured on 2,485 individuals enrolled in the lifestyle arm of the Action for Health in Diabetes (Look AHEAD) clinical trial. These individuals were 45 to 75 years of age, with type 2 diabetes and body mass indices greater than 25 kg/m(2). Associations between baseline characteristics and weight loss patterns were described using analyses of variance. Three components collectively accounted for 97.0% of total intrasubject variance: a gradually decelerating weight loss (88.8%), early versus late weight loss (6.6%), and a mid-year trough (1.6%). In agreement with previous reports, each of the baseline characteristics we examined had statistically significant relationships with weight loss patterns. As examples, males tended to have a steeper trajectory of percent weight loss and to lose weight more quickly than women. Individuals with higher hemoglobin A(1c) (glycosylated hemoglobin; HbA(1c)) tended to have a flatter trajectory of percent weight loss and to have mid-year troughs in weight loss compared to those with lower HbA(1c). Principal components analysis provided a coherent description of characteristic patterns of weight changes and is a useful vehicle for identifying their correlates and potentially for predicting weight control outcomes.
Research on distributed heterogeneous data PCA algorithm based on cloud platform
NASA Astrophysics Data System (ADS)
Zhang, Jin; Huang, Gang
2018-05-01
Principal component analysis (PCA) of heterogeneous data sets can solve the problem that centralized data scalability is limited. In order to reduce the generation of intermediate data and error components of distributed heterogeneous data sets, a principal component analysis algorithm based on heterogeneous data sets under cloud platform is proposed. The algorithm performs eigenvalue processing by using Householder tridiagonalization and QR factorization to calculate the error component of the heterogeneous database associated with the public key to obtain the intermediate data set and the lost information. Experiments on distributed DBM heterogeneous datasets show that the model method has the feasibility and reliability in terms of execution time and accuracy.
Sullivan, Karen A; Lurie, Janine K
2017-01-01
The study examined the component structure of the Neurobehavioral Symptom Inventory (NSI) under five different models. The evaluated models comprised the full NSI (NSI-22) and the NSI-20 (NSI minus two orphan items). A civilian nonclinical sample was used. The 575 volunteers were predominantly university students who screened negative for mild TBI. The study design was cross-sectional, with questionnaires administered online. The main measure was the Neurobehavioral Symptom Inventory. Subscale, total and embedded validity scores were derived (the Validity-10, the LOW6, and the NIM5). In both models, the principal components analysis yielded two intercorrelated components (psychological and somatic/sensory) with acceptable internal consistency (alphas > 0.80). In this civilian nonclinical sample, the NSI had two underlying components. These components represent psychological and somatic/sensory neurobehavioral symptoms.
Cellular injury evidenced by impedance technology and infrared microspectroscopy
NASA Astrophysics Data System (ADS)
le Roux, K.; Prinsloo, L. C.; Meyer, D.
2015-03-01
Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.
NASA Astrophysics Data System (ADS)
Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol
2008-12-01
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.
Exploring patterns enriched in a dataset with contrastive principal component analysis.
Abid, Abubakar; Zhang, Martin J; Bagaria, Vivek K; Zou, James
2018-05-30
Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
NASA Astrophysics Data System (ADS)
Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.
2018-06-01
Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.
A Genealogical Interpretation of Principal Components Analysis
McVean, Gil
2009-01-01
Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557
Classical Testing in Functional Linear Models.
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.
Classical Testing in Functional Linear Models
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155
Spatial and temporal variability of hyperspectral signatures of terrain
NASA Astrophysics Data System (ADS)
Jones, K. F.; Perovich, D. K.; Koenig, G. G.
2008-04-01
Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.
2011-01-01
Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347
Longitudinal analysis of bioaccumulative contaminants in freshwater fishes
Sun, Jielun; Kim, Y.; Schmitt, C.J.
2003-01-01
The National Contaminant Biomonitoring Program (NCBP) was initiated in 1967 as a component of the National Pesticide Monitoring program. It consists of periodic collection of freshwater fish and other samples and the analysis of the concentrations of persistent environmental contaminants in these samples. For the analysis, the common approach has been to apply the mixed two-way ANOVA model to combined data. A main disadvantage of this method is that it cannot give a detailed temporal trend of the concentrations since the data are grouped. In this paper, we present an alternative approach that performs a longitudinal analysis of the information using random effects models. In the new approach, no grouping is needed and the data are treated as samples from continuous stochastic processes, which seems more appropriate than ANOVA for the problem.
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.
Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
Armeanu, Daniel; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100
Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan
2014-01-01
China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
Influential Observations in Principal Factor Analysis.
ERIC Educational Resources Information Center
Tanaka, Yutaka; Odaka, Yoshimasa
1989-01-01
A method is proposed for detecting influential observations in iterative principal factor analysis. Theoretical influence functions are derived for two components of the common variance decomposition. The major mathematical tool is the influence function derived by Tanaka (1988). (SLD)
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.; Henson, Robert
2012-01-01
A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…
ERIC Educational Resources Information Center
Yan, Zi; Sin, Kuen-fung
2015-01-01
This study aimed at providing explanation and prediction of principals' inclusive education intentions and practices under the framework of the Theory of Planned Behaviour (TPB). A sample of 209 principals from Hong Kong schools was surveyed using five scales that were developed to assess the five components of TPB: attitude, subjective norm,…
Adolescent Perceptions of Parenting Styles in Sweden, Italy and Greece: An Exploratory Study
Olivari, Maria Giulia; Hertfelt Wahn, Elisabeth; Maridaki-Kassotaki, Katerina; Antonopoulou, Katerina; Confalonieri, Emanuela
2015-01-01
Comparative research on parenting styles among Nordic and Mediterranean countries is still missing, despite the increasing number of studies on parenting styles in adolescence. This study explores similarities and differences in adolescents’ retrospective perceptions of parenting styles, for both parents, in Sweden, Italy and Greece, using the Parenting Styles and Dimensions Questionnaire. In particular, it examines the relation between parental role, adolescent gender, country of origin, SES and these perceptions. Swedish, Italian and Greek adolescents (N = 702; 30.9% Swedish, 39.6% Italian and 29.5% Greek) participated in the study. To test the principal effects three mixed 2(parent; mother and father)*2(gender; girl and boy)*3(countries; Sweden, Italy and Greece)*3(SES; low, medium and high) ANOVAs were conducted separately for each parenting style. To verify the interaction effects, a mixed 2(parent; mother and father)*3(countries; Sweden, Italy and Greece)*3(SES; low, medium and high) ANOVA was tested on authoritative style. Regarding authoritarian and permissive two mixed 2(parent; mother and father)*2(gender; girl and boy)*3(countries; Sweden, Italy and Greece) ANOVAs were tested. Mothers, as compared to fathers, were perceived as more authoritative, authoritarian and permissive. Moreover, boys perceived their parents as more authoritarian and more permissive than girls. Swedish parents were perceived as significantly less authoritarian than Italian and Greek parents and more permissive than Italian parents; Greek parents were perceived as less authoritarian and more permissive than Italian parents. The study provides an interesting contribution to parenting styles literature, showing how country legislation concerning family matters and SES are related the perception of parenting behaviours. PMID:27247655
Adolescent Perceptions of Parenting Styles in Sweden, Italy and Greece: An Exploratory Study.
Olivari, Maria Giulia; Hertfelt Wahn, Elisabeth; Maridaki-Kassotaki, Katerina; Antonopoulou, Katerina; Confalonieri, Emanuela
2015-05-01
Comparative research on parenting styles among Nordic and Mediterranean countries is still missing, despite the increasing number of studies on parenting styles in adolescence. This study explores similarities and differences in adolescents' retrospective perceptions of parenting styles, for both parents, in Sweden, Italy and Greece, using the Parenting Styles and Dimensions Questionnaire. In particular, it examines the relation between parental role, adolescent gender, country of origin, SES and these perceptions. Swedish, Italian and Greek adolescents (N = 702; 30.9% Swedish, 39.6% Italian and 29.5% Greek) participated in the study. To test the principal effects three mixed 2(parent; mother and father)*2(gender; girl and boy)*3(countries; Sweden, Italy and Greece)*3(SES; low, medium and high) ANOVAs were conducted separately for each parenting style. To verify the interaction effects, a mixed 2(parent; mother and father)*3(countries; Sweden, Italy and Greece)*3(SES; low, medium and high) ANOVA was tested on authoritative style. Regarding authoritarian and permissive two mixed 2(parent; mother and father)*2(gender; girl and boy)*3(countries; Sweden, Italy and Greece) ANOVAs were tested. Mothers, as compared to fathers, were perceived as more authoritative, authoritarian and permissive. Moreover, boys perceived their parents as more authoritarian and more permissive than girls. Swedish parents were perceived as significantly less authoritarian than Italian and Greek parents and more permissive than Italian parents; Greek parents were perceived as less authoritarian and more permissive than Italian parents. The study provides an interesting contribution to parenting styles literature, showing how country legislation concerning family matters and SES are related the perception of parenting behaviours.
Lampa, Erik G; Nilsson, Leif; Liljelind, Ingrid E; Bergdahl, Ingvar A
2006-06-01
When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the 'shared temporal variation' which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.
Finite Element Model Calibration Approach for Area I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
Finite Element Model Calibration Approach for Ares I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
The risk of misclassifying subjects within principal component based asset index
2014-01-01
The asset index is often used as a measure of socioeconomic status in empirical research as an explanatory variable or to control confounding. Principal component analysis (PCA) is frequently used to create the asset index. We conducted a simulation study to explore how accurately the principal component based asset index reflects the study subjects’ actual poverty level, when the actual poverty level is generated by a simple factor analytic model. In the simulation study using the PC-based asset index, only 1% to 4% of subjects preserved their real position in a quintile scale of assets; between 44% to 82% of subjects were misclassified into the wrong asset quintile. If the PC-based asset index explained less than 30% of the total variance in the component variables, then we consistently observed more than 50% misclassification across quintiles of the index. The frequency of misclassification suggests that the PC-based asset index may not provide a valid measure of poverty level and should be used cautiously as a measure of socioeconomic status. PMID:24987446
Machine learning of frustrated classical spin models. I. Principal component analysis
NASA Astrophysics Data System (ADS)
Wang, Ce; Zhai, Hui
2017-10-01
This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.
Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed
2015-01-01
Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483
Comparison of AIS Versus TMS Data Collected over the Virginia Piedmont
NASA Technical Reports Server (NTRS)
Bell, R.; Evans, C. S.
1985-01-01
The Airborne Imaging Spectrometer (AIS, NS001 Thematic Mapper Simlulator (TMS), and Zeiss camera collected remotely sensed data simultaneously on October 27, 1983, at an altitude of 6860 meters (22,500 feet). AIS data were collected in 32 channels covering 1200 to 1500 nm. A simple atmospheric correction was applied to the AIS data, after which spectra for four cover types were plotted. Spectra for these ground cover classes showed a telescoping effect for the wavelength endpoints. Principal components were extracted from the shortwave region of the AIS (1200 to 1280 nm), full spectrum AIS (1200 to 1500 nm) and TMS (450 to 12,500 nm) to create three separate three-component color image composites. A comparison of the TMS band 5 (1000 to 1300 nm) to the six principal components from the shortwave AIS region (1200 to 1280 nm) showed improved visual discrimination of ground cover types. Contrast of color image composites created from principal components showed the AIS composites to exhibit a clearer demarcation between certain ground cover types but subtle differences within other regions of the imagery were not as readily seen.
Research on Air Quality Evaluation based on Principal Component Analysis
NASA Astrophysics Data System (ADS)
Wang, Xing; Wang, Zilin; Guo, Min; Chen, Wei; Zhang, Huan
2018-01-01
Economic growth has led to environmental capacity decline and the deterioration of air quality. Air quality evaluation as a fundamental of environmental monitoring and air pollution control has become increasingly important. Based on the principal component analysis (PCA), this paper evaluates the air quality of a large city in Beijing-Tianjin-Hebei Area in recent 10 years and identifies influencing factors, in order to provide reference to air quality management and air pollution control.
Principal components analysis of the photoresponse nonuniformity of a matrix detector.
Ferrero, Alejandro; Alda, Javier; Campos, Joaquín; López-Alonso, Jose Manuel; Pons, Alicia
2007-01-01
The principal component analysis is used to identify and quantify spatial distributions of relative photoresponse as a function of the exposure time for a visible CCD array. The analysis shows a simple way to define an invariant photoresponse nonuniformity and compare it with the definition of this invariant pattern as the one obtained for long exposure times. Experimental data of radiant exposure from levels of irradiance obtained in a stable and well-controlled environment are used.
Catanuto, Giuseppe; Taher, Wafa; Rocco, Nicola; Catalano, Francesca; Allegra, Dario; Milotta, Filippo Luigi Maria; Stanco, Filippo; Gallo, Giovanni; Nava, Maurizio Bruno
2018-03-20
Breast shape is defined utilizing mainly qualitative assessment (full, flat, ptotic) or estimates, such as volume or distances between reference points, that cannot describe it reliably. We will quantitatively describe breast shape with two parameters derived from a statistical methodology denominated principal component analysis (PCA). We created a heterogeneous dataset of breast shapes acquired with a commercial infrared 3-dimensional scanner on which PCA was performed. We plotted on a Cartesian plane the two highest values of PCA for each breast (principal components 1 and 2). Testing of the methodology on a preoperative and postoperative surgical case and test-retest was performed by two operators. The first two principal components derived from PCA are able to characterize the shape of the breast included in the dataset. The test-retest demonstrated that different operators are able to obtain very similar values of PCA. The system is also able to identify major changes in the preoperative and postoperative stages of a two-stage reconstruction. Even minor changes were correctly detected by the system. This methodology can reliably describe the shape of a breast. An expert operator and a newly trained operator can reach similar results in a test/re-testing validation. Once developed and after further validation, this methodology could be employed as a good tool for outcome evaluation, auditing, and benchmarking.
Nesakumar, Noel; Baskar, Chanthini; Kesavan, Srinivasan; Rayappan, John Bosco Balaguru; Alwarappan, Subbiah
2018-05-22
The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm -1 with a spectral resolution of 8 cm -1 . In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm -1 , Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm -1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.
Fine structure of the low-frequency spectra of heart rate and blood pressure
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-01-01
Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660
Fine structure of the low-frequency spectra of heart rate and blood pressure.
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-10-13
The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.
Principal component analysis on a torus: Theory and application to protein dynamics.
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-28
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib 9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
Principal component analysis on a torus: Theory and application to protein dynamics
NASA Astrophysics Data System (ADS)
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-01
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
ECOPASS - a multivariate model used as an index of growth performance of poplar clones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceulemans, R.; Impens, I.
The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less
Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study
Gribble, Matthew O.; Voruganti, Venkata Saroja; Cole, Shelley A.; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L.; Tellez-Plaza, Maria; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G.; Thomas, Duncan C.; Gilliland, Frank; North, Kari E.; Franceschini, Nora; Navas-Acien, Ana
2015-01-01
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ∼400 genome-wide microsatellite markers spaced ∼10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557
Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
NASA Astrophysics Data System (ADS)
Sengupta, A.; Ranjan, P.
2002-07-01
Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.
Strale, Mathieu; Krysinska, Karolina; Overmeiren, Gaëtan Van; Andriessen, Karl
2017-06-01
This study investigated the geographic distribution of suicide and railway suicide in Belgium over 2008--2013 on local (i.e., district or arrondissement) level. There were differences in the regional distribution of suicide and railway suicides in Belgium over the study period. Principal component analysis identified three groups of correlations among population variables and socio-economic indicators, such as population density, unemployment, and age group distribution, on two components that helped explaining the variance of railway suicide at a local (arrondissement) level. This information is of particular importance to prevent suicides in high-risk areas on the Belgian railway network.
NASA Astrophysics Data System (ADS)
Asensio, Carlos; Lozano, Francisco Javier; Gallardo, Pedro; Giménez, Antonio
2016-08-01
Wind erosion is a key component of the soil degradation processes. The purpose of this study is to find out the influence of material loss from wind on soil properties for different soil types and changes in soil properties in olive groves when they are tilled. The study area is located in the north of the Tabernas Desert, in the province of Almería, southeastern Spain. It is one of the driest areas in Europe, with a semiarid thermo-Mediterranean type of climate. We used a new wind tunnel model over three different soil types (olive-cropped Calcisol, Cambisol and Luvisol) and studied micro-plot losses and deposits detected by an integrated laser scanner. We also studied the image processing possibilities for examining the particles attached to collector plates located at the end of the tunnel to determine their characteristics and whether they were applicable to the setup. Samples collected in the traps at the end of the tunnel were analyzed. We paid special attention to the influence of organic carbon, carbonate and clay contents because of their special impact on soil crusting and the wind-erodible fraction. A principal components analysis (PCA) was carried out to find any relations on generated dust properties and the intensity and behavior of those relationships. Component 1 separated data with high N and OC contents from samples high in fine silt, CO3= and available K content. Component 2 separated data with high coarse silt and clay contents from data with high fine sand content. Component 3 was an indicator of available P2O5 content. Analysis of variance (ANOVA) was carried out to analyze the effect of soil type and sampling height on different properties of trapped dust. Calculations based on tunnel data showed overestimation of erosion in soil types and calculation of the fraction of soil erodible by wind done by other authors for Spanish soils. As the highest loss was found in Cambisols, mainly due to the effect on soil crusting and the wind-erodible fraction aggregation of CaCO3, a Stevia rebaudiana cover crop was planted between the rows in this soil type and this favored retention of particles in vegetation.
ERIC Educational Resources Information Center
Rosa, Victor M.
2013-01-01
Purpose: The purpose of this study was to determine the extent to which California public high school principals perceive the WASC Self-Study Process as a valuable tool for bringing about school improvement. The study specifically examines the principals' perceptions of five components within the Self-Study Process: (1) The creation of the…
Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.
G.R. Johnson; J.N. King
1998-01-01
Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...
From measurements to metrics: PCA-based indicators of cyber anomaly
NASA Astrophysics Data System (ADS)
Ahmed, Farid; Johnson, Tommy; Tsui, Sonia
2012-06-01
We present a framework of the application of Principal Component Analysis (PCA) to automatically obtain meaningful metrics from intrusion detection measurements. In particular, we report the progress made in applying PCA to analyze the behavioral measurements of malware and provide some preliminary results in selecting dominant attributes from an arbitrary number of malware attributes. The results will be useful in formulating an optimal detection threshold in the principal component space, which can both validate and augment existing malware classifiers.
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Lihacova, Ilze; Kuzmina, Ilona; Spigulis, Janis
2013-11-01
Non-invasive and fast primary diagnostics of pigmented skin lesions is required due to frequent incidence of skin cancer - melanoma. Diagnostic potential of principal component analysis (PCA) for distant skin melanoma recognition is discussed. Processing of the measured clinical multi-spectral images (31 melanomas and 94 nonmalignant pigmented lesions) in the wavelength range of 450-950 nm by means of PCA resulted in 87 % sensitivity and 78 % specificity for separation between malignant melanomas and pigmented nevi.
Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral Imagery
2014-03-27
2003), and (Jackson D. A., 1993). In 1933, Hotelling ( Hotelling , 1933), who coined the term ‘principal components,’ surmised that there was a...goodness of fit and multivariate quality control with the statistic Qi = (Xi(1×p) − X̂i(1×p) )(Xi(1×p) − X̂i(1×p) ) T (20) where, under the...sparsely targeted scenes through SNR or other methods. 5) Customize sorting and histogram construction methods in Multiple PCA to avoid redundancy
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri
2018-02-01
Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.
Kluess, Daniel; Mittelmeier, Wolfram; Bader, Rainer
2010-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty. We generated an explicit finite-element-model to calculate the stresses developed under the highly dynamic intraoperative impaction with regard to cobalt-chromium and ceramic implant material as well as application of a silicone cover in order to reduce stress. The impaction was calculated with the hammer hitting the backside of the impactor at previously measured initial velocities. Subsequently the impactor, consisting of a steel handhold and a polyoxymethylene head, hit the femoral component. Instead of modelling femoral bone, the implant was mounted on four spring elements with spring constants previously determined in an experimental impaction model. The maximum principal stresses in the implants were evaluated at 8000 increments during the first 4 ms of impact. The ceramic implant showed principal stresses 10% to 48% higher than the cobalt chromium femoral component. The simulation of a 5mm thick silicone layer between the impactor and the femoral component showed a strong decrease of vibration resulting in a reduction of 54% to 68% of the maximum stress amounts. The calculated amounts of principal stress were beneath the ultimate bending strengths of each material. Based on the results, intraoperative fracture of femoral components in total knee replacement may not be caused solely by impaction, but also by contributing geometrical factors such as inadequate preparation of the distal femur. In order to minimize the influence of impaction related stress peaks we recommend limiting the velocity as well as the weight of the impaction hammer when inserting femoral components. The silicone cover seems to deliver a strong decrease of implant stress and should be considered in surgery technique in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.
Application of Regression-Discontinuity Analysis in Pharmaceutical Health Services Research
Zuckerman, Ilene H; Lee, Euni; Wutoh, Anthony K; Xue, Zhenyi; Stuart, Bruce
2006-01-01
Objective To demonstrate how a relatively underused design, regression-discontinuity (RD), can provide robust estimates of intervention effects when stronger designs are impossible to implement. Data Sources/Study Setting Administrative claims from a Mid-Atlantic state Medicaid program were used to evaluate the effectiveness of an educational drug utilization review intervention. Study Design Quasi-experimental design. Data Collection/Extraction Methods A drug utilization review study was conducted to evaluate a letter intervention to physicians treating Medicaid children with potentially excessive use of short-acting β2-agonist inhalers (SAB). The outcome measure is change in seasonally-adjusted SAB use 5 months pre- and postintervention. To determine if the intervention reduced monthly SAB utilization, results from an RD analysis are compared to findings from a pretest–posttest design using repeated-measure ANOVA. Principal Findings Both analyses indicated that the intervention significantly reduced SAB use among the high users. Average monthly SAB use declined by 0.9 canisters per month (p<.001) according to the repeated-measure ANOVA and by 0.2 canisters per month (p<.001) from RD analysis. Conclusions Regression-discontinuity design is a useful quasi-experimental methodology that has significant advantages in internal validity compared to other pre–post designs when assessing interventions in which subjects' assignment is based on cutoff scores for a critical variable. PMID:16584464
Ramli, Saifullah; Ismail, Noryati; Alkarkhi, Abbas Fadhl Mubarek; Easa, Azhar Mat
2010-08-01
Banana peel flour (BPF) prepared from green or ripe Cavendish and Dream banana fruits were assessed for their total starch (TS), digestible starch (DS), resistant starch (RS), total dietary fibre (TDF), soluble dietary fibre (SDF) and insoluble dietary fibre (IDF). Principal component analysis (PCA) identified that only 1 component was responsible for 93.74% of the total variance in the starch and dietary fibre components that differentiated ripe and green banana flours. Cluster analysis (CA) applied to similar data obtained two statistically significant clusters (green and ripe bananas) to indicate difference in behaviours according to the stages of ripeness based on starch and dietary fibre components. We concluded that the starch and dietary fibre components could be used to discriminate between flours prepared from peels obtained from fruits of different ripeness. The results were also suggestive of the potential of green and ripe BPF as functional ingredients in food.
Ramli, Saifullah; Ismail, Noryati; Alkarkhi, Abbas Fadhl Mubarek; Easa, Azhar Mat
2010-01-01
Banana peel flour (BPF) prepared from green or ripe Cavendish and Dream banana fruits were assessed for their total starch (TS), digestible starch (DS), resistant starch (RS), total dietary fibre (TDF), soluble dietary fibre (SDF) and insoluble dietary fibre (IDF). Principal component analysis (PCA) identified that only 1 component was responsible for 93.74% of the total variance in the starch and dietary fibre components that differentiated ripe and green banana flours. Cluster analysis (CA) applied to similar data obtained two statistically significant clusters (green and ripe bananas) to indicate difference in behaviours according to the stages of ripeness based on starch and dietary fibre components. We concluded that the starch and dietary fibre components could be used to discriminate between flours prepared from peels obtained from fruits of different ripeness. The results were also suggestive of the potential of green and ripe BPF as functional ingredients in food. PMID:24575193
Determining the Number of Components from the Matrix of Partial Correlations
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
A method is presented for determining the number of components to retain in a principal components or image components analysis which utilizes a matrix of partial correlations. Advantages and uses of the method are discussed and a comparison of the proposed method with existing methods is presented. (JKS)
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
[Studies on the brand traceability of milk powder based on NIR spectroscopy technology].
Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian
2013-10-01
Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.
Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S
2018-05-31
Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.
Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS
NASA Astrophysics Data System (ADS)
Lu, Q.; Fan, Y.; Peng, Z.; Ding, H.; Gao, H.
2012-07-01
A new approach for the nondestructive discrimination between genuine wild ginsengs and the counterfeit ones by near infrared spectroscopy (NIRS) was developed. Both discriminant analysis and back propagation artificial neural network (BP-ANN) were applied to the model establishment for discrimination. Optimal modeling wavelengths were determined based on the anomalous spectral information of counterfeit samples. Through principal component analysis (PCA) of various wild ginseng samples, genuine and counterfeit, the cumulative percentages of variance of the principal components were obtained, serving as a reference for principal component (PC) factor determination. Discriminant analysis achieved an identification ratio of 88.46%. With sample' truth values as its outputs, a three-layer BP-ANN model was built, which yielded a higher discrimination accuracy of 100%. The overall results sufficiently demonstrate that NIRS combined with BP-ANN classification algorithm performs better on ginseng discrimination than discriminant analysis, and can be used as a rapid and nondestructive method for the detection of counterfeit wild ginsengs in food and pharmaceutical industry.
NASA Technical Reports Server (NTRS)
Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.
2013-01-01
We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Woei
2012-09-01
This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Component Structure of Individual Differences in True and False Recognition of Faces
ERIC Educational Resources Information Center
Bartlett, James C.; Shastri, Kalyan K.; Abdi, Herve; Neville-Smith, Marsha
2009-01-01
Principal-component analyses of 4 face-recognition studies uncovered 2 independent components. The first component was strongly related to false-alarm errors with new faces as well as to facial "conjunctions" that recombine features of previously studied faces. The second component was strongly related to hits as well as to the conjunction/new…
Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang
2006-03-01
The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Typed Multiset Rewriting Specifications of Security Protocols
2011-10-01
to define the type of a tuple as the sequence of the types of its components. Therefore, if A is a principal name and kA is a public key for A, the...tuple (A, kA ) would have type “principal × pubK A” (the Cartesian product symbol “×” is the standard constructor for tuple types). This construction...allows us to associate a generic principal with A’s public key: if B is another principal, then (B, kA ) will have this type as well. We will often need
Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie
2014-08-01
Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C
2004-09-08
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.
2004-09-01
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.
Latry, Philippe; Martin-Latry, Karin; Labat, Anne; Molimard, Mathieu; Peter, Claude
2011-08-01
The prevalence of statin use is high but adherence low. For public health intervention to be rational, subpopulations of nonadherent subjects must be defined. To categorise statin users with respect to patterns of reimbursement, this study was performed using the main French health reimbursement database for the Aquitaine region of south-western France. The cohort included subjects who submitted a reimbursement for at least one delivery of a statin (index) during the inclusion period (1st of September 2004-31st of December 2004). Indicators of adherence from reimbursement data were considered for principal component analysis. The 119,570 subjects included and analysed had a sex ratio of 1.1, mean (SD) age of 65.9 (11.9), and 13% were considered incident statin users. Principal component analysis found three dimensions that explained 67% of the variance. Using a K-means classification combined with a hierarchical ascendant classification, six groups were characterised. One group was considered nonadherent (10% of study population) and one group least adherent (1%). This novel application of principal component analysis identified groups that may be potential targets for intervention. The least adherent group appears to be one of the most appropriate because of both its relatively small size for case review with prescribing physicians and its very poor adherence. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.
NASA Astrophysics Data System (ADS)
Price-Jones, Natalie; Bovy, Jo
2018-03-01
Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.
Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.
Gupta, Rajarshi
2016-05-01
Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.
Azilawati, M I; Hashim, D M; Jamilah, B; Amin, I
2015-04-01
The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Slaus, Mario; Tomicić, Zeljko; Uglesić, Ante; Jurić, Radomir
2004-08-01
To determine the ethnic composition of the early medieval Croats, the location from which they migrated to the east coast of the Adriatic, and to separate early medieval Croats from Bijelo brdo culture members, using principal components analysis and discriminant function analysis of craniometric data from Central and South-East European medieval archaeological sites. Mean male values for 8 cranial measurements from 39 European and 5 Iranian sites were analyzed by principal components analysis. Raw data for 17 cranial measurements for 103 female and 112 male skulls were used to develop discriminant functions. The scatter-plot of the analyzed sites on the first 2 principal components showed a pattern of intergroup relationships consistent with geographical and archaeological information not included in the data set. The first 2 principal components separated the sites into 4 distinct clusters: Avaroslav sites west of the Danube, Avaroslav sites east of the Danube, Bijelo brdo sites, and Polish sites. All early medieval Croat sites were located in the cluster of Polish sites. Two discriminant functions successfully differentiated between early medieval Croats and Bijelo brdo members. Overall accuracies were high -- 89.3% for males, and 97.1% for females. Early medieval Croats seem to be of Slavic ancestry, and at one time shared a common homeland with medieval Poles. Application of unstandardized discriminant function coefficients to unclassified crania from 18 sites showed an expansion of early medieval Croats into continental Croatia during the 10th to 13th century.
A Process Model of Principal Selection.
ERIC Educational Resources Information Center
Flanigan, J. L.; And Others
A process model to assist school district superintendents in the selection of principals is presented in this paper. Components of the process are described, which include developing an action plan, formulating an explicit job description, advertising, assessing candidates' philosophy, conducting interview analyses, evaluating response to stress,…
NASA Astrophysics Data System (ADS)
Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.
2008-11-01
We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.
Decomposing the Apoptosis Pathway Into Biologically Interpretable Principal Components
Wang, Min; Kornblau, Steven M; Coombes, Kevin R
2018-01-01
Principal component analysis (PCA) is one of the most common techniques in the analysis of biological data sets, but applying PCA raises 2 challenges. First, one must determine the number of significant principal components (PCs). Second, because each PC is a linear combination of genes, it rarely has a biological interpretation. Existing methods to determine the number of PCs are either subjective or computationally extensive. We review several methods and describe a new R package, PCDimension, that implements additional methods, the most important being an algorithm that extends and automates a graphical Bayesian method. Using simulations, we compared the methods. Our newly automated procedure is competitive with the best methods when considering both accuracy and speed and is the most accurate when the number of objects is small compared with the number of attributes. We applied the method to a proteomics data set from patients with acute myeloid leukemia. Proteins in the apoptosis pathway could be explained using 6 PCs. By clustering the proteins in PC space, we were able to replace the PCs by 6 “biological components,” 3 of which could be immediately interpreted from the current literature. We expect this approach combining PCA with clustering to be widely applicable. PMID:29881252
Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P
2013-10-01
One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.
NASA Astrophysics Data System (ADS)
Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried
2018-03-01
This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.
Structural aspects of face recognition and the other-race effect.
O'Toole, A J; Deffenbacher, K A; Valentin, D; Abdi, H
1994-03-01
The other-race effect was examined in a series of experiments and simulations that looked at the relationships among observer ratings of typicality, familiarity, attractiveness, memorability, and the performance variables of d' and criterion. Experiment 1 replicated the other-race effect with our Caucasian and Japanese stimuli for both Caucasian and Asian observers. In Experiment 2, we collected ratings from Caucasian observers on the faces used in the recognition task. A Varimax-rotated principal components analysis on the rating and performance data for the Caucasian faces replicated Vokey and Read's (1992) finding that typicality is composed of two orthogonal components, dissociable via their independent relationships to: (1) attractiveness and familiarity ratings and (2) memorability ratings. For Japanese faces, however, we found that typicality was related only to memorability. Where performance measures were concerned, two additional principal components dominated by criterion and by d' emerged for Caucasian faces. For the Japanese faces, however, the performance measures of d' and criterion merged into a single component that represented a second component of typicality, one orthogonal to the memorability-dominated component. A measure of face representation quality extracted from an autoassociative neural network trained with a majority of Caucasian faces and a minority of Japanese faces was incorporated into the principal components analysis. For both Caucasian and Japanese faces, the neural network measure related both to memorability ratings and to human accuracy measures. Combined, the human data and simulation results indicate that the memorability component of typicality may be related to small, local, distinctive features, whereas the attractiveness/familiarity component may be more related to the global, shape-based properties of the face.
Ghose, R; Fushman, D; Cowburn, D
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Ghose, Ranajeet; Fushman, David; Cowburn, David
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.
Modulated Hebb-Oja learning rule--a method for principal subspace analysis.
Jankovic, Marko V; Ogawa, Hidemitsu
2006-03-01
This paper presents analysis of the recently proposed modulated Hebb-Oja (MHO) method that performs linear mapping to a lower-dimensional subspace. Principal component subspace is the method that will be analyzed. Comparing to some other well-known methods for yielding principal component subspace (e.g., Oja's Subspace Learning Algorithm), the proposed method has one feature that could be seen as desirable from the biological point of view--synaptic efficacy learning rule does not need the explicit information about the value of the other efficacies to make individual efficacy modification. Also, the simplicity of the "neural circuits" that perform global computations and a fact that their number does not depend on the number of input and output neurons, could be seen as good features of the proposed method.
Jiang, F.; Xia, Z.; Li, S.; Eckert, G.; Chen, J.
2015-01-01
Objective To investigate the initial mechanical environment (ME) changes in root surface, periodontal ligament (PDL), and alveolar bone due to two treatment strategies, low or high moment-to-force ratio (M/F). Setting and Sample Population Indiana University-Purdue University Indianapolis. Eighteen patients who underwent maxillary bilateral canine retraction. Material and method Finite element models of the maxillary canines from the patients were built based on their cone beam computed tomography scans. For each patient, the canine on one side had a specially designed T-loop spring with the M/F higher than the other side. Four stress invariants (1st principal/dilatational/3rd principal/von Mises stress) in the tissues were calculated. The stresses were compared with the bone mineral density (BMD) changes reported previously for linking the ME change to bone modeling/remodeling activities. The correlation was tested by the mixed-model anova. Results The alveolar bone in the direction of tooth movement is primarily in tension, while the PDL is in compression; the stresses in the opposite direction have a reversed pattern. The M/F primarily affects the stress in root. Three stress invariants (1st principal/3rd principal/dilatational stress) in the tooth movement direction have moderate correlations with BMD loss. Conclusions The stress invariants may be used to characterize what the osteocytes sense when ME changes. Their distributions in the tissues are significantly different, meaning the cells experience different stimuli. The higher bone activities along the direction of tooth movement may be related to the initial volumetric increase and decrease in the alveolar bone. PMID:25865531
Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.
Singer, Ellen; Garcia, Tanya; Stover, Susan
2015-07-16
Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses. Copyright © 2015 Elsevier Ltd. All rights reserved.
How Many Separable Sources? Model Selection In Independent Components Analysis
Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen
2015-01-01
Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988
Descriptive analysis and early-stage consumer acceptance of yogurts fermented with carrot juice.
Cliff, M A; Fan, L; Sanford, K; Stanich, K; Doucette, C; Raymond, N
2013-07-01
This research explored the sensory characteristics and consumer acceptance of novel probiotic unsweetened yogurts. Yogurts were made with 4 carrot juice levels (8, 16, 24, and 32%), 2 firmness levels (regular, 45g/L milk solids; firm, 90g/L milk solids), and 2 starter cultures (C1, C2). The sensory profile characterized the color intensity (before and after stirring), carrot flavor, sourness, and 7 texture/mouth-feel attributes (astringency, chalkiness, mouth-coating, thickness, smoothness, creaminess, and graininess). The influence of carrot juice level and firmness level were evaluated using ANOVA, polynomial contrasts, and principal component analysis. Mean scores and standard errors were calculated. Consumer acceptance panels in Wolfville, Nova Scotia (n=56), and in Vancouver, British Columbia (Asian n=72, non-Asian n=72), evaluated the hedonic responses to the C1 and C2 formulations, respectively. We observed increases in color intensity, carrot flavor, creaminess, mouth-coating, and chalkiness with increasing carrot juice levels, as well as increases in color intensity, carrot flavor, creaminess, mouth-coating, thickness, and astringency with increasing milk solids concentrations of the C1 and C2 yogurts. Mean hedonic scores for color, appearance, and texture/mouth-feel were greater than hedonic scores for aroma, flavor/taste, and overall liking. This research identified the sensory qualities that need further development and demonstrated the importance of early-stage consumer acceptance research for directing new product development. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pelvic form and locomotor adaptation in strepsirrhine primates.
Lewton, Kristi L
2015-01-01
The pelvic girdle is a complex structure with a critical role in locomotion, but efforts to model the mechanical effects of locomotion on its shape remain difficult. Traditional approaches to understanding form and function include univariate adaptive hypothesis-testing derived from mechanical models. Geometric morphometric (GM) methods can yield novel insight into overall three-dimensional shape similarities and differences across groups, although the utility of GM in assessing functional differences has been questioned. This study evaluates the contributions of both univariate and GM approaches to unraveling the trait-function associations between pelvic form and locomotion. Three-dimensional landmarks were collected on a phylogenetically-broad sample of 180 pelves from nine primate taxa. Euclidean interlandmark distances were calculated to facilitate testing of biomechanical hypotheses, and a principal components (PC) analysis was performed on Procrustes coordinates to examine overall shape differences. Both linear dimensions and PC scores were subjected to phylogenetic ANOVA. Many of the null hypotheses relating linear dimensions to locomotor loading were not rejected. Although both analytical approaches suggest that ilium width and robusticity differ among locomotor groups, the GM analysis also suggests that ischiopubic shape differentiates groups. Although GM provides additional quantitative results beyond the univariate analyses, this study highlights the need for new GM methods to more specifically address functional shape differences among species. Until these methods are developed, it would be prudent to accompany tests of directional biomechanical hypotheses with current GM methods for a more nuanced understanding of shape and function. © 2014 Wiley Periodicals, Inc.
Kurzawa, Marzanna; Filipiak-Szok, Anna; Kłodzińska, Ewa; Szłyk, Edward
2015-07-15
Antioxidant activity, total phenolics content and selected phytochemicals (alkaloids and andrographolides) were determined in Andrographis paniculata and in dietary supplements containing this plant. Antioxidant activity was measured by FRAP, CUPRAC and DPPH procedures and ranged from 503.36 to 6164.09μmol TE/100g d.m. depending on methods, part of plant and kind of dietary supplement. The total phenolics (175.13-1723.79mg GAE/100g) and andrographolides content (19.44-85.13mg/g) in the studied samples were correlated with antioxidant activities determined by CUPRAC, FRAP and DPPH (r>0.95, p<0.05 level). Purine alkaloids: caffeine, theobromine, theophylline and indole alkaloids: harmine, harmane, harmol, yohimbine, brucine and strychnine were detected in the studied samples by different chromatographic techniques (HPLC-DAD, LC-MS/MS, GC-MS). The total alkaloids content in APs-roots and APs-leaves varies from 50.71±0.36mg/g d.m. to 78.71±0.48mg/g d.m., respectively, whereas for dietary supplements (Pn and DK) TAC was found between 19.52±0.15mg/g and 22.18±0.15mg/g d.m.. The highest concentration of andrographolides was found in A. paniculata leaves, whereas the lowest in dietary supplement Pn. Moreover principal component analysis, cluster analysis and one-way ANOVA follow by Duncan's tests were also performed. Copyright © 2015. Published by Elsevier B.V.
Multidimensional attitudes of emergency medicine residents toward older adults.
Hogan, Teresita M; Chan, Shu B; Hansoti, Bhakti
2014-07-01
The demands of our rapidly expanding older population strain many emergency departments (EDs), and older patients experience disproportionately high adverse health outcomes. Trainee attitude is key in improving care for older adults. There is negligible knowledge of baseline emergency medicine (EM) resident attitudes regarding elder patients. Awareness of baseline attitudes can serve to better structure training for improved care of older adults. The objective of the study is to identify baseline EM resident attitudes toward older adults using a validated attitude scale and multidimensional analysis. Six EM residencies participated in a voluntary anonymous survey delivered in summer and fall 2009. We used factor analysis using the principal components method and Varimax rotation, to analyze attitude interdependence, translating the 21 survey questions into 6 independent dimensions. We adapted this survey from a validated instrument by the addition of 7 EM-specific questions to measures attitudes relevant to emergency care of elders and the training of EM residents in the geriatric competencies. Scoring was performed on a 5-point Likert scale. We compared factor scores using student t and ANOVA. 173 EM residents participated showing an overall positive attitude toward older adults, with a factor score of 3.79 (3.0 being a neutral score). Attitudes trended to more negative in successive post-graduate year (PGY) levels. EM residents demonstrate an overall positive attitude towards the care of older adults. We noted a longitudinal hardening of attitude in social values, which are more negative in successive PGY-year levels.
Marčetić, Mirjana; Kovačević, Nada; Lakušić, Dmitar; Lakušić, Branislava
2017-03-01
Plant specialised metabolites like essential oils are highly variable depending on genetic and various ecological factors. The aim of the present work was to characterise essential oils of the species Seseli rigidum Waldst. & Kit. (Apiaceae) in various organs on the individual and populational levels. Geographical variability and the impact of climate and soil type on essential oil composition were also investigated. Individually sampled essential oils of roots, aerial parts and fruits of plants from seven populations were analysed by GC-FID and GC-MS. The investigated populations showed high interpopulational and especially intrapopulational variability of essential oil composition. In regard to the variability of essential oils, different chemotypes were defined. The essential oils of S. rigidum roots represented a falcarinol chemotype, oils of aerial parts constituted an α-pinene or α-pinene/sabinene chemotype and fruit essential oils can be characterised as belonging to a complex sabinene/α-pinene/β-phellandrene/falcarinol/germacrene B chemotype. At the species level, analysis of variance (ANOVA), principal component analysis (PCA) and canonical discriminant analysis (CDA) showed that the plant part exerted the strongest influence on the composition of essential oils. Climate had a high impact on composition of the essential oils of roots, aerial parts and fruits, while influence of the substrate was less pronounced. The variations in main compounds of essential oils based on climate or substrate were complex and specific to the plant part. Copyright © 2016 Elsevier Ltd. All rights reserved.
GECKO: a complete large-scale gene expression analysis platform.
Theilhaber, Joachim; Ulyanov, Anatoly; Malanthara, Anish; Cole, Jack; Xu, Dapeng; Nahf, Robert; Heuer, Michael; Brockel, Christoph; Bushnell, Steven
2004-12-10
Gecko (Gene Expression: Computation and Knowledge Organization) is a complete, high-capacity centralized gene expression analysis system, developed in response to the needs of a distributed user community. Based on a client-server architecture, with a centralized repository of typically many tens of thousands of Affymetrix scans, Gecko includes automatic processing pipelines for uploading data from remote sites, a data base, a computational engine implementing approximately 50 different analysis tools, and a client application. Among available analysis tools are clustering methods, principal component analysis, supervised classification including feature selection and cross-validation, multi-factorial ANOVA, statistical contrast calculations, and various post-processing tools for extracting data at given error rates or significance levels. On account of its open architecture, Gecko also allows for the integration of new algorithms. The Gecko framework is very general: non-Affymetrix and non-gene expression data can be analyzed as well. A unique feature of the Gecko architecture is the concept of the Analysis Tree (actually, a directed acyclic graph), in which all successive results in ongoing analyses are saved. This approach has proven invaluable in allowing a large (approximately 100 users) and distributed community to share results, and to repeatedly return over a span of years to older and potentially very complex analyses of gene expression data. The Gecko system is being made publicly available as free software http://sourceforge.net/projects/geckoe. In totality or in parts, the Gecko framework should prove useful to users and system developers with a broad range of analysis needs.
Warmenhoven, John; Cobley, Stephen; Draper, Conny; Harrison, Andrew; Bargary, Norma; Smith, Richard
2018-05-01
To examine whether gender or side of the boat influenced shape characteristics of the force-angle profile in on-water single sculling. Cross-sectional study design. Bivariate functional principal components analysis (bfPCA) was applied to force-angle data to identify the main modes of variance in curves of forty highly skilled male and female rowers (national and international level), rowing at 32 strokes per minute in a single scull boat. Separate discriminant function analyses for each side of the boat showed strong classification of rowers for gender. Force application close to (or closely around) the perpendicular oar position was demonstrated to be different between genders. A mixed ANOVA exploring gender, boat side and their interaction revealed that bow and stroke side forces were also statistically different from each other independently of gender. A main effect, independent of side of the boat, was also present for gender and no interaction was found between gender and boat side. Bow side forces seemingly acted as a driver of power and peak force production, while stroke side forces may have acted as a mediator of propulsive forces with an additional potential role in steering due to known asymmetrical offsets in boat rigging. Results demonstrate that propulsive force differences according to gender and boat-side are evident and must be acknowledged and accounted for before force-angle graphs are explored relative to performance measures. Copyright © 2017. Published by Elsevier Ltd.
Multidimensional Attitudes of Emergency Medicine Residents Toward Older Adults
Hogan, Teresita M.; Chan, Shu B.; Hansoti, Bhakti
2014-01-01
Introduction The demands of our rapidly expanding older population strain many emergency departments (EDs), and older patients experience disproportionately high adverse health outcomes. Trainee attitude is key in improving care for older adults. There is negligible knowledge of baseline emergency medicine (EM) resident attitudes regarding elder patients. Awareness of baseline attitudes can serve to better structure training for improved care of older adults. The objective of the study is to identify baseline EM resident attitudes toward older adults using a validated attitude scale and multidimensional analysis. Methods Six EM residencies participated in a voluntary anonymous survey delivered in summer and fall 2009. We used factor analysis using the principal components method and Varimax rotation, to analyze attitude interdependence, translating the 21 survey questions into 6 independent dimensions. We adapted this survey from a validated instrument by the addition of 7 EM-specific questions to measures attitudes relevant to emergency care of elders and the training of EM residents in the geriatric competencies. Scoring was performed on a 5-point Likert scale. We compared factor scores using student t and ANOVA. Results 173 EM residents participated showing an overall positive attitude toward older adults, with a factor score of 3.79 (3.0 being a neutral score). Attitudes trended to more negative in successive post-graduate year (PGY) levels. Conclusion EM residents demonstrate an overall positive attitude towards the care of older adults. We noted a longitudinal hardening of attitude in social values, which are more negative in successive PGY-year levels. PMID:25035760
Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins.
Cossio-Pérez, Rodrigo; Palma, Juliana; Pierdominici-Sottile, Gustavo
2017-04-24
Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.
Self-aggregation in scaled principal component space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Chris H.Q.; He, Xiaofeng; Zha, Hongyuan
2001-10-05
Automatic grouping of voluminous data into meaningful structures is a challenging task frequently encountered in broad areas of science, engineering and information processing. These data clustering tasks are frequently performed in Euclidean space or a subspace chosen from principal component analysis (PCA). Here we describe a space obtained by a nonlinear scaling of PCA in which data objects self-aggregate automatically into clusters. Projection into this space gives sharp distinctions among clusters. Gene expression profiles of cancer tissue subtypes, Web hyperlink structure and Internet newsgroups are analyzed to illustrate interesting properties of the space.
Burnett, Andrew D; Fan, Wenhui; Upadhya, Prashanth C; Cunningham, John E; Hargreaves, Michael D; Munshi, Tasnim; Edwards, Howell G M; Linfield, Edmund H; Davies, A Giles
2009-08-01
Terahertz frequency time-domain spectroscopy has been used to analyse a wide range of samples containing cocaine hydrochloride, heroin and ecstasy--common drugs-of-abuse. We investigated real-world samples seized by law enforcement agencies, together with pure drugs-of-abuse, and pure drugs-of-abuse systematically adulterated in the laboratory to emulate real-world samples. In order to investigate the feasibility of automatic spectral recognition of such illicit materials by terahertz spectroscopy, principal component analysis was employed to cluster spectra of similar compounds.
Seven Things a Principal Should Know about School Finance.
ERIC Educational Resources Information Center
Sharp, William L.
1994-01-01
Secondary school principals should understand school finance basics, including property tax components (tax base, assessment practice, and tax rate); allowable tax reductions and exemptions; common arguments against the property tax; cost and valuation per pupil formulas; educational equity arguments; state foundation programs; and various types…
Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases
Markham, Joanne; Flores, Hubert; Hartlein, Johanna M.; Goate, Alison M.; Cairns, Nigel J.; Videen, Tom O.; Perlmutter, Joel S.
2013-01-01
Objective: To use principal component analyses (PCA) of Pittsburgh compound B (PiB) PET imaging to determine whether the pattern of in vivo β-amyloid (Aβ) in Parkinson disease (PD) with cognitive impairment is similar to the pattern found in symptomatic Alzheimer disease (AD). Methods: PiB PET scans were obtained from participants with PD with cognitive impairment (n = 53), participants with symptomatic AD (n = 35), and age-matched controls (n = 67). All were assessed using the Clinical Dementia Rating and APOE genotype was determined in 137 participants. PCA was used to 1) determine the PiB binding pattern in AD, 2) determine a possible unique PD pattern, and 3) directly compare the PiB binding patterns in PD and AD groups. Results: The first 2 principal components (PC1 and PC2) significantly separated the AD and control participants (p < 0.001). Participants with PD with cognitive impairment also were significantly different from participants with symptomatic AD on both components (p < 0.001). However, there was no difference between PD and controls on either component. Even those participants with PD with elevated mean cortical binding potentials were significantly different from participants with AD on both components. Conclusion: Using PCA, we demonstrated that participants with PD with cognitive impairment do not exhibit the same PiB binding pattern as participants with AD. These data suggest that Aβ deposition may play a different pathophysiologic role in the cognitive impairment of PD compared to that in AD. PMID:23825179
ERIC Educational Resources Information Center
Sappington, Neil; Baker, Paul J.; Gardner, Dianne; Pacha, Joe
2010-01-01
This study proposes participatory action research as a signature pedagogy for principal preparation programs. Signature pedagogies bring professional knowledge and core values together in distinctive teaching and learning arrangements. A rationale and learning results are presented that describe key components of action research intended to help…
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Introduction § 62.14505 What are the principal...) through (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
A Graphical Approach to the Standard Principal-Agent Model.
ERIC Educational Resources Information Center
Zhou, Xianming
2002-01-01
States the principal-agent theory is difficult to teach because of its technical complexity and intractability. Indicates the equilibrium in the contract space is defined by the incentive parameter and insurance component of pay under a linear contract. Describes a graphical approach that students with basic knowledge of algebra and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nee, K.; Bryan, S.; Levitskaia, T.
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
A Multi-Dimensional Functional Principal Components Analysis of EEG Data
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A.; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-01-01
Summary The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. PMID:28072468
Nee, K.; Bryan, S.; Levitskaia, T.; ...
2017-12-28
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
A multi-dimensional functional principal components analysis of EEG data.
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-09-01
The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.
How many atoms are required to characterize accurately trajectory fluctuations of a protein?
NASA Astrophysics Data System (ADS)
Cukier, Robert I.
2010-06-01
Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.
Nam, Se Jin; Yoo, Jaeheung; Lee, Hye Sun; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kwak, Jin Young
2016-04-01
To evaluate the diagnostic value of histogram analysis using grayscale sonograms for differentiation of malignant and benign thyroid nodules. From July 2013 through October 2013, 579 nodules in 563 patients who had undergone ultrasound-guided fine-needle aspiration were included. For the grayscale histogram analysis, pixel echogenicity values in regions of interest were measured as 0 to 255 (0, black; 255, white) with in-house software. Five parameters (mean, skewness, kurtosis, standard deviation, and entropy) were obtained for each thyroid nodule. With principal component analysis, an index was derived. Diagnostic performance rates for the 5 histogram parameters and the principal component analysis index were calculated. A total of 563 patients were included in the study (mean age ± SD, 50.3 ± 12.3 years;range, 15-79 years). Of the 579 nodules, 431 were benign, and 148 were malignant. Among the 5 parameters and the principal component analysis index, the standard deviation (75.546 ± 14.153 versus 62.761 ± 16.01; P < .001), kurtosis (3.898 ± 2.652 versus 6.251 ± 9.102; P < .001), entropy (0.16 ± 0.135 versus 0.239 ± 0.185; P < .001), and principal component analysis index (-0.386±0.774 versus 0.134 ± 0.889; P < .001) were significantly different between the malignant and benign nodules. With the calculated cutoff values, the areas under the curve were 0.681 (95% confidence interval, 0.643-0.721) for standard deviation, 0.661 (0.620-0.703) for principal component analysis index, 0.651 (0.607-0.691) for kurtosis, 0.638 (0.596-0.681) for entropy, and 0.606 (0.563-0.647) for skewness. The subjective analysis of grayscale sonograms by radiologists alone showed an area under the curve of 0.861 (0.833-0.888). Grayscale histogram analysis was feasible for differentiating malignant and benign thyroid nodules but did not show better diagnostic performance than subjective analysis performed by radiologists. Further technical advances will be needed to objectify interpretations of thyroid grayscale sonograms. © 2016 by the American Institute of Ultrasound in Medicine.
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences. PMID:26982180
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
Di Carlo, Antonio; Pezzella, Francesca Romana; Fraser, Alec; Bovis, Francesca; Baeza, Juan; McKevitt, Chris; Boaz, Annette; Heuschmann, Peter; Wolfe, Charles D A; Inzitari, Domenico
2015-08-01
Differences in stroke care and outcomes reported in Europe may reflect different degrees of implementation of evidence-based interventions. We evaluated strategies for implementing research evidence into stroke care in 10 European countries. A questionnaire was developed and administered through face-to-face interviews with key informants. Implementation strategies were investigated considering 3 levels (macro, meso, and micro, eg, policy, organization, patients/professionals) identified by the framing analysis, and different settings (primary, hospital, and specialist) of stroke care. Similarities and differences among countries were evaluated using the categorical principal components analysis. Implementation methods reported by ≥7 countries included nonmandatory policies, public financial incentives, continuing professional education, distribution of educational material, educational meetings and campaigns, guidelines, opinion leaders', and stroke patients associations' activities. Audits were present in 6 countries at national level; national and regional regulations in 4 countries. Private financial incentives, reminders, and educational outreach visits were reported only in 2 countries. At national level, the first principal component of categorical principal components analysis separated England, France, Scotland, and Sweden, all with positive object scores, from the other countries. Belgium and Lithuania obtained the lowest scores. At regional level, England, France, Germany, Italy, and Sweden had positive scores in the first principal component, whereas Belgium, Lithuania, Poland, and Scotland showed negative scores. Spain was in an intermediate position. We developed a novel method to assess different domains of implementation in stroke care. Clear variations were observed among European countries. The new tool may be used elsewhere for future contributions. © 2015 American Heart Association, Inc.
An application of principal component analysis to the clavicle and clavicle fixation devices.
Daruwalla, Zubin J; Courtis, Patrick; Fitzpatrick, Clare; Fitzpatrick, David; Mullett, Hannan
2010-03-26
Principal component analysis (PCA) enables the building of statistical shape models of bones and joints. This has been used in conjunction with computer assisted surgery in the past. However, PCA of the clavicle has not been performed. Using PCA, we present a novel method that examines the major modes of size and three-dimensional shape variation in male and female clavicles and suggests a method of grouping the clavicle into size and shape categories. Twenty-one high-resolution computerized tomography scans of the clavicle were reconstructed and analyzed using a specifically developed statistical software package. After performing statistical shape analysis, PCA was applied to study the factors that account for anatomical variation. The first principal component representing size accounted for 70.5 percent of anatomical variation. The addition of a further three principal components accounted for almost 87 percent. Using statistical shape analysis, clavicles in males have a greater lateral depth and are longer, wider and thicker than in females. However, the sternal angle in females is larger than in males. PCA confirmed these differences between genders but also noted that men exhibit greater variance and classified clavicles into five morphological groups. This unique approach is the first that standardizes a clavicular orientation. It provides information that is useful to both, the biomedical engineer and clinician. Other applications include implant design with regard to modifying current or designing future clavicle fixation devices. Our findings support the need for further development of clavicle fixation devices and the questioning of whether gender-specific devices are necessary.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Sánchez-Sánchez, M Luz; Belda-Lois, Juan-Manuel; Mena-Del Horno, Silvia; Viosca-Herrero, Enrique; Igual-Camacho, Celedonia; Gisbert-Morant, Beatriz
2018-05-05
A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. A randomized controlled pilot trial was developed. Thirty inpatients post-stroke were included. Control and target groups were treated with the same conventional physical therapy protocol based on functional criteria, but specific techniques were added to the target group depending on the subjects' functional level. Postural stability during standing was quantified by posturography. The assessments were performed once a month from the moment the participants were able to stand up to six months post-stroke. The target group showed a significant improvement in postural control recovery trend six months after stroke that was not present in the control group. Some of the assessed parameters revealed significant differences between treatment groups (P < 0.05). The proposed methodology allows Functional Principal Component Analysis to be performed when data is scarce. Moreover, it allowed the dynamics of recovery of two different treatment groups to be determined, showing that the techniques added in the target group increased postural stability compared to the base protocol. Copyright © 2018 Elsevier Ltd. All rights reserved.
A principal components analysis of dynamic spatial memory biases.
Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart
2008-09-01
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.
ERIC Educational Resources Information Center
Grochowalski, Joseph H.
2015-01-01
Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…
Doan, Lisa; Choi, Daniel; Kline, Richard
2017-10-01
Pain is common in older adults but may be undertreated in part due to concerns about medication toxicity. Analgesics may affect cognition. In this retrospective cohort study, we used the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to examine the interaction of cognitive status and medications, especially non-steroidal anti-inflammatory drugs (NSAIDs). We hypothesized NSAID use would be associated with cognition and that this could be mediated through changes in brain structure. In this post hoc analysis of the ADNI database, subjects were selected by searching the "concurrent medications log" for analgesic medications. Subjects were included if the analgesic was listed on the medication log prior to enrollment in ADNI and throughout the study. Subjects taking analgesics, particularly NSAIDs, at each study visit were compared to control subjects taking no analgesics. Using descriptive statistics as well as univariate, multivariate and repeated measure ANOVA, we explored the relationship between NSAID use and scores for executive function and memory related cognitive activities. We further took advantage of the extensive magnetic resonance imaging (MRI) data available in ADNI to test whether cognitive change was associated with brain structure. The multitude of imaging variables was compressed into a small number of features (five eigenvectors (EV)) using principal component analysis. There were 87 NSAID users, 373 controls, and 71 taking other analgesics. NSAID use was associated with higher executive function scores for cognitively normal (NL) subjects as well as subjects with mild cognitive impairment (MCI). NSAID use was also associated with higher memory scores, but for NL females only. We analysed MRI data using principal component analysis to generate a set of five EVs. Examining NL and MCI subjects, one EV had significantly larger values in subjects taking NSAIDs versus control. This EV was one of two EVs which significantly correlated with composite executive function and memory scores as well as cognitive diagnosis. NSAID use was associated with higher executive function, and memory scores in certain subjects and larger cortical volumes in particular regions. Limitations of the study include secondary analysis of existing data and the possibility of confounding. These results suggest it is important to consider the secondary effects of medications when choosing a treatment regimen. Further prospective studies are needed to examine the role of analgesics on cognition and whether NSAIDs act through cortical dimension changes and how they are related to gender and cognitive diagnosis. Copyright © 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Alizadeh-Pasdar, Nooshin; Nakai, Shuryo; Li-Chan, Eunice C Y
2002-10-09
Raman spectroscopy was used to elucidate structural changes of beta-lactoglobulin (BLG), whey protein isolate (WPI), and bovine serum albumin (BSA), at 15% concentration, as a function of pH (5.0, 7.0, and 9.0), heating (80 degrees C, 30 min), and presence of 0.24% kappa-carrageenan. Three data-processing techniques were used to assist in identifying significant changes in Raman spectral data. Analysis of variance showed that of 12 characteristics examined in the Raman spectra, only a few were significantly affected by pH, heating, kappa-carrageenan, and their interactions. These included amide I (1658 cm(-1)) for WPI and BLG, alpha-helix for BLG and BSA, beta-sheet for BSA, CH stretching (2880 cm(-1)) for BLG and BSA, and CH stretching (2930 cm(-1)) for BSA. Principal component analysis reduced dimensionality of the characteristics. Heating and its interaction with kappa-carrageenan were identified as the most influential in overall structure of the whey proteins, using principal component similarity analysis.
Interpretable functional principal component analysis.
Lin, Zhenhua; Wang, Liangliang; Cao, Jiguo
2016-09-01
Functional principal component analysis (FPCA) is a popular approach to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). The intervals where the values of FPCs are significant are interpreted as where sample curves have major variations. However, these intervals are often hard for naïve users to identify, because of the vague definition of "significant values". In this article, we develop a novel penalty-based method to derive FPCs that are only nonzero precisely in the intervals where the values of FPCs are significant, whence the derived FPCs possess better interpretability than the FPCs derived from existing methods. To compute the proposed FPCs, we devise an efficient algorithm based on projection deflation techniques. We show that the proposed interpretable FPCs are strongly consistent and asymptotically normal under mild conditions. Simulation studies confirm that with a competitive performance in explaining variations of sample curves, the proposed FPCs are more interpretable than the traditional counterparts. This advantage is demonstrated by analyzing two real datasets, namely, electroencephalography data and Canadian weather data. © 2015, The International Biometric Society.
Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis
NASA Astrophysics Data System (ADS)
Li, D.; Xu, L.; Peng, J.; Ma, J.
2018-04-01
Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.
Level-1C Product from AIRS: Principal Component Filtering
NASA Technical Reports Server (NTRS)
Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott
2012-01-01
The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.
NASA Astrophysics Data System (ADS)
Raju, B. S.; Sekhar, U. Chandra; Drakshayani, D. N.
2017-08-01
The paper investigates optimization of stereolithography process for SL5530 epoxy resin material to enhance part quality. The major characteristics indexed for performance selected to evaluate the processes are tensile strength, Flexural strength, Impact strength and Density analysis and corresponding process parameters are Layer thickness, Orientation and Hatch spacing. In this study, the process is intrinsically with multiple parameters tuning so that grey relational analysis which uses grey relational grade as performance index is specially adopted to determine the optimal combination of process parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively desired. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of process parameters. Hence, this confirm that the proposed approach in this study can be an useful tool to improve the process parameters in stereolithography process, which is very useful information for machine designers as well as RP machine users.
Finger crease pattern recognition using Legendre moments and principal component analysis
NASA Astrophysics Data System (ADS)
Luo, Rongfang; Lin, Tusheng
2007-03-01
The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A
2018-04-23
The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.
Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang
2016-01-01
Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354
Lehmann, A; Scheffler, Ch; Hermanussen, M
2010-02-01
Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Development of a glottal area index that integrates glottal gap size and open quotient
Chen, Gang; Kreiman, Jody; Gerratt, Bruce R.; Neubauer, Juergen; Shue, Yen-Liang; Alwan, Abeer
2013-01-01
Because voice signals result from vocal fold vibration, perceptually meaningful vibratory measures should quantify those aspects of vibration that correspond to differences in voice quality. In this study, glottal area waveforms were extracted from high-speed videoendoscopy of the vocal folds. Principal component analysis was applied to these waveforms to investigate the factors that vary with voice quality. Results showed that the first principal component derived from tokens without glottal gaps was significantly (p < 0.01) associated with the open quotient (OQ). The alternating-current (AC) measure had a significant effect (p < 0.01) on the first principal component among tokens exhibiting glottal gaps. A measure AC/OQ, defined as the ratio of AC to OQ, was proposed to combine both amplitude and temporal characteristics of the glottal area waveform for both complete and incomplete glottal closures. Analyses of “glide” phonations in which quality varied continuously from breathy to pressed showed that the AC/OQ measure was able to characterize the corresponding continuum of glottal area waveform variation, regardless of the presence or absence of glottal gaps. PMID:23464035
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
[Discrimination of varieties of brake fluid using visual-near infrared spectra].
Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong
2008-06-01
A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.
Corrected confidence bands for functional data using principal components.
Goldsmith, J; Greven, S; Crainiceanu, C
2013-03-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.
Corrected Confidence Bands for Functional Data Using Principal Components
Goldsmith, J.; Greven, S.; Crainiceanu, C.
2014-01-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2017-04-30
The overall objective of this work is to understand how excipient characteristics influence the process and product performance for a continuous twin-screw wet granulation process. The knowledge gained through this study is intended to be used for a Quality by Design (QbD)-based formulation design approach and formulation optimization. A total of 9 preferred fillers and 9 preferred binders were selected for this study. The selected fillers and binders were extensively characterized regarding their physico-chemical and solid state properties using 21 material characterization techniques. Subsequently, principal component analysis (PCA) was performed on the data sets of filler and binder characteristics in order to reduce the variety of single characteristics to a limited number of overarching properties. Four principal components (PC) explained 98.4% of the overall variability in the fillers data set, while three principal components explained 93.4% of the overall variability in the data set of binders. Both PCA models allowed in-depth evaluation of similarities and differences in the excipient properties. Copyright © 2017. Published by Elsevier B.V.
Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo
2017-05-01
The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.
Berg Soto, Alvaro; Marsh, Helene; Everingham, Yvette; Smith, Joshua N; Parra, Guido J; Noad, Michael
2014-08-01
Australian snubfin and Indo-Pacific humpback dolphins co-occur throughout most of their range in coastal waters of tropical Australia. Little is known of their ecology or acoustic repertoires. Vocalizations from humpback and snubfin dolphins were recorded in two locations along the Queensland coast during 2008 and 2010 to describe their vocalizations and evaluate the acoustic differences between these two species. Broad vocalization types were categorized qualitatively. Both species produced click trains burst pulses and whistles. Principal component analysis of the nine acoustic variables extracted from the whistles produced nine principal components that were input into discriminant function analyses to classify 96% of humpback dolphin whistles and about 78% of snubfin dolphin calls correctly. Results indicate clear acoustic differences between the vocal whistle repertoires of these two species. A stepwise routine identified two principal components as significantly distinguishable between whistles of each species: frequency parameters and frequency trend ratio. The capacity to identify these species using acoustic monitoring techniques has the potential to provide information on presence/absence, habitat use and relative abundance for each species.
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Funning, G. J.
2009-12-01
We compare several techniques for the analysis of geodetic time series with the ultimate aim to characterize the physical processes which are represented therein. We compare three methods for the analysis of these data: Principal Component Analysis (PCA), Non-Linear PCA (NLPCA), and Rotated PCA (RPCA). We evaluate each method by its ability to isolate signals which may be any combination of low amplitude (near noise level), temporally transient, unaccompanied by seismic emissions, and small scale with respect to the spatial domain. PCA is a powerful tool for extracting structure from large datasets which is traditionally realized through either the solution of an eigenvalue problem or through iterative methods. PCA is an transformation of the coordinate system of our data such that the new "principal" data axes retain maximal variance and minimal reconstruction error (Pearson, 1901; Hotelling, 1933). RPCA is achieved by an orthogonal transformation of the principal axes determined in PCA. In the analysis of meteorological data sets, RPCA has been seen to overcome domain shape dependencies, correct for sampling errors, and to determine principal axes which more closely represent physical processes (e.g., Richman, 1986). NLPCA generalizes PCA such that principal axes are replaced by principal curves (e.g., Hsieh 2004). We achieve NLPCA through an auto-associative feed-forward neural network (Scholz, 2005). We show the geophysical relevance of these techniques by application of each to a synthetic data set. Results are compared by inverting principal axes to determine deformation source parameters. Temporal variability in source parameters, estimated by each method, are also compared.
[Study on volatile components from flowers of Gymnema sylvestre].
Qiu, Qin; Zhen, Han-Shen; Huang, Pei-Qian
2013-04-01
To analyze the volatile components from flowers of Gymnema sylvestre. Volatile components of flowers of Gymnema sylvestre were extracted by water vapor distilling, and the components were separated and identified by GC-MS. 55 components were separated and 33 components were identified, accounting for 88.73% of all quantity. The principal volatile components are Phytol, Pentacosane, 10-Heneicosene (c, t), 3-Eicosene, (E) -and 2-Methyl-Z-2-docosane. The research can pro-vide scientific basis for chemical component research of flowers of Gymnema sylvestre.
Azevedo, Mônia Stremel; Valentim-Neto, Pedro Alexandre; Seraglio, Siluana Katia Tischer; da Luz, Cynthia Fernandes Pinto; Arisi, Ana Carolina Maisonnave; Costa, Ana Carolina Oliveira
2017-10-01
Due to the increasing valuation and appreciation of honeydew honey in many European countries and also to existing contamination among different types of honeys, authentication is an important aspect of quality control with regard to guaranteeing the origin in terms of source (honeydew or floral) and needs to be determined. Furthermore, proteins are minor components of the honey, despite the importance of their physiological effects, and can differ according to the source of the honey. In this context, the aims of this study were to carry out protein extraction from honeydew and floral honeys and to discriminate these honeys from the same botanical species, Mimosa scabrella Bentham, through proteome comparison using two-dimensional gel electrophoresis and principal component analysis. The results showed that the proteome profile and principal component analysis can be a useful tool for discrimination between these types of honey using matched proteins (45 matched spots). Also, the proteome profile showed 160 protein spots in honeydew honey and 84 spots in the floral honey. The protein profile can be a differential characteristic of this type of honey, in view of the importance of proteins as bioactive compounds in honey. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
Application of principal component analysis for the optimisation of lead(II) biosorption.
Wajda, Łukasz; Duda-Chodak, Aleksandra; Tarko, Tomasz; Kamiński, Paweł
2017-10-03
Current study was focused on optimising lead(II) biosorption carried out by living cells of Arthrospira platensis using Principal Component Analysis. Various experimental conditions were considered: initial metal concentration (50 and 100 mg/l), solution pH (4.0, 4.5, 5.0, 5.5) and contact time (10, 20, 30, 40, 50 and 60 min) at constant rotary speed 200 rpm. It was found that when the biomass was separated from experimental solutions by the filtration, almost 50% of initial metal dose was removed by the filter paper. Moreover, pH was the most important parameter influencing examined processes. The Principal Component Analysis indicated that the most optimum conditions for lead(II) biosorption were metal initial concentration 100 mg/l, pH 4.5 and time 60 min. According to the analysis of the first component it might be stated that the lead(II) uptake increases in time. In overall, it was found to be useful for analysing data obtained in biosorption experiments and eliminating insignificant experimental conditions. Experimental data fitted Langmuir and Dubinin-Radushkevich models indicating that physical and chemical absorption take place at the same time. Further studies are necessary to verify how sorption-desorption cycles affect A. platensis cells.
Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada
Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.
2002-01-01
The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.
Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal
NASA Astrophysics Data System (ADS)
Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla
2018-05-01
Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.
Stashenko, Elena E; Martínez, Jairo R; Ruíz, Carlos A; Arias, Ginna; Durán, Camilo; Salgar, William; Cala, Mónica
2010-01-01
Chromatographic (GC/flame ionization detection, GC/MS) and statistical analyses were applied to the study of essential oils and extracts obtained from flowers, leaves, and stems of Lippia origanoides plants, growing wild in different Colombian regions. Retention indices, mass spectra, and standard substances were used in the identification of 139 substances detected in these essential oils and extracts. Principal component analysis allowed L. origanoides classification into three chemotypes, characterized according to their essential oil major components. Alpha- and beta-phellandrenes, p-cymene, and limonene distinguished chemotype A; carvacrol and thymol were the distinctive major components of chemotypes B and C, respectively. Pinocembrin (5,7-dihydroxyflavanone) was found in L. origanoides chemotype A supercritical fluid (CO(2)) extract at a concentration of 0.83+/-0.03 mg/g of dry plant material, which makes this plant an interesting source of an important bioactive flavanone with diverse potential applications in cosmetic, food, and pharmaceutical products.
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-06-01
A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.
ERIC Educational Resources Information Center
Reese, Allen
2017-01-01
The purpose of this study was to determine the extent to which the nine components of successful alternative schools were implemented, the importance placed on these components by traditional public high school administrators, and the impact these components had on Disciplinary Alternative Education Programs (DAEPs) in one Texas Education Service…
Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.
2010-01-01
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284
How Adequate are One- and Two-Dimensional Free Energy Landscapes for Protein Folding Dynamics?
NASA Astrophysics Data System (ADS)
Maisuradze, Gia G.; Liwo, Adam; Scheraga, Harold A.
2009-06-01
The molecular dynamics trajectories of protein folding or unfolding, generated with the coarse-grained united-residue force field for the B domain of staphylococcal protein A, were analyzed by principal component analysis (PCA). The folding or unfolding process was examined by using free-energy landscapes (FELs) in PC space. By introducing a novel multidimensional FEL, it was shown that the low-dimensional FELs are not always sufficient for the description of folding or unfolding processes. Similarities between the topographies of FELs along low- and high-indexed principal components were observed.
Convergence of sampling in protein simulations
NASA Astrophysics Data System (ADS)
Hess, Berk
2002-03-01
With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.
InterFace: A software package for face image warping, averaging, and principal components analysis.
Kramer, Robin S S; Jenkins, Rob; Burton, A Mike
2017-12-01
We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.
Principal Component Analysis Based Measure of Structural Holes
NASA Astrophysics Data System (ADS)
Deng, Shiguo; Zhang, Wenqing; Yang, Huijie
2013-02-01
Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.