Science.gov

Sample records for anoxic marine sediment

  1. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals.

    PubMed

    Dell'Anno, Antonio; Beolchini, Francesca; Gabellini, Massimo; Rocchetti, Laura; Pusceddu, Antonio; Danovaro, Roberto

    2009-12-01

    We investigated the effects of biostimulation and bioagumentation strategies applied to harbor sediments displaying reducing conditions and high concentrations of petroleum hydrocarbons and heavy metals. We compared the microbial efficiency of hydrocarbon removal from sediments maintained for 60 days in anoxic conditions and inoculated with acetate, sulfate-reducing bacterial strains and acetate and sulfate-reducing bacteria. All treatments determined a significant increase in the microbial growth and significant decreases of hydrocarbon contents and of redox potential values. The addition of sulfate-reducing bacterial strains to the sediment was the most efficient treatment for the hydrocarbon removal. In all experiments, significant changes of the heavy metals' phase repartition were observed. The results reported here suggest that the biodegradation of petroleum hydrocarbons in anoxic marine sediments may be enhanced by stimulating microbial anaerobic metabolism, but care should be applied to monitor the potential changes in the mobility and bioavailability of heavy metals induced by bio-treatments.

  2. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-08

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.

  3. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments

    PubMed Central

    Orphan, V. J.; Hinrichs, K.-U.; Ussler, W.; Paull, C. K.; Taylor, L. T.; Sylva, S. P.; Hayes, J. M.; Delong, E. F.

    2001-01-01

    The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of δ-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments. PMID:11282650

  4. Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Ryu, Jong-Sik; Park, Myong-Ho; Hong, Wei-Li; Choi, Jiyoung

    2016-08-01

    Marine silicate weathering (MSiW) in anoxic sediments has been recently shown to be a significant sink for CO2 generated by methanogenesis. Independently, the roles of clay dehydration (illitization) in producing water and driving upward fluid advection have been well established in deep marine sediments, but to date the K+ source required for the reaction has not been established. Here we present chemical and strontium isotope properties of pore fluids from seven cores in the Ulleung Basin, which show radiogenic 87Sr/86Sr values (up to ˜0.71045), very high alkalinity values (maximum ˜130 mM), and enrichment in H4SiO4, Na+, K+, and Mg2+, consistent with MSiW. This reaction consumes CO2, generates alkalinity, and acts as a K+ source for illitization; water released from MSiW-supported illitization drives upward fluid flow. Our results highlight the importance of MSiW along continental margins and its underappreciated role in carbon cycling, silicate diagenesis, and hydrogeology of marine systems.

  5. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments

    SciTech Connect

    Aller, R.C.; Rude, P.D. )

    1988-03-01

    During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO{sup =}{sub 4} under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn{sup +4} are apparently more effective than Mn{sup +3} in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and Azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly autotrophic CO{sub 2} fixation. Lack of sensitivity to chlorate suggests that a NO{sup {minus}}{sub 3} reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O{sub 2}. Alkalinity is also simultaneously depleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.

  6. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Blair, N. E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1992-09-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from "noncompetitive" substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94‰. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in 13C, reaching a maximum δ13C value of -42‰. Third, the acetate pool experienced a precipitous decline from >5 mM to <20 μM and methane production was again dominated by CO2 reduction. The δ13C of methane produced during this final phase ranged from -46 to -58‰. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8% of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.

  7. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  8. The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Fischer, Woodward W.; Johnson, Thomas M.; Lyons, Timothy W.

    2014-12-01

    Chromium (Cr) isotopes are an emerging proxy for tracking redox processes at the Earth's surface. However, there has been limited exploration of the Cr isotope record of modern and recent marine sediments. The basic inorganic chemistry of Cr suggests that anoxic marine basins should factor prominently in the global Cr cycle and that sediments deposited within anoxic basins may offer a valuable Cr isotope archive throughout Earth's history. Here, we present δ53Cr data from sediments of the Cariaco Basin, Venezuela-a 'type' environment for large, perennially anoxic basins with a relatively strong hydrological connection to the global oceans. We document a marked positive shift in bulk δ53Cr values following the termination of the Last Glacial Maximum, followed by relative stasis. Based on a suite of independent redox proxies, this transition marks a switch from oxic to persistently anoxic and sulfidic (euxinic) depositional conditions within the basin. We find good agreement between two independent approaches toward estimating the δ53Cr composition of authigenic Cr in euxinic Cariaco Basin sediments and that these estimates are very similar to the δ53Cr composition of modern open Atlantic Ocean seawater. These data, together with considerations of reaction kinetics and mass balance within the Cariaco Basin, are consistent with the hypothesis that anoxic marine settings can serve as a chemical archive of first-order trends in seawater δ53Cr composition. Additionally, the Cariaco Basin data suggest that there has been secular stability in the average δ53Cr value of Atlantic seawater over the last ∼15 kyr.

  9. Jellyfish Lake, Palau: early diagenesis of organic matter in sediments of an anoxic marine lake

    USGS Publications Warehouse

    Orem, W.H.; Burnett, W.C.; Landing, W.M.; Lyons, W.B.; Showers, W.

    1991-01-01

    The major postdepositional change in the sedimentary organic matter is carbohydrate biodegradation. Lignin and aliphatic substances are preserved in the sediments. Dissolved organic matter in pore waters is primarily composed of carbohydrates, reflecting the degradation of sedimentary carbohydrates. Rate constants for organic carbon degradation and sulfate reduction in sediments of the lake are about 10?? lower than in other anoxic sediments. This may reflect the vascular plant source and partly degraded nature of the organic matter reaching the sediments of the lake. -from Authors

  10. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  11. Uranium and plutonium in anoxic marine sediments of the Santiago River mouth (Eastern Pacific, Mexico).

    PubMed

    Almazán-Torres, María Guadalupe; Ordóñez-Regil, Eduardo; Ruiz-Fernández, Ana Carolina

    2016-11-01

    The uranium (U) and plutonium (Pu) content with depth in a sediment core collected in the continental shelf off the mouth of the Santiago River in the Mexican Pacific was studied to evaluate the contamination effects of the effluent of the Santiago-Lerma River as it moves into the sea. The large mass of terrestrial detritus delivered by the river influences the physicochemical and geochemical processes in the seafloor. Abnormal concentrations of U and Pu in sediments were examined as indicative of the effects of anoxic conditions. One of the indicators of pollution of seawater is the bacterial activity of the shallow seabed layer; and among the prevailing bacteria, the magnetotactic ones induce the formation of euhedral and framboidal shapes (pyrite). These pyrite entities are by-products of anoxic environments loaded with decomposing detrital material and are very abundant in the surface layers of the sediment core analyzed. The pyrite formation is the result of a biochemical reaction between iron and organic sulphur reduced by bacteria, and the pyrite entities precipitate to the seafloor. In the same upper zone of the profile, (238)U is readily immobilized, while (234)U is oxidized and dissolved in seawater by the effect of hot atom chemistry. This may cause the activity ratio (AR) (234)U/(238)U disequilibrium (near 0.41). Furthermore, in the shallow layer of the sediment core, an abnormally high concentration of (239+240)Pu was detected. In this upper layer, the activity concentrations found were 3.19 Bq kg(-1) for (238)U, 1.32 kg(-1) for (234)U and 2.78 Bq kg(-1) for (239+240)Pu. In the lower fractions of the sediment core, normal values of AR (234)U/(238)U (≈1) were found, with traces of (239+240)Pu.

  12. Seasonal C-13 variations of methane from an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, Neal; Desmarais, David S.; Martens, Christopher S.

    1985-01-01

    Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.

  13. Jellyfish Lake, Palau: Regeneration of C, N, Si, and P in anoxic marine lake sediments

    USGS Publications Warehouse

    Lyons, W.B.; Lent, R.M.; Burnett, W.C.; Chin, P.; Landing, W.M.; Orem, W.H.; McArthur, J.M.

    1996-01-01

    Sediment cores from Jellyfish Lake were processed under an inert atmosphere and the pore waters extracted and analyzed for the following parameters: pH, titration alkalinity (TA), Cl-, H4SiO4, PO43-, NH4+, Ca2-, Mg2+, SO42-, and H2S. Additionally, in one set of pore-water samples (core 10), the ??13C of the ??CO2 was also determined. The TA, H4SiO4, PO43-, NH4+, and H2S increased with depth in the pore waters above anoxic bottom-water values. H2S values increased to 3.8 ??M. In one case, both H4SiO4 and PO43- concentrations increased to a maximum value and then decreased with depth, suggesting removal into solid phases. The H4SiO4 concentrations are equal to or greater than pore-water values observed in sediments underlying upwelling areas. PO43- concentrations are, in general, lower than pore-water values from terrigenous nearshore areas but higher than nearshore carbonate pore-water values from Florida Bay or Bermuda. The Ca2+, Cl-, and Mg2+: Cl- ratios show slight decreases in the top 15-20 cm, suggesting that authigenic carbonate may be forming. This suggestion is supported by the fact that the pore waters are saturated with respect to CaCO3 due to the very high TAs. The ??13C measurements of the pore-water ??CO2 are from a shorter core. These measurements reach their most negative concentration at 72 cm and then become slightly heavier. This change is accompanied by a decrease in TA, suggesting the onset of methanogenesis at this location in this core.

  14. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  15. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs.

    PubMed

    Broman, Elias; Brüsin, Martin; Dopson, Mark; Hylander, Samuel

    2015-10-22

    Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.

  16. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs

    PubMed Central

    Broman, Elias; Brüsin, Martin; Dopson, Mark; Hylander, Samuel

    2015-01-01

    Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic–pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 105 nauplii m−2 emerged from sediment turned oxic compared with 0.02 × 105 m−2 from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic–pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems. PMID:26468249

  17. Solid partitioning and solid-liquid distribution of 210Po and 210Pb in marine anoxic sediments: roads of Cherbourg at the northwestern France.

    PubMed

    Connan, O; Boust, D; Billon, G; Solier, L; Rozet, M; Bouderbala, S

    2009-10-01

    A sequential extraction protocol has been used to determine the solid-phase partition of (210)Po and (210)Pb in anoxic marine sediment from the roads of Cherbourg (France) in the central English Channel. Measurements were also obtained in pore waters, in which (210)Po activities range between 1 and 20 mBq L(-1) and (210)Pb activities between 2.4 and 3.8 mBq L(-1), with highest activities in the topmost layer. These activities are higher than in seawater, suggesting that sediment act as a source of both (210)Po and (210)Pb for overlying water. The (210)Po profile in the pore waters is apparently correlated with those obtained for Fe, Mn and SO(4)(2)(-), suggesting an influence of early diagenetic processes on the (210)Po solid-liquid distribution. In the sediment, (210)Po is predominantly bound to organic matter or chromium reducible sulphides, and residuals (clay minerals and refractory oxides). Our results indicate that (210)Po is not significantly bound to AVS, i.e. acid volatile sulphides: bioturbation could play a role by the early redistribution of (210)Po bound to acid volatile sulphides in the sediment. (210)Po, (210)Pb and Pb exhibit differences in terms of distribution, probably due to a different mode of penetration in the sediment. This work provides information on solid and liquid distribution of (210)Po and (210)Pb in marine sediment. These data are very scarce in the literature.

  18. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation

    PubMed Central

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N.; Giuliano, Laura; Yakimov, Michail M.

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical–chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  19. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil.

    PubMed

    Miralles, Gilles; Grossi, Vincent; Acquaviva, Monique; Duran, Robert; Claude Bertrand, Jean; Cuny, Philippe

    2007-07-01

    For 503 days, unoiled control and artificially oiled sediments were incubated in situ at 20m water depth in a Mediterranean coastal area. Degradation of the aliphatic fraction of the oil added was followed by GC-MS. At the same time, terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA encoding genes was used to detect dynamics in the sulfate-reducing bacteria (SRB) community in response to the oil contamination. Specific polymerase chain reaction (PCR) primer sets for five generic or suprageneric groups of SRB were used for PCR amplification of DNA extracted from sediments. During the experiment, hydrocarbons from C(17) to C(30) were significantly degraded even in strictly anoxic sediment layers. Of the five SRB groups, only two groups were detected in the sediments (control and oiled), namely the Desulfococcus-Desulfonema-Desulfosarcina-like group and the Desulfovibrio-Desulfomicrobium-like group. Statistical analysis of community patterns revealed dynamic changes over time within these two groups following the contamination. Significant differences in community patterns were recorded in artificially oiled compared with control sediments. Cloning and sequencing of 16S rRNA encoding genes performed after 503 days showed that many of the most abundant sequences were closely related to hydrocarbonoclastic SRB which could have played an active role in the observed biodegradation of aliphatic hydrocarbons. Results from the present study provide useful information on the dynamics of dominant SRB in heavily oil-contaminated sediments and their potential for anaerobic biodegradation for the treatment of spilled oil in anoxic marine environments.

  20. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  1. Oxic and Anoxic Regions of Subseafloor Sediment

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Pockalny, R. A.; Spivack, A. J.; Inagaki, F.; Murray, R. W.; Adhikari, R. R.; Gribsholt, B.; Kallmeyer, J.; McKinley, C. C.; Morono, Y.; Røy, H.; Sauvage, J.; Ziebis, W.

    2015-12-01

    Dissolved oxygen content defines two broad categories of subseafloor sediment. In areas with high rates of microbial respiration, most of the sediment column is anoxic and active anaerobic microbial communities are present for hundreds of meters or more below the seafloor. In these regions, O2 and aerobic communities penetrate only millimeters to centimeters into the sediment from the sediment-water interface. In some areas of active fluid flow through the underlying basalt, O2 may also penetrate meters upward into the sediment from the basalt. In areas with low sedimentary respiration, O2 and aerobic communities penetrate tens of meters downward from the seafloor and may persist throughout the entire sediment column. IODP Expedition 329 showed that microbial cells and aerobic respiration persist through the entire sediment sequence (to depths of at least 75 meters below seafloor) in the South Pacific Gyre. Extrapolating from these results and a global relationship of O2 penetration depth to sedimentation rate and sediment thickness, we suggest that oxygen and aerobic communities occur throughout the entire sediment sequence in 15-44% of the Pacific and 9-37% of the global seafloor. Subduction of sediment from largely anoxic regions and subduction of sediment and basalt from fully oxic regions are respectively sources of reduced and oxidized material to the mantle. The balance between oxic and anoxic regions has presumably changed considerably throughout Earth history. Regions with largely anoxic sediment and regions with fully oxic sediment present fundamentally different opportunities for understanding of (i) paleoceanographic history and (ii) the nature of microbial life under extreme energy limitations.

  2. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments.

    PubMed

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-06-25

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments.

  3. Anoxic marine lakes - an analogue environment for insular phosphorite formation

    SciTech Connect

    Burnett, W.C. )

    1990-06-01

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau, were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.

  4. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores.

    PubMed

    Vandieken, Verona; Thamdrup, Bo

    2013-05-01

    We investigated the terminal electron-accepting pathways and the acetate-oxidizing bacteria in surface sediment (0-5 mm depth) of Aarhus Bay, Denmark, in anoxic slurry and intact core incubations. In the intact cores, oxygen, nitrate, oxides of manganese and iron, and sulfate were all available and likely all used as electron acceptors by the microbial community, whereas microbial iron and sulfate reduction dominated in the slurries. The availability of electron acceptors clearly affected which organisms were labeled by 16S rRNA-stable isotope probing (SIP). Members of the Oceanospirillaceae were identified as (13) C-acetate oxidizers in both types of incubations, but bacteria related to Colwellia and Arcobacter oxidized acetate in the intact core, while members of the Desulfuromonadales and Acidithiobacillaceae did so in the slurry incubation. Desulfuromonadales sequences also dominated 16S rRNA gene clone libraries from the highest positive dilution of the acetate-oxidizing most probable number cultures with manganese and iron oxides. Thus, members of Desulfuromonadales are likely important for acetate oxidation coupled to iron and manganese reduction in situ, while the identified Gammaproteobacteria and affiliates of Arcobacter may utilize oxygen, nitrate and manganese oxides. Our study further highlights some of the biases that are associated with the use of RNA-SIP as well as slurry and intact core incubations.

  5. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    PubMed

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  6. Chlorofluorocarbon-11 removal in anoxic marine waters

    SciTech Connect

    Bullister, J.L.; Lee, B.S.

    1995-07-15

    Measurements of the chlorofluorocarbons CCl{sub 3}F (F-11) and CCl{sub 2}F{sub 2}(F-12) made in the subsurface anoxic zones of the Black Sea and Saanich Inlet, B.C., Canada show a pronounced depletion of dissolved F-11. These zones are strongly reducing and are characterized by the absence of dissolved nitrate (NO{sub 3}{sup {minus}}) and the presence of hydrogen sulfide (H{sub 2}S). Models incorporating the atmospheric input histories of these CFCs and the observed distributions are used to estimate residence times for water in these zones and first order in-situ removal rates for F-11. In contrast, measurements in the mid-depth low-oxygen zone of the eastern Pacific (where NO{sub 3}{sup {minus}} is present and H{sub 2}S is below detection limits) do not show evidence of similar rapid F-11 removal. 22 refs., 3 figs., 1 tab.

  7. Microbiological reduction of Sb(V) in anoxic freshwater sediments.

    PubMed

    Kulp, Thomas R; Miller, Laurence G; Braiotta, Franco; Webb, Samuel M; Kocar, Benjamin D; Blum, Jodi S; Oremland, Ronald S

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  8. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2013-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  9. Investigating phosphorus uptake in anoxic and sulfidic surface sediments with 33P radiotracer experiments

    NASA Astrophysics Data System (ADS)

    Dijkstra, Nikki; Kraal, Peter; Gonzalez, Santiago; Slomp, Caroline

    2016-04-01

    Phosphorus (P) is a key nutrient for marine organisms. Enhanced P availability in the water column can fuel algal blooms and the development of bottom water anoxia. Recently, it was suggested that micro-organisms in sediments overlain by anoxic and sulfidic bottom waters might take up dissolved P and form Fe(II)-P minerals, thereby enhancing P removal. In this study, we investigated the uptake of P in surface sediments with 33P radiotracer experiments. The sediments were recovered from the anoxic and sulfidic deep basin of the Black Sea and, for comparison, from the adjacent oxic shelf. Results suggest a very fast sedimentary uptake of 33P at all sites but in particular for sediments from the oxic shelf. At all sites, most 33P was sequestered in the citrate-dithionite-bicarbonate-(CDB)-extractable sediment P fraction. No significant differences with abiotic controls were observed, implying that micro-organisms were not directly involved in the P uptake. Whereas 33P uptake by the oxic shelf sediment was likely controlled by sorption of 33P to iron(Fe)-(oxyhydr)oxides, the nature of the CDB-extractable P fraction in the deep basin sediments remains unclear. We discuss whether authigenic formation of Fe(II)-P minerals or fast adsorption of P to calcites may explain our findings.

  10. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  11. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  12. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  13. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation.

    PubMed

    Bourke, Michael F; Marriott, Philip J; Glud, Ronnie N; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L M

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  14. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    NASA Astrophysics Data System (ADS)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  15. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    USGS Publications Warehouse

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  16. ENANTIOSELECTIVE MICROBIAL TRANSFORMATION OF THE PHENYLPYRAZOLE INSECTICIDE FIPRONIL IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Fipronil, a chiral insecticide, was biotransformed initially to fipronil sulfide in anoxic sediment slurries following a short lag period. Sediment slurries characterized as either sulfidogenic or methanogenic transformed fipronil with half-lives of approximately 35 and 40 days, ...

  17. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE PAGES

    Bone, Sharon E.; Dynes, James J.; Cliff, John; ...

    2017-01-24

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet beenmore » developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  18. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.

    PubMed

    Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

  19. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments

    PubMed Central

    Bernhard, Joan M.; Kormas, Konstantinos; Pachiadaki, Maria G.; Rocke, Emma; Beaudoin, David J.; Morrison, Colin; Visscher, Pieter T.; Cobban, Alec; Starczak, Victoria R.; Edgcomb, Virginia P.

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers. PMID:25452749

  20. Sulfur diagenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  1. Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.

    1994-01-01

    Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.

  2. Minimum Energy Requirements for Sustained Microbial Activity in Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christoper S.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Currently understood mechanisms of biochemical energy conservation dictate that, in order to be biologically useful, energy must be available to organisms in "quanta" equal to, at minimum one-third to one-fifth of the energy required to synthesize ATP in vivo. The existence of this biological energy quantum means that a significant fraction of the chemical amp on Earth cannot be used to drive biological productivity, and places a fundamental thermodynamic constraint on the origins, evolution, and distribution of life. We examined the energy requirements of intact microbial assemblages in anoxic sediments from Cape Lookout Bight, NC, USA, using dissolved hydrogen concentrations as a non-invasive probe. In this system, the thermodynamics of metabolic processes occurring inside microbial cells is reflected quantitatively by H2 concentrations measured outside those cells. We find that methanogenic archaea are supported by energy yields as small as 10 kJ per mol, about half the quantity calculated from studies of microorganisms in culture. This finding implies that a significantly broader range of geologic and chemical niches might be exploited by microorganisms than would otherwise be expected.

  3. Sediment-associated microdiversity within the Marine Group I Crenarchaeota.

    PubMed

    Durbin, Alan M; Teske, Andreas

    2010-10-01

    Although oligotrophic, abyssal marine sediments cover most of the sea bottom, previous investigations of microbial diversity have primarily focused on organic-rich, anoxic sediments of continental margins. In contrast, abyssal open-ocean sediments are oxidized and contain limiting organic substrate concentrations. This study examines the archaeal diversity of oligotrophic, oxic and nitrate-reducing marine sediments and oxic bottom water in the South Pacific Gyre. 16S rDNA clone library analysis identified phylogenetically distinct lineages of the Marine Group I (MG-I) Crenarchaeota in oxidized sediment that are different from those in bottom water. Thus, the sediment habitat selects for different MG-I lineages, within short vertical distances of a few centimetres.

  4. Metatranscriptomic insights into polyphosphate metabolism in marine sediments

    PubMed Central

    Jones, Daniel S; Flood, Beverly E; Bailey, Jake V

    2016-01-01

    Microorganisms can influence inorganic phosphate (Pi) in pore waters, and thus the saturation state of phosphatic minerals, by accumulating and hydrolyzing intracellular polyphosphate (poly-P). Here we used comparative metatranscriptomics to explore microbial poly-P utilization in marine sediments. Sulfidic marine sediments from methane seeps near Barbados and from the Santa Barbara Basin (SBB) oxygen minimum zone were incubated under oxic and anoxic sulfidic conditions. Pi was sequestered under oxic conditions and liberated under anoxic conditions. Transcripts homologous to poly-P kinase type 2 (ppk2) were 6–22 × more abundant in metatranscriptomes from the anoxic incubations, suggesting that reversible poly-P degradation by Ppk2 may be an important metabolic response to anoxia by marine microorganisms. Overall, diverse taxa differentially expressed homologues of genes for poly-P degradation (ppk2 and exopolyphosphatase) under different incubation conditions. Sulfur-oxidizing microorganisms appeared to preferentially express genes for poly-P degradation under anoxic conditions, which may impact phosphorus cycling in a wide range of oxygen-depleted marine settings. PMID:26381585

  5. Aquatic plant debris improve phosphorus sorption into sediment under anoxic condition.

    PubMed

    Jin, Chong-Wei; Du, Shao-Ting; Dong, Wu-Yuan; Wang, Jue-Hua; Shen, Cheng; Zhang, Yong-Song

    2013-11-01

    The effects of plant debris on phosphorus sorption by anoxic sediment were investigated. Addition of plant debris significantly enhanced the decrease of soluble relative phosphorus (SRP) in overlying water at both 10 and 30 °C during the 30-day investigation. Both cellulose and glucose, two typical plant components, also clearly enhanced the SRP decrease in anoxic overlying water. The measurement of phosphorus (P) fractions in sediment revealed that the levels of unstable P forms were decreased by plant debris addition, whereas the opposites were true for stable P forms. However, under sterilized condition, plant debris/glucose addition has no effect on the SRP decrease in overlying water. Overall, our results suggested that plant debris improve P sorption into sediment under anoxic condition through a microorganism-mediated mechanism.

  6. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.

    PubMed

    Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid

    2015-06-15

    Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface.

  7. Sediment impacts on marine sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages.

  8. Carbon dioxide production in surface sediments of temporarily anoxic basins (Baltic Sea) and resulting sediment-water interface fluxes

    NASA Astrophysics Data System (ADS)

    Böttcher, M. E.; Al-Raei, A. M.; Winde, V.; Lenz, C.; Dellwig, O.; Leipe, T.; Segl, M.; Struck, U.

    2009-04-01

    Organic matter is mineralized in marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. Modern euxinic basins as found in the Baltic Sea or the Black Sea are of particular importance because they may serve as type systems for anoxia in Earth's history. We present here results from biogeochemical investigations carried out in the Baltic deeps (Gotland Basin, Landsort Deep) during the first scientific cruise of RV M.S. MERIAN in 2006, additionally during RV Prof. Penck cruises in 2006 and 2007. Short sediment cores were obtained with a multi-corer and analyzed for particulate and dissolved main, minor and trace elements, pH, DIC, methane alkalinity, besides the stable carbon isotopes of dissolved inorganic carbon (DIC). Microsensors were applied to analyze steep gradients of oxygen, sulphide and sulphate. Pore water profiles are evaluated in terms of process rates and associated element fluxes using the PROFILE software (Berg et al., 1998, L&O). Gross and net anaerobic mineralization rates were additionally obtained from core incubations with 35S. Steep gradients in DIC are associated with a strong enrichment of the light stable isotope resulting in the Gotland basin from oxidized OM. Element fluxes across the sediment-water interface are compared with literature data and show for the Baltic Sea a dependence from bottom water redox conditions, and sediment compositions and formation conditions (e.g., accumulation rates). DIC in the anoxic part of the water column in the Landsort Deep and the Gotland Deep show relatively similar isotope values, close to the bottom water value, but steep gradients towards heavier values above the pelagic redoxcline. Acknowledgements: The research was supported by Leibniz IO Warnemünde, DFG (Cruise RV MSM MERIAN 01), and MPG. Thanks to B. Schneider and F. Pollehne stimulating discussions, and S. Lage and A. Schipper for technical support.

  9. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment.

    PubMed

    Jørgensen, Christian Juncher; Jacobsen, Ole Stig; Elberling, Bo; Aamand, Jens

    2009-07-01

    Although many areas in Denmark are intensively agricultured, the discharge of nitrate from groundwater aquifers to surface water is often lower than expected. In this study it is experimentally demonstrated that anoxic nitrate reduction in sandy sediment containing pyrite is a microbially mediated denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 micromol NO3- kg(-1) day(-1). The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65 and 80% of nitrate reduction in the lower part of the redoxcline is due to anoxic oxidation of pyrite by nitrate with resulting release of sulfate. It is concluded that microbes can control groundwater nitrate concentrations by denitrification using primarily pyrite as electron donor at the oxic-anoxic boundary in sandy aquifers thus determining the position and downward progression of the redox boundary between nitrate-containing and nitrate-free groundwater.

  10. Rapid Oxic/Anoxic Changes in the Sediment-Water Interface During the Eocene- Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Nicholas, C. J.; O'Halloran, A.; Goodhue, R.

    2008-12-01

    The Eocene-Oligocene Transition (EOT) refers to a 500 kyr period of time, which includes the Eocene- Olicgocene Boundary, stretching from 33.5-34.0 Ma (Pearson et al. 2008). It includes all of the changes associated with the expansion of Antarctic glaciation and the concurrent changes in marine fauna and productivity, as well as any physical oceanographic changes that occurred. Shallow-level drilling recovered cores from southern Tanzania and Java, Indonesia. The cores sampled outer-shelf to slope, organic-rich marine clays which show excellent preservation of microfossils and a very low thermal maturity. As the drill sites are from either side of the Indian Ocean, at approximately 10° south of the equator, the comparison of results from these sites will allow insights into the global or regional nature of oceanic signals. Results from the Tanzanian cores have highlighted rapid oscillations in the oxic/anoxic nature of the sediment-water interface throughout the EOT. This is currently interpreted as a direct result of changes occurring in the ocean currents surrounding Antarctica. In the present, Sub-Antarctic Mode Waters (SAMW) deliver high-latitude climatic signals to the tropical Indian Ocean (Dunkley Jones et al., 2008). We suggest that during the EOT these Antarctic currents were in an infantile state, switching on and off during the transitional period, until cooling reached a stable state and the currents were able to fully establish. This could have caused the oxygenation state of the Indian Ocean bottom waters to oscillate during the EOT, only being oxygenated in a stable way after 33.5 Ma. However, the cores from Java will help us verify whether these signals are global or regional in nature. Recent studies have indicated that the heightened productivity of the time is more global than regional, and does not occur just in the high latitudes around Antarctica. Preliminary results from Indonesia indicate that the same increase in productivity was occurring

  11. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; Smolders, A; Intven, L M; Pol, A; Op, D; Van Der Drift, C

    1997-12-01

    Concentrations of volatile organic sulfur compounds (VOSC) were measured in water and sediment columns of ditches in a minerotrophic peatland in The Netherlands. VOSC, with methanethiol (4 to 40 nM) as the major compound, appeared to be mainly of sediment origin. Both VOSC and hydrogen sulfide concentrations decreased dramatically towards the water surface. High methanethiol and high dimethyl sulfide concentrations in the sediment and just above the sediment surface coincided with high concentrations of hydrogen sulfide (correlation factors, r = 0.91 and r = 0.81, respectively). Production and degradation of VOSC were studied in 32 sediment slurries collected from various freshwater systems in The Netherlands. Maximal endogenous methanethiol production rates of the sediments tested (up to 1.44 (mu)mol per liter of sediment slurry (middot) day(sup-1)) were determined after inhibition of methanogenic and sulfate-reducing populations in order to stop VOSC degradation. These experiments showed that the production and degradation of VOSC in sediments are well balanced. Statistical analysis revealed multiple relationships of methanethiol production rates with the combination of methane production rates (indicative of total anaerobic mineralization) and hydrogen sulfide concentrations (r = 0.90) or with the combination of methane production rates and the sulfate/iron ratios in the sediment (r = 0.82). These findings and the observed stimulation of methanethiol formation in sediment slurry incubations in which the hydrogen sulfide concentrations were artificially increased provided strong evidence that the anaerobic methylation of hydrogen sulfide is the main mechanism for VOSC formation in most freshwater systems. Methoxylated aromatic compounds are likely a major source of methyl groups for this methylation of hydrogen sulfide, since they are important degradation products of the abundant biopolymer lignin. Increased sulfate concentrations in several freshwater

  12. Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany)

    NASA Astrophysics Data System (ADS)

    Lin, Y.-S.; Heuer, V. B.; Ferdelman, T. G.; Hinrichs, K.-U.

    2010-04-01

    In anoxic environments, volatile methylated sulfides including methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. During examination of the hydrogenotrophic microbial activity at different temperatures in the anoxic sediment from Lake Plußsee, DMS formation was detected at 55 °C and was enhanced when bicarbonate was supplemented. Addition of both bicarbonate and H2 resulted in the strongest stimulation of DMS production, and MT levels declined slightly. Addition of methyl-group donors such as methanol and syringic acid or methyl-group acceptors such as hydrogen sulfide did not enhance further accumulation of DMS and MT. The addition of 2-bromoethanesulfonate inhibited DMS formation and caused a slight MT accumulation. MT and DMS had average δ13C values of -55‰ and -62‰, respectively. Labeling with NaH13CO3 showed that incorporation of bicarbonate into DMS occurred through methylation of MT. H235S labeling demonstrated a microbially-mediated, but slow, process of hydrogen sulfide methylation that accounted for <10% of the accumulation rates of DMS. Our data suggest: (1) methanogens are involved in DMS formation from bicarbonate, and (2) the major source of the 13C-depleted MT is neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically light MT, such as demethylation of 13C-depleted DMS or other organic precursors such as methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments, such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.

  13. Degradation of trifluoroacetate in oxic and anoxic sediments

    USGS Publications Warehouse

    Visscher, P.T.; Culbertson, C.W.; Oremland, R.S.

    1994-01-01

    THE deleterious effect of chlorofluorocarbons on stratospheric ozone has led to international cooperation to end their use. The search for acceptable alternatives has focused on hydrofluorocarbons (HFCs) or hydrochlorofluorocarbons (HCFCs) which are attractive because they have relatively short atmospheric residence times. HFCs and HCFCs are attacked by tropospheric hydroxyl radicals, leading to the formation of trifluoroacetate (TFA). Most of the atmospheric TFA is deposited at the Earth's surface, where it is thought to be highly resistant to bacterial attack. Therefore, use of HCFCs and HFCs may lead to accumulation of TFA in soils, where it could prove toxic or inhibitory to plants and soil microbial communities. Although little is known about the toxicity of TFA, monofluoroacetate, which occurs at low levels in some plants and which is susceptible to slow attack by aerobic soil microbes, is known to be acutely toxic. Here we report that TFA can be rapidly degraded microbially under anoxic and oxic conditions. These results imply that significant microbial sinks exist in nature for the elimination of TFA from the environment. We also show that oxic degradation of TFA leads to the formation of fluoroform, a potential ozone-depleting compound with a much longer atmospheric lifetime than the parent compounds.The deleterious effect of chlorofluorcarbons on stratospheric ozone has led to international cooperation to end their use. The search for acceptable alternatives has focused on hydroflnorocarbons (HFCs) or hydrochloroflnorcarbons (HCFs) which are attractive because they have relatively short atmospheric residence times. HFCs and HCFs are attacked by tropospheric hydroxyl radicals, leading to the formation of trifluoroacetate (TFA). Most of the atmospheric TFA is deposited at the Earth's surface, where it is thought to be highly resistant to bacterial attack. Therefore, use of HCFs and HCFs may lead to accummulation of TFA in soils, where it could prove toxic

  14. Centimeter-long electron transport in marine sediments via conductive minerals.

    PubMed

    Malvankar, Nikhil S; King, Gary M; Lovley, Derek R

    2015-02-01

    Centimeter-long electron conduction through marine sediments, in which electrons derived from sulfide in anoxic sediments are transported to oxygen in surficial sediments, may have an important influence on sediment geochemistry. Filamentous bacteria have been proposed to mediate the electron transport, but the filament conductivity could not be verified and other mechanisms are possible. Surprisingly, previous investigations have never actually measured the sediment conductivity or its basic physical properties. Here we report direct measurements that demonstrate centimeter-long electron flow through marine sediments, with conductivities sufficient to account for previously estimated electron fluxes. Conductivity was lost for oxidized sediments, which contrasts with the previously described increase in the conductivity of microbial biofilms upon oxidation. Adding pyrite to the sediments significantly enhanced the conductivity. These results suggest that the role of conductive minerals, which are more commonly found in sediments than centimeter-long microbial filaments, need to be considered when modeling marine sediment biogeochemistry.

  15. Microbial Formation of Ethane in Anoxic Estuarine Sediments

    PubMed Central

    Oremland, Ronald S.

    1981-01-01

    Estuarine sediment slurries produced methane and traces of ethane when incubated under hydrogen. Formation of methane occurred over a broad temperature range with an optimum above 65°C. Ethane formation had a temperature optimum at 40°C. Formation of these two gases was inhibited by air, autoclaving, incubation at 4 and 80°C, and by the methanogenic inhibitor, 2-bromoethanesulfonic acid. Ethane production was stimulated by addition of ethylthioethanesulfonic acid, and production from ethylthioethanesulfonic acid was blocked by 2-bromoethanesulfonic acid. A highly purified enrichment culture of a methanogenic bacterium obtained from sediments produced traces of ethane from ethylthioethanesulfonic acid. These results indicate that the small quantities of ethane found in anaerobic sediments can be formed by certain methanogenic bacteria. PMID:16345805

  16. Microbial formation of ethane in anoxic estuarine sediments

    USGS Publications Warehouse

    Oremland, Ronald S.

    1981-01-01

    Estuarine sediment slurries produced methane and traces of ethane when incubated under hydrogen. Formation of methane occurred over a broad temperature range with an optimum above 65°C. Ethane formation had a temperature optimum at 40°C. Formation of these two gases was inhibited by air, autoclaving, incubation at 4 and 80°C, and by the methanogenic inhibitor, 2-bromoethanesulfonic acid. Ethane production was stimulated by addition of ethylthioethanesulfonic acid, and production from ethylthioethanesulfonic acid was blocked by 2-bromoethanesulfonic acid. A highly purified enrichment culture of a methanogenic bacterium obtained from sediments produced traces of ethane from ethylthioethanesulfonic acid. These results indicate that the small quantities of ethane found in anaerobic sediments can be formed by certain methanogenic bacteria.

  17. Metabolism of methylated sulfur compounds in anoxic salt marsh sediments

    SciTech Connect

    Kiene, R.P.

    1986-01-01

    Methionine and dimethylsulfoniopropionate (DMSP) were identified as potential precursors of volatile organic sulfur compounds. Microbial hydrolysis of sulfur-carbon linkages resulted in the liberation of methane thiol (MSH) and dimethyl sulfide (DMS) from methionine and DMSP respectively. Sulfate reducing bacteria were responsible for some of the demethiolation of methionine. The hydrolysis of DMSP could not be assigned to any particular group of microorganisms, but this reaction occurred readily in biologically active sediments. An additional precursor for DMS was found to be Dimethyl sulfoxide (DMSO), which was reduced by sediment microbes to form DMS. Volatile methylated sulfur compounds such as DMS, MSH and dimethyl disulfide (DMDS) were observed to be transformed during their microbial metabolism to MSH, DMS, and MSH, respectively. Ultimately, methylated sulfur compounds were consumed by biological processes and converted to CO/sub 2/, CH/sub 4/ and H/sub 2/S. Both sulfate reducing and methane producing bacteria were involved in the observed transformations. Sediment methanogenesis was greatly stimulated by high levels of methylated sulfur compounds, and a methanogenic bacterium which is capable of growth on DMS was isolated and characterized. Results from experiments with endogenous levels (5 ..mu..M) of DMS in salt marsh sediment slurries, showed that sulfate reduction accounted for >80% of DMS metabolism, while methanogenesis accounted for <20%. However, DMS appears to contribute a significant (up to 30%) fraction to the total CH/sub 4/ produced in slurry assays.

  18. The lipid geochemistry of interstitial waters of recent marine sediments

    SciTech Connect

    Saliot, A.; Brault, M.; Boussuge, C. )

    1988-04-01

    To elucidate the nature of biogeochemical processes occurring at the water-sediment interface, the authors have analyzed fatty acids, n-alkanes and sterols contained in interstitial waters collected from oxic and anoxic marine sediments in the eastern and western intertropical Atlantic Ocean and in the Arabian Sea. Lipid concentrations in interstitial waters vary widely and are generally much higher than concentrations encountered in the overlying sea water. Higher concentrations in interstitial water are observed in environments favorable for organic input and preservation of the organic matter in the water column and in the surficial sediment. The analysis of biogeochemical markers in the various media of occurrence of the organic matter such as sea water, suspended particles, settling particles and sediment is discussed in terms of differences existing between these media and bio-transformations of the organic matter at the water-sediment interface.

  19. Heterotrophic potential of Atribacteria from deep marine Antarctic sediment

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.

    2015-12-01

    Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.

  20. Uranium(IV) oxidation during anoxic chemical extractions of natural sediment: Importance of Fe(III)

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Davis, J. A.; Fuller, C. C.

    2008-12-01

    In situ reduction of soluble U(VI) to insoluble U(IV) precipitates is one promising solution for the remediation of U-contaminated aquifers. U(VI) reduction can occur upon stimulation of the native microbial community by injection of an electron donor or by the presence of natural organic matter. Contamination from a former U mill tailings repository (Rifle, CO) provides a research site to study the effects of in situ and natural bioreduction. An accurate method for determining solid-phase U oxidation state in sediments with elevated amounts of Fe and organic matter is necessary to evaluate the extent of bioreduction. The oxidation state of U in anaerobic sediment is often measured by a two-step bicarbonate/carbonate chemical extraction when spectroscopic methods are infeasible. In this study, anaerobic sediment samples from Rifle were analyzed for labile U(VI) content by extraction in anoxic conditions (pH 9.4, 14mM NaHCO3, 2.8 mM Na2CO3). A subset of each sediment sample was oxidized by exposure to air for 2 weeks. The extraction was repeated in air, and the amount of U(IV) present in the anaerobic sample was calculated by difference between the anoxic and oxidized extractions. For comparison, the U oxidation state was measured in several preserved samples by collecting X-ray absorption spectra (XANES). The XANES measurement indicated that approximately 90% was present as U(IV) prior to the extraction. In contrast, the extractions suggested evidence of substantial oxidation (<5% as U(IV)) even in an anoxic extraction. This discrepancy was eliminated when the anoxic extractions were repeated at pH 12, suggesting that Fe(III) may be an important oxidant for reduced U species during an anoxic extraction at pH 9.4, since the thermodynamic driving force for this reaction decreases at high pH. The results of an investigation of biogenic uraninite (UO2) oxidation by ferrihydrite in the pH range 7-12 under bicarbonate/carbonate extraction concentrations will be presented

  1. Priming effects in marine sediments

    NASA Astrophysics Data System (ADS)

    Gontikaki, Evina; Thornton, Barry; Witte, Ursula

    2013-04-01

    Continental margin sediments (<2000 m) cover merely 15 % of the ocean's seafloor but are responsible for more than 70 % of the global benthic mineralization. Understanding when these systems act as a source or sink of carbon (C) is thus of primary importance if we are to produce reliable global C budgets and predict the effects of future perturbations on the global C cycle. The chemical nature of organic matter (OM) is thought to be one of the major controls on the degradation/preservation balance in sediments; labile and refractory OM pools degrade at different rates but not independently. Priming effects (PE), i.e. changes in the decomposition of refractory organic matter following inputs of labile OM, have the potential to alter the C budget in sediments but have been largely ignored by marine scientists. Climate-driven changes in primary production, and land erosion and run-off are likely to change the quantity and composition of organic matter inputs in marine ecosystems and influence the magnitude and direction of PEs in seawater and sediments. Here, we attempt to evaluate the importance of priming effects on C cycling in marine sediments by use of labelled substrates of different quantity and quality in stable isotope tracer experiments and argue that PEs need to be incorporated in global change models.

  2. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    NASA Astrophysics Data System (ADS)

    Arnosti, C.; Finke, N.; Larsen, O.; Ghobrial, S.

    2005-05-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates— Spirulina cells, Isochrysis cells, and soluble high molecular weight carbohydrate-rich extracts of these cells (Spir-Ex and Iso-Ex)—were added to sediments collected from Svalbard. The sediments were homogenized, incubated anaerobically in gas-tight bags at 0°C, and enzyme activities, fermentation, and terminal respiration were monitored over a 1134 h time course. All substrate additions yielded a fraction (8%-13%) of carbon that was metabolized to CO 2 over the first 384 h of incubation. The timecourse of VFA (volatile fatty acid) production and consumption, as well as the suite of VFAs produced, was similar for all substrates. After this phase, pathways of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO 2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO 2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst of activity that it fueled, its soluble nature, and its relatively high (50%) carbohydrate content. The microbial community in these cold anoxic sediments clearly has the capacity to react rapidly to carbon input; extent and timecourse of remineralization of added carbon is similar to observations made at much higher temperatures in temperate sediments. The extent of carbon remineralization from these specific substrates, however, would not likely have been predicted

  3. Methanogenic Diversity in Marine Sediments at Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Kendall, M. M.; Boone, D. R.

    2004-12-01

    Little is known about the mechanism of methanogenic degradation of acetate or the fate of hydrogen and formate in cold marine sediments, or the ability of methanogens to grow and produce methane there. We used cultivation and molecular techniques to examine the microbes that produce methane from these substrates in permanently cold, anoxic marine sediments at Hydrate Ridge, Oregon (44° 35'N, 125° 10'W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were anoxically diluted and inoculated into enrichment media with formate, acetate, or trimethylamine as catabolic substrate. After 2 years incubation at 4° C to 15° C, enrichment cultures grew and produced methane. DNA was extracted from the highest dilutions that grew. The sequence data suggested that each enrichment culture contained a single strain of methanogen, and many of these sequences were dissimilar to known sequences of methanogens. This level of similarity (89 to 91% similar) suggests that these methanogens belong to novel genera. A clone library of 16S rRNA genes was also created from DNA extracted from the sediment samples. Analysis of the 16S rRNA gene libraries also revealed phylotypes that were only distantly related to cultivated organisms. The sequences of the clone library and of the enrichment cultures indicate a high degree of phylogenetic diversity among the Hydrate Ridge Archaea.

  4. Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis.

    PubMed

    Kaiho, Kunio; Saito, Ryosuke; Ito, Kosuke; Miyaji, Takashi; Biswas, Raman; Tian, Li; Sano, Hiroyoshi; Shi, Zhiqiang; Takahashi, Satoshi; Tong, Jinnan; Liang, Lei; Oba, Masahiro; Nara, Fumiko W; Tsuchiya, Noriyoshi; Chen, Zhong-Qiang

    2016-08-01

    The largest mass extinction of biota in the Earth's history occurred during the Permian-Triassic transition and included two extinctions, one each at the latest Permian (first phase) and earliest Triassic (second phase). High seawater temperature in the surface water accompanied by euxinic deep-intermediate water, intrusion of the euxinic water to the surface water, a decrease in pH, and hypercapnia have been proposed as direct causes of the marine crisis. For the first-phase extinction, we here add a causal mechanism beginning from massive soil and rock erosion and leading to algal blooms, release of toxic components, asphyxiation, and oxygen-depleted nearshore bottom water that created environmental stress for nearshore marine animals. For the second-phase extinction, we show that a soil and rock erosion/algal bloom event did not occur, but culmination of anoxia-euxinia in intermediate waters did occur, spanning the second-phase extinction. We investigated sedimentary organic molecules, and the results indicated a peak of a massive soil erosion proxy followed by peaks of marine productivity proxy. Anoxic proxies of surface sediments and water occurred in the shallow nearshore sea at the eastern and western margins of the Paleotethys at the first-phase extinction horizon, but not at the second-phase extinction horizon. Our reconstruction of ocean redox structure at low latitudes indicates that a gradual increase in temperature spanning the two extinctions could have induced a gradual change from a well-mixed oxic to a stratified euxinic ocean beginning immediately prior to the first-phase extinction, followed by culmination of anoxia in nearshore surface waters and of anoxia and euxinia in the shallow-intermediate waters at the second-phase extinction over a period of approximately one million years or more. Enhanced global warming, ocean acidification, and hypercapnia could have caused the second-phase extinction approximately 60 kyr after the first

  5. Predominant archaea in marine sediments degrade detrital proteins.

    PubMed

    Lloyd, Karen G; Schreiber, Lars; Petersen, Dorthe G; Kjeldsen, Kasper U; Lever, Mark A; Steen, Andrew D; Stepanauskas, Ramunas; Richter, Michael; Kleindienst, Sara; Lenk, Sabine; Schramm, Andreas; Jørgensen, Bo Barker

    2013-04-11

    Half of the microbial cells in the Earth's oceans are found in sediments. Many of these cells are members of the Archaea, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenarchaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota and Aigarchaeota, for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.

  6. Redox processes in pore water of anoxic sediments with shallow gas.

    PubMed

    Ramírez-Pérez, A M; de Blas, E; García-Gil, S

    2015-12-15

    The Ría de Vigo (NW Spain) has a high organic matter content and high rates of sedimentation. The microbial degradation of this organic matter has led to shallow gas accumulations of methane, currently distributed all along the ría. These peculiar characteristics favor the development of anoxic conditions that can determine the dynamics of iron and manganese. In order to study the role played by iron and manganese in the processes that take place in anoxic sediments with shallow gas, four gravity cores were retrieved in anoxic sediments of the Ría de Vigo in November 2012. Methane was present in two of them, below 90cm in the inner zone and below 200cm, in the outer zone. Pore water was collected and analyzed for vertical profiles of pH, sulfide, sulfate, iron and manganese concentrations. Sulfate concentrations decreased with depth but never reached the minimum detection limit. High sulfide concentrations were measured in all cores. The highest sulfide concentrations were found in the inner zone with methane and the lowest were in the outer zone without methane. Concentrations of iron and manganese reached maximum values in the upper layers of the sediment, decreasing with depth, except in the outer zone without gas, where iron and manganese concentration increased strongly toward the bottom of the sediment. In areas with shallow gas iron reduction, sulfate reduction and methane production processes coexist, showing that the traditional redox cascade is highly simplified and suggesting that iron may be involved in a cryptic sulfur cycle and in the oxidation of methane.

  7. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    PubMed

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  8. Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany)

    NASA Astrophysics Data System (ADS)

    Lin, Y. S.; Heuer, V. B.; Ferdelman, T. G.; Hinrichs, K.-U.

    2010-08-01

    -forming pathway may be relevant for anoxic environments such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.

  9. Detailed Phosphorus Geochemistry of Sediments from the Equatorial Proto-Atlantic at Demerara Rise During Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Latimer, J.; Pugh, E.

    2011-12-01

    Oceanic anoxic events (OAE) are associated with increased organic matter burial and possibly major changes in marine nutrient cycling. Phosphorus (P) limits biological productivity on geologic timescales, thus detailed P geochemistry may provide insight into the role of nutrients on the formation of these organic-rich deposits. P geochemical records that encompass the complete OAE 2 interval across the Cenomanian-Turonian boundary (CTB, ~94 Ma) are rare, and detailed P geochemical records are usually limited to relatively shallow settings. In this study, a sequential extraction (SEDEX) technique is employed to evaluate the sedimentary distribution of P (oxide-associated, authigenic, detrital and organic) in sediments mainly consisting of laminated black shales spanning the CTB/OAE2 interval at a sample resolution of ~2-5 cm collected from Demerara Rise during ODP Leg 207. Intermediate (Site 1260, 2549 m) and deep-sea (Site 1258, 3292 m) water depths will be compared to assess variations in P distribution across the CTB, with paleo-water depths of ~500 to 1000 m respectively. Diagenetic and redox conditions result in alterations of the sedimentary distribution of P in ancient sediments; most notably the effect of "sink-switching" of organic P to authigenic and/or oxide-associated phases. Here we evaluate the impacts of diagenetic remobilization of P through the critical OAE 2 interval. Sequential extraction enables an examination of the dominant pathways of P removal from the ocean thus providing insight into marine P mass balance. Initial results reveal little or undetectable concentrations of oxide-associated and organic P. Authigenic and detrital phases dominate the extractable P. Under anoxic conditions Fe-oxides would no longer be a major sedimentary sink and would likely lead to losses of oxide-associated P from the sediments. Low concentrations of organic P are likely due to diagenetic alteration to authigenic carbonate fluorapatite (CFA) and oxide

  10. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    PubMed

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  11. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    SciTech Connect

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  12. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone.

    PubMed

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-05-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.

  13. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone

    PubMed Central

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-01-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus. PMID:25700337

  14. Iron reactivity in anoxic sediments in the Ría de Vigo (NW Spain).

    PubMed

    Ramírez-Pérez, A M; de Blas, E

    2017-05-01

    The high sedimentation rates and high organic matter contents in the sediments of the Ría de Vigo (NW Spain) promote the development of anoxic conditions, determining the dynamics of elements like Fe and conditioning his speciation and reactivity. Four gravity cores were retrieved in anoxic sediments of the Ría de Vigo in November 2012. In order to understand the behavior of Fe in these complex environments different fractions of reactive iron were analyzed. The decrease in highly reactive iron and sulfide contents with depth showed the relationship between the iron and sulfur cycle in the middle and outer zones of the ría. In the inner zone, the apparition of shallow methane gas may cause the slower decrease of the highly reactive iron contents. In zones without methane, sediment layers enriched in iron -with a reactivity higher than in other sediment samples- were observed. An increase was observed in the dithionite and total reactive iron contents from the inner to the outer zone of the ría, according to the gas depth. Furthermore, a decrease in Fe (III)-bearing minerals contents with depth was observed in the outer and middle zones, but not in the innermost area where the gas is shallow. The high organic matter and sulfide contents, mainly in the inner zone of the ría, indicate that the most of the Fe (II) is FeS. Moreover, the high contents of total reactive iron and pH values (6.86-7.98) could contribute the formation of stable minerals like pyrite along the Ría de Vigo.

  15. Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments

    USGS Publications Warehouse

    Dowdle, P.R.; Laverman, A.M.; Oremland, R.S.

    1996-01-01

    Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat- sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H2, or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate- respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-14C]acetate to 14CO2 by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).

  16. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny.

    PubMed

    Takishita, Kiyotaka; Miyake, Hiroshi; Kawato, Masaru; Maruyama, Tadashi

    2005-06-01

    Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.

  17. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  18. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes.

    PubMed

    Miller, Laurence G; Oremland, Ronald S

    2008-11-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.

  19. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments

    SciTech Connect

    Kiene, R.P.; Visscher, P.T.

    1987-10-01

    Anoxic salt marsh sediments were amended with DL-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 ..mu..M) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO/sub 2/ and only small amounts of CH/sub 4/. At higher concentrations of methionine, the proportion of the methyl-sulfur groups converted to CH/sub 4/ increased.

  20. Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium

    USGS Publications Warehouse

    Oremland, Ronald S.; Zehr, Jon P.

    1986-01-01

    Anaerobic San Francisco Bay salt marsh sediments rapidly metabolized [14C]dimethylselenide (DMSe) to 14CH4 and 14CO2. Addition of selective inhibitors (2-bromoethanesulfonic acid or molybdate) to these sediments indicated that both methanogenic and sulfate-respiring bacteria could degrade DMSe to gaseous products. However, sediments taken from the selenium-contaminated Kesterson Wildlife Refuge produced only 14CO2 from [14C]DMSe, implying that methanogens were not important in the Kesterson samples. A pure culture of a dimethylsulfide (DMS)-grown methylotrophic methanogen converted [14C]DMSe to 14CH4 and14CO2. However, the organism could not grow on DMSe. Addition of DMS to either sediments or the pure culture retarded the metabolism of DMSe. This effect appeared to be caused by competitive inhibition, thereby indicating a common enzyme system for DMS and DMSe metabolism. DMSe appears to be degraded as part of the DMS pool present in anoxic environments. These results suggest that methylotrophic methanogens may demethylate methylated forms of other metals and metalloids found in nature.

  1. Anoxic Oxidation of Arsenite Linked to Denitrification in Sludges and Sediments

    PubMed Central

    Sun, Wenjie; Sierra, Reyes; Field, Jim A.

    2008-01-01

    In this study, denitrification linked to the oxidation of arsenite (As(III)) to arsenate (As(V)) was shown to be a widespread microbial activity in anaerobic sludge and sediment samples that were not previously exposed to arsenic contamination. When incubated with 0.5 mM As(III) and 10 mM NO3−, the anoxic oxidation of As(III) commenced within a few days, achieving specific activities of up to 1.24 mmol As(V) formed g−1 volatile suspended solids d−1 due to growth (doubling times of 0.74 to 1.4 d). The anoxic oxidation of As(III) was partially to completely inhibited by 1.5 and 5 mM As(III), respectively. Inhibition was minimized by adding As(III) adsorbed onto activated aluminum (AA). The oxidation of As(III) was shown to be linked to the complete denitrification of NO3− to N2 by demonstrating a significantly enhanced production of N2 beyond the background endogenous production as a result of adding As(III)-AA to the cultures. The N2 production corresponded closely the expected stoichiometry of the reaction, 2.5 mol As(III) mol−1 N2-N. The oxidation of As(III) linked to the use of common occuring nitrate as an electron acceptor may be an important missing link in the biogeochemical cycling of arsenic. PMID:18762312

  2. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Whiticar, Michael J.; Strohmaier, F.E.; Kiene, R.P.

    1988-01-01

    Trace levels of ethane were produced biologically in anoxic sediment slurries from five chemically different aquatic environments. Gases from these locations displayed biogenic characteristics, having 12C-enriched values of ??13CH4 (-62 to -86%.), ??13C2H6 (-35 to -55%.) and high ratios (720 to 140,000) of CH4 [C2H6 + C3H8]. Endogenous production of ethane by slurries was inhibited by autoclaving or by addition of the inhibitor of methanogenic bacteria, 2-bromoethanesulfonic acid (BES). Ethane formation was stimulated markedly by ethanethiol (ESH), and, to a lesser extent, by diethylsulfide (DES). Formation of methane and ethane in ESH- or DES-amended slurries was blocked by BES. Experiments showed that ethionine (or an analogous compound) could be a precursor of ESH. Ethylamine or ethanol additions to slurries caused only a minor stimulation of ethane formation. Similarly, propanethiol additions resulted in only a minor enhancement of propane formation. Cell suspensions of a methyltrophic methanogen produced traces of ethane when incubated in the presence of DES, although the organism did not grow on this compound. These results indicate that methanogenic bacteria produce ethane from the traces of ethylated sulfur compounds present in recent sediments. Preliminary estimates of stable carbon isotope fractionation associated with sediment methane formation from dimethylsulfide was about 40%., while ethane formation from DES and ESH was only 4. 6 and 6.5%., respectively. ?? 1988.

  3. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  4. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Noll, M.; Claus, P.; Klose, M.; Bastos, W. R.; Enrich-Prast, A.

    2010-11-01

    Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰) for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰), which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.

  5. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Noll, M.; Claus, P.; Klose, M.; Bastos, W. R.; Enrich-Prast, A.

    2011-03-01

    Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate, CO2, and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰) for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰), which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.

  6. Dispersion of Sound in Marine Sediments

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dispersion of Sound in Marine Sediments N. Ross...our understanding of the interaction of sound with the ocean bottom is the frequency dependence of sound speed and attenuation in marine sediments...The long term goals of this research project are related to the investigation of dispersion of sound speed and attenuation at low frequencies (< 2

  7. Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment.

    PubMed

    Kim, Myungsu; Bae, Seung Seob; Seol, Mijin; Lee, Jung-Hyun; Oh, Young-Sook

    2008-12-01

    Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism (T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights on how to effectively remediate PAH-contaminated sediments.

  8. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events

    PubMed Central

    Algeo, T. J.

    1998-01-01

    The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.

  9. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.

  10. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Noll, M.; Claus, P.; Klose, M.; Enrich-Prast, A.

    2010-12-01

    Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sites in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorganisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰) for conversion of C-org to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰), which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.

  11. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient.

    PubMed

    Gough, Heidi L; Stahl, David A

    2011-03-01

    Contamination, such as by heavy metals, has frequently been implicated in altering microbial community structure. However, this association has not been extensively studied for anaerobic communities, or in freshwater lake sediments. We investigated microbial community structure in the metal-contaminated anoxic sediments of a eutrophic lake that were impacted over the course of 80 years by nearby zinc-smelting activities. Microbial community structure was inferred for bacterial, archaeal and eukaryotic populations by evaluating terminal restriction fragment length polymorphism (TRFLP) patterns in near-surface sediments collected in triplicate from five areas of the lake that had differing levels of metal contamination. The majority of the fragments in the bacterial and eukaryotic profiles showed no evidence of variation in association with metal contamination levels, and diversity revealed by these profiles remained consistent even as metal concentrations varied from 3000 to 27,000 mg kg(-1) total Zn, 0.125 to 11.2 μ pore water Zn and 0.023 to 5.40 μM pore water As. Although most archaeal fragments also showed no evidence of variation, the prevalence of a fragment associated with mesophilic Crenarchaeota showed significant positive correlation with total Zn concentrations. This Crenarchaeota fragment dominated the archaeal TRFLP profiles, representing between 35% and 79% of the total measured peak areas. Lake DePue 16S rRNA gene sequences corresponding to this TRFLP fragment clustered with anaerobic and soil mesophilic Crenarchaeota sequences. Although Crenarchaeota have been associated with metal-contaminated groundwater and soils, this is a first report (to our knowledge) documenting potential increased prevalence of Crenarchaeota associated with elevated levels of metal contamination.

  12. Dehalogenation in marine sediments containing natural sources of halophenols.

    PubMed Central

    King, G M

    1988-01-01

    Halophenols such as 2,4-dibromophenol (DBP) occur naturally in some marine sediments, as a consequence of various animal and algal activities. In an earlier study, DBP was observed in the burrow microenvironment of the hemichordate Saccoglossus kowalewskii. At the concentrations found in the burrow lining, aerobic respiration appeared to be inhibited significantly relative to anaerobic catabolism. This effect, as well as factors contributing to the degradation of DBP, has been documented further here. Results from the addition of radiolabeled DBP to oxic and anoxic sediment slurries and growth experiments with aerobic and anaerobic enrichments suggested that aerobes did not significantly metabolize DBP and that concentrations likely to be encountered on the inner surfaces of the burrow wall were inhibitory. In contrast, only minimal inhibition of growth occurred for anaerobes exposed to 1 mM DBP; in addition, DBP was substantially degraded in both enrichments and sediments under anaerobic conditions. Dehalogenation with the consequent production of phenol appeared to initiate anaerobic degradation. Sulfate-reducing bacteria did not dehalogenate DBP but appeared to degrade phenol. Decreased bacterial numbers and marked differences in the concentration and chemical speciation of iron in sediments from S. kowalewskii burrows may be attributed to toxic effects of DBP on aerobic bacteria. PMID:3223770

  13. A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning.

    PubMed

    Larner, Bronwyn L; Palmer, Anne S; Seen, Andrew J; Townsend, Ashley T

    2008-02-11

    The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4h, 1 molL(-1) HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 micromolg(-1)) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 micromolg(-1)) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (SigmaSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.

  14. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments

    NASA Astrophysics Data System (ADS)

    Rush, Darci; Sinninghe Damsté, Jaap S.; Poulton, Simon W.; Thamdrup, Bo; Garside, A. Leigh; Acuña González, Jenaro; Schouten, Stefan; Jetten, Mike S. M.; Talbot, Helen M.

    2014-09-01

    Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously produced BHP while its less common stereoisomer (BHT isomer) has previously been associated with anoxic environments; however, its biological source remained unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four sediment cores and a surface sediment transect closely followed the distribution of ladderane fatty acids, unique biomarkers for bacteria performing anaerobic ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids likely shared the same biological source in Golfo Dulce. This was supported by examining the BHP lipid compositions of two enrichment cultures of a marine anammox species ('Candidatus Scalindua profunda'), which were found to contain both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher relative abundance than BHT. However, a non-marine anammox enrichment contained only BHT, which explains the infrequence of BHT isomer observations in terrestrial settings, and indicates that marine anammox bacteria are likely responsible for at least part of the environmentally-observed marine BHT isomer occurrences. Given the substantially greater residence time of BHPs in sediments, compared to ladderanes, BHT isomer is a potential biomarker for past anammox activity.

  15. Petroleum biodegradation studied in sediment-flow-through systems simulating natural oil seepage in marine sediments

    NASA Astrophysics Data System (ADS)

    Mishra, Sonakshi; Wefers, Peggy; Steeb, Philip; Schmidt, Mark; Treude, Tina

    2014-05-01

    The natural biodegradation of hydrocarbons depends on several environmental factors like nutrients, salinity, temperature, pressure, redox-conditions and composition of crude oil. Petroleum migrating from depth into marine surface sediments at natural seep sites could be subjected to a sequence of different kind of microbial processes which is controlled by a strong redox gradient within a thin sediment segment. Most studies on microbial degradation of petroleum have focused either only on selected hydrocarbon fractions or on cultured microbes. This study, however, attempts to investigate the natural microbial response of marine sediments to crude oil seepage with detailed analysis of sediment and porewater geochemistry, hydrocarbon degradation products, microbial activity, and microbial genetics. A sediment-oil-flow-through-system was established where crude oil migrated through the bottom of (approximately 30 cm long) intact marine sediment cores simulating a natural seepage scenario. Electron acceptor-rich oxic seawater was provided at the top of the core and anoxic conditions were established at the bottom of the cores. The intact sediment cores had been sampled from the Caspian Sea (near Baku) and the North Alex Mud Volcano in the Mediterranean Sea. The Caspian Sea and the North Alex Mud Volcano are both sites with active transport of hydrocarbons from depth by mud volcano activity. The geochemical changes in the sediment cores during oil seepage were monitored by using microelectrodes and porewater analyses. The geochemical analysis was later followed by hydrocarbon and molecular analyses at the end of the experiment by slicing the cores. First results based on the biogeochemistry of the sediment cores and hydrocarbon analyses are presented here. Porewater profiles of hydrogen sulfide and sulfate during the experimental runs gave first indications of microbial response and sulfate reduction due to the addition of crude oil. The core from North Alex Mud

  16. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.

    PubMed

    Caswell, Bryony A; Frid, Christopher L J

    2017-01-01

    Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

  17. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  18. New data concerning the geochemistry of unconsolidated sediments collected from the anoxic zone of the Black Sea

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Cristache, Carmen; Florea, Nelida; Oaie, Gheorghe; Culicov, Otilia A.; Frontasyeva, Marina V.

    2010-05-01

    The content of eight major, rock forming elements (Na, Cl, Al, Si, K, Ca, Ti, Fe) and 34 trace elements (B, S, Sc, V, Cr, Mn, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Sn, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Th and U) were determined by Prompt Gamma and Epithermal Neutron Activation Analysis in 45 samples of the uppermost 50 cm of undisturbed sediments collected from an anoxic continental zone of the Black Sea at a depth of 600 m, off the City of Constanta. 137Cs geochronology has evidenced a sedimentation ratio of 0,42 ± 0,12 mm/y which, by extrapolation to the entire 50 cm column gave an age of 1300 ± 300 y for the oldest sediments. Principal Component Analysis (PCA), Sc-La-Th and Co-Hf-Th ternary diagrams as well as La/Th ratio were used to interpret these data in correlation with the corresponding ones for the Upper Continental Crust (UCC), North American Shale Composite (NASC), as well as Atlantic, Pacific and Indian MORBs. At the same time the Se/Al, Se/Sc, Se/Mn, Mo/Al, Mo/Sc and Mo/Mn, ratios were used as indicators for anoxic conditions along sedimentary core. Major components distribution showed, that excepting CaO, their contents are very close to UCC and NASC, while the Principal Component Analysis evidenced three clusters consisting of Na, K and Cl, Al, Ti and Fe and respectively Ca, in concordance with the sediments' mineralogical composition. The Trace Elements Distribution was also close to UCC except for redox sensitive metals Se and Mo whose contents were 10 to 100 times higher than the corresponding UCC ones, this fact reflecting the anoxic conditions along the entire column of sediments. Moreover, by using Se and Mo as proxies for an anoxic environment, we estimated a relative consistency of the local conditions for a period between 350 ± 60 and 1300 ± 300 BP followed by a more fluctuant one during the last 300 years, this peculiarity also being confirmed by PCA, as well as by the vertical distribution of La/Th ratio. A

  19. Massive Expansion of Marine Archaea During The Early Albian Oceanic Anoxic Event 1B

    NASA Astrophysics Data System (ADS)

    Kuypers, M. M.; Kuypers, M. M.; Blokker, P.; Erbacher, J.; Kinkel, H.; Pancost, R. D.; Pancost, R. D.; Schouten, S.; Sinninghe Damsté, J. S.

    2001-12-01

    Oceanic anoxic events (OAEs), periods of globally enhanced burial of organic matter (OM) in the marine realm, played an important role in the mid-Cretaceous `greenhouse climate' by effectively reducing atmospheric carbon dioxide concentrations. It is generally believed that these OAEs were caused either by decreased remineralisation or increased production of phytoplanktonic OM. Here we show that enhanced organic carbon (OC) burial during the early Albian OAE1b (~112 My) was caused by a different process. Combined biogeochemical and stable carbon isotopic analyses indicate that black shales from this period contain up to 80% of OC derived from archaea. Archaea-derived isoprenoidal tetraether membrane lipids and free and macromolecularly bound isoprenoid alkanes are abundantly present in these black shales. More specifically the presence of certain ether lipids (cyclic biphytane tetraethers) indicates representatives of the pelagic archaea. To the best of our knowledge this is the earliest fossil evidence for marine planktonic archaea, extending their geological record by more than 60 million years. The diversity of archaeal lipids recovered from the OAE1b black shales suggests that they derive from a multitude of archaeal species. However, the specific 13C enrichment of all such lipids indicates a common `heavy' (13C-rich) carbon source for the archaea and/or a common pathway of carbon-fixation with a reduced 13C fractionation effect compared to the Calvin cycle used by algae, cyanobacteria and higher plants. The large differences (up to 12%) in 13C/12C ratios between the algal biomarkers and the much more abundant archaeal molecular fossils suggest that the latter were not living heterotrophically on photoautotrophic biomass. It seems likely that the archaea present during OAE1b used a chemical energy source (possibly ammonium) for carbon fixation since photoautotrophy within the domain of the Archaea is restricted to only a few species from hypersaline

  20. The chromium isotope composition of reducing and oxic marine sediments

    NASA Astrophysics Data System (ADS)

    Gueguen, Bleuenn; Reinhard, Christopher T.; Algeo, Thomas J.; Peterson, Larry C.; Nielsen, Sune G.; Wang, Xiangli; Rowe, Harry; Planavsky, Noah J.

    2016-07-01

    The chromium (Cr) isotope composition of marine sediments has the potential to provide new insights into the evolution of Earth-surface redox conditions. There are significant but poorly constrained isotope fractionations associated with oxidative subaerial weathering and riverine transport, the major source of seawater Cr, and with partial Cr reduction during burial in marine sediments, the major sink for seawater Cr. A more comprehensive understanding of these processes is needed to establish global Cr isotope mass balance and to gauge the utility of Cr isotopes as a paleoredox proxy. For these purposes, we investigated the Cr isotope composition of reducing sediments from the upwelling zone of the Peru Margin and the deep Cariaco Basin. Chromium is present in marine sediments in both detrital and authigenic phases, and to estimate the isotopic composition of the authigenic fraction, we measured δ53Cr on a weakly acid-leached fraction in addition to the bulk sediment. In an effort to examine potential variability in the Cr isotope composition of the detrital fraction, we also measured δ53Cr on a variety of oxic marine sediments that contain minimal authigenic Cr. The average δ53Cr value of the oxic sediments examined here is -0.05 ± 0.10‰ (2σ, n = 25), which is within the range of δ53Cr values characteristic of the bulk silicate Earth. This implies that uncertainty in estimates of authigenic δ53Cr values based on bulk sediment analyses is mainly linked to estimation of the ratio of Cr in detrital versus authigenic phases, rather than to the Cr-isotopic composition of the detrital pool. Leaches of Cariaco Basin sediments have an average δ53Cr value of +0.38 ± 0.10‰ (2σ, n = 7), which shows no dependency on sample location within the basin and is close to that of Atlantic deepwater Cr (∼+0.5‰). This suggests that authigenic Cr in anoxic sediments may reliably reflect the first-order Cr isotope composition of deepwaters. For Peru Margin samples

  1. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove.

    PubMed

    Wang, Yong-Feng; Feng, Yao-Yu; Ma, Xiaojun; Gu, Ji-Dong

    2013-09-01

    Mangrove wetlands are an important ecosystem in tropical and subtropical regions, and the sediments may contain both oxic and anoxic zones. In this study, ammonia/ammonium-oxidizing prokaryotes (AOPs) in yellow and black sediments with vegetation and non-vegetated sediments in a mangrove wetland of subtropical Hong Kong were investigated in winter and summer. The phylogenetic diversity of anammox bacterial 16S rRNA genes and archaeal and bacterial amoA genes (encoding ammonia monooxygenase alpha-subunit) were analyzed using PCR amplification and denaturing gradient gel electrophoresis to reveal their community structures. Quantitative PCR was also used to detect their gene abundances. The results showed that seasonality had little effect, but sediment type had a noticeable influence on the community structures and abundances of anammox bacteria. For ammonia-oxidizing archaea (AOA), seasonality had a small effect on their community structures, but a significant effect on their abundances: AOA amoA genes were significantly higher in winter than in summer. In winter, the vegetated yellow sediments had lower AOA amoA genes than the other types of sediments, but in summer, the vegetated yellow sediments had higher AOA amoA genes than the other types of sediments. Sediment type had no apparent effect on AOA community structures in winter. In summer, however, the vegetated yellow sediments showed obviously different AOA community structures from the other types of sediments. For ammonia-oxidizing bacteria (AOB), seasonality had a significant effect on their community structures and abundances: AOB amoA genes in winter were apparently higher than in summer, and AOB community structures were different between winter and summer. Sediment type had little effect on AOB community structures, but had a noticeable effect on the abundances: AOB amoA genes of the vegetated yellow sediments were obviously lower than the black ones in both seasons. This study has demonstrated that

  2. Determination of brevetoxin in recent marine sediments.

    PubMed

    Mendoza, Wilson G; Mead, Ralph N; Brand, Larry E; Shea, Damian

    2008-11-01

    Harmful algal blooms (HAB) of Karenia brevis (K. brevis) produce a suite of lipid soluble polyether brevetoxins, known to cause environmental, health and economic ill effects. There is evidence that K. brevis has increased in abundance over the past 50 years, but the dataset is incomplete. The objective of this paper was to analyze sediment from an area where K. brevis blooms have occurred and investigate if these compounds are incorporated into the underlying sediment, thus potentially allowing the use of brevetoxins as an indicator of past K. Brevis blooms. The results from LC-ESI-MS-MS analyses of brevetoxin analogs detected in surficial sediments from three sites (Fort Meyers Beach [FMB], Big Hickory Pass [BHP] and Big Carlos Pass [BCP]) along the Southwest Florida coastline with prior HAB history are promising. The analogs detected from BHP sediments were PbTx-2 and PbTx-3 with values of 0.81 and 3.1 ng g(-1) dry sediment, respectively. The detected PbTx-2 from BCP was 3.6 ng g(-1) dry sediment, while the detected PbTx-3 from BCP was 9.7 ng g(-1) dry sediment. PbTx-3 was only detected at the FMB site (2.7 ng g(-1) dry sediment). The detection of brevetoxins in recent sediments where K. brevis have occurred indicates brevetoxin incorporation into marine sediments.

  3. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica

    PubMed Central

    Carr, Stephanie A.; Orcutt, Beth N.; Mandernack, Kevin W.; Spear, John R.

    2015-01-01

    Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment. PMID:26379647

  4. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  5. Reactive iron in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.

    1989-01-01

    The influence of reactive iron oxides on sediment pore-water chemistry is considered in detail. A carefully calibrated extraction scheme is used to determine the depth distributions of reactive iron phases at two very different localities: the relatively iron-rich Mississippi Delta and the relatively iron-poor FOAM site in Long Island Sound. Closed system incubations are used to characterize the rates of reaction between sulfide and both naturally occurring and pure iron mineral phases. Rates of iron liberation to pore solution are measured in the presence and absence of sulfate reduction, and the origin of dissolved iron in organic-rich sediments is speculated upon.

  6. Magnesium Isotopic Composition of Subducting Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  7. Shear wave velocity measurements in marine sediments

    NASA Astrophysics Data System (ADS)

    Matthews, J. E.

    1982-09-01

    Pulsed ultrasonic techniques for the measurement of sound speed are reliable and well documented. Extension of these techniques to the measurement of shear wave velocities in marine sediments, generally was unsuccessful. Recently developed shear wave transducers, based upon piezoelectric benders operated at sonic frequencies, provide significantly improved transducer-sample mechanical coupling. This improved coupling allows the application of pulsed techniques to the measurement of shear wave velocities in marine sediments, and the rapid determination of sediment dynamic elastic properties. Two types of bender-based shear wave transducer and preliminary data are described: 1) a probe configuration for box core samples, and 2) a modification to the Hamilton Frame Velocimeter for cut samples.

  8. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments.

    PubMed

    Orphan, Victoria J; House, Christopher H; Hinrichs, Kai-Uwe; McKeegan, Kevin D; DeLong, Edward F

    2002-05-28

    No microorganism capable of anaerobic growth on methane as the sole carbon source has yet been cultivated. Consequently, information about these microbes has been inferred from geochemical and microbiological observations of field samples. Stable isotope analysis of lipid biomarkers and rRNA gene surveys have implicated specific microbes in the anaerobic oxidation of methane (AOM). Here we use combined fluorescent in situ hybridization and secondary ion mass spectrometry analyses, to identify anaerobic methanotrophs in marine methane-seep sediments. The results provide direct evidence for the involvement of at least two distinct archaeal groups (ANME-1 and ANME-2) in AOM at methane seeps. Although both archaeal groups often occurred in direct physical association with bacteria, they also were observed as monospecific aggregations and as single cells. The ANME-1 archaeal group more frequently existed in monospecific aggregations or as single filaments, apparently without a bacterial partner. Bacteria associated with both archaeal groups included, but were not limited to, close relatives of Desulfosarcina species. Isotopic analyses suggest that monospecific archaeal cells and cell aggregates were active in anaerobic methanotrophy, as were multispecies consortia. In total, the data indicate that the microbial species and biotic interactions mediating anaerobic methanotrophy are diverse and complex. The data also clearly show that highly structured ANME-2/Desulfosarcina consortia are not the sole entities responsible for AOM at marine methane seeps. Other microbial groups, including ANME-1 archaea, are capable of anaerobic methane consumption either as single cells, in monospecific aggregates, or in multispecies consortia.

  9. Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon

    PubMed Central

    Kendall, Melissa M.; Boone, David R.

    2006-01-01

    Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44°35' N, 125°10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 °C to 15 °C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal. PMID:16877319

  10. Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon.

    PubMed

    Kendall, Melissa M; Boone, David R

    2006-08-01

    Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44 degrees 35' N, 125 degrees 10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 degrees C to 15 degrees C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal community.

  11. Taxonomic and functional metagenomic profiling of the microbial community in the anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, Central Spain).

    PubMed

    Ferrer, Manuel; Guazzaroni, María-Eugenia; Richter, Michael; García-Salamanca, Adela; Yarza, Pablo; Suárez-Suárez, Ana; Solano, Jennifer; Alcaide, María; van Dillewijn, Pieter; Molina-Henares, Maria Antonia; López-Cortés, Nieves; Al-Ramahi, Yamal; Guerrero, Carmen; Acosta, Alejandro; de Eugenio, Laura I; Martínez, Virginia; Marques, Silvia; Rojo, Fernando; Santero, Eduardo; Genilloud, Olga; Pérez-Pérez, Julian; Rosselló-Móra, Ramón; Ramos, Juan Luis

    2011-11-01

    The phylogenetic and functional structure of the microbial community residing in a Ca(2+)-rich anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, initially operated as a gypsum (CaSO(4) × 2 H(2)O) mine) was estimated by analyzing the diversity of 16S rRNA amplicons and a 3.1 Mb of consensus metagenome sequence. The lake has about half the salinity of seawater and possesses an unusual relative concentration of ions, with Ca(2+) and SO (4) (2-) being dominant. The 16S rRNA sequences revealed a diverse community with about 22% of the bacterial rRNAs being less than 94.5% similar to any rRNA currently deposited in GenBank. In addition to this, about 79% of the archaeal rRNA genes were mostly related to uncultured Euryarchaeota of the CCA47 group, which are often associated with marine and oxygen-depleted sites. Sequence analysis of assembled genes revealed that 23% of the open reading frames of the metagenome library had no hits in the database. Among annotated genes, functions related to (thio) sulfate and (thio) sulfonate-reduction and iron-oxidation, sulfur-oxidation, denitrification, synthrophism, and phototrophic sulfur metabolism were found as predominant. Phylogenetic and biochemical analyses indicate that the inherent physical-chemical characteristics of this habitat coupled with adaptation to anthropogenic activities have resulted in a highly efficient community for the assimilation of polysulfides, sulfoxides, and organosulfonates together with nitro-, nitrile-, and cyanide-substituted compounds. We discuss that the relevant microbial composition and metabolic capacities at Laguna de Carrizo, likely developed as an adaptation to thrive in the presence of moderate salinity conditions and potential toxic bio-molecules, in contrast with the properties of previously known anoxic sediments of shallow lakes.

  12. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins.

    PubMed

    Edgcomb, Virginia P; Pachiadaki, Maria G; Mara, Paraskevi; Kormas, Konstantinos A; Leadbetter, Edward R; Bernhard, Joan M

    2016-11-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea.

  13. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  14. A Brunhes-Matuyama polarity transition record from anoxic sediments in the South Atlantic (Ocean Drilling Program Hole 1082C)

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Oda, H.

    2001-08-01

    A paleomagnetic study was performed on Hole 1082C sediment cores taken during the Ocean Drilling Program (ODP) Leg 175 in the South Atlantic in order to obtain a high-resolution Brunhes-Matuyama (B/M) polarity transition record. An average sedimentation rate was as high as 10 cm/kyr. The cores consist of strongly anoxic sediments, which is common for the areas of large material supply. Anoxic sediments, which are geochemically quite active, were considered to be unsuitable for studies on detailed behavior of the geomagnetic field such as polarity transitions. For global site distribution, however, it is necessary to make efforts to retrieve paleomagnetic records from such sediments. A continuous record of directional changes around the transition was obtained from U-channel samples after cleaning by stepwise alternating-field (AF) demagnetization. Consistency of the record was checked using discrete samples taken from the other half of the cores. The coring-induced magnetic overprint of radial-inward direction, which has often been reported from ODP piston-cores, was negligibly small in our cores. Relative paleointensity variation was estimated from remanent intensities of the discrete samples normalized by artificial remanences. Our record shows following features of the B/M transition similar to those already reported by previous studies. A zone of large directional fluctuations with low paleointensities occurs just before the main transition (788 to 795 ka based on the oxygen-isotope stratigraphy), which would correspond to the "precursor" of Hartl and Tauxe (1996). The virtual geomagnetic poles (VGPs) at the precursor lie along the so-called preferred longitudinal bands over the north-south Americas and Australia-east Asia. After the main transition from the reversed to normal polarity, VGPs stayed in the middle-to-high latitudes over the North America with an intermediate paleointensity for about 5~kyrs, and then moved in the vicinity of the North Pole with

  15. Depth Distribution of Archaeal Diversity and Community Composition Across Steep Geochemical Gradients in Anoxic Sediments of a Hypersaline Lake

    NASA Astrophysics Data System (ADS)

    Swan, B. K.; Valentine, D. L.

    2006-12-01

    Patterns in Archaeal diversity and community composition were investigated in the anoxic sediments of the Salton Sea, California's largest lake. The sediments of this lake contain strong gradients in salinity and organic carbon, which provide a natural setting to examine the influence of these gradients on Archaeal communities. Measurements of sediment and porewater geochemistry and Archaeal diversity were made within the top 33cm of sediment. Porewater sulfate and total salinity, organic carbon and mineral content of the bulk sediment were measured at 1-cm intervals; Archaeal diversity was determined at 2-cm intervals using T-RFLP analysis to identify unique phylotypes. To examine Archaeal community composition 16S rDNA clone libraries were constructed at three depth intervals across the gradients. Between 4-23 Archaeal phylotypes were identified across the gradients, and the number of phylotypes was negatively correlated with organic carbon content. 16S rDNA clone libraries revealed the presence of members within the Euryarchaeota and Crenarchaeota groups. The biogeochemical role of these uncultured anaerobic Archaea remains unknown, but we hypothesize that the high-salt and low organic carbon conditions that exist in the deeper sediments provide an environmental niche that Archaea exploit to compete with the Bacterial community.

  16. Anaerobic degradation pathway of linear Alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments.

    PubMed

    Lara-Martín, Pablo A; Gómez-Parra, Abelardo; Sanz, José Luis; González-Mazo, Eduardo

    2010-03-01

    Linear alkylbenzene sulfonates (LAS) are among the principal synthetic surfactants used worldwide. Their presence in the environment has been reported in a significant number of studies, and it has been generally assumed that LAS are not biotransformed in the absence of oxygen. However, laboratory experiments performed by our group using anoxic marine sediments have reported LAS degradation percentages that can reach up to 79% in 165 days. Here, we show for the first time the initial reaction metabolites (generated via fumarate addition to the LAS molecules), their biotransformation into sulfophenyl carboxylic acids (SPC), and the progressive degradation of these by successive beta-oxidation reactions. Advanced mass spectrometry has been used to carry out the identification of these compounds. This is the first time that an anaerobic degradation pathway for LAS is described, and these results represent a significant advance in understanding the final fate of these and other similar compounds in anoxic environments.

  17. Succession of cable bacteria and electric currents in marine sediment

    PubMed Central

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm−2. Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4–1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  18. Carotenoid diagenesis in a marine sediment

    NASA Technical Reports Server (NTRS)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  19. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat.

    PubMed

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-11-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.

  20. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  1. Sediment Burial Intolerance of Marine Macroinvertebrates

    PubMed Central

    Hendrick, Vicki J.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  2. Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination.

    PubMed

    Metzger, E; Viollier, E; Simonucci, C; Prévot, F; Langlet, D; Jézéquel, D

    2013-10-01

    Constrained DET (Diffusive Equilibration in Thin films) probes equipped with 75 sampling layers of agarose gel (DGT Research(©)) were used to sample bottom and pore waters in marine sediment with a 2 mm vertical resolution. After retrieval, each piece of hydrogel, corresponding to 25 μL, was introduced into 1 mL of colorimetric reagent (CR) solution consisting of formic acid and bromophenol blue. After the elution/reaction time, absorbance of the latter mixture was read at 590 nm and compared to a calibration curve obtained with the same protocol applied to mini DET probes soaked in sodium hydrogen carbonate standard solutions. This method allows rapid alkalinity determinations for the small volumes of anoxic pore water entrapped into the gel. The method was assessed on organic-rich coastal marine sediments from Thau lagoon (France). Alkalinity values in the overlying waters were in agreement with data obtained by classical sampling techniques. Pore water data showed a progressive increase of alkalinity in the sediment from 2 to 10 mmol kg(-1), corresponding to anaerobic respiration in organic-rich sediments. Moreover, replicates of high-resolution DET profiles showed important lateral heterogeneity at a decimeter scale. This underlines the importance of high-resolution spatial methods for alkalinity profiling in coastal marine systems.

  3. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    PubMed Central

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

  4. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2008-08-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (˜15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ˜15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H 2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ˜90-100 ka, followed by another period of anoxic, non

  5. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2009-04-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (about 15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After around 15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for about 90-100 ka, followed by another period of

  6. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  7. Analysis of marine bivalves and sediments

    SciTech Connect

    Zeisler, R.; Stone, S.F.

    1986-01-01

    Recently, environmental monitoring has been complemented by programs for systematic and controlled long-term storage of environmental samples; i.e., environmental specimen banking (ESB). In the US a pilot ESB program is currently expanding to become past of several environmental and human health monitoring projects. The National Status and Trends (NS and T) program on the marine environment, administrated by the National Oceanic and Atmospheric Administration (NOAA), is one of these projects and has initialized new investigations within the ESB research program. This research includes all steps of the ESB operation, with special emphasis on quality assurance in the selection, collection, preparation, storage, and analysis of marine samples according to validated procedures. A unique sequence of instrumental analytical methods involving x-ray fluorescence and neutron activation analysis procedures has been employed for the determination of 44 elements in marine bivalves. The individual procedures are an x-ray fluorescence method based on backscatter with fundamental parameter corrections, prompt gamma activation analysis, and neutron activation analysis with instrumental and radiochemical procedures. This analytical approach has been expanded to include the analysis of sediments and fish tissues.

  8. Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments.

    PubMed

    Baena-Nogueras, Rosa María; Rojas-Ojeda, Patricia; Sanz, José Luis; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-06-01

    This research is focused on secondary alkane sulfonates (SAS), anionic surfactants widely used in household applications that access aquatic environments mainly via sewage discharges. We studied their sorption capacity and anaerobic degradation in marine sediments, providing the first data available on this topic. SAS partition coefficients increased towards those homologues having longer alkyl chains (from up to 141 L kg(-1) for C14 to up to 1753 L kg(-1) for C17), which were those less susceptible to undergo biodegradation. Overall, SAS removal percentages reached up to 98% after 166 days of incubation using anoxic sediments. The degradation pathway consisted on the formation of sulfocarboxylic acids after an initial fumarate attack of the alkyl chain and successive β-oxidations. This is the first study showing that SAS can be degraded in absence of oxygen, so this new information should be taken into account for future environmental risk assessments on these chemicals.

  9. ENANTIOSELECTIVE TRANSFORMATION OF CHIRAL PCBS AND THE INSECTICIDE FIPRONIL IN NATURAL ANOXIC SEDIMENTS

    EPA Science Inventory

    In this study, we examined the microbial transformation of two chiral PCB congeners and the insecticide fipronil in natural sediment microcosms. The specific goals of the study were to identify biotransformation pathways and determine if enantioselective microbial transformation ...

  10. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; den Camp, H J; Pol, A; Vogels, G D

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry. h-1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0. 32 nmol per ml of sediment slurry. h-1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i. e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 microM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 microM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  11. Terrestrial plant biopolymers in marine sediments

    NASA Astrophysics Data System (ADS)

    Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon

  12. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have OsAr ratios greater than or = 1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (less than 10%) and Re (less than 0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most approx. 25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the OsAr ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

  13. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.

  14. Increased carbon uptake in marine sediment enabled by naturally occurring electrical conductors

    NASA Astrophysics Data System (ADS)

    Nielsen, M. E.; Cahoon, D. P.; Girguis, P. R.

    2011-12-01

    Reduction-oxidation (redox) gradients are common across marine sediment-water interfaces and result from microbially-mediated reactions such as the oxidation of organic matter coupled to reduction of electron acceptors. Most microbes living in sediments do not have direct access to oxygen in their immediate environment, however it has recently been shown that sulfide-oxidizing microbes may employ extracellular electron transfer (EET) to couple the oxidation of sulfide in the anoxic zone to reduction of oxygen at the sediment-water interface located several centimeters away. However, no mechanisms for this observed phenomenon have been validated. Accordingly, we tested the hypothesis that conductive minerals in marine sediment (specifically pyrite) can couple spatially separated redox reactions such as anaerobic respiration and oxygen reduction. Marine sediment was amended with naturally occurring pyrite in varying concentrations (0, 2, 10 and 50 weight-percent) and then incubated with 10 μM 13C-labeled acetate. After six hours, the treatments with the greatest amount of added pyrite showed the greatest incorporation of acetate from the labeled pool. The fraction of labeled acetate incorporation more than doubled in the 10 and 50 weight-percent treatments compared to the control sediment. We also designed a circuit to investigate the electrical conductivity of the sediment treatments as a function of added pyrite. A potentiostat was used to establish a known voltage across a sediment column and current was measured. Resistance (the inverse of conductance) was calculated from a linear fit of current data over a range of voltages ranging from 0.5 to 1.0 V. The treatments with added pyrite had lower resistance than background sediment, with the lowest resistance corresponding to the 50% pyrite treatment. We also examined the effect of varying pyrite content on microbial community composition using massively parallel 16S rRNA sequencing. Microbial community analyses

  15. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    USGS Publications Warehouse

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  16. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes.

    PubMed

    Lake, Bjorn A; Coolidge, Kyle M; Norton, Stephen A; Amirbahman, Aria

    2007-02-15

    Phosphorus (P) is the limiting macronutrient for primary production in most lakes. Seasonal anoxia in the hypolimnion of lakes has been strongly correlated with internal P loading to the water column. Gravimetric sediment cores were collected before and after the onset of anoxia in six Maine (USA) lakes during the summer of 2003. This study investigates the relative importance of P sequestration by aluminum hydroxide (Al(OH)3(s)), and ferric (oxy)hydroxide (Fe(OH)3(S)) dissolution with subsequent P release in lakes with varying trophic status. Two lakes, Pennesseewassee and Highland, are oligotrophic. The remaining lakes, China, Cobbosseecontee, Webber and Salmon, have varying levels of productivity. Sediment P, Al and Fe in the top 10 cm were extracted sequentially using ammonium chloride (NH4Cl), bicarbonate-dithionite (BD), and sodium hydroxide (NaOH) at 25 degrees C. The results suggest that a sediment [NH4Cl-Al+BD-Al+NaOH25-Al]:[NH4Cl-Fe+BD-Fe] molar ratio >3 and a sediment [NaOH25-Al]:[NH4Cl-P+BD-P] molar ratio >25 predict low P flux from sediments during the development of anoxia, as proposed by Kopácek et al. [Kopácek J, Borovec J, Hejzlar J, Ulrich K, Norton S, Amirbahman A. Aluminum control of Phosphorus Sorption in Lake Sediments. Environ Sci Technol 2005; 39: 8784-8789.], despite the development of anoxia in and the release of Fe(II) from the hypolimnia of the two study lakes. However, when these molar ratios are not exceeded the model does not adequately describe sedimentary P flux. The application of the model proposed by Kopácek et al. to Cobbosseecontee Lake suggests that its sediment may be a source of P to the water column. However, water column data indicate little to no sedimentary P flux. Therefore, the lack of P flux may be attributed to the absence of Fe(III) reduction in the Cobbosseecontee Lake sediment or perhaps to the slow diagenesis of organically-bound P.

  17. ON THE USE OF HYDROCHLORIC ACID FOR DETERMINING SOLID-PHASE ARSENIC PARTITIONING IN ANOXIC SEDIMENTS

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground water flux versus dissolution of in-place contaminated sediments. Results from a field study at a Superfund...

  18. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Vogels, G.D.

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities, measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N{sub 2} or H{sub 2} atmosphere. Incubations under experimental conditions which mimic the in situ conditions, however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H{sub 2} atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent K{sub m} values (6 to 8 {micro}M) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent K{sub m} values determined for anaerobic degradation of dimethyl sulfide were of the same order of magnitude. The low apparent K{sub m} values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that they reported previously. The observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  19. Adsorption behaviour of dibutyl phthalate on marine sediments.

    PubMed

    Xu, Xiang-Rong; Li, Xiao-Yan

    2008-01-01

    Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Q(max)) of the marine sediments ranges from 53 to 79 mg g(-1), which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H(2)O(2) oxidation, and the Q(max) then decreases to a range between 13 and 22 mg g(-1). The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.

  20. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions.

    PubMed

    Quantin, C; Joner, E J; Portal, J M; Berthelin, J

    2005-03-01

    A batch experiment was conducted to compare PAH degradation in a polluted river sediment under aerobic and anaerobic conditions, and to investigate whether input of fresh organic material (cellulose) could enhance such degradation. All measurements were checked against abiotic control treatments to exclude artifacts of sample preparation and non-biological processes like aging. Three- and four-ring PAHs could be degraded by the indigenous microbial community under aerobic conditions, but anaerobic metabolism based on iron and sulphate reduction was not coupled with PAH degradation of even the simplest 3-ring compounds like phenanthrene. Cellulose addition stimulated both aerobic and anaerobic respiration, but had no effect on PAH dissipation. We conclude that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow. Dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.

  1. Vertical distribution profiles and diagenetic fate of synthetic surfactants in marine and freshwater sediments.

    PubMed

    Corada-Fernández, Carmen; Lara-Martín, Pablo A; Candela, Lucila; González-Mazo, Eduardo

    2013-09-01

    This manuscript deals with the presence and degradation of the most commonly-used surfactants, including anionic (linear alkylbenzene sulfonates, LAS, and alkyl ethoxysulfates, AES) and non-ionic (alcohol polyethoxylates, AEOs, and nonylphenol polyethoxylates, NPEOs) compounds, in sediments and pore water from several aquatic environments (Southwest, Spain). Different vertical distributions were observed according to the respective sources, uses, production volumes and physicochemical properties of each surfactant. Levels of nonionics (up to 10 mg kg(-1)) were twice as high as anionics in industrial areas and harbors, whereas the opposite was found near urban wastewater discharge outlets. Sulfophenyl carboxylic acids (SPCs), LAS degradation products, were identified at anoxic depths at some sampling stations. Their presence was related to in situ anaerobic degradation of LAS in marine sediments, whereas the occurrence of these metabolites in freshwater sediments was attributed to the existence of wastewater sources nearby. No significant changes in the average length of AEO and NPEO ethoxylated chains were observed along the sediment cores, suggesting that their biodegradation was very limited in the sampling area. This may be directly related to their lower bioavailability, as their calculated sediment-pore water distribution coefficients (log K(sw)), which showed that non-ionic surfactants examined in this study had greater sorption affinity than the anionic surfactants (e.g., 2.3±0.3 for NPEOs).

  2. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity.

  3. Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake.

    PubMed

    Schirmack, Janosch; Mangelsdorf, Kai; Ganzert, Lars; Sand, Wolfgang; Hillebrand-Voiculescu, Alexandra; Wagner, Dirk

    2014-02-01

    A novel strain of methanogenic archaea, designated MC-20(T), was isolated from the anoxic sediment of a subsurface lake in Movile Cave, Mangalia, Romania. Cells were non-motile, Gram-stain-negative rods 3.5-4.0 µm in length and 0.6-0.7 µm in width, and occurred either singly or in short chains. Strain MC-20(T) was able to utilize H2/CO2, formate, 2-propanol and 2-butanol as substrate, but not acetate, methanol, ethanol, dimethyl sulfide, monomethylamine, dimethylamine or trimethylamine. Neither trypticase peptone nor yeast extract was required for growth. The major membrane lipids of strain MC-20(T) were archaeol phosphatidylethanolamine and diglycosyl archaeol, while archaeol phosphatidylinositol and glycosyl archaeol were present only in minor amounts. Optimal growth was observed at 33 °C, pH 7.4 and 0.08 M NaCl. Based on phylogenetic analysis of 16S rRNA gene sequences, strain MC-20(T) was closely affiliated with Methanobacterium oryzae FPi(T) (similarity 97.1%) and Methanobacterium lacus 17A1(T) (97.0%). The G+C content of the genomic DNA was 33.0 mol%. Based on phenotypic and genotypic differences, strain MC-20(T) was assigned to a novel species of the genus Methanobacterium for which the name Methanobacterium movilense sp. nov. is proposed. The type strain is MC-20(T) ( = DSM 26032(T) = JCM 18470(T)).

  4. Sorption and desorption of antibiotic tetracycline on marine sediments.

    PubMed

    Xu, Xiang-Rong; Li, Xiao-Yan

    2010-01-01

    Tetracycline is commonly used for human therapy and veterinary purposes as well as agricultural feed additives. In this study, batch experiments were carried out to investigate the sorption behaviour of tetracycline on marine sediments. The sediment samples were collected from Victoria Harbour, Hong Kong. Sorption isotherms of tetracycline on marine sediments can be well described by a Freudlich model. The calculated K(f) varied from 1.12 to 2.34Lg(-1). After H(2)O(2) oxidation for removing the organic carbon from marine sediments, the K(f) values were reduced by more than 80%, but the organic carbon normalized sorption constant averaged 213.1Lg(-1) for the H(2)O(2)-treated sediments, which was higher than 98.3Lg(-1) for the raw marine sediments. The calculated hysteresis coefficient H ranged from 0.79 to 0.90 indicating that there is a hysteresis in desorption. The sorption of tetracycline on marine sediments was found to decrease with an increase of pH and salinity. These research findings are of importance to an assessment of the fate and transport of tetracycline and other similar antibiotics in seawater-sediment systems.

  5. Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments.

    PubMed

    Cameron, Karen A; Stibal, Marek; Olsen, Nikoline S; Mikkelsen, Andreas B; Elberling, Bo; Jacobsen, Carsten S

    2017-01-09

    The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance of Desulfosporosinus meridiei by day 371 provides evidence for sulphate reduction. We found evidence of methanogenesis in CO2/H2-amended incubations within the first 5 months, with production rates of ~4 pmol g(-1) d(-1), which was likely performed by methanogenic Methanomicrobiales- and Methanosarcinales-related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments.

  6. Is these a link between eustatic variations, platform drowning, oceanic anoxic events, and ammonite faunal turnovers ? Case study of the Aptian sediments along the northern Tethyan margin

    NASA Astrophysics Data System (ADS)

    Pictet, Antoine; Föllmi, Karl; Spangenberg, Jorge

    2014-05-01

    The early Aptian witnessed an important episode of paleoenvironmental change, which has been linked to major marine volcanic activity related to the formation of the Ontong-Java large igneous province (e.g., Larson and Erba, 1999). This phase culminated in the formation of hemipelagic and pelagic organic-rich sediments, whereas profound changes are also observed in shallow-water settings, with the step-by-step disappearance of the northern Tethyan platform. Results show that the northern Tethyan platform has passed through three major crises in its evolution during the early Aptian. A first one started with an emersion phase, marked by a subaerial karstified discontinuity reported from the middle early Aptian (Deshayesites forbesi or early D. deshayesi zone). This is directly followed by the drowning of the Urgonian platform along the northern Tethyan margin, preceding the Selli Episode. The period following this drowning phase coincides with the negative and the following positive excursions in the δ13C records and went along with the deposition of the so-called Lower Grünten Member, which is the result of heterozoan carbonate production and characterized by increased detrital input. Ammonite fauna witnessed an important diversification of hemipelagic forms, especially inside the heteromorph Ancyloceratacea. This radiation is probably linked to the expansion of hemipelagic facies, one of the main habitats of ammonites. A second phase, reported from the late early Aptian (late D. deshayesi zone), started with a small drowning event, marked by a firmground and by a phosphatic enrichment. This stratigraphical layer also corresponds to the establishment of the anoxic Apparein level. Above, the Upper Grünten Member continues with heterozoan carbonate production or with glauconitic condensed sediments. The corresponding δ13C record is a the onset of a long-term decrease. The ammonite fauna is marked by a first turnover with the disappearance of Deshayesites, and the

  7. Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes.

    PubMed

    Nozhevnikova, Alla N; Zepp, Kornelia; Vazquez, Francisco; Zehnder, Alexander J B; Holliger, Christof

    2003-03-01

    In order to obtain evidence for the existence of psychrophilic methanogenic communities in sediments of deep lakes that are low-temperature environments (4 to 5 degrees C), slurries were first incubated at temperatures between 4 and 60 degrees C for several weeks, at which time they were amended, or not, with an additional substrate, such as cellulose, butyrate, propionate, acetate, or hydrogen, and further incubated at 6 degrees C. Initial methane production rates were highest in slurries preincubated at temperatures between 4 and 15 degrees C, with maximal rates in slurries kept at 6 degrees C. Hydrogen-amended cultures were the only exceptions, with the highest methane production rates at 6 degrees C after preincubation at 30 degrees C.

  8. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  9. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  10. DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis during anoxic stress and aerobic recovery

    NASA Astrophysics Data System (ADS)

    Slobodskova, Valentina V.; Zhukovskaya, Avianna F.; Chelomin, Victor P.

    2012-06-01

    Anoxia-induced DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis was assessed with the alkaline comet assay (single-cell gel electrophoresis). The alkaline comet assay method for detecting DNA strand breaks and alkali labile sites in individual cells. DNA damage was determened in the scallops ( M. yessoensis) gill cells. The scallops were exposed to air for 8 h showing a clear increase in the levels of DNA damage. After the air exposure, M. yessoensis were re-submersed for a period of 12 h, leading values to return to a pre-aerial exposure level. Control animals were kept immersed during the whole period. The resulting data demonstrate that natural influences, such as oxygen depletion (anoxia) in seawater, can be responsible for the induction of DNA damage. If the scallops were re-immersed in oxic conditions, the anoxically induced breaks were repaired. The main mechanisms influencing the integrity of the DNA structure are discussed in this paper.

  11. Influence of chemical reactivities of lipids bound in different pools on their isotopic compositions during degradation in marine sediments

    NASA Astrophysics Data System (ADS)

    Sun, M.; Pan, H.; Culp, R.

    2013-05-01

    Lipid biomarkers and associated compound specific stable carbon isotope compositions have been widely applied to study biogeochemical cycling of organic matter in natural environments. This experimental study was specifically designed to examine the influence of chemical reactivities of lipid compounds bound in different pools on their isotopic composition during microbial degradation in marine sediments. 13C-labeled (labeling at different carbon positions of fatty acid chains) and unlabeled tripalmitins were spiked and incubated in natural oxic (top 1 cm) and anoxic (> 10 cm) marine sediments. In anoxic sediments, neither naturally-occurred fatty acids nor tripalmitin-derived 16:0 fatty acid were apparently degraded within two months and hence no significant variation in stable carbon isotopic composition of 16:0 fatty acid was observed. However, in oxic sediments, both naturally-occurred fatty acids and spiked tripalmitin-derived 16:0 fatty acid were degraded by 26% - 95% during incubation. For natural fatty acids such as 14:0, 16:1, 18:1, 20:5/20:4, and >C20:0, degradation rates varied according to the following order: polyunsaturated > monounsaturated > short chain saturated > long chain saturated fatty acids, which reflects variable reactivities of natural lipid compounds from different sources. Tripalmitin-derived 16:0 fatty acid degraded at an at least 2-3× faster rate compared to naturally-occurred 16:0 in sediments. Meanwhile, isotopic compositions of 16:0 fatty acid in the oxic sediments shifted negatively during incubation. It appears that the isotopic shifts are dependent on the amount of 13C-labeled compound spiked into the sediments but not related to the labeling position of 13C in the molecular structure. The results from this study provide direct evidence that the relative reactivities of lipid compounds from different sources (or different pools) can cause alterations in molecular isotopic composition during microbial degradation in natural

  12. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Ogrinc, N.; Faganeli, J.

    2006-05-01

    According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment-water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance. It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (P tot) is preserved preferentially over organic C (C org). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of P tot and organic P (P org) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.

  13. Electric currents couple spatially separated biogeochemical processes in marine sediment.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo; Sayama, Mikio

    2010-02-25

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

  14. Carotenoid diagenesis in recent marine sediments. II. Degradation of fucoxanthin to loliolide

    SciTech Connect

    Repeta, D.J. )

    1989-03-01

    The quantitative distributions of loliolide and the major phytoplankton carotenoids: fucoxanthin, diadinochrome, diatoxanthin, and {beta}-carotene in two cores of anoxic marine sediment recovered from the Peru continental shelf are reported. The results demonstrate that the rapid degradation of carotenoids in sediments is not a result of their high degree of unsaturation as has been previously suggested. The authors predict that loliolide and isololiolide will inherit a specific stereochemistry from their carotenoid precursors, but that dihydroactinidiolide will be racemic. For every {mu}mole of fucoxanthin degraded in Peru sediments, 0.7-1.1 {mu}mole of loliolide is produced. Summation of fucoxanthin and loliolide at each subsurface horizon yields an estimate of the total deposition of fucoxanthin at t = 0. Throughout the 0-20 cm depth of our samples, this parameter is remarkably constant to {plus minus}16%. Individual horizons exhibit excursions which may reflect changes in surface productivity. Extrapolation of our measurements to deeper sediments may therefore be of some value in deciphering questions on environmental conditions of deposition and paleoproductivity.

  15. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  16. Disentangling the fossil world from the deep biosphere in marine sediment

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. B.; Walsh, E. A.; D'Hondt, S.

    2015-12-01

    DNA in marine sediment contains both detrital sequences and sequences from organisms native to the sediment. The demarcation between these two pools and their rates of respective turnover as sediment ages are generally unknown. Here we address these issues by quantifying the total extractable DNA pool and comparing it to the fraction of sequenced chloroplast DNA (cpDNA) in sediment from two sites in the Bering Sea. Sediment at both of these sites is initially oxic, but transitions to suboxic and anoxic within approximately hundred years. In our samples, cpDNA as a tracer of detrital DNA is dominated by identifiable phylotypes that match specific siliceous microfossil taxa. The fraction of sequences comprised by cpDNA decreases with increasing sediment age over hundreds of thousands of years (kyr) to 1.4 million years (Ma), but does not reach zero at either site. When we take into account the overall shrinkage of the DNA pool, this cpDNA fraction follows a power-law function, suggesting that the residual cpDNA becomes increasingly recalcitrant with age. This increasing recalcitrance can be explained by biological activity decreasing with sediment age and / or by preferential long-term survival of only the most thoroughly protected DNA. In either case, this trend suggests that DNA persisting beyond an initial period (ca. 100 - 200 kyr at our sites) has an increased chance of preservation at depth. The association of sequenced cpDNA reads with specific siliceous microfossil taxa suggests that microfossils may help to preserve DNA; DNA from such taxa may be useful for studies of paleoenvironmental conditions and biological evolution on timescales that approach or exceed one million years.

  17. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina.

    PubMed

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2010-12-01

    Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non-iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O₂) concentration in groundwater may be limited due to the poor solubility of O₂ and its high chemical reactivity with reduced compounds. Nitrate (NO₃⁻), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up-flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with NO₃⁻(C1) and its performance was compared with a control column lacking NO₃⁻(C2). During most of the operation when the pH was in the circumneutral range (days 50-250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to NO₃⁻; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial NO₃⁻-dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments.

  18. Pertechnetate (TcO4-) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Kukkadapu, Ravi K.; Heald, Steve M.; Kutnyakov, Igor V.; Resch, Charles T.; Arey, Bruce W.; Wang, Chong M.; Kovarik, Libor; Phillips, Jerry L.; Moore, Dean A.

    2012-09-01

    Technetium is an important environmental contaminant introduced by the processing and disposal of irradiated nuclear fuel and atmospheric nuclear tests. Under oxic conditions technetium is soluble and exists as pertechnatate anion (TcO4-), while under anoxic conditions Tc is usually insoluble and exists as precipitated Tc(IV). Here we investigated abiotic Tc(VII) reduction in mineralogically heterogeneous, Fe(II)-containing sediments. The sediments were collected from a 55 m borehole that sampled a semi-confined aquifer at the Hanford Site, USA that contained a dramatic redox transition zone. One oxic facies (18.0-18.3 m) and five anoxic facies (18.3-18.6 m, 30.8-31.1 m, 39.0-39.3 m, 47.2-47.5 m and 51.5-51.8 m) were selected for this study. Chemical extractions, X-ray diffraction, electron microscopy, and Mössbauer spectroscopy were applied to characterize the Fe(II) mineral suite that included: Fe(II)-phyllosilicates, pyrite, magnetite and siderite. The Fe(II) mineral phase distribution differed between the sediments. Sediment suspensions were adjusted to the same 0.5 M HCl extracted Fe(II) concentration (0.6 mM) for Tc(VII) reduction experiments. Aqueous Fe was low in all sediment suspensions (<2 μM) and below the Fe(II)aq detection limit (10 μM). Technetium(VII) reduction occurred in all anoxic sediments at depths greater than 18.3 m and reaction time differed significantly between the sediments (8-219 d). Mössbauer analysis of the Tc-reacted, 30.8-31.1 m sediment confirmed that Tc(VII) was reduced by solid-phase Fe(II), with siderite and Fe(II)-containing phyllosilicates implicated as redox reactive phases. Technetium-XAS analysis demonstrated that Tc associated with sediments was in the Tc(IV) valence state and immobilized as clusters of a TcO2·nH2O-like phase. The speciation of redox product Tc(IV) was not affected by reduction rate or Fe(II) mineralogy.

  19. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  20. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  1. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  2. A marine bioassay test set to assess marine water and sediment quality-its need, the approach and first results.

    PubMed

    Peters, C; Becker, S; Noack, U; Pfitzner, S; Bülow, W; Barz, K; Ahlf, W; Berghahn, R

    2002-10-01

    There is a need for establishing a marine bioassay test set to assess marine water and sediment samples in Germany. The selected marine bioassay test set, two tests for the water phase (with the luminescence bacteria Vibrio fischeri and the algae Phaeodactylum tricornutum Bohlin) and a whole sediment test with the marine amphipod Corophium volutator (Pallas) is described and first results are shown.

  3. Pertechnetate (TcO4-) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Zachara, J. M.; Kukkadapu, R. K.; Heald, S. M.; Kutnyakov, I. V.; Resch, C. T.; Arey, B. W.; Wang, C. M.; Kovarik, L.; Phillips, J. L.; Moore, D. A.

    2012-09-01

    Technetium is an important environmental contaminant introduced by the processing and disposal of irradiated nuclear fuel and atmospheric nuclear tests. Under oxic conditions technetium is soluble and exists as pertechnatate anion (TcO4-), while under anoxic conditions Tc is usually insoluble and exists as precipitated Tc(IV). Here we investigated abiotic Tc(VII) reduction in mineralogically heterogeneous, Fe(II)-containing sediments. The sediments were collected from a 55 m borehole that sampled a semi-confined aquifer at the Hanford Site, USA that contained a dramatic redox transition zone. One oxic facies (18.0-18.3 m) and five anoxic facies (18.3-18.6 m, 30.8-31.1 m, 39.0-39.3 m, 47.2-47.5 m and 51.5-51.8 m) were selected for this study. Chemical extractions, X-ray diffraction, electron microscopy, and Mössbauer spectroscopy were applied to characterize the Fe(II) mineral suite that included Fe(II)-phyllosilicates, pyrite, magnetite and siderite. The Fe(II) mineral phase distribution differed between the sediments. Sediment suspensions were adjusted to the same 0.5 M HCl extractable Fe(II) concentration (0.6 mM) for Tc(VII) reduction experiments. Total aqueous Fe was below the Feaq detection limit (<2 μM). Technetium(VII) reduction occurred in all anoxic sediments at depths greater than 18.3 m and reaction time differed significantly between the sediments (8-219 d). Mössbauer analysis of the Tc-reacted, 30.8-31.1 m sediment revealed changes in the concentrations of solid-phase Fe(II) and Fe(III). A decrease in the spectral areas of siderite and Fe(II)-containing phyllosilicates illustrated that these phases were oxidized following reaction with Tc(VII). XAS analysis demonstrated that Tc associated with sediments was in the Tc(IV) valence state and immobilized as clusters of a TcO2·nH2O-like phase. The speciation of redox product Tc(IV) was not affected by reduction rate or Fe(II) mineralogy.

  4. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.

    2004-12-01

    Much of the methane in natural gas hydrates in marine sediments is made by methanogens. Current models used to predict hydrate distribution and concentration in these sediments require estimates of microbial methane production rates. However, accurate estimates are difficult to achieve because of the bias introduced by sampling and because methanogen activities in these sediments are low and not easily detected. To derive useful methane production rates for marine sediments we have measured the methanogen biomass in samples taken from different depths in Hydrate Ridge (HR) sediments off the coast of Oregon and, separately, the minimal rates of activity for a methanogen in a laboratory reactor. For methanogen biomass, we used a polymerase chain reaction assay in real time to target the methanogen-specific mcr gene. Using this method we found that a majority of the samples collected from boreholes at HR show no evidence of methanogens (detection limit: less than 100 methanogens per g of sediment). Most of the samples with detectable numbers of methanogens were from shallow sediments (less than 10 meters below seafloor [mbsf]) although a few samples with apparently high numbers of methanogens (greater than 10,000 methanogens per g) were from as deep as 230 mbsf and were associated with notable geological features (e.g., the bottom-simulating reflector and an ash-bearing zone with high fluid movement). Laboratory studies with Methanoculleus submarinus (isolated from a hydrate zone at the Nankai Trough) maintained in a biomass recycle reactor showed that when this methanogen is merely surviving, as is likely the case in deep marine sediments, it produces approximately 0.06 fmol methane per cell per day. This is far lower than rates reported for methanogens in other environments. By combining this estimate of specific methanogenic rates and an extrapolation from the numbers of methanogens at selected depths in the sediment column at HR sites we have derived a maximum

  5. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia

    PubMed Central

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2011-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition – fluorescence in situ hybridization (CARD–FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 109 to 1010 cells/mL at the sediment surface to 107–109 cells/mL below one meter depth. Based on CARD–FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea. PMID:22319518

  6. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2016-12-08

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  7. Low Bacterial Diversity and High Labile Organic Matter Concentrations in the Sediments of the Medee Deep-Sea Hypersaline Anoxic Basin

    PubMed Central

    Akoumianaki, Ioanna; Nomaki, Hidetaka; Pachiadaki, Maria; Kormas, Konstantinos Ar.; Kitazato, Hiroshi; Tokuyama, Hidekazu

    2012-01-01

    Studies in the center and margin of the Medee Basin, a Mediterranean deep-sea hypersaline anoxic basin, and at a reference site during Penelope cruise (2007), revealed the existence of a 7 m-thick halocline, with high salinity (328 psu), and high sedimentary organic carbon and biopolymer concentrations. The 194 16S rRNA sequences retrieved were grouped into 118 unique phylotypes. Pseudomonas gessardii, dominated in the center, while 33 phylotypes were detected at the margin and 73 at the reference site. The study suggested conditions hostile to bacteria in the sediments of the Medee Basin and preservation of sedimentary labile organic matter. PMID:22504432

  8. Nitrogen Metabolism Genes from Temperate Marine Sediments.

    PubMed

    Reyes, Carolina; Schneider, Dominik; Lipka, Marko; Thürmer, Andrea; Böttcher, Michael E; Friedrich, Michael W

    2017-03-10

    In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3(-) was present in the top 5 cm below the sediment-water interface at both sites. NH4(+) increased with depth below 5 cm where it overlapped with the NO3(-) zone. Steady-state modelling of NO3(-) and NH4(+) porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3(-) reduction to NH4(+) (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3(-) reduction to NO2(-) or NH4(+) as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.

  9. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes.

    PubMed

    Militon, Cécile; Jézéquel, Ronan; Gilbert, Franck; Corsellis, Yannick; Sylvi, Léa; Cravo-Laureau, Cristiana; Duran, Robert; Cuny, Philippe

    2015-10-01

    To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.

  10. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments.

    PubMed

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable

  11. The behavior of scavenged isotopes in marine anoxic environments: 210Pb and 210Po in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Wei, Ching-Ling; Murray, James W.

    1994-04-01

    Vertical profiles of dissolved and particulate 210Pb and 210Po were determined at two stations in the Black Sea in June 1988. Vertical fluxes of 210Pb and 210Po were also measured in the upper 150 m, using floating sediment traps. The fractionation of 210Pb between dissolved and particulate phases in the Black Sea is strongly influenced by the redox conditions in the water column. Dissolved 210Pb dominates in the oxic zone, while particulate 210Pb is the major form in the deep sulfide-rich anoxic zone. The distribution of 210Pb across the suboxic zone appears to be mainly controlled by redox cycling of manganese and iron. In the sulfide-rich layer coprecipitation of lead with iron sulfide is probably the dominant scavenging mechanism. A simple scavenging model was used to calculate the residence times of dissolved and particulate 210Pb in the oxic, suboxic, and anoxic zones. The residence times of dissolved 210Pb relative to scavenging by particles are 0.5-1, 2-3, and 3.5 years in the oxic, suboxic, and anoxic layers, respectively. The corresponding residence times of particulate 210Pb relative to particle removal processes in the same layers are 0.1, 1.5-2.5, and 8.5 years, respectively. A particle settling velocity of about 40 m y -1 was derived from the 210Pb /226Ra disequilibrium in the deep Black Sea. The relatively short residence times of 210Pb support the hypothesis that anoxic basins are important sites for boundary scavenging of 210Pb. The 210Po profiles indicate that biological rather than inorganic particles are the major carrier phases for polonium in the Black sea. Dissolved 210Po is deficient relative to dissolved 210Pb in the euphotic zone, suggesting preferential uptake of 210Po over 210Pb by particles residing in that layer. The residence time of dissolved 210Po, with respect to scavenging by particles in the euphotic zone, is about 200 days. Below the mid-depth of the suboxic zone, 210Po is in excess relative to 210Pb, and is thought to originate

  12. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  13. Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire estuary, France)

    NASA Astrophysics Data System (ADS)

    Thibault de Chanvalon, A.; Metzger, E.; Mouret, A.; Cesbron, F.; Knoery, J.; Rozuel, E.; Launeau, P.; Nardelli, M. P.; Jorissen, F. J.; Geslin, E.

    2015-10-01

    We present a new rapid and accurate protocol to simultaneously sample benthic living foraminifera in two dimensions in a centimetre-scale vertical grid and dissolved iron and phosphorus in two dimensions at high resolution (200 μm). Such an approach appears crucial for the study of foraminiferal ecology in highly dynamic and heterogeneous sedimentary systems, where dissolved iron shows a strong variability at the centimetre scale. On the studied intertidal mudflat of the Loire estuary, foraminiferal faunas are dominated by Ammonia tepida, which accounts for 92 % of the living (CellTracker Green(CTG)-labelled) assemblage. The vertical distribution shows a maximum density in the oxygenated 0-0.4 cm surface layer. A sharp decrease is observed in the next 2 cm, followed by a second, well-defined maximum in the suboxic sediment layer (3-8 cm depth). The presented method yields new information concerning the 2-D distribution of living A. tepida in suboxic layers. First, the identification of recent burrows by visual observation of the sediment cross section and the burrowing activity as deduced from the dissolved iron spatial distribution show no direct relation to the distribution of A. tepida at the centimetre scale. This lack of relation appears contradictory to previous studies (Aller and Aller, 1986; Berkeley et al., 2007). Next, the heterogeneity of A. tepida in the 3-8 cm depth layer was quantified by means of Moran's index to identify the scale of parameters controlling the A. tepida distribution. The results reveal horizontal patches with a characteristic length of 1-2 cm. These patches correspond to areas enriched in dissolved iron likely generated by anaerobic degradation of labile organic matter. These results suggest that the routine application of our new sampling strategy could yield important new insights about foraminiferal life strategies, improving our understanding of the role of these organisms in coastal marine ecosystems.

  14. Marine clathrate mining and sediment separation

    DOEpatents

    Borns, David J.; Hinkebein, Thomas E.; Lynch, Richard W.; Northrop, David A.

    2001-01-01

    A method and apparatus for mining of hydrocarbons from a hydrocarbon-containing clathrate such as is found on the ocean floor. The hydrocarbon containing clathrate is disaggregated from sediment by first disrupting clathrate-containing strata using continuous mining means such as a rotary tilling drum, a fluid injector, or a drill. The clathrate-rich portion of sediment thus disrupted from the sea floor strata are carried through the apparatus to regions of relative lower pressure and/or relative higher temperature where the clathrate further dissociates into component hydrocarbons and water. The hydrocarbon is recovered with the assistance of a gas that is injected and buoys the hydrocarbon containing clathrate helping it to rise to regions of lower pressure and temperature where hydrocarbon is released. The sediment separated from the hydrocarbon returns to the ocean floor.

  15. Meiofauna increases bacterial denitrification in marine sediments

    PubMed Central

    Bonaglia, S.; Nascimento, F. J. A; Bartoli, M.; Klawonn, I.; Brüchert, V.

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  16. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments

    PubMed Central

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as “priming effect”, but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14–28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited. PMID:26633175

  17. Ocean currents shape the microbiome of Arctic marine sediments.

    PubMed

    Hamdan, Leila J; Coffin, Richard B; Sikaroodi, Masoumeh; Greinert, Jens; Treude, Tina; Gillevet, Patrick M

    2013-04-01

    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane.

  18. Ocean currents shape the microbiome of Arctic marine sediments

    PubMed Central

    Hamdan, Leila J; Coffin, Richard B; Sikaroodi, Masoumeh; Greinert, Jens; Treude, Tina; Gillevet, Patrick M

    2013-01-01

    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane. PMID:23190727

  19. Enrichment of marine anammox bacteria in Hiroshima Bay sediments.

    PubMed

    Kindaichi, T; Awata, T; Tanabe, K; Ozaki, N; Ohashi, A

    2011-01-01

    Anaerobic ammonium oxidation (anammox) involves the microbiological oxidation of ammonium with nitrite as the electron acceptor and dinitrogen gas as the main product. The Scalindua species, an anammox genus that dominates natural habitats, plays an important role in catalysing the loss of nitrogen from marine environments. Until now, a few Scalindua species have been reported to be enriched from sea sediments. The objective of this study is to enrich marine anammox bacteria with coastal sediments in Hiroshima Bay as the inocula. The enrichment was achieved using a continuous upflow column reactor with synthetic sea water containing ammonium and nitrite. After 48 days of incubation, a simultaneous decrease in ammonium and nitrite was observed. A total nitrogen removal rate of 1.16 kg-N m(-3) day(-1) was attained after 306 days of incubation when the nitrogen loading rate was 1.32 kg-N m(-3) day(-1). Phylogenetic analysis revealed that the sequence similarity between the marine anammox-like bacteria in this reactor and the unidentified Candidatus Scalindua sp. was 96-98%. We successfully enriched marine anammox bacteria in the sediments of Hiroshima Bay by using synthetic sea water. Further studies are needed to investigate the characteristics of marine anammox bacteria, including optimal pH, temperature, and nitrogen loading rate.

  20. Reburial of fossil organic carbon in marine sediments.

    PubMed

    Dickens, Angela F; Gélinas, Yves; Masiello, Caroline A; Wakeham, Stuart; Hedges, John I

    2004-01-22

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  1. Mineralogical Signatures in Electrically Coupled Marine Sediments

    NASA Astrophysics Data System (ADS)

    Bauermeister, A.; Gorby, Y. A.; Schramm, J.

    2014-12-01

    'Electric cable bacteria' are organisms of the family Desulfobulbaceaethat exhibit a novel method of electron transport. Cells form conductive filaments that function like electric wires, transferring electrons over distances of more than 1 cm from deep sulfidic sediments to oxygen or other electron acceptors near the soil/water interface. The rate of electron transfer across redox boundaries far exceeds that of diffusion limited processes and generates pH gradients that can significantly influence geochemical reactions, leading to the formation of distinct mineralogical profiles unlikely to be created by abiotic means. Electrically coupled sediments are characterized by carbonate and iron sulfide dissolution reactions occurring at depth and formation of carbonate and metal oxide crusts at the surface, exhibiting a reverse pattern compared to conventional sediment geochemistry. Our research seeks to address the following questions: How prevalent are electric cable bacteria in diverse environments? How do biogeochemical conditions such as ion concentration influence mineral formation? Do biogenic minerals participate in charge transfer? What is the importance of electric charge transfer in the subsurface or other low energy habitats? Can mineral banding patterns caused by cable bacteria activity be preserved in the geologic record? With this research we hope to further elucidate the impact of biologically-induced electric fields on the mineralogy of sediments.

  2. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  3. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation

    PubMed Central

    Hill, T. M.; Kennett, J. P.; Valentine, D. L.; Yang, Z.; Reddy, C. M.; Nelson, R. K.; Behl, R. J.; Robert, C.; Beaufort, L.

    2006-01-01

    Marine hydrocarbon seepage emits oil and gas, including methane (≈30 Tg of CH4 per year), to the ocean and atmosphere. Sediments from the California margin contain preserved tar, primarily formed through hydrocarbon weathering at the sea surface. We present a record of variation in the abundance of tar in sediments for the past 32,000 years, providing evidence for increases in hydrocarbon emissions before and during Termination IA [16,000 years ago (16 ka) to 14 ka] and again over Termination IB (11–10 ka). Our study provides direct evidence for increased hydrocarbon seepage associated with deglacial warming through tar abundance in marine sediments, independent of previous geochemical proxies. Climate-sensitive gas hydrates may modulate thermogenic hydrocarbon seepage during deglaciation. PMID:16945904

  4. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  5. Evaluating Sediment Stability at Offshore Marine Hydrokinetic Energy Facilities

    NASA Astrophysics Data System (ADS)

    Jones, C. A.; Magalen, J.; Roberts, J.; Chang, G.

    2014-12-01

    Development of offshore alternative energy production methods through the deployment of Marine Hydrokinetic (MHK) devices (e.g. wave, tidal, and wind generators) in the United States continues at a rapid pace, with significant public and private investment in recent years. The installation of offshore MHK systems includes cabling to the shoreline and some combination of bottom foundation (e.g., piles, gravity bases, suction buckets) or anchored floating structure. Installation of any of this infrastructure at the seabed may affect coastal sediment dynamics. It is, therefore, necessary to evaluate the interrelationships between hydrodynamics and seabed dynamics and the effects of MHK foundations and cables on sediment transport. If sufficient information is known about the physical processes and sediment characteristics of a region, hydrodynamic and sediment transport models may be developed to evaluate near and far-field sediment transport. The ultimate goal of these models and methods is to quantitatively evaluate changes to the baseline seabed stability due to the installation of MHK farms in the water. The objective of the present study is to evaluate and validate wave, current, and sediment transport models (i.e., a site analysis) that may be used to estimate risk of sediment mobilization and transport. While the methodology and examples have been presented in a draft guidance document (Roberts et al., 2013), the current report presents an overall strategy for model validation, specifically for a case study in the Santa Cruz Bight, Monterey Bay, CA. Innovative techniques to quantify the risk of sediment mobility has been developed to support these investigations. Public domain numerical models are utilized to estimate the near-shore wave climate (SWAN: Simulating Waves Near-shore) and circulation and sediment transport (EFDC: Environmental Fluid Dynamics Code) regimes. The models were validated with field hydrodynamic data. Sediment size information was

  6. Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Marchetto, Davide; Pini, Francesco; Fani, Renato; Michaud, Luigi; Lo Giudice, Angelina; Berto, Daniela; Giani, Michele

    2010-09-01

    Shallow marine sediments were collected from seven stations (three of which located at Gerlache Inlet, two at Tethys Bay, one at Adelie Cove and one just beneath the Italian Research Base) along the Terra Nova Bay coast (Ross Sea, Antarctica). Their chemical, biochemical and microbiological properties were studied in order to provide further insights in the knowledge of this Antarctic benthic ecosystem. Overall, the organic carbon (OC) represented the major fraction of total carbon (TC) and displayed concentrations similar to or slightly lower than those previously measured in Antarctic bottom sediments. The biopolymeric carbon within OC ranged from 4.1% to 19.9% and showed a wide trophic range (65-834 μg g -1 d.w.). Proteins (PRT) represented on average the main biochemical class contributing to labile organic carbon, followed by lipids (LIP) and carbohydrates (CHO). The activity of aminopeptidase, β- D-glucosidase, alkaline phosphatase and esterase was checked, giving the highest values at Tethys Bay and at the deepest water sediments. The principal component analysis, which was computed considering physical, chemical (elemental and biochemical sedimentary composition) and microbiological parameters (including bacterial abundance, ectoenzymatic activities, T-RFs richness and diversity indices), allowed to obtain two main clusters ("Tethys Bay" and "other stations"). Based on data obtained, two representative 16S rRNA clone libraries using samples from Tethys Bay and Gerlache Inlet were constructed. The sequences of 171 clones were compared to those available in public databases to determine their approximate phylogenetic affiliations. Both aerobic and anaerobic bacteria were disclosed, with the majority of them affiliated with the Gamma- and Deltaproteobacteria, Bacteroidetes and Acidobacteria. The occurrence of strictly anaerobic bacteria suggests that sediments might also undergo anoxic conditions that, in turn, could favor the accumulation of PRT in respect

  7. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments.

    PubMed

    Stokke, Runar; Roalkvam, Irene; Lanzen, Anders; Haflidason, Haflidi; Steen, Ida H

    2012-05-01

    Sulfate-reducing methanotrophy by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) is a major biological sink of methane in anoxic methane-enriched marine sediments. The physiology of a microbial community dominated by free-living ANME-1 at 14-16 cm below the seafloor in the G11 pockmark at Nyegga was investigated by integrated metagenomic and metaproteomic approaches. Total DNA was subjected to 454-pyrosequencing (829 527 reads), and 16.6 Mbp of sequence information was assembled into 27352 contigs. Taxonomic analysis supported a high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME-1. Extracted sediment proteins were separated in two dimensions and subjected to mass spectrometry (LTQ-Orbitrap XL). Of 356 identified proteins, 245 were expressed by ANME-1. These included proteins for cold-adaptation and production of gas vesicles, reflecting both the adaptation of the ANME-1 community to a permanently cold environment and its potential for positioning in specific sediment depths respectively. In addition, key metabolic enzymes including the enzymes in the reverse methanogenesis pathway (except N(5) ,N(10) -methylene-tetrahydromethanopterin reductase), heterodisulfide reductases and the F(420) H(2) :quinone oxidoreductase (Fqo) complex were identified. A complete dissimilatory sulfate reduction pathway was expressed by sulfate-reducing Deltaproteobacteria. Interestingly, an APS-reductase comprising Gram-positive SRB and related sequences were identified in the proteome. Overall, the results demonstrated that our approach was effective in assessing in situ metabolic processes in cold seep sediments.

  8. Glacial-marine and glacial-lacustrine sedimentation in Sebago Lake, Maine: Locating the marine limit

    SciTech Connect

    Johnston, R.A.; Kelley, J.T. ); Belknap, D. . Dept. of Geological Sciences)

    1993-03-01

    The marine limit in Maine marks a sea-level highstand at approximately 13 ka. It was inferred to cross Sebago Lake near Frye Island by Thompson and Borns (1985) on the Surficial Geological Map of Maine, dividing the lake into a northern glacial-lacustrine basin and a southern glacial-marine basin. This study examined the accuracy of the mapped marine limit in the lake and the nature of glacial-lacustrine and glacial-marine facies in Maine. Recognition of the marine limit is usually based on mapped shorelines, glacial-marine deltas, and contacts with glacial-marine sediments. This study, in Maine's second largest lake, collected 100 kilometers of side-scan sonar images, 100 kilometers of seismic reflection profiles, and one core. Side-scan sonar records show coarse sand and gravel and extensive boulder fields at an inferred grounding-line position near Frye Island, where the marine limit was drawn. ORE Geopulse seismic reflection profiles reveal a basal draping unit similar to glacial-marine units identified offshore. Later channels cut more than 30 m into the basal stratified unit. In addition, till and a possible glacial-tectonic grounding-line feature were identified. Slumps and possible spring disruptions are found in several locations. The top unit is an onlapping ponded Holocene lacustrine unit. Total sediment is much thicker in the southern basin; the northern basin, >97 m deep, north of the marine limit appears to have been occupied by an ice block. Retrieved sediments include 12 meters of rhythmites. Microfossil identifications and dating will resolve the environments and time of deposition in this core.

  9. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    NASA Astrophysics Data System (ADS)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  10. Mineralogy and trace element relative solubility patterns of shallow marine sediments affected by submarine tailings disposal and artisanal gold mining, Buyat-Ratototok district, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Blackwood, George M.; Edinger, Evan N.

    2007-04-01

    Shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590 660 ppm arsenic, 490 580 ppm antimony, and 0.8 5.8 ppm mercury. Electron microprobe survey found both colloidal iron arsenic-phases without sulphur and arsenian pyrite in tailings and sites to which tailings had dispersed, but only arsenopyrite in sediments affected by artisanal mining. Antimony in tailings was present as antimony oxides, colloidal iron antimony phases, colloidal iron antimony phases, and stibnite in sediments affected by both types of mining. A sequential extraction found that 2% of arsenic held in tailings and tailings-contaminated sediments was exchangeable, 20 30% was labile, including weakly adsorbed, carbonate- and arsenate bound, 20 30% was metastable, probably incorporated into iron or manganese oxyhydroxides, or strongly adsorbed to silicate minerals, and 40 48% was relatively insoluble, probably incorporated into sulphides or silicates. Arsenic in sediments affected by artisanal gold mining was 75 95% relatively insoluble. Antimony in all sediments was >90% relatively insoluble. Relative solubility patterns of most other metals did not differ between industrial tailings-affected, artisanal-mining affected areas, and fluvial sediments. Results suggest that submarine tailings disposal is not suitable for refractory Carlin-like gold deposits because ore processing converts arsenic to forms unstable in anoxic marine sediments.

  11. Long-distance electron transport occurs globally in marine sediments

    NASA Astrophysics Data System (ADS)

    Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.

    2017-02-01

    Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.

  12. The use of marine sediments as a pavement base material.

    PubMed

    Dubois, Vincent; Abriak, Nor Edine; Zentar, Rachid; Ballivy, Gérard

    2009-02-01

    The management of marine sediments after dredging has become increasingly complex. In the context of sustainable development, traditional solutions such as immersion will be increasingly regulated. More than ever, with the shortage of aggregates from quarries, dredged material could constitute a new source of materials. In this study of the potential of using dredged marine sediments in road construction, the first objective is to determine the physical and mechanical characteristics of fine sediments dredged from a harbour in the north of France. The impacts of these materials on the environment are also explored. In the second stage, the characteristics of the fine sediment are enhanced for use as a road material. At this stage, the treatment used is compatible with industrial constraints. To decrease the water content of the fine sediments, natural decantation is employed; in addition, dredged sand is added to enhance the granular distribution and to reinforce the granular skeleton. Finally, the characteristics of the mix are enhanced by incorporating binders (cement and/or lime). The mechanical characteristics measured on the mixes are compatible with their use as a base course material. Moreover, the obtained results demonstrate the effectiveness of lime in the mixes. In terms of environmental impacts, on the basis of leaching tests and according to available thresholds developed for the use of municipal solid waste incineration (MSWI) bottom ash in road construction, the designed dredged mixes satisfy the prescribed thresholds.

  13. In situ tensile fracture toughness of surficial cohesive marine sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

    2012-02-01

    This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

  14. Marine sediments in Disko Trough reveal meltwater-influenced sedimentation during ice-stream retreat

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly A.; Cofaigh, Colm Ó.; Jennings, Anne E.; Dowdeswell, Julian A.

    2015-04-01

    Marine geophysical data from middle and outer Disko Trough, West Greenland reveal thick (more than ten metres) acoustically-laminated, fine-grained sediments between subglacial tills at their base and post-glacial marine sediments at the seafloor. These sediments are interpreted as a transitional facies deposited as ice retreated from the trough during deglaciation. New sediment-core records indicate that these units were likely deposited by meltwater plumes emanating from a nearby grounded-ice margin, probably during stillstands in ice retreat. The retreat of ice in the trough may have been stabilised at a narrowing in DiskoTrough on the mid-shelf, as well as at the basalt escarpment south of Disko Island. Such thicknesses of deglacial or "transitional" glacimarine sediments are relatively unusual on high-latitude continental shelves and indicate a significant meltwater production in central West Greenland during deglaciation. This is consistent with the seafloor landforms in the inner and middle parts of the trough that include channels and moats around bedrock protrusions that look to have been eroded by water. IRD counts from the cores indicate that iceberg rafting also occurred during this transitional phase but that this signal was diluted by the fine-grained transitional sediments. Once ice had withdrawn from the area and sedimentation was hemipelagic in nature the IRD signal was less diluted.

  15. Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments.

    PubMed

    Hinga, K R

    2003-04-01

    The degradation rate of low molecular weight (LMW) polycyclic aromatic hydrocarbons (PAH) in subtidal marine sediments was found to correlate with sediment total organic carbon (TOC) in stations sampled two or more times after the North Cape No. 2 fuel oil spill. With 2.5-5 months between samplings, stations with lower sediment TOC had lower fractions of LMW PAH remaining at the time of the second sampling. Apparent first-order degradation rate constants calculated for each station varied by nearly an order of magnitude between stations with a range of TOC from 0.4% to 7.3%. The correlation of degradation rate with sediment TOC can be used to provide improved and site-specific predictions of the initial time-course of LMW PAH concentrations in sediments after oil spills.

  16. In situ measurement of thermal diffusivity in marine sediments

    NASA Astrophysics Data System (ADS)

    Feseker, Tomas; Treude, Tina; Krastel, Sebastian

    2014-05-01

    The temperature of marine sediments depends on the interplay between heat flow from below and bottom water temperature above. The heat flow is controlled by the regional geological history and stable over long periods of time, whereas the bottom water temperature is subject to both seasonal and long-term climatic changes. The thermal inertia of the sediment determines how rapidly and to what depth temperature changes propagate from the bottom water into the seabed. The influence of seasonal changes is usually limited to shallow depths, while long-term trends may also affect deeper sediment layers. The thermal diffusivity of sediment is its ability to conduct thermal energy relative to its ability to store thermal energy. It is a measure of thermal inertia. While the thermal conductivity can be measured using regular heat flow probes, it is difficult to measure the diffusivity in situ. Hence, empirical relationships that link conductivity to diffusivity are widely used to characterize the thermal inertia of sediments. Here, we present a new method for measuring the thermal diffusivity of marine sediments in situ, which is based on monitoring the changes in sediment temperature profiles over short periods of time. We report on a successful measurement from 400 m water depth on the western Svalbard margin, where we deployed a temperature probe by submersible. The "T-Stick" consists of a lance with 8 temperature sensors distributed equally over a length of 0.6 m and a data logger, which is attached to the upper part of the lance. Temperature profiles were recorded at a sampling interval of 10 seconds for a period of 10 days. The observations show that variations in the temperature profile were driven by changes in bottom water temperature. Inverse modeling of the recorded temperature profiles allowed us to determine the thermal diffusivity of the sediment. The new method will help to better characterize the heat exchange across the sediment-water interface and

  17. Monitoring of biofilm growth in marine sediment by metal electrodes

    NASA Astrophysics Data System (ADS)

    Cristiani, P.; Guandalini, R.; Del Negro, P.; Cataletto, B.

    2009-04-01

    Electrochemical monitoring of biofilm growing in marine sediments is evaluating in laboratory experiments, still in progress. The interesting preliminary results obtained during six month experiments are presented in this paper. A concept of electrochemically active bacteria has recently pointed out by several studies, showing that bacteria forming biofilms on conductive materials can achieve a direct electrochemical connection with the substrate using it as electron exchanger, also without the aid of additional mediators [1]. The electric current generated by bacteria is more than enough as signal for bio-sensors. Thanks to the developing of bio-sensors based on electrochemical probes and able to monitoring the biofilm growth on metal surfaces, this "bio-electricity" has been already exploited with success for the biofilm monitoring in industrial equipment exposed to natural waters [2]. The same, very simple, electrochemical biofilm probes, in which electrical signal is proportional to biofilm growth, already successfully used for aerobic environments, have been here tested in the anaerobic environment of marine sediments. A laboratory microcosm has been prepared by filling a large polycarbonate cylinder about one-third full with organic-rich coastal marine sediment collected in the Gulf of Trieste (Northern Adriatic Sea). The sediment was packed tightly in the container to avoid entrapping air and then covered with O2 depleted seawater. Three identical electrochemical sensors were buried in the sediment of microcosm. The cylinder was placed in the dark under controlled temperature and anaerobic conditions. During the six months of monitoring, bacterial communities developing at the water-sediment interface were periodically sampled by inserting a long thin pipette into the column and removing some coloured mud or water. The microrganisms were used to inoculate enriched media and to extract bulk DNA. The results pointed out the possibility of set up simple device

  18. Bioremediation of marine sediments impacted by petroleum.

    PubMed

    da Silva, Aike C; de Oliveira, Fernando J S; Bernardes, Diogo S; de França, Francisca P

    2009-05-01

    The aim of this work was to optimize the bioremediation of crude oil-contaminated sand sediment through the biostimulation technique. The soil was obtained in the mid-tide zone of Guanabara Bay, Rio de Janeiro, Brazil and was artificially contaminated with crude oil at 14 g kg(-1). Bioremediation optimization was performed using an experimental design and statistical analysis of the following factors: supplementation with commercial biosurfactant Jeneil IBR 425 and commercial mineral NPK fertilizer. The response variable used was the biodegradation of the heavy oil fraction, HOF. The analysis of the studied factors and their interactions was executed using contour plots, Pareto diagram and ANOVA table. Experimental design results indicated that the supplementation with fertilizer at 100:25:25 C/N/P ratio and biosurfactant at 2 g kg(-1) yielded biodegradation of HOF at about 30% during 30 days of process. Some experiments were carried out using the experimental design results, yielding 65% of biodegradation of HOF and 100% of n- alkanes between C15 and C30 during 60 process days. Intrinsic biodegradation test was carried out, yielding 85% of biodegradation of n-alkanes between C15 and C30 during 30 days of process.

  19. A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Dale, Andrew W.; Boyle, Richard A.; Lenton, Timothy M.; Ingall, Ellery D.; Wallmann, Klaus

    2016-09-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43- fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.

  20. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  1. Modeling signal loss in surficial marine sediments containing occluded gas

    NASA Astrophysics Data System (ADS)

    Gardner, Trevor

    2003-03-01

    The presence of occluded gas in inland lakes, harbor muds, and surficial marine sediments is well documented. Surficial gassy sediments cause underlying beds to be acoustically impenetrable to seismic surveys; therefore, the modeling of signal loss arising from mudline reflection and transmission absorption is of particular interest. The Anderson and Hampton [J. Acoust. Soc. Am. 67, 1890-1903 (1980)] model for attenuation in gassy sediments was evaluated against the physical and acoustical properties of eight laboratory silty clay soils containing different amounts of occluded gas in bubbles of 0.2- to 1.8-mm diameter. The model was shown to give good agreement with measured data over the lower frequencies of bubble resonance and above resonance. It did not agree with measured data at frequencies below resonance, for which the model did not simulate the bulk properties of the gassy soils. The Mackenzie [J. Acoust. Soc. Am. 32, 221-231 (1960)] model for reflection loss was also examined for the gassy soils. The maximum reflection losses of 6 dB, at a grazing angle of 40°, does not wholly support speculation by Levin [Geophysics 27, 35-47 (1962)] of highly reflective pressure-release boundaries arising from substantial reflection and absorption losses in gassy sediments. It was found that mudlines formed from sediments with significant occluded gas may be successfully penetrated, although the substantial absorption loss arising from signal transmission through the sediment prevents penetration of the surficial layers to much beyond a meter in depth.

  2. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  3. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  4. Biodegradation of UV-filters in marine sediments.

    PubMed

    Volpe, Angela; Pagano, Michele; Mascolo, Giuseppe; Grenni, Paola; Rossetti, Simona

    2017-01-01

    The degradation of two of the most frequently used UV-filters was investigated through microcosm studies. Marine sediments sampled from two sites in Italy (La Spezia harbour and Sarno river estuary, S1 and S2 respectively) were used to set up aerobic and anaerobic sets of reactors. The sediments were spiked with a methanol solution of 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl 4-(dimethylamino)benzoate (EH-DPAB), at concentrations of either 25 or 50mgkg(-1) each. Methanol (6.3g/L) also served as an organic amendment and growth substrate for improving microbial activity. Monitoring of the biotic and abiotic degradation of the selected contaminants over 16months revealed that 4-MBC biodegradation was very slow and incomplete, whereas over 90% of EH-DPAB was degraded both in the aerobic and the anaerobic reactors by the natural microbial communities of both sediments. Repeated spikes of EH-DPAB were followed by complete decay, characterised by first-order kinetics. The calculated kinetic rate constants under aerobic and anaerobic conditions were similar. In reactors inoculated with the S1 sediment the degradation rate constants progressively increased after each spike, up to the value of 0.039d(-1). For the S2 sediment the rate constant was around 0.020d(-1) throughout the duration of the experiment. Mass spectrometry analysis of sediment extracts allowed detection of potential transformation products of EH-DPAB and 4-MBC. Moreover, the natural microbial community of the sediments was studied using the CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) both in the initial sediments and after degradation under aerobic and anaerobic conditions.

  5. Effect of chemically contaminated marine sediment on naupliar production of the marine harpacticoid copepod, Tigriopus californicus

    SciTech Connect

    Misitano, D.A.; Schiewe, M.H. )

    1990-04-01

    There is a growing body of evidence indicating that chemically contaminated sediments in urban bays and estuaries pose a significant threat to the productivity of these important marine habitats. Particularly at risk are benthic species which live in direct contact with the sediment. However, nondemersal species are also at risk via the food chain and by direct contact with resuspended sediment particulates. There are substantial data on the lethal and sublethal effects of aqueous contaminants on a variety of aquatic species. In contrast, there is very limited information on the toxic effects of the generally water-insoluble sediment-associated contaminants. In the present communication the authors report a series of experiments in which the harpacticoid copepod, Tigriopus californicus, was exposed to sediments from urban and nonurban bays, and reproductive success was evaluated. This species was selected for study as it is widely distributed along the West Coast of North America, and as a group, copepods are an important component of the marine food chain. In addition, the relatively short reproductive life span of this species makes it particularly amenable for studies of reproductive success. Here, the authors report reduced and irregular naupliar production as a consequence of exposure to chemically contaminated sediments from urban waterways.

  6. Biogeochemistry of Sulfur Intermediates in Marine Sediments - Insights from Laboratory and Field Studies

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Milucka, J.; Kuypers, M. M. M.; Berg, J.; Buckner, C.; Graf, J.; Holmkvist, L.; Jørgensen, B. B.; Kamyshny, A.; Piepgras, L.

    2014-12-01

    The sulfur cycle in marine sediments exerts a major control on the redox state of the ocean and atmosphere. The overall driver in the sulfur cycle is the microbial mediated sulfate reduction to sulfide (SR), In near-surface sediments, only a small fraction of the sulfide produced becomes permanently buried in the reduced form as pyrite (FeS2) Paradoxically, the deep, reduced, sulfidic zone of marine sediments is often characterized by the presence of zero-valent sulfur compounds, e.g. elemental sulfur and polysulfides [1,2,3]. The presence of oxidized iron and manganese has been suggested as the source of oxidizing power for the formation of elemental S and polysulfides in these deep, anoxic and sulfidic sediment environments, which often lie at or below the sulfate-methane transition [1,3]. The findings of Milucka et al. [4] suggest that anaerobic oxidation of methane coupled to sulfate reduction (AOM) may provide another source of zerovalent sulfur to such environments. AOM is thought to be mediated by a consortium of methanotrophic archaea (ANME) and sulfate-reducing Deltaproteobacteria. Milucka et al. [4] show that zero-valent sulfur compounds (S0) are formed during AOM-coupled SR and conclude that the S0 is a product of a novel pathway for sulfate reduction performed by the ANME. Thus, AOM may not be an obligately syntrophic process. Furthermore, the produced S0, in the form of hydrodisulfide, can serve as a substrate for disproportionation by the Deltaproteobacteria associated with the ANME, and that this disproptionation proceeds under sulfidic conditions. These observations may have significant implications for role of sulfur intermediates in our understanding of the biogeochemical carbon and sulfur cycle in modern and past environments. [1] Holmkvist et al. (2011) Geochim. Cosmochim. Acta 75, 3581-3599. [2] Lichtschlag et al. (2013) Geochim. Cosmochim. Acta 105, 130-145. [3] Holmkvist et al. (2014) Geochim. Cosmochim. Acta, accepted. [4] Milucka et al

  7. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach.

    PubMed

    Wieringa, E B; Overmann, J; Cypionka, H

    2000-08-01

    The depth distribution and diversity of sulphate-reducing bacteria (SRB) was analysed in the upper intertidal zone of a sandy marine sediment of the Dutch island Schiermonnikoog. The upper centimetre of the sediment included the oxic-anoxic interface and was cut into five slices. With each slice, most probable number (MPN) dilution series were set up in microtitre plates using five different substrates. In the deeper sediment layers, up to 1 x 10(8) cm(-3) lactate-utilizing SRB were counted, corresponding to 23% of the total bacterial count. From the highest positive dilutions of the MPN series, 27 strains of SRB were isolated in pure culture. Sequencing of a 580 bp fragment of the 16S rDNA revealed that 21 isolates had identical sequences, also identical with that of the previously described species Desulfomicrobium apsheronum. However, the diversity of the isolates was higher with respect to their physiological properties: a total of 11 different phenotypes could be distinguished. Genomic fingerprinting by enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) revealed an even higher diversity of 22 different genotypes. A culture-independent analysis by PCR and denaturing-gradient gel electrophoresis (DGGE) revealed that the partial 16S rDNA sequence of the isolated D. apsheronum strains constituted a significant fraction of the Desulfovibrionaceae. The high subspecies diversity suggests that this abundant aggregate-forming species may have evolved adaptations to different ecological niches in the oxic sediment layers.

  8. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment.

    PubMed

    Vandieken, Verona; Finke, Niko; Thamdrup, Bo

    2014-03-01

    The role of hydrogen, acetate, and lactate as electron donors for microbial manganese reduction was investigated in manganese-rich marine sediment from Gullmar Fjord (Sweden). Here, manganese reduction accounted for 50% of the anaerobic carbon oxidation at 0-15 cm sediment depth. In anoxic incubations from 0 to 5 cm depth, where manganese reduction dominated completely as terminal electron-accepting process, the combined contribution of acetate and lactate as electron donors for manganese reducers corresponded to < ¼ of the electron flow. The concentrations, ¹⁴C-radiotracer turnover rates, and contributions to carbon oxidation of acetate and lactate associated with manganese reduction were similar to those found in deeper horizons dominated by concomitant iron and sulfate reduction and sulfate reduction alone, respectively. By contrast, hydrogen concentrations increased considerably with sediment depth, indicating thermodynamic control of the competition between the electron-accepting processes, and hydrogen may have contributed substantially to the > 75% of the electron flow that did not involve acetate and lactate. Alternatively, the oxidation of more complex organic substrates could be involved. Our study provides the first direct evidence of substrate utilization by a natural manganese-reducing community and indicates similar mechanisms of thermodynamic control and competition for electron donors as known from sediments dominated by iron reduction, sulfate reduction, or methanogenesis.

  9. Planktic foraminiferal sedimentation and the marine calcite budget

    NASA Astrophysics Data System (ADS)

    Schiebel, Ralf

    2002-12-01

    The vertical flux and sedimentation rate of planktic foraminiferal tests are quantified and a global planktic foraminiferal CaCO3 budget is presented. Test and calcite flux rates are calculated according to the distribution of species obtained from multinet and sediment trap samples. Modern planktic foraminiferal population dynamics are discussed as a prerequisite for the quantification of the calcite budget, highlighting the importance of ecological, autecological (e.g., reproduction), and biogeochemical conditions that determine the presence or absence of species. To complete the open-marine, particulate CaCO3 inventory, the contribution of coccolithophores, pteropods, and calcareous dinophytes is discussed. Based on the studied regions, the global planktic foraminiferal calcite flux rate at 100 m depth amounts to 1.3-3.2 Gt yr-1, equivalent to 23-56% of the total open marine CaCO3 flux. The preservation of tests varies on a regional and temporal scale, and is affected by local hydrography and dissolution. During most of the year (off-peak periods), many tests dissolve above 700-m water depth while settling through the water column, with on average only 1-3% of the initially exported CaCO3 reaching the deep-seafloor. Pulsed flux events, mass dumps of fast settling particles, yield a major contribution of tests to the formation of deep-sea sediments. On average, ˜25% of the initially produced planktic foraminiferal test CaCO3 settles on the seafloor. The total planktic foraminiferal contribution of CaCO3 to global surface sediments amounts to 0.36-0.88 Gt yr-1, ˜32-80% of the total deep-marine calcite budget.

  10. Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments

    SciTech Connect

    Reed, David William; Fujita, Yoshiko; Delwiche, Mark Edmond; Blackwelder, David Bradley; Colwell, Frederick Scott; Uchida, T.

    2002-08-01

    Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35°C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.

  11. Evidence for abrupt climate changes in annually laminated marine sediments.

    PubMed

    Kemp, Alan E S

    2003-09-15

    Annually laminated sediments from marine or lacustrine settings represent valuable high-resolution archives of climate change that record variation due to changing precipitation and run-off from land or variation in biological productivity and flux in the water column. Because of their annual resolution such sediments may capture abrupt changes of interannual to decadal scales rivaling corals and ice cores in resolution. Laminated sediments often occur intermittently in the sediment column, and the onset and cessation of laminae commonly record the abrupt crossing of thresholds related to climate change, for example, in the degree of oxygenation of bottom waters. Such records from marginal basins and continental margins have been pivotal in demonstrating that abrupt changes hitherto documented only in high-latitude ice cores are synchronous with climatic change at low latitudes. These insights into global teleconnections have improved our understanding of the mechanisms of rapid climate change. In deep-sea settings, the discovery of the episodic occurrence of laminated diatom-rich sediments in the Equatorial Pacific and Southern Ocean provides evidence for massive climate-related biogeochemical excursions tied to abrupt changes in the input, distribution and availability of nutrients in the oceans.

  12. Archaeal Diversity in Marine Sediments in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wang, P.; Liu, Z.; Zhao, M.; Zhang, C.

    2010-12-01

    Archaea are widespread and play an important role in the global carbon and nitrogen cycles. However, we still have limited knowledge about archaeal diversity and their function in the natural environment. The purpose of this study was to examine the diversity, distribution and abundance of archaea associated with methane-rich sediments in the South China Sea. A gravity core (HQ08-48PC, 714 cm) was collected from the northern South China Sea and aseptically sliced into 20-cm sections. Samples from near the surface (0-20 cm), middle (350-370 cm) and bottom (630-650 cm) of the core were used for the construction of archaeal clone libraries. Chemical analysis indicated that the core was rich in methane (13.6-58.8 ppm) and had low TOC/TN ratios (< 8), which indicated a marine source of the organic matter. Total amino acids ranged between 2.72 µmol/g and 8.75 µmol/g. Phylogenetic analysis revealed that archaeal community structures were dramatically different and Crenarchaeaota dominates over Euryarchaeota among the surface, middle and bottom sediments of the core. The dominant archaeal groups were MGI (40%), MBGB (27%) and MCG (9%) in the surface sediment, MCG (35%), MBGD (20%) and MCG (20%) in the middle sediment, and MCG (52%) and MBGD (33%) in the bottom sediment. MCG and MBGD increased in phytotypes with increasing depth of the core, indicating their potential importance in deeper marine subsurface. The archaeal lipids (GDGTs) showed an increase in abundance with depth. Calculations of TEX86 based on certain types of GDGTs suggested a dramatic change in sea surface temperature (SST) that might correspond to the transition from the last glacial maximum (LGM) to post-glacial period. This study will enhance our understanding of archaeal diversity and function as well as their paleoclimate applications in the South China Sea.

  13. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  14. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    PubMed

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.

  15. Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin

    NASA Astrophysics Data System (ADS)

    Gallego-Torres, David; Reolid, Matías; Nieto-Moreno, Vanesa; Martínez-Casado, Francisco Javier

    2015-12-01

    The Early Toarcian Oceanic Anoxic Event (T-OAE) represents one of the major alterations of the carbon cycle of the Mesozoic period. Despite being globally recognized, and particularly represented within the Tethys realm, its expression in the sedimentary record is highly variable depending on the studied section, which suggests local environmental factors exert a major control on the resulting lithological appearance of the event. We investigated the Fuente Vidriera section, in the eastern External Subbetic of the Betic Cordillera (Spain), where the Lower Jurassic is represented by alternate layers of marls and marly limestones, and the T-OAE is identified by a major δ13C excursion, micropalaeontological, ichnofacies and geochemical evidences. For this study, we analyzed pyrite framboid size distribution of the sedimentary sequence in Fuente Vidriera. The outcome, according to previous studies on pyrite framboid distribution, is contradictory when compared to all other evidences, suggesting oxygen depletion during the T-OAE. The results have been reinterpreted in the light of Crystal Size Distribution Theory and we conclude that not only growth time but also geochemical environment controls pyrite formation. Since growth time is directly related to burial rates, this approach allows us to reconstruct relative variations of sedimentation rates during the Early Jurassic in this location. Based on the obtained results, we provide new evidences for wide-spread transgression during the Early Toarcian in the South Iberian palaeomargin, which induced low sedimentation rate and lower energetic conditions, as well as favored oxygen impoverished bottom waters.

  16. An integrated approach to the toxicity assessment of Irish marine sediments: validation of established marine bioassays for the monitoring of Irish marine sediments.

    PubMed

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-10-01

    This paper describes the ecotoxicological evaluation of marine sediments from three sites around Ireland representative of a range of contaminant burdens. A comprehensive assessment of potential sediment toxicity requires the consideration of multiple exposure phases. In addition to the evaluation of multi-exposure phases the use of a battery of multi-trophic test species has been advocated by a number of researchers as testing of single or few organisms may not detect toxicants with a specific mode of action. The Microtox solid phase test (SPT) and the 10-d acute amphipod test with Corophium volutator were used to assess whole sediment toxicity. Porewater and elutriates were assessed with the Microtox acute test, the marine prasinophyte Tetraselmis suecica, and the marine copepod Tisbe battagliai. Solvent extracts were assayed with the Microtox and T. battagliai acute tests. Alexandra Basin was identified as the most toxic site according to all tests, except the Microtox SPT which identified the Dunmore East site as being more toxic. However, it was not possible to correlate the observed ecotoxicological effects with a specific and/or class of contaminants based on sediment chemistry alone. Therefore porewaters found to elicit significant toxicity (Dunmore East and Alexandra Basin) with the test battery were selected for further TIE assessment with T. battalgiai and the Microtox system. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone.

  17. IMPORTANCE OF INTERSTITIAL, OVERLYING WATER AND WHOLE SEDIMENT EXPOSURES TO BIOACCUMUALTION BY MARINE BIVALVES

    EPA Science Inventory

    During the performance of contaminated sediment studies using nonpolar pollutants, like polyclorinated biphenyls (PCBs), with marine organisms, the routes of exposure can include whole sediment, overlying waters and interstitial waters (assuming no feeding). These routes can be f...

  18. MARINE SEDIMENT TOXICITY IDNETIFICATION EVALUATION METHODS FOR THE ANIONIC METALS ARSENIC AND CHROMIUM

    EPA Science Inventory

    Marine sediments accumulate a diversity of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity Identification Evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole sedimen...

  19. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  20. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Drift, C. van der; Vogels, G.D.

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 {micro}mol of DMS was stoichiometrically converted into 112 {micro}mol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, the study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  1. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; Op den Camp, H J; Pol, A; van der Drift, C; Vogels, G D

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  2. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  3. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  4. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  5. Trace metal seasonal variations in Texas marine sediments

    USGS Publications Warehouse

    Holmes, C.W.

    1986-01-01

    Trace elements in coastal environments are derived from three major sources: (1) the bordering watershed; (2) the offshore marine environment; and (3) industrial and/or urban effluent. The site of deposition, however, is controlled by physical and chemical processes in the coastal zone. In many cases, these processes are controlled by climate and can vary seasonally. In the harbor at Corpus Christi, Texas, the summer climate creates an oxygen-poor environment in the water column near the sediment-water interface. This causes chalcophilic metals to precipitate from the water, resulting in high concentrations in the sediments near the source. During the winter, turbulence created by strong winds causes the entire water mass to become aerated and oxidizing, and remobilization of some metals results. In addition, this turbulence accelerates circulation which transports the metal-enriched waters from the harbor. On the outer continental shelf of south Texas, the infaunal activity varies seasonally with bottom water temperatures. As this infaunal activity has an effect on the chemical environment within the sediment near the sediment-water interface, the observed trace metal content at the interface also appears to change with the seasons. ?? 1986.

  6. Characterizing solid phase ammonia toxicity in marine sediments

    SciTech Connect

    Ho, K.T.; Burgess, R.M.; Kuhn, A.

    1994-12-31

    The presence and toxicity of ammonia in sediments represents an interesting scientific and regulatory concern. From a scientific perspective, ammonia toxicity is largely pH dependent and easily detected under special exposure conditions. Regulating the concentration of ammonia is difficult because ammonia concentrations may be elevated by naturally occurring anaerobic sediment bacteria; however, these bacteria may be enhanced by excessive carbon inputs into a system. This presentation will demonstrate progress toward characterizing ammonia toxicity.in solid phase exposure. Toxicity tests were conducted using the mysid (Mysidopsis bahia) and the amphipod (Ampelisca abdita). Results from ammonia spiked and ammonia induced whole marine sediments demonstrate pH dependent toxicity under a graduated pH (7, 8 and 9) testing regime. Several metals (Cd, Cu, Ni, Pb and Zn) tested under the graduated pH testing regime showed varying toxicity patterns also as a function of pH. Other compounds, the toxicity of which are pH dependent will be discussed. In addition the results of testing with complex environmental sediments containing high ammonia concentrations and other contaminants will be reported.

  7. Distribution of subsurface hydrocarbon seepage in near surface marine sediments

    SciTech Connect

    Abrams, M.A. )

    1993-02-01

    Hydrocarbon seeps in surficial marine sediments are of two types: ACTIVE: Where gas bubbles, pockmarks, or bright spots are visible on seismic records and/or the presence of chemosynthetic communities in conjunction with large concentrations of migrated-hydrocarbons. Generally in areas where generation and migration of hydrocarbons from the source rock is ongoing today (i.e., maximum burial) and/or where significant migration pathways have developed from tectonic activity. PASSIVE: Where concentrations of migrated hydrocarbons are so low that few or no geophysical anomalies are seen. Typically in areas where generation and expulsion is relict (no longer at maximum burial) and/or regional seals prevent significant vertical migration. The type of seep strongly controls the distribution of migrated hydrocarbons in the near surface sediments and should dictate the sampling equipment and approach required to detect seeps. Active seeps or macroseeps, usually can be detected near the water-sediment interface, within the water column, and at relatively large distances from major leak points. Most conventional sediment and water samplers will capture active seeps, Precise location of sampling is typically not critical to detect active seeps. The Gulf of Mexico, Santa Barbara Channel, and parts of the North Sea have active hydrocarbon seeps.

  8. Disturbance Increases Microbial Community Diversity and Production in Marine Sediments

    PubMed Central

    Galand, Pierre E.; Lucas, Sabrina; Fagervold, Sonja K.; Peru, Erwan; Pruski, Audrey M.; Vétion, Gilles; Dupuy, Christine; Guizien, Katell

    2016-01-01

    Disturbance strongly impacts patterns of community diversity, yet the shape of the diversity-disturbance relationship remains a matter of debate. The topic has been of interest in theoretical ecology for decades as it has practical implications for the understanding of ecosystem services in nature. One of these processes is the remineralization of organic matter by microorganisms in coastal marine sediments, which are periodically impacted by disturbances across the sediment-water interface. Here we set up an experiment to test the hypothesis that disturbance impacts microbial diversity and function during the anaerobic degradation of organic matter in coastal sediments. We show that during the first 3 weeks of the experiment, disturbance increased both microbial production, derived from the increase in microbial abundance, and diversity of the active fraction of the community. Both community diversity and phylogenetic diversity increased, which suggests that disturbance promoted the cohabitation of ecologically different microorganisms. Metagenome analysis also showed that disturbance increased the relative abundance of genes diagnostic of metabolism associated with the sequential anaerobic degradation of organic matter. However, community composition was not impacted in a systematic way and changed over time. In nature, we can hypothesize that moderate storm disturbances, which impact coastal sediments, promote diverse, and productive communities. These events, rather than altering the decomposition of organic matter, may increase the substrate turnover and, ultimately, remineralization rates. PMID:27994581

  9. Distribution of terrigenous lipids in marine sediments off northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Jeng, Woei-Lih; Lin, Saulwood; Kao, Shuh-Ji

    2003-03-01

    Surface sediments on the continental margin off northeastern Taiwan have been analyzed for terrigenous lipids including n-alkanes, n-fatty alcohols, and sterols. Marine input to the sediments is particularly low based on the average n-C 17/ n-C 29 alkane and n-C 16/ n-C 28 fatty alcohol ratios, 0.15±0.13 and 0.13±0.06, respectively; this may be due to the fact that marine lipids are more prone to degradation than terrestrial ones. The study area has the highest plant wax n-alkane contribution (average carbon preference index 3.9±1.2) among the coastal marine areas surrounding Taiwan; lateral particle transport from the southern East China Sea shelf and river runoff from the east Taiwan coast are considered to be the major contributors. The distributions of plant wax n-alkane and n-alkanol concentrations normalized to total organic carbon (TOC) in the study area generally show maximum values on the upper slope of the southernmost Okinawa Trough, but not for phytosterols. Linear regression of TOC versus plant wax n-alkane concentrations show a weak relationship ( r=0.64, p=0.001), and an even weaker relationship ( r=0.42, p=0.05) between TOC and plant wax n-fatty alcohol concentrations is found. This could be attributed to several factors: (1) a complex input (not a point source) of terrigenous organic matter to the study area, (2) TOC also including marine organic matter, (3) temporal variations in river flow due to flooding, and (4) different rates of degradation for TOC and individual biomarkers. However, in spite of those factors, TOC and phytosterol concentrations are positively linearly correlated ( r=0.85, p<0.001), implying that the dilution of phytosterols in terrigenous organic carbon with marine organic carbon with or without the phytosterols follows a nearly constant ratio, which is remarkable. In addition, the predominant source of diploptene in the sediments does not appear to be of higher plant origin.

  10. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments.

    PubMed

    Luna, G M; Vignaroli, C; Rinaldi, C; Pusceddu, A; Nicoletti, L; Gabellini, M; Danovaro, R; Biavasco, F

    2010-09-01

    Despite the recognized potential of long-term survival or even growth of fecal indicators bacteria (FIB) in marine sediments, this compartment is largely ignored by health protection authorities. We conducted a large-scale study over approximately 50 km of the Marche coasts (Adriatic Sea) at depths ranging from 2 to 5 m. Total and fecal coliforms (FC) were counted by culture-based methods. Escherichia coli was also quantified using fluorescence in situ hybridization targeting specific 16S rRNA sequences, which yielded significantly higher abundances than culture-based methods, suggesting the potential importance of viable but nonculturable E. coli cells. Fecal coliforms displayed high abundances at most sites and showed a prevalence of E. coli. FC isolates (n = 113) were identified by API 20E, additional biochemical tests, and internal transcribed spacer-PCR. E. coli strains, representing 96% of isolates, were then characterized for genomic relatedness and phylogenetic group (A, B1, B2, and D) of origin by randomly amplified polymorphic DNA and multiplex-PCR. The results indicated that E. coli displayed a wide genotypic diversity, also among isolates from the same station, and that 44 of the 109 E. coli isolates belonged to groups B2 and D. Further characterization of B2 and D isolates for the presence of 11 virulence factor genes (pap, sfa/foc, afa, eaeA, ibeA, traT, hlyA, stx(1), stx(2), aer, and fyuA) showed that 90% of B2 and 65% of D isolates were positive for at least one of these. Most of the variance of both E. coli abundance and assemblage composition (>62%) was explained by a combination of physical-chemical and trophic variables. These findings indicate that coastal sediments could represent a potential reservoir for commensal and pathogenic E. coli and that E. coli distribution in marine coastal sediments largely depends upon the physical and trophic status of the sediment. We conclude that future sampling designs aimed at monitoring the microbiological

  11. Effects of CO2-driven sediment acidification on infaunal marine bivalves: A synthesis.

    PubMed

    Clements, Jeff C; Hunt, Heather L

    2017-04-15

    While ocean acidification (OA) effects on marine organisms are well documented, impacts of sediment acidification on infaunal organisms are relatively understudied. Here we synthesize CO2-driven sediment acidification effects on infaunal marine bivalves. While sediment carbonate system conditions can already exceed near-future OA projections, sediments can become even more acidic as overlying seawater pH decreases. Evidence suggests that infaunal bivalves experience shell dissolution, more lesions, and increased mortality in more acidic sediments; effects on heavy metal accumulation appear complex and uncertain. Infaunal bivalves can avoid negative functional consequences of sediment acidification by reducing burrowing and increasing dispersal in more acidic sediments, irrespective of species or life stage; elevated temperature may compromise this avoidance behaviour. The combined effects of sediment acidification and other environmental stressors are virtually unknown. While it is evident that sediment acidification can impact infaunal marine bivalves, more research is needed to confidently predict effects under future ocean conditions.

  12. Advancing Knowledge of Anoxic Systems of the World Ocean

    NASA Astrophysics Data System (ADS)

    Neretin, Lev N.; Jørgensen, Bo Barker; Polikarpov, Igor G.

    2004-02-01

    Life on Earth emerged under anaerobic conditions. Many fundamental biochemical and metabolic pathways evolved before the atmosphere contained oxygen. At present, anaerobic (anoxic) conditions in marine milieu are generally restricted to sediments and to basins isolated from oxygenated deep-sea circulation. Enhanced oxygen consumption by organic matter decomposition and slow downward mixing and diffusion of dissolved oxygen from the surface waters can lead to oxygen deficiency in the water column in highly productive waters, forming the Oxygen Minimum Zone (OMZ). Bottom waters of coastal upwelling regions are frequently exposed to anaerobic conditions owing to extremely high primary productivity. In the past, such conditions in the water column may have developed more readily; for example, in the mid-Cretaceous. Oceanic anoxic events (OAE) were episodes of globally enhanced organic carbon burial that have significantly affected global climate by reducing atmospheric CO2.

  13. Microbioirrigation of marine sediments in dysoxic environments: Implications for early sediment fabric formation and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Pike, Jennifer; Bernhard, Joan M.; Moreton, Steven G.; Butler, Ian B.

    2001-10-01

    It is manifest in the study of dysoxic sediments from the geological record that infaunal burrowing is considered so severely limited by the lack of dissolved oxygen as to be nonexistent. Although the effects of megafauna and macrofauna on sedimentary and geochemical processes are well known, the effects of meiofauna are largely ignored. Here we document abundant meiofauna in the recent severely dysoxic, laminated sediments from the Santa Barbara basin, California margin, and also microcavities and microtunnels in laminated deglacial sediments from Palmer Deep, west Antarctic Peninsula, that we interpret to be open, relict nematode burrows. Santa Barbara basin box-core subcores were sieved to quantify metazoan abundance, and others were embedded with resin for examination of meiofaunal life positions using confocal microscopy. Metazoan densities in the surface centimeters of sediment range from 80.7 to 117.9 cm-3, and nematode populations, together with their abundant burrows, remain quite high to at least 3 cm. Scanning electron microscope analysis of fractured surfaces in Palmer Deep sediments revealed that the rigid diatom ooze framework aids the preservation of ˜50 μm diameter open nematode burrows. These structures were observed to at least 40 m below the seafloor surface. This is the first description of a nematode-produced open burrow network preserved in the geological record. Optical microscopy of resin-embedded thin sections revealed widespread sediment redistribution without significant lamina disruption. The implications of abundant nematode burrows in surface sediments, and their preservation in the geological record, are wide ranging for both modern and ancient dysoxic marine environments, including for determining early sediment fabric production, geochemical processes, and diagenetic reactions in the oxic and suboxic zones.

  14. Organic geochemistry of marine sediments in Antarctic region: marine lipids in McMurdo Sound

    SciTech Connect

    Venkatesan, M.I.

    1988-01-01

    The compositions of resolvable lipid components from four sediment cores (0-90 cm) of McMurdo Sound, Ross Sea, have been examined. The various lipid components occur in the following order of abundance: sterols approx. = n-fatty acids > n-alcohols > n-alkanes > PAH. The data indicate that the organic matter is mainly derived from recycled kerogen mixed with modern marine input. The distribution of lipids and lignin analyses indicate that there is little recognizable higher plant debris in the sediments. The sediments contain unaltered biogenic triterpenoids, and there is no evidence for natural and/or anthropogenic petroleum influx in the region. Aeolian transport of organic carbon from the continents appears to be negligible. The dominance of labile alkenes (C/sub 25/ compounds) and hopenes and the presence of unsaturated fatty acids down to a depth of 90 cm reflect a very early diagenetic stage. The persistent cold climate has probably helped in the better preservation of these labile lipids in the water column and in the young sediments. Diploptene (17..beta..(H),21..beta..(H)-hop-22(29)-ene) appears to originate from autochthonous marine productivity in McMurdo Sound. 111 references.

  15. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments

  16. Magnet-Facilitated Selection of Electrogenic Bacteria from Marine Sediment.

    PubMed

    Kiseleva, Larisa; Briliute, Justina; Khilyas, Irina V; Simpson, David J W; Fedorovich, Viacheslav; Cohen, M; Goryanin, Igor

    2015-01-01

    Some bacteria can carry out anaerobic respiration by depositing electrons on external materials, such as electrodes, thereby creating an electrical current. Into the anode chamber of microbial fuel cells (MFCs) having abiotic air-cathodes we inoculated microorganisms cultured from a magnetic particle-enriched portion of a marine tidal sediment, reasoning that since some external electron acceptors are ferromagnetic, electrogenic bacteria should be found in their vicinity. Two MFCs, one inoculated with a mixed bacterial culture and the other with an axenic culture of a helical bacterium isolated from the magnetic particle enrichment, termed strain HJ, were operated for 65 d. Both MFCs produced power, with production from the mixed culture MFC exceeding that of strain HJ. Strain HJ was identified as a Thalassospira sp. by transmission electron microscopic analysis and 16S rRNA gene comparisons. An MFC inoculated with strain HJ and operated in open circuit produced 47% and 57% of the maximal power produced from MFCs inoculated with the known electrogen Geobacter daltonii and the magnetotactic bacterium Desulfamplus magnetomortis, respectively. Further investigation will be needed to determine whether bacterial populations associated with magnetic particles within marine sediments are enriched for electrogens.

  17. Methanogenesis and sulfate reduction in marine sediments: A new model

    NASA Astrophysics Data System (ADS)

    Mitterer, Richard M.

    2010-07-01

    A number of studies have shown that methanogens are active in the presence of sulfate under some conditions. This phenomenon is especially exemplified in carbonate sediments of the southern Australian continental margin. Three sites cored during Ocean Drilling Program (ODP) Leg 182 in the Great Australian Bight have high concentrations of microbially-generated methane and hydrogen sulfide throughout almost 500 m of sediments. In these cores, the sulfate-reducing and methanogenic zones overlap completely; that is, the usual sulfate-methane transition zone is absent. Amino acid racemization data show that the gassy sediments consist of younger carbonates than the low-gas sites. High concentrations of the reduced gases also occur in two ODP sites on the margin of the Bahamas platform, both of which have similar sedimentary conditions to those of the high-gas sites of Leg 182. Co-generation of these reduced gases results from an unusual combination of conditions, including: (1) a thick Quaternary sequence of iron-poor carbonate sediments, (2) a sub-seafloor brine, and (3) moderate amounts of organic carbon. The probable explanation for the co-generation of hydrogen sulfide and methane in all these sites, as well as in other reported environments, is that methanogens are utilizing non-competitive substrates to produce methane within the sulfate-reducing zone. Taken together, these results form the basis of a new model for sulfate reduction and methanogenesis in marine sediments. The biogeochemical end-members of the model are: (1) minimal sulfate reduction, (2) complete sulfate reduction followed by methanogenesis, and (3) overlapping sulfate reduction and methanogenesis with no transition zone.

  18. Tritirachium candoliense sp. nov., a novel basidiomycetous fungus isolated from the anoxic zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Boekhout, Teun; Müller, Wally H; Stoeck, Thorsten

    2014-02-01

    A fungal culture (FCAS11) was isolated from coastal sediments of the Arabian Sea during the anoxic season. Multigene phylogenetic analyses confidentially place the organism as a novel species within the recently defined class Tritirachiomycetes, subphylum Pucciniomycotina, phylum Basidiomycota. We named the new species Tritirachium candoliense and provide the first description of a member of this class from a marine environment. DNA sequences and morphological characters distinguish T. candoliense from previously described Tritirachium species. Its growth characteristics, morphology, and ultrastructural features showed that under anoxic conditions the species grows slowly and produces mainly hyphae with only few blastoconidia. Electron microscopy revealed differences when the culture was exposed to anoxic stress. Notable ultrastructural changes occur for example in mitochondrial cristae, irregularly shaped fat globules and the presence of intracellular membrane invaginations. We assume that the growth characteristics and substrate utilization patterns are an adaptation to its source location, the seasonally anoxic environment of the Arabian Sea.

  19. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

  20. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.

    PubMed

    Bonte, Matthijs; van Breukelen, Boris M; Stuyfzand, Pieter J

    2013-09-15

    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5 °C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60 °C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P).

  1. Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions

    USGS Publications Warehouse

    Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E.

    2003-01-01

    A selenite-respiring bacterium, Bacillus selenitireducens, produced significant levels of Se(-II) (as aqueous HSe-) when supplied with Se(O). B. selenitireducens was also able to reduce selenite [Se(IV)] through Se(O) to Se(-II). Reduction of Se(O) by B.selenitireducens was more rapid in cells grown on colloidal sulfur [S(O)] or Se(IV) as their electron acceptor than for cell lines grown on fumarate. In contrast, three cultures of selenate-respiring bacteria, Sulfurospirillum barnesii, B. arsenicoselenatis, and Selenihalanaerobacter shriftii either were unable to reduce Se(O) to Se(-II) or had only a very limited capacity to achieve this reduction. Biological reduction of Se(O) to Se(-II) was observed during incubation of estuarine sediment slurries, while no such activity was noted in formalin-killed controls. The majority of the Se(-II) produced was found in the sediments as a solid precipitate of FeSe, rather than in solution as HSe-. These results demonstrate that certain anaerobic bacteria have the capacity to reduce Se(O) to Se(-II), providing a possible biological explanation for the occurrence of the selenide species in some sedimentary rocks.

  2. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes

    PubMed Central

    Graue, Jutta; Engelen, Bert; Cypionka, Heribert

    2012-01-01

    To follow the anaerobic degradation of organic matter in tidal-flat sediments, a stimulation experiment with 13C-labeled Spirulina biomass (130 mg per 21 g sediment slurry) was conducted over a period of 24 days. A combination of microcalorimetry to record process kinetics, chemical analyses of fermentation products and RNA-based stable-isotope probing (SIP) to follow community changes was applied. Different degradation phases could be identified by microcalorimetry: Within 2 days, heat output reached its maximum (55 μW), while primary fermentation products were formed (in μmol) as follows: acetate 440, ethanol 195, butyrate 128, propionate 112, H2 127 and smaller amounts of valerate, propanol and butanol. Sulfate was depleted within 7 days. Thereafter, methanogenesis was observed and secondary fermentation proceeded. H2 and alcohols disappeared completely, whereas fatty acids decreased in concentration. Three main degraders were identified by RNA-based SIP and denaturant gradient gel electrophoresis. After 12 h, two phylotypes clearly enriched in 13C: (i) Psychrilyobacter atlanticus, a fermenter known to produce hydrogen and acetate and (ii) bacteria distantly related to Propionigenium. A Cytophaga-related bacterium was highly abundant after day 3. Sulfate reduction appeared to be performed by incompletely oxidizing species, as only sulfate-reducing bacteria related to Desulfovibrio were labeled as long as sulfate was available. PMID:21918576

  3. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.

    PubMed

    Pavlov, A A; Kasting, J F

    2002-01-01

    Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional photochemical model to investigate how the isotopic fractionation produced during SO2 photolysis would have been transferred to other gaseous and particulate sulfur-bearing species in both low-O2 and high-O2 atmospheres. We show that in atmospheres with O2 concentrations < 10(-5) times the present atmospheric level (PAL), sulfur would have been removed from the atmosphere in a variety of different oxidation states, each of which would have had its own distinct isotopic signature. By contrast, in atmospheres with O2 concentrations > or = 10(-5) PAL, all sulfur-bearing species would have passed through the oceanic sulfate reservoir before being incorporated into sediments, so any signature of MIF would have been lost. We conclude that the atmospheric O2 concentration must have been < 10(-5) PAL prior to 2.3 Ga.

  4. Sulfonates: A novel class of organic sulfur compounds in marine sediments

    NASA Astrophysics Data System (ADS)

    Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard

    1994-11-01

    X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.

  5. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  6. The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments

    PubMed Central

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K.; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the “Oil-Spill Snorkel”: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The “Oil-Spill Snorkel” consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the “Oil-Spill Snorkel” potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify

  7. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  8. Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire Estuary, France)

    NASA Astrophysics Data System (ADS)

    Thibault de Chanvalon, A.; Metzger, E.; Mouret, A.; Cesbron, F.; Knoery, J.; Rozuel, E.; Launeau, P.; Nardelli, M. P.; Jorissen, F. J.; Geslin, E.

    2015-07-01

    We present a new rapid and accurate protocol to simultaneously sample benthic living foraminifera in two dimensions in a centimeter scale vertical grid and dissolved iron in high resolution (200 μm). Such an approach appears crucial to study foraminiferal ecology in heterogeneous environments. The foraminiferal faunas of the main intertidal mudflat of the Loire estuary are dominated by Ammonia tepida, which accounts for 92 % of the living assemblage (CTG-labeled). Its vertical distribution shows a first density maximum at the surface, a sharp decrease in the next two centimeter followed by a well defined second maximum between 3 and 8 cm depth. The heterogeneity of A. tepida in this 3-8 cm depth layer was calculated by the Moran's Index and reveals lateral patches with a characteristic length of 1 to 2 cm. We investigate mechanisms potentially responsible for this distribution by observation of burrow structures and two-dimensional high-resolution imaging of dissolved iron. The surface maximum corresponded to the area of maximum oxygen availability. Observable burrows have no clear relation with the distribution of A. tepida but were closely related to dissolved iron distribution. Consequently, no evident relation between A. tepida and dissolved iron was observed. Nevertheless, two one cm-wide structures, enriched in dissolved iron produced by anaerobic degradation of labile organic matter, corresponded to increased A. tepida densities. This observation suggests that within strongly oxygen-depleted sediments, A. tepida could still be favoured by labile organic carbon. The main characteristics of the vertical distribution of A. tepida are interpreted in the present study as a combination of passive downward transport by biomixing into deeper suboxic (without both oxygen and sulfide) sediment layers and a subsequent mobility driven by a sensitivity to geochemical gradients. We hypothesize that the survival of A. tepida in oxygen depleted environments is explained

  9. Estimating rates of authigenic carbonate precipitation in modern marine sediments

    NASA Astrophysics Data System (ADS)

    Mitnick, E. H.; Lammers, L. N.; DePaolo, D. J.

    2015-12-01

    The formation of authigenic carbonate (AC) in marine sediments provides a plausible explanation for large, long-lasting marine δ13C excursions that does not require extreme swings in atmospheric O2 or CO2. AC precipitation during diagenesis is driven by alkalinity production during anaerobic organic matter oxidation and is coupled to sulfate reduction. To evaluate the extent to which this process contributes to global carbon cycling, we need to relate AC production to the geochemical and geomicrobiological processes and ocean chemical conditions that control it. We present a method to estimate modern rates of AC precipitation using an inversion approach based on the diffusion-advection-reaction equation and sediment pore fluid chemistry profiles as a function of depth. SEM images and semi-quantitative elemental map analyses provide further constraints. Our initial focus is on ODP sites 807 and 1082. We sum the diffusive, advective, and reactive terms that describe changes in pore fluid Ca and Mg concentrations due to precipitation of secondary carbonate. We calculate the advective and diffusive terms from the first and second derivatives of the Ca and Mg pore fluid concentrations using a spline fit to the data. Assuming steady-state behavior we derive net AC precipitation rates of up to 8 x 10-4 mmol m-2 y-1 for Site 807 and 0.6 mmol m-2 y-1 for Site 1082. Site 1082 sediments contain pyrite, which increases in amount down-section towards the estimated peak carbonate precipitation rate, consistent with sulfate-reduction-induced AC precipitation. However, the presence of gypsum and barite throughout the sediment column implies incomplete sulfate reduction and merits further investigation of the biogeochemical reactions controlling authigenesis. Further adjustments to our method could account for the small but non-negligible fraction of groundmass with a CaSO4 signature. Our estimates demonstrate that AC formation may represent a sizeable flux in the modern global

  10. Sedimentation: Potential Biological Effects of Dredging Operations in Estuarine and Marine Environments

    DTIC Science & Technology

    2005-05-01

    34Impacts of sediment burial on mangroves." Marine Pollution Bulletin 37, 420-426. Fonseca, M. S., Kenworthy, W. J., and Thayer, G W. (1998...34 Marine Pollution Bulletin 4, 166-169. Tomasko, D.A., Dawes, C. J., and Hall, M. 0. (1996). "The effects of anthropogenic nutrient enrichment in turtle...reefs," Marine Pollution Bulletin 42, 864-872. Wilber, D. H., and Clarke, D. G. (2001). "Biological effects of suspended sediments: a review of

  11. Depth Profile of Bacterial Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments

    DTIC Science & Technology

    2007-11-02

    organisms and the resultant changes in PAH metabolism by bacteria can complicate interpretation of sedimentation and biodegradation rates based on analytical...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Washington, DC 20375-5320 MICHAEL T. MONTGOMERY CHRISTOPHER L...Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments Unclassified 5a. CONTRACT NUMBER N0001499WX20525 5b. GRANT NUMBER 61-7800

  12. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures.

  13. Sediment dynamics of a sediment-starved, open-marine marsh embayment: Waccasassa Bay, Florida

    USGS Publications Warehouse

    Wood, Nathan J.; Hine, Albert C.

    2003-01-01

    Although the Big Bend region of Florida's Gulf of Mexico coast is considered sediment-starved, the open marine marshes that characterize the area are keeping pace with sea level rise. Waccasassa Bay, an embayment within this region, also contains unique subtidal mudbanks that thicken with increasing proximity to embayment head, while the remainder of the bayfloor is characterized by exposed carbonate bedrock or by a thin veneer of sediment. Hydro- dynamic data sets were collected to determine the primary sedimentary processes within Waccasassa Bay capable of creating such geomorphic features. Data suggest that the embayment is a flood-dominated system influenced primarily by semi-diurnal tides with flood-stage intensification towards the river-mouth. Subtidal mudbanks are believed to be the result of tidal time-velocity asymmetries and the convergence of sediment transport pathways. Flood dominance for potential bedload transport suggests a gradual infilling of the bay interior for the short time scale of this study. With no mechanism for seaward transport, Waccasassa Bay can be considered a sediment sink for the remainder of the Big Bend re

  14. Effects of antibacterials use in aquaculture on biogeochemical processes in marine sediment.

    PubMed

    Ma, Deyi; Hu, Yingying; Wang, Juying; Ye, Sai; Li, Ai

    2006-08-15

    The effects of chloramphenicol on microorganism in marine sediment were studied by spiked experiments in this paper. The results showed that high concentrations of chloramphenicol could inhibit the activities of microorganism in sediment, and that the growth of strains Pseudomons and Acinetobacter in sediment that can degrade organic matters were inhibited apparently. Furthermore, the resistance of heterotrophic bacteria in sediment had developed due to the use of antibacterials. Based on the above results potential environmental effects of antibacterials on microorganism in marine sediment were analyzed.

  15. DISSOLVED-COLLOIDAL PARTITIONING OF MOBILIZED METALS DURING RESUSPENSION OF MARINE SEDIMENTS

    EPA Science Inventory

    Sediments in many urban estuaries are contaminated by potentially toxic heavy metals. Over time, many of these metals accumulate in the sediment due to physico-chemical processes which remove them from the water column. Marine sediments are regularly subjected to physical process...

  16. Failure of Marine Sediments due to Gas Hydrate Dissociation

    NASA Astrophysics Data System (ADS)

    Germanovich, L.; Xu, W.

    2004-12-01

    Methane gas hydrate (MGH) dissociation in the pore space of marine sediments may be caused by various natural and human-induced processes including sea level decrease, tectonic uplift of continental margins, global warming, and petroleum operations. While these processes generally have different spatial and temporal scales, they result in MGH dissociation, and the released gas and water tend to expand. This may change the pore pressure in the sediments, affecting their mechanical state and failure processes. If the pressure does not change, the hydrate dissociation may still affect the sediment properties by perturbing particle cementation and by introducing phase interfaces (e.g., capillary menisci). In this work, the pressure change has been calculated by coupling the dissociation rate with fluid flow in the sediments based on thermodynamic considerations. The common seafloor failure, submarine landslides, can reach a length of ˜100 km, with a length-to-thickness ratio as large as ˜1000. It is often assumed that the Storegga Slides were caused by earthquakes that instantaneously created a shallow discontinuity ( ˜100 m below the seafloor) along the entire slide length of ˜100 km. Instead, Puzrin and Germanovich [2004] reasoned that the MGH dissociation may have resulted in an initial flaw at the scale of only ˜1 km. They explained the landslide evolution in submarine slopes by the mechanism of catastrophic shear band propagation of this flaw. Our modeling suggests that the sediment de-cementation and the excess pore pressure due to MGH dissociation may indeed have determined the scale of ˜1 km of this initial defect. Our calculations also suggest that dissociation-affected submarine landslides may be common for shallow sea water depths of < 1 km and involve thin sediment layers (usually ˜100 m or less). However, the MGH dissociation may also occur underneath a massive and horizontally extended MGH layer, which could serve as a seal or cap-rock. In this

  17. Environmental Characteristics of Polybrominated Diphenyl Ethers in Marine System, with Emphasis on Marine Organisms and Sediments

    PubMed Central

    Zhang, Ying; Wang, Weiliang; Yuan, Huamao; Yan, Huijun; Zhang, Jinpeng; Pei, Zhen; He, Zhipeng

    2016-01-01

    Polybrominated diphenyl ethers (PBDEs), due to their widespread usage as flame retardants and their lipophilicity and persistence, have become ubiquitous in the environment. It is urgent to understand the environmental characteristics of PBDEs in marine system, but they have attracted little attention. We summarize the available data and analyze the regional distributions, controlling factors, and congener patterns of PBDEs in marine and associated environmental matrixes worldwide. Based on meta-analysis, after separating the estuarial sites from the marine sites, ignoring the extraordinary sample sites such as those located just near the point source, the PBDE concentration levels are still in the same order of magnitude from global scale. Despite Principal Component Analysis, the congener patterns of sediments are predominant with the heavy brominated congeners (BDE-209 contributing over 75% to the total load) while the biota abound with the light ones (BDE-47, BDE-99, and BDE-100 taking about 80%). The ratio between BDE-99 and BDE-100 for the lower trophic-level species often turns to be greater than 1, while for those higher species the ratio may be below 1, and some species feed mainly on the crustaceans and zooplankton seems to have a higher ratio value. The data of the PBDEs in marine system are currently limited; thus, data gaps are identified as well. PMID:27999788

  18. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments

    USGS Publications Warehouse

    Crusius, John; Thomson, John

    2003-01-01

    Sedimentary records of redox-sensitive trace elements hold significant potential as indicators of paleoceanographic environmental conditions. Records of Re can reveal the intensity of past reducing conditions in sediments at the time of deposition, whereas records of Ag may record the magnitude of past diatom fluxes to the seafloor. Confidence in paleoenvironmental reconstruction from records of either metal, however, requires it to have experienced negligible redistribution since deposition. This study examines diagenetic rearrangements of Re and Ag that occur in response to exposure to bottom-water O2 in environments of low sedimentation rate, including Madeira Abyssal Plain turbidites and eastern Mediterranean basin sapropels. Authigenic Re was remobilized quantitatively by oxidation but poorly retained by the underlying sediments. All records are consistent with previous work demonstrating that only a limited reimmobilization of Re occurs preferentially in Corg-rich, reducing sediments. Silver was also mobilized quantitatively by oxidation, but it was subsequently immobilized more efficiently in all cases as sharp peaks immediately into anoxic conditions below active oxidation fronts, and these peaks remain immobile in anoxic conditions during long-term burial. Comparison of Ag, S, and Se records from various cores suggests that Ag is likely to have been immobilized as a selenide, a mechanism previously proposed for Hg in similar situations (Mercone et al., 1999). Coexisting narrow peaks of Ag and Hg with Se offer a means of assessing whether oxidative burndown has ever occurred at the top of Corg- and sulfide-rich sedimentary units. Although these results suggest that caution must be used when inferring paleoenvironmental information from records of Ag and Re in cores with low sediment accumulation rates (−1), they should not affect the promise that authigenic Ag and Re records hold for paleoenvironmental reconstruction in sediments with higher accumulation

  19. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.

  20. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  1. Paleomagnetic Studies of Marine Sediments for Evaluation of Sedimentation Rates on the Mendeleev Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Elkina, D.

    2014-12-01

    Nowadays the Arctic Ocean is an area of higher scientific interest. Investigation of composition, genesis, sources and source areas of marine sediments is necessary for a gain of geological knowledge and geo-engineering development of the region. One should note that the dating issue in the Arctic Ocean is a challenge by itself. However, magnetostratigraphy can offer a powerful stratigraphic tool applying to marine sediments here. The 6-meters length core was retrieved from the Mendeleev Ridge in 2012 and subjected to paleomagnetic studies. The examined core was revealed to dominate by normal polarity up to 123 cm below seafloor (cmbsf) and assigned there to the Brunhes polarity chron of the geomagnetic field (0.78 Ma). Then prevalence of reverse polarity persists up to 394-397 cmbsf, assigned to Matuyama age, and short positive intervals are believed to be subchrons of normal polarity. Change from reverse to normal polarity at 394-397 cmbsf is considered as the Matuyama - Gauss (2.58 Ma) boundary and is traced up to 530-531 cmbsf including one short reversal. After this depth a drop back to reverse polarity is ascribed to the beginning of the Gilbert polarity chron (3.58 Ma). The resultant magnetostratigraphy is presented on Figure 1. The stepwise alternating field demagnetization and demagnetization by heating were performed to remove viscous overprints and then to define component magnetization directions. Spikes of natural remanent magnetization intensity and magnetic susceptibility are discovered near almost all assigned chron boundaries, and it may act as an independent factor for determination of polarity boundaries. Anisotropy of magnetic susceptibility is also considered in order to find out additional peculiarities of the sedimentation. The relative abundance of shallow inclinations at least implies the existence of secondary processes, which may have altered the paleomagnetic record. The mean sedimentation rates on the Mendeleev Ridge do not exceed 1

  2. Comparison of test specific sediment effect concentrations with marine sediment quality assessment guidelines

    SciTech Connect

    Carr, R.S.; Biedenbach, J.M.; Long, E.R.; MacDonald, D.D.

    1995-12-31

    As part of NOAA`s National Status and Trends (NS and T) Bioeffects Assessment program and studies conducted by the National Biological Service, numerous sediment quality assessment surveys have recently been conducted along the Atlantic and Gulf coasts of the US using the sea urchin (Arbacia punctulata) fertilization and embryological development tests with pore water. Additional toxicity tests were also conducted in conjunction with most of these studies. The areas that have been sampled include Boston harbor, Massachusetts; Charleston Harbor, Winyah Bay, and Savannah River, South Carolina; St. Simon Sound, Georgia; Biscayne Bay, Tampa Bay, Choctawhatchee Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay, Florida; Galveston Bay, Lavaca Bay, and Sabine Lake, Texas, and 200 stations in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico. Sufficient data are now available from this series of surveys to calculate test specific sediment effect concentrations (SECs). Based on these recent studies, SECs were developed for the sea urchin porewater and amphipod tests and compared with existing marine sediment quality assessment guidelines.

  3. Magnesium adsorption and ion exchange in marine sediments: A multi-component model

    NASA Astrophysics Data System (ADS)

    von Breymann, Marta T.; Collier, Robert; Suess, Erwin

    1990-12-01

    The observed distribution of dissolved magnesium in the pore water of rapidly accumulating sediments shows significant deviations from the seawater value. We have shown that deviations during early diagenesis can be explained by reactions occurring at the surface of sediment particles. In anoxic pore water environments with high levels of dissolved total carbon dioxide the formation of Mg +2·CO 3-2 complexes significantly reduces the concentration of the free Mg +2 ion. This decrease in the Mg +2 activity results in desorption of magnesium from the solid surfaces due to the re-equilibration of the adsorbed Mg +2 with the dissolved species. The effect of increasing carbonate complexation of Mg +2 in anoxic environments is initially compensated by the loss of sulfate, which is also a strong Mg +2 ligand. Therefore, significant changes in free Mg +2 concentration and thus in the magnesium desorption from solid surfaces by ligand competition for Mg +2 are more pronounced in sulfate-depleted systems undergoing methanogenesis. Such conditions are characteristic of most continental margin sediments. Another consequence of the decomposition of organic matter in hemipelagic sediments is the accumulation of high levels of ammonium ions which also displace Mg +2 from sediment-particle surfaces by ion exchange. These equilibria in the pore water-sediment systems can be described by empirical parameters, which were experimentally obtained. A computer model was used to determine the equilibrium conditions for solid-solution reactions as a function of changes in the pore-water composition in organicrich hemipelagic environments. This model includes complex formation, competition for Mg +2 between dissolved ligands and exchange sites and Mg +2/NH +4 exchange reactions. The relative proportion of desorbed and displaced Mg +2 from the solid surface depends on the characteristics of the sediment and on the ΣCO 2:NH +4 regenerative ratio in the pore waters. In sediments from

  4. Capillary effects on hydrate stability in marine sediments

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Flemings, Peter B.

    2011-07-01

    We study the three-phase (Liquid + Gas + Hydrate) stability of the methane hydrate system in marine sediments by considering the capillary effects on both hydrate and free gas phases. The capillary pressure, a measure of the pressure difference across a curved phase interface, exerts a key control on the methane solubility in Liquid + Hydrate (L + H) and Liquid + Gas (L + G) systems. By calculating the L + H and L + G solubilities as a function of water depth (pressure) and pore size (interface curvature), we show how the solubility requirements for forming both gas hydrate and free gas can be met in a three-phase zone. The top of the three-phase zone shifts upward in sediments as the water depth increases and the mean pore size decreases. The thickness of the three-phase zone increases as the distribution of pore sizes widens. The top of the three-phase zone can overlie or underlie the bulk three-phase equilibrium depth. At Blake Ridge, we predict that the three-phase zone is 27.7 m thick and that the top of the three-phase zone lies 13 m above the predicted bulk equilibrium depth. This reconciles the observation of the bottom-simulating reflector (BSR) at Blake Ridge that is shallower than the predicted bulk equilibrium depth. In contrast, at Hydrate Ridge where water depth is shallower, we predict that the three-phase zone is 20.4 m thick and that the top of the three-phase zone lies 0.7 m below the predicted bulk equilibrium depth. Our model, which predicts an upward shift in the top of free gas occurrence with increasing water depth (pressure), is compatible with worldwide observations that the BSR is systematically shifted upward relative to the bulk equilibrium depth as water depth (pressure) is increased.

  5. Extraction of bioavailable contaminants from marine sediments: an approach to reducing toxicity using adsorbent parcels.

    PubMed

    Goodsir, Freya; Fisher, Tom T; Barry, Jon; Bolam, Thi; Nelson, Leah D; Rumney, Heather S; Brant, Jan L

    2013-07-15

    This paper demonstrates an approach to reducing acute toxicity in marine sediments using adsorbent parcels. Acute toxicity tests were carried using the marine amphipod Corophium volutator. Marine sediments were spiked with two know contaminants tributyltin and naphthalene and then treated with adsorbent parcels containing either amberlite XAD4 or activated carbon. Results showed that both types of adsorbent parcels were effective in reducing acute toxicity, not only within spiked sediments containing naphthalene and/or tributyltin, but also in an environmental field samples form an expected contaminated site. Adsorbent parcels such as these could provide a practical approach to remediate areas of contaminated sediment within marine environments. Furthermore adsorbents can be used as an identification tool for problematic contaminants using a toxicity identification evaluation approach.

  6. EXTRACTION OF ORGANIC CONTAMINANTS FROM MARINE SEDIMENTS AND TISSUES USING MICROWAVE ENERGY

    EPA Science Inventory

    In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chl...

  7. Targeted search for actinomycetes from near-shore and deep-sea marine sediments

    PubMed Central

    Prieto-Davó, Alejandra; Villarreal-Gómez, Luis Jesús; Forschner-Dancause, Stephanie; Bull, Alan T.; Stach, James E. M.; Smith, David C.; Rowley, Dave C.; Jensen, Paul R.

    2013-01-01

    Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments >1100m and suggests that the distribution of this genus is broader than previously believed. PMID:23360553

  8. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  9. Micromonospora profundi sp. nov., isolated from deep marine sediment.

    PubMed

    Veyisoglu, Aysel; Carro, Lorena; Cetin, Demet; Guven, Kiymet; Spröer, Cathrin; Pötter, Gabriele; Klenk, Hans-Peter; Sahin, Nevzat; Goodfellow, Michael

    2016-11-01

    A novel actinobacterial strain, designated DS3010T, was isolated from a Black Sea marine sediment and characterized using a polyphasic approach. The strain was shown to have chemotaxonomic, morphological and phylogenetic properties consistent with classification as representing a member of the genus Micromonospora. Comparative 16S rRNA gene sequence studies showed that the strain was most closely related to the type strains of Micromonospora saelicesensis (99.5 %), Micromonospora chokoriensis (99.4 %) and Micromonospora violae (99.3 %). Similarly, a corresponding analysis based on partial gyrB gene sequences showed that it formed a distinct phyletic branch in a subclade that included the type strains of Micromonosporazamorensis, 'Micromonospora zeae', 'Micromonospora jinlongensis', M. saelicesensis and Micromonospora lupini. DS3010T was distinguished from its closest phylogenetic neighbours by low levels of DNA-DNA relatedness and by a combination of chemotaxonomic and phenotypic properties. On the basis of these data, it is proposed that the isolate should be assigned to the genus Micromonospora as Micromonospora profundi sp. nov. with isolate DS3010T (=DSM 45981T=KCTC 29243T) as the type strain.

  10. Saccharicrinis marinus sp. nov., isolated from marine sediment.

    PubMed

    Liu, Qian-Qian; Li, Juan; Xiao, Di; Lu, Jin-Xing; Chen, Guan-Jun; Du, Zong-Jun

    2015-10-01

    A novel bacterial strain, designated Y11T, was isolated from marine sediment at Weihai in China. Comparative analysis of 16S rRNA gene sequences demonstrated that the novel isolate showed highest similarity to Saccharicrinis fermentans DSM 9555T (94.0 %) and Saccharicrinis carchari SS12T (92.7 %). Strain Y11T was a Gram-stain-negative, rod-shaped, non-endospore-forming, yellow-pigmented bacterium and was able to hydrolyse agar weakly. It was catalase-negative, oxidase-positive, facultatively anaerobic and motile by gliding. Optimal growth occurred at 28-30 °C, at pH 7.0-7.5 and in the presence of 2-3 % (w/v) NaCl. The DNA G+C content was 34.4 mol%. The strain contained MK-7 as the prevalent menaquinone. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C15 : 1ω6c. The predominant polar lipids were phosphatidylethanolamine and two unknown lipids. Data from the present polyphasic taxonomic study clearly place the strain as representing a novel species within the genus Saccharicrinis, for which the name Saccharicrinis marinus sp. nov. is proposed. The type strain is Y11T ( = CICC10837T = KCTC42400T).

  11. Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.

    PubMed

    Li, Jia; Zhang, Hua

    2016-12-01

    To reveal the kinetics and mechanisms of antibiotic adsorption/desorption processes, batch and stirred flow chamber (SFC) experiments were carried out with oxytetracycline (OTC) on two marine sediments. The OTC adsorption capacities of the marine sediments were relatively weak and related to their organic carbon (OC) and contents of fine particles. Sorption isotherms of OTC on marine sediment can be well described by both the Langmuir and Freundlich models. Langmuir adsorption maxima (qmax) and Freundlich distribution coefficients (Kf) increased with the decrease of salinity and pH, which indicated the importance of variable charged sites on sediment surfaces. A second order kinetic model successfully described adsorption and desorption kinetics of OTC and well reproduced the concentration change during stop-flow. The adsorption kinetic rates (ka) for OTC under different experimental conditions ranged from 2.00 × 10(-4) to 1.97 × 10(-3) L (mg min)(-1). Results of SFC experiments indicated that diffusive mass transfer was the dominant mechanism of the time-dependent adsorption of OTC and its release from marine sediment was mildly hysteretic. The high desorption percentage (43-75% for LZB and 58-75% for BHB) implied that binding strength of OTC on two marine sediments was weak. In conclusion, marine sediment characteristics and environmental factors such as salinity, pH, and flow rate are critical factors determine extent of OTC sorption on marine sediment and need to be incorporated in modeling fate and transport of OTC in marine environment.

  12. Deposition of zinc and cadmium by marine bacteria in estuarine sediments

    USGS Publications Warehouse

    McLerran, C.J.; Holmes, Charles W.

    1974-01-01

    Mixed cultures of marine bacteria isolated from the sediments of Corpus Christi Harbor were examined for their ability to assimilate or precipitate radioactive zinc and cadmium from solution. Test data indicate that during summer, when bacterial activity is at a maximum, the bacteria and their metabolic byproducts play a significant role in the removal of zinc and cadmium from seawater and their subsequent deposition in marine sediments.

  13. Diversity and population structure of a near-shore marine-sediment viral community.

    PubMed Central

    Breitbart, Mya; Felts, Ben; Kelley, Scott; Mahaffy, Joseph M.; Nulton, James; Salamon, Peter; Rohwer, Forest

    2004-01-01

    Viruses, most of which are phage, are extremely abundant in marine sediments, yet almost nothing is known about their identity or diversity. We present the metagenomic analysis of an uncultured near-shore marine-sediment viral community. Three-quarters of the sequences in the sample were not related to anything previously reported. Among the sequences that could be identified, the majority belonged to double-stranded DNA phage. Temperate phage were more common than lytic phage, suggesting that lysogeny may be an important lifestyle for sediment viruses. Comparisons between the sediment sample and previously sequenced seawater viral communities showed that certain phage phylogenetic groups were abundant in all marine viral communities, while other phage groups were under-represented or absent. This 'marineness' suggests that marine phage are derived from a common set of ancestors. Several independent mathematical models, based on the distribution of overlapping shotgun sequence fragments from the library, were used to show that the diversity of the viral community was extremely high, with at least 10(4) viral genotypes per kilogram of sediment and a Shannon index greater than 9 nats. Based on these observations we propose that marine-sediment viral communities are one of the largest unexplored reservoirs of sequence space on the planet. PMID:15156913

  14. Integrated hazard, risk and impact assessment of tropical marine sediments from Tema Harbour (Ghana).

    PubMed

    Botwe, Benjamin O; De Schamphelaere, Kristine; Schipper, Cor A; Teuchies, Johannes; Blust, Ronny; Nyarko, Elvis; Lens, Piet N L

    2017-02-28

    The potential ecological hazard, risk and impact of tropical marine sediments from the Tema Harbour (Greater Accra, Ghana) was investigated by integrating Corophium volutator and Hediste diversicolor whole-sediment toxicity bioassays with data on the metals (Cd, Pb, Cr, Ni, Cu, Zn and As) concentrations of the sediments. The whole-sediment toxicity bioassay results showed that sediments of the Tema Harbour are potentially hazardous to marine benthic invertebrates. C. volutator exhibited a higher vulnerability to the sediment toxicity than H. diversicolor, although the latter showed higher biota-sediment accumulation factors for the investigated metals. Statistically significant correlations were observed between C. volutator mortality and sediment Cd concentration (r = 0.84, p < 0.05; n = 6) and between H. diversicolor mortality and sediment Cu concentration (r = 0.94, p < 0.05; n = 5). Comparison of metal concentrations with international action levels for contaminated sediment disposal indicates that the Tema Harbour sediments contain potentially hazardous concentrations of Cu and Zn. This study shows that sediments from the Tema Harbour are not suitable for disposal at sea without remediation. There is, therefore, a need to improve environmental management and regulate the disposal of dredged material originating from the Tema Harbour.

  15. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  16. Toxicological methods for determining the effects of contaminated sediment on marine organisms

    SciTech Connect

    Swartz, R.C.

    1984-01-01

    Most chemicals and waste materials discharged into the marine environment contain fractions that eventually accumulate in sediment. Uncertainty about the ecological significance of sediment contamination to benthic, epibenthic, and pelagic communities has prompted development of methods for testing sediment toxicity. The Environmental Protection Agency (EPA)/Army Corps of Engineers (USACE) Implementation Manual (1), mandated by the 1977 Ocean Dumping Regulations, provided the first guidance for sediment bioassays. During the next 7 years, a great variety of ecotoxicological methods were used to evaluate sediment contamination. The paper reviews these methods and evaluates their application in regulatory, monitoring, and research programs.

  17. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales

    NASA Astrophysics Data System (ADS)

    Calvert, S. E.; Bustin, R. M.; Ingall, E. D.

    1996-05-01

    in the latter. δ 15N values are 1.9z.permil; lighter on average in laminated compared with bioturbated intervals, suggesting that nutrient drawdown was less during the deposition of the organic-rich, laminated shales. The chemical, mineralogical, and isotopic contrasts between the two shale facies of the Camp Run Member indicate that the conditions of sedimentation were different during their deposition. The difference was possibly related to variations in sea level, which would have caused the Camp Run shoreline to move closer to and farther from the core site, causing, in turn, the deposition of coarser and finer grained sediments that contained different mixtures of marine and terrestrial organic matter. Bottomwater conditions were anoxic during deposition of most laminated intervals. Bottom-water anoxia or dysoxia led to decreased burial and preservation of the essential nutrient phosphorus in the laminated, organic-rich shales relative to the rocks deposited beneath better oxygenated bottomwaters. Increased availability of phosphorus in the water column on long timescales leads to increased productivity and a higher settling flux of organic matter, causing bottom-water oxygen levels to fall. This is consistent with the nitrogen isotope evidence suggesting that production was probably higher during the deposition of the organic-rich shales. Thus, production variations coupled with enhanced sedimentary regeneration of phosphorus from sediments related to low oxygen bottom-water concentrations provide a general mechanism for the formation of the alternating facies of this member of the New Albany Shale.

  18. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  19. Thermal alteration of organic matter in recent marine sediments. 2: Isoprenoids. [Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    A series of isoprenoid compounds were isolated from a heat treated marine sediment (from Tanner Basin) which were not present in the original sediment. Among the compounds identified were: phytol, dihydrophytol, c-18-isoprenoid ketone, phytanic and pristanic acids, c-19 and c-20-monoolefines, and the alkanes pristane and phytane. The significance and possible routes leading to these compounds is discussed.

  20. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments

    SciTech Connect

    Geiselbrecht, A.D.; Herwig, R.P.; Deming, J.W.; Staley, J.T.

    1996-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily released into the environment through anthropomorphic sources. PAH degradation has been known to occur in marine sediments. This paper describes the enumeration, isolation, and preliminary characterization of PAH-degrading strains from Puget Sound sediments. 38 refs., 3 figs., 3 tabs.

  1. Vertical distribution of (137)Cs activity concentration in marine sediments at Amvrakikos Gulf, western of Greece.

    PubMed

    Tsabaris, C; Patiris, D L; Fillis-Tsirakis, E; Kapsimalis, V; Pilakouta, M; Pappa, F K; Vlastou, R

    2015-06-01

    The aim of the present work is the study of (137)Cs migration in sediment column taking into account the sedimentation rate in the Amvrakikos Gulf, at the western part of Greece. Marine core sediments were collected and the measurements were performed using the high resolution gamma-ray spectrometry method. The vertical distribution of (137)Cs activity concentration, as part of anthropogenic marine radioactivity, provided averaged sedimentation rate by identifying the depths of activity concentrations due to the Chernobyl accident and the nuclear tests signals. Furthermore, (137)Cs measurements were reproduced using the proposed one-dimensional diffusion-advection model which provides mainly as an output, the sedimentation rate and the average diffusivity of (137)Cs in the sediment column. The proposed model estimates the temporal variation of (137)Cs activity concentration from 1987 (one year after the Chernobyl accident) till today (2014).

  2. Cs-137 geochronology, epithermal neutron activation analysis, and principal component analysis of heavy metals pollution of the Black Sea anoxic continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Cristache, C.; Oaie, G.; Culicov, O. A.; Frontasyeva, M. V.

    2009-04-01

    Anthropogenic Cs-137 Gamma-ray Spectroscopy assay (GrSA) performed at the National Institute of Research and Development for Physics and Nuclear Engineering - Bucharest (Romania) in correlation with Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researches - Dubna (Russia) were used to investigate a 50 cm core containing unconsolidated sediments collected at a depth of 600 m off Romanian town of Constantza, located in the anoxic zone of the Black Sea Continental Shelf. A digital radiography showed the presence of about 265 distinct laminae, 1 to 3 mm thick, a fact attesting a stationary sedimentary process, completely free of bioturbation. After being radiographed, the core was sliced into 45 segments whose thickness gradually increased from 0.5 to 5 cm, such that the minimum thickness corresponded to the upper part of the core. From each segment two aliquots of about 0.5 g and 50 g were extracted for subsequent ENAA and Cs-137 GrSA. The Cs-137 vertical profile evidenced two maxima, one of them was very sharp and localized at a depth of 1 cm and the other very broad, almost undistinguished at about 8 cm depth, the first one being attributed to 1986 Chernobyl accident. Based on these date, we have estimated a sedimentation ratio of about 0.5 mm/year, value taken as reference for further assessment of recent pollution history. By means of ENAA we have determined the vertical content of five presumed pollutants, e.i. Zn, As, Br, Sn and Sb and of Sc, as natural, nonpolluting element. In the first case, all five elements presented a more or less similar vertical profile consisting of an almost exponential decrease for the first 10 cm below sediment surface followed by a plateau until the core base, i.e. 50 cm below surface, dependency better described by the equation: c(z) = c0 [1+k exp (-z/Z)] (1) where: where c(z) represents the concentration vertical profile; z represents depth (in absolute value); c0 represents the plateau

  3. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India.

    PubMed

    Cathrine, Sumathi J; Raghukumar, Chandralata

    2009-01-01

    Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes.

  4. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.

  5. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

  6. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments.

    PubMed

    Rico-Rico, Angeles; Temara, Ali; Behrends, Thilo; Hermens, Joop L M

    2009-02-01

    Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 microg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.

  7. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    SciTech Connect

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  8. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples.

    PubMed

    Hameş-Kocabaş, E Esin; Uzel, Ataç

    2012-03-01

    During the last two decades, discoveries of new members of actinomycetes and novel metabolites from marine environments have drawn attention to such environments, such as sediment and sponge. For the successful isolation of actinomycetes from marine environments, many factors including the use of enrichment and pre-treatment techniques, and the selection of growth media and antibiotic supplements should be taken into account. High-throughput cultivation is an innovative technique that mimics nature, eliminates undesired, fast-growing bacteria and creates suitable conditions for rare, slow-growing actinomycetes. This review comprehensively evaluates the traditional and innovative techniques and strategies used for the isolation of actinomycetes from marine sponge and sediment samples.

  9. Sedimentation: Potential Biological Effects of Dredging Operations in Estuarine and Marine Environments

    DTIC Science & Technology

    2005-05-01

    1999). “Impacts of sediment burial on mangroves.” Marine Pollution Bulletin 37, 420-426. Fonseca, M. S., Kenworthy, W. J., and Thayer, G W. (1998... Marine Pollution Bulletin 4, 166-169. Tomasko, D.A., Dawes, C. J., and Hall, M. O. (1996). “The effects of anthropogenic nutrient enrichment in...adjacent coral reefs,” Marine Pollution Bulletin 42, 864-872. Wilber, D. H., and Clarke, D. G. (2001). “Biological effects of suspended sediments: a

  10. The remedial investigation of marine sediment at the United Heckathorn Superfund site

    SciTech Connect

    White, P.J.; Kohn, N.P.; Gardiner, W.W.; Word, J.Q.

    1994-02-01

    The former United Heckathom site in Richmond, California, was used to process and package chlorinated pesticides from the 1940s to the mid-1960s. These activities resulted in the contamination of upland soils and marine sediment in the adjacent waterways. Battelle/Marine Sciences Laboratory (MSL) was requested by USEPA to conduct a remedial investigation and feasibility study (RI/FS). of the marine portion of the site. The objectives of this RI are to determine the extent of pesticide contamination in inner Richmond Harbor, estimate the total volume of contaminated sediment, characterize the subsurface geology; characterize the biological effects of contaminated sediment; and characterize the quality of effluent derived from dewatered sediment through treatability testing. Sediment cores were collected from 53 stations. Vertical subsamples from each sediment core were analyzed for chlorinated pesticides. Sediment from selected cores was also analyzed for other contaminants. Younger Bay Mud (YBM) sediment from multiple stations was mixed to form composite samples representing various segments of the study area. These composites were used for solid-phase toxicity and bioaccumulation tests, and the preparation of liquid-phase samples for treatability testing. The probable quality of effluent produced by dewatering sediment was evaluated by chemical and toxicological testing of suspended-particulate-phase (SPP) and elutriate samples.

  11. IDENTIFICATION OF TOXICANTS IN WHOLE MARINE SEDIMENTS: METHODS AND RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  12. Studies of the DOM aqueous extracts from coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  13. Polarity and Excursion Transitions: Can they be Adequately Recorded in High-Sedimentation-Rate Marine Sediments?

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2014-12-01

    Polarity transitions and magnetic excursions have durations of a few thousand years, or less. Transition/excursion records in volcanic sequences are, at best, partial snap-shots of the transition/excursion field. Records from high-sedimentation-rate marine sediments may be more continuous but they are always smoothed by progressive acquisition of detrital remanent magnetization (DRM), and by sampling/measurement limitations. North Atlantic records of the Matuyama-Brunhes (M-B) polarity transition are compared with records of the Iceland Basin excursion (190 ka). Virtual geomagnetic polar (VGP) paths are used to map characteristic magnetization directions during the transition/excursion. Relative paleointensity (RPI) proxies indicate partial recovery of field intensity during the transition/excursion, with RPI minima coinciding with abrupt VGP shifts at the onset and end of the transition/excursion. Discrepancies in VGP paths among holes at the same site, among sites, and a comparison of u-channel and discrete sample measurements, reveal limitations in resolution of the transition/excursion fields. During the M-B polarity transition, VGP clusters appear in the NW Pacific, NE Asia and in the South Atlantic. Similarities in VGP clustering for the M-B boundary and the Iceland Basin excursion imply that the polarity transition and excursion fields had common characteristics. Similarities with the modern non-axial dipole (NAD) field imply that polarity transitions and excursions involve the demise of the Earth's axial dipole relative to the NAD field, and that the NAD field has long-lasting features locked in place by the lowermost mantle.

  14. Dissolved and particulate carbohydrates in contrasting marine sediments

    NASA Astrophysics Data System (ADS)

    Burdige, D. J.; Skoog, A.; Gardner, K.

    2000-03-01

    Dissolved and particulate carbohydrates were examined in contrasting Chesapeake Bay (estuarine) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) represented ˜5-9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared to be a similar fraction of total sediment carbon oxidation (or C ox). When these results are compared with results from other coastal sediments and a pelagic turbidite, PCHO remineralization (as a percentage of C ox) did not vary by more than a factor of ˜2-3 over a 3-4 order of magnitude range in C ox values. The causes of this are not well understood, but may be related to specific effects associated with the remineralization of highly altered organic matter mixtures under aerobic conditions. Dissolved carbohydrates (DCHOs) in these sediment pore waters ranged from ˜30 to 400 μM, increased with depth in a manner similar to total DOC, and represented ˜10 to 55% of pore water DOC. In Chesapeake Bay sediments this percentage decreased with sediment depth, while in these continental margin sediments it was constant (upper 30 cm). Of the DCHOs in these pore waters ˜30 to 50% could be identified as individual aldoses (monomeric neutral sugars), and total aldose yields (individual aldoses as a percentage of total DOC) were higher in these continental margin sediment pore waters (>9%) than they were in the estuarine sediment pore waters (<5%). A comparison of DCHO and PCHO concentrations in these sediments indicates that their concentrations are uncoupled, and that pore water DCHO concentrations are primarily controlled by sediment remineralization processes. Pore water DCHOs appeared to be preferentially found in the high molecular weight (HMW) DOC pool, and likely occur as some of the initial HMW intermediates produced and consumed during sediment POC remineralization. These results also support past suggestions about the differing controls on carbon

  15. The rate of removal and the compositional changes of diesel in Antarctic marine sediment.

    PubMed

    Woolfenden, E N M; Hince, G; Powell, S M; Stark, S C; Snape, I; Stark, J S; George, S C

    2011-12-01

    Diesels and lubricants used at research stations can persist in terrestrial and marine sediments for decades, but knowledge of their effects on the surrounding environments is limited. In a 5 year in situ investigation, marine sediment spiked with Special Antarctic Blend (SAB) diesel was placed on the seabed of O'Brien Bay near Casey Station, Antarctica and sampled after 5, 56, 65, 104 and 260 weeks. The rates and possible mechanisms of removal of the diesel from the marine sediments are presented here. The hydrocarbons within the spiked sediment were removed at an overall rate of 4.7mg total petroleum hydrocarbons kg(-1) sediment week(-1), or 245mgkg(-1)year(-1), although seasonal variation was evident. The concentration of total petroleum hydrocarbons fell markedly from 2020±340mgkg(-1) to 800±190mgkg(-1), but after 5 years the spiked sediment was still contaminated relative to natural organic matter (160±170mgkg(-1)). Specific compounds in SAB diesel preferentially decreased in concentration, but not as would be expected if biodegradation was the sole mechanism responsible. Naphthalene was removed more readily than n-alkanes, suggesting that aqueous dissolution played a major role in the reduction of SAB diesel. 1,3,5,7-Teramethyladamantane and 1,3-dimethyladamantane were the most recalcitrant isomers in the spiked marine sediment. Dissolution of aromatic compounds from marine sediment increases the availability of more soluble, aromatic compounds in the water column. This could increase the area of contamination and potentially broaden the region impacted by ecotoxicological effects from shallow sediment dwelling fauna, as noted during biodegradation, to shallow (<19m) water dwelling fauna.

  16. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  17. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  18. EXPLORATORY ANALYSIS OF THE EFFECTS OF PARTICULATE CHARACTERISTICS ON THE VARIATION IN PARTITIONING OF NONPOLAR ORGANIC CONTAMINANTS TO MARINE SEDIMENTS

    EPA Science Inventory

    The partitioning of nonpolar organic contaminants to marine sediments is considered to be controlled by the amount of organic carbon present. However, several studies propose that other characteristics of sediments may affect the partitioning of contaminants. For this exploratory...

  19. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  20. There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores.

    PubMed

    Johannessen, S C; Macdonald, R W

    2012-04-01

    Marine sediment preserves a useful archive for contaminants and other properties that associate with particles. However, biomixing of sediments can smear the record on a scale of years to thousands of years, depending on sedimentation rate and on the depth and vigour of mixing within a particular sediment. Where such mixing occurs, dates can no longer be associated with discrete sediment depths. Nevertheless, much can still be learned from biomixed profiles, provided that mixing is accounted for. With no modelling at all, it is possible to calculate an inventory of a contaminant at a site and a maximum possible sedimentation rate, and to determine whether the contaminant has increased or decreased over time. Radiodating the core with (210)Pb permits the estimation of sedimentation and mixing rates, which can be combined with the surface contaminant concentration to estimate an approximate flux of the contaminant. Numerical models that incorporate sedimentation and mixing rates (determined using (210)Pb and other transient signals with known deposition histories) can provide the basis to propose plausible histories for contaminant fluxes.

  1. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  2. Natural Organobromine in Marine Sediments: New Evidence of Biogeochemical Br Cycling

    SciTech Connect

    A Leri; J Hakala; M Marcus; A Lanzirotti; C Reddy; S Myneni

    2011-12-31

    Organobromine (Br{sub org}) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Br{sub org} molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C{sub org}) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br{sub inorg}), which is widely presumed conservative in marine systems. To investigate the scope of natural Br{sub org} production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br{sub org} is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C{sub org} and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Br{sub org} observed in sediments to biologically produced Br{sub org} compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with Corg in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.

  3. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments.

    PubMed

    Scott, Nicole M; Hess, Matthias; Bouskill, Nick J; Mason, Olivia U; Jansson, Janet K; Gilbert, Jack A

    2014-01-01

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  4. PAHs and n-alkanes in Mediterranean coastal marine sediments: aquaculture as a significant point source.

    PubMed

    Tsapakis, Manolis; Dakanali, Eva; Stephanou, Euripides G; Karakassis, Ioannis

    2010-04-01

    The occurrence of polycyclic aromatic and aliphatic hydrocarbons in fish feed, sediment trap material and marine sediments was examined at two fish farms in the eastern Mediterranean. The average (min-max) concentrations of polycyclic aromatic hydrocarbons (PAHs) in fish feed and particulate effluents were 316 (287-351) ng g(-1) DW and 487 (475-499) ng g(-1) DW, respectively. Lower PAH levels were determined in the underlying marine sediments. In the surface sediments under the farms (0 m distance from the edge of the cages) and in the immediate vicinity, the concentration levels of n-alkanes and PAHs were significantly higher than in the surrounding sediments in both sites. PAHs and n-alkanes individual component profiles of fish feed and sinking material were similar with the corresponding profiles of the sediment samples collected in the immediate vicinity around the cages. On a daily basis, the average PAH sedimentation fluxes under the cages was 24.4 microg m(-2) d(-1), which is considerably higher compared with the observed PAH sedimentary fluxes in the open eastern Mediterranean. Our results imply that fish farming is a significant source of these persistent organic pollutants (POPs) in the marine environment and therefore a likely change in the scale of production might introduce new sources of environmental risk. Further work is required in order to develop an appropriate monitoring system for the sustainable development of the aquaculture sector.

  5. Natural thorium isotopes in marine sediment core off Labuan port

    SciTech Connect

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  6. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  7. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae.

    PubMed

    Yamamoto, Tamiji; Goto, Ikue; Kawaguchi, Osamu; Minagawa, Kazuaki; Ariyoshi, Eiji; Matsuda, Osamu

    2008-01-01

    We examined whether replantation of benthic microalgae (BMA) can remediate shallow organically enriched sediment. Nitzschia sp., the dominant species in the tested area (Hiroshima Bay, Japan), was isolated and mass cultured, then replanted in the same area. Changes in the condition of the sediment were monitored for five months. During the study period, we observed an increase in redox potential (ORP) and a decrease in acid-volatile sulfide (AVS) in the experimental area, indicating that the sediment condition changed from reduced to oxic. Organic matter in the sediment, represented by chemical oxygen demand (COD), ignition loss (IL) and organic nitrogen (ON) decreased significantly, while inorganic nutrients (ammonia and phosphate) increased in the interstitial water. These changes imply that oxygen produced by the replanted BMA may have enhanced aerobic bacterial activity, accelerating the decomposition of organic matter. Thus, replantation of BMA shows potential as a novel and promising "phytoremediation" method for organically enriched sediment.

  8. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  9. Selective quantification of DOSS in marine sediment and sediment-trap solids by LC-QTOF-MS.

    PubMed

    Perkins, Matt J; Joye, Samantha B; Field, Jennifer A

    2017-02-01

    At the onset of the 2010 Gulf oil spill, analytical methods for the quantification of the surfactants in Corexit did not exist in the peer-reviewed literature. To date, only a single study reports the presence of bis-(2-ethylhexyl) sodium sulfosuccinate (DOSS) in deep-sea Gulf sediment collected in 2010 from a single location. There are no data on the occurrence of DOSS in association with settling solids (i.e., sediment-trap solids). To address this data gap, DOSS was initially quantified by liquid chromatography tandem quadrupole mass spectrometry (LC-MS/MS) in sediment and sediment-trap solids collected from multiple sites in the Gulf between 2010 and 2013. However, interferences confounded analyses using only a quadrupole (MS/MS) system; therefore, a LC-high mass accuracy quadruple time of flight mass spectrometry (LC-QTOF-MS) method was developed. The LC-QTOF method was validated and applied to eight representative samples of sediment and of sediment-trap solids. The presented method quantifies DOSS in solids of marine origin at concentrations above the limit of quantification of 0.23 μg kg(-1) with recoveries of 97 ± 20 % (mean ± 95 CI). Gulf sediment and sediment-trap solids gave DOSS concentrations of Sediment core and sediment trap materials were collected in the Gulf and analyzed for DOSS by LCQTOF.

  10. Chronic effects of organochlorine exposure in sediment to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Murdoch, M.H.; Chapman, P.M.; Johns, D.M.; Paine, M.D.

    1997-07-01

    Organisms exposed to organochlorinated compounds in sediments are likely to suffer chronic rather than acute effects. Thus, acute toxicity tests are unlikely to truly assess their potential impact. A 120-d toxicity test was designed to assess the impact of polychlorinated biphenyl on the marine polychaete Neanthes arenacedodentata. A two-tiered approach was used: Tier 1 involved reference sediment spiked with a range of concentrations of the organochlorine bracketing the concentrations found in natural sediments, and tier 2 involved field sediments collected from a coastal area contaminated with high concentrations of the same organochlorine. Testing measured a number of endpoints, including survival, growth, and reproduction. Survival and growth were unaffected in either tier by any of the test sediments. Reproductive endpoints, however, were depressed in both tiers relative to the reference sediment.

  11. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments

    PubMed Central

    2014-01-01

    Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range

  12. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments.

    PubMed

    Woodall, Lucy C; Gwinnett, Claire; Packer, Margaret; Thompson, Richard C; Robinson, Laura F; Paterson, Gordon L J

    2015-06-15

    There is growing evidence of extensive pollution of the environment by microplastic, with microfibres representing a large proportion of the microplastics seen in marine sediments. Since microfibres are ubiquitous in the environment, present in the laboratory air and water, evaluating microplastic pollution is difficult. Incidental contamination is highly likely unless strict control measures are employed. Here we describe methods developed to minimize the amount of incidental post-sampling contamination when quantifying marine microfibre pollution. We show that our protocol, adapted from the field of forensic fibre examination, reduces fibre abundance by 90% and enables the quick screening of fibre populations. These methods therefore allow an accurate estimate of microplastics polluting marine sediments. In a case study from a series of samples collected on a research vessel, we use these methods to highlight the prevalence of microfibres as marine microplastics.

  13. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway.

  14. Techniques for the recovery of enteric viruses from artificially contaminated marine sediments.

    PubMed

    Pianetti, Anna; Citterio, Barbara; Sabatini, Luigia; Pierfelici, Lucia; Colantoni, Paolo; Bruscolini, Francesca

    2007-01-01

    Viruses are an important component of aquatic microbial communities and marine sediments may represent an optimal means for their survival. The aim of this study was to evaluate different methods for virus recovery from marine sediments. Three methods were used for virus recovery from artificially contaminated sediments: elution and centrifugation technique, sonication technique, and mechanical disgregation followed by elution and centrifuge technique. The sonication technique obtained the highest virus recovery percentages (94,25%). Eluent 2 provided more efficient recovery of enteric viruses than eluent 1 presumably due to the presence, in eluent 2, of NANO3, a chaotropic agent that enhances the solubilization of hydrophobic compounds in water. Finally, the authors confirm the importance of searching for viruses in sediments, which protect them from inactivation by biological, chemical and physical factors and allow them to survive longer than in the overlaying water column.

  15. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  16. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  17. Evaluation of the InSTEC's EDXRF assembly for Marine Sediment Pollution Studies

    SciTech Connect

    Arado, O. Diaz; Rizo, O. Diaz; Lopez-Pino, N.; D'Alessandro, K.; Olivares, S.; Gelen, A.; Casanova, O. A.; Padilla, F.; Corrales, Y.; Maidana, N. L.

    2009-06-03

    The determination of some heavy elements in marine sediments using the InSTEC's EDXRF assembly was evaluated. The spectrometer's main analytical characteristics were performed using {sup 109}Cd and {sup 238}Pu excitation sources. The system capabilities are tested by the analysis of the Certified Reference Material (CRM) IAEA-356. The results show that the K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Zr and Pb elemental concentrations can be determined in marine sediments with an excellent accuracy and Co, Ni, Sr and Mo concentrations with an acceptable accuracy.

  18. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  19. Interaction of marine and fluvial clastic sedimentation, central Italy, Tyrrhenian coast

    SciTech Connect

    Evangelista, S.; Full, W.E.; Tortora, P.

    1989-03-01

    An integrated approach was used to study the interaction of fluvial, beach, and marine processes on sedimentation at the west-central coast of Italy along the Tyrrhenian Sea. The study area, 120 km northwest of Rome, is bounded on the north by Mt. Argentario, on the east by Pleistocene volcanics, on the south by the St. Augustine River, and on the west by the 50-mn bathymetric isopleth. The primary tools used included field work, textural analysis, high-resolution marine seismic, SEM, and Fourier shape analysis. Field work revealed incised streams, potentially relict beach ridges and lagoons, and relatively steep nearshore marine slopes in the northern portions of the study area. The result of the shape analysis performed on 56 samples was the definition of four end members. Each end member reflects a sedimentation process. Three end members were directly associated with fluvial sedimentation, and the fourth reflected marine processes. The seismic data along with the SEM analysis strongly supported the interpretation of four processes that dominate the recent sedimentation history. The sand interpreted to be associated with marine processes was found to represent the smoothest end member. SEM analysis suggests that the smoothing is not due to abrasion but to plastering associated with biologic processes (digestion.) and/or with silica precipitation associated with clay alteration at the freshwater/saltwater interface.

  20. Enhancement of dimethylsulfide production by anoxic stress in natural seawater

    NASA Astrophysics Data System (ADS)

    Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Wada, Shigeki; Thume, Kathleen; Pohnert, Georg

    2015-05-01

    Dimethylsulfide (DMS) is produced by phytoplankton in the ocean and plays an important role in biogeochemical cycles and climate system of the Earth. Previous field studies reported a possible relationship between DMS enhancement and anoxic condition, although the governing processes are still to be identified. Here we show the first direct evidence for the enhancement of DMS production by natural planktonic assemblages caused by anoxic stress. Under the anoxic condition, DMS production was considerably enhanced and DMS bacterial consumption was inhibited, resulting in an eightfold higher rate of gross DMS production than that under the oxic condition. Our results demonstrated that anoxic stress is one of important "environmental factors" in the marine DMS dynamics, suggesting the possible global importance due to ubiquity of anoxic conditions in the coastal oceans. This process would become more important in the future due to expansion of coastal hypoxic and anoxic zones by global warming.

  1. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments

    SciTech Connect

    Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Cook, H.F.; Kuhn, A.

    2000-04-01

    A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers, the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.

  2. Sulfur reduction in sediments of marine and evaporite environments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.; Boston, P.; Francois, R.; Gyure, R. A.; Javor, B.; Tribble, G.; Vairavamurthy, A.

    1985-01-01

    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity.

  3. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: cementation in a calcite sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Chan; Lee, Yong Il

    1996-09-01

    The Lower Ordovician Dumugol Formation exhibits many features that indicate early lithification, such as calcite nodules, hardgrounds, mud-mounds and intraclasts. Detailed observations of these early-lithified features reveal that rapid marine cementation was instrumental in their formation. Marine lithification took place in a low-energy subtidal environmental that was influenced by intermittent storms. Marine cements include syntaxial overgrowth, bladed calcite, fibrous calcite and fine-crystalline equant calcite cements. Syntaxial overgrowths precipitated on echinoderm grains and contributed to rapid marine lithification of echinoderm-bearing sediments. Bladed, fibrous, and fine-crystalline equant calcite cements precipitated in locally suitable sites but their occurrence is limited, and thus played a minor role in marine lithification. Microcrystalline calcites also precipitated in lime mud-rich, fine-grained sediments and participated in rapid marine lithification of the Dumugol sediments. The absence of aragonite allochems and cement, and the predominance of calcite cement, suggest that the Dumugol sea was undersaturated with respect to aragonite, but supersaturated with respect to calcite, which is indicative of a 'calcite sea'.

  4. Simulated oil release from oil-contaminated marine sediment in the Bohai Sea, China.

    PubMed

    Yuan, Lingling; Han, Longxi; Bo, Wenjie; Chen, Hua; Gao, Wenshen; Chen, Bo

    2017-02-17

    There is a high degree of heavy oil partitioning into marine sediments when an oil spill occurs. Contaminated sediment, as an endogenous pollution source, can re-pollute overlying water slowly. In this study, a static oil release process and its effects in marine sediment was investigated through a series of experiments with reproductive heavy oil-contaminated marine sediment. The oil release process was accurately simulated with a Lagergren first-order equation and reached equilibration after 48h. The fitted curve for equilibrium concentration (C0) and first-order rate constant (k1) for sediment pollution levels exhibited a first-order log relationship. The instantaneous release rate (dCtdt) was also calculated. The C0 increased with increases in temperature and dissolved organic matter (DOM), and decreasing salinity. The k1 increased with temperature, but was not affected by DOM and salinity. These results can be used to better understand the fate of heavy oil in contaminated sediments of the Bohai Sea.

  5. Variations in sediment texture on the northern Monterey Bay National Marine Sanctuary continental shelf

    USGS Publications Warehouse

    Edwards, B.D.

    2002-01-01

    The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.

  6. Phototoxic evaluation of marine sediments collected from a PAH-contaminated site.

    PubMed

    Boese, B L; Ozretich, R J; Lamberson, J O; Cole, F A; Swartz, R C; Ferraro, S P

    2000-04-01

    The phototoxicity potential of PAH-contaminated field sediment was evaluated and compared to standard sediment toxicity test results. Marine sediments were collected from 30 sites along a presumed PAH sediment pollution gradient in Elliot Bay, WA. Standard 10-day acute and 28-day chronic sediment toxicity tests were conducted with the infaunal amphipods Rhepoxynius abronius and Leptocheirus plumulosus using mortality and the ability to rebury as endpoints. The survivors of these tests were then subjected to 1-h exposures to UV radiation with mortality and reburial again determined. The most highly toxic sediments identified in these experiments were evaluated further for toxicity and phototoxicity by serially diluting them with uncontaminated sediment and repeating the toxicity tests. Standard 10-day toxicity test results indicated that over 70% of the sites sampled in Elliot Bay exhibited measurable toxicity with nine sites being highly toxic to both species of amphipods. Results of standard 28-day chronic sediment toxicity tests were similar. In contrast, almost all of the sites were found to be highly phototoxic. Results indicated that exposure to UV increased toxicity five- to eightfold. This suggests that standard toxicity tests underestimate the potential ecological risk of PAH-contaminated sediments in animals exposed to sunlight. However, only when PAH contamination was between 0.05 and 1.0 toxic units would conducting a phototoxicity evaluation add information to that gained from conducting a standard sediment toxicity test alone.

  7. Statistical Approaches for Estimating Actinobacterial Diversity in Marine Sediments

    PubMed Central

    Stach, James E. M.; Maldonado, Luis A.; Masson, Douglas G.; Ward, Alan C.; Goodfellow, Michael; Bull, Alan T.

    2003-01-01

    Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpson's index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed. PMID:14532080

  8. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination

    PubMed Central

    Matturro, Bruna; Ubaldi, Carla; Rossetti, Simona

    2016-01-01

    The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site. PMID:27708637

  9. Observations of gas hydrates in marine sediments, offshore northern California

    USGS Publications Warehouse

    Brooks, J.M.; Field, M.E.; Kennicutt, M.C.

    1991-01-01

    Biogenic gas hydrates were recovered in shallow cores (< 6 m deep) from the Eel River basin in offshore northern California between 40??38??? and 40??56???N. The gas hydrates contained primarily methane (??13C = -57.6 to -69.1???) and occurred as dispersed crystals, small (2-20 mm) nodules, and layered bands within the sediment. These hydrates, recovered in sediment at water depths between 510 and 642 m, coincide nearly, but not exactly, with areas showing bottom-simulating reflectors (BSRs) on seismic-reflection records. This study confirms indirect geophysical and geologic observations that gas hydrates are present north of the Mendocino Fracture Zone in sediment of the Eel River basin but probably are absent to the south in the Point Arena basin. This discovery extends the confirmed sites of gas hydrates in the eastern Pacific region beyond the Peruvian and Central American margins to the northern California margin. ?? 1991.

  10. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States

    SciTech Connect

    Windom, H.L.; Schropp, S.J.; Calder, F.D.; Ryan, J.D.; Smith, R.G. Jr.; Burney, L.C.; Lewis, F.G.; Rawlinson, C.H.

    1989-03-01

    Over 450 sediment samples from estuarine and coastal marine areas of the southeastern US remote from contaminant sources were analyzed for trace metals. Although these sediments are compositionally diverse, As, Co, Cr, Cu, Fe, Pb, Mn, Ni, and Zn concentrations covary significantly with aluminum, suggesting that natural aluminosilicate minerals are the dominant natural metal bearing phases. Cd and Hg do not covary with aluminum apparently due to the importance of the contribution of natural organic phases to their concentration in sediments. It is suggested that the covariance of metals with aluminum provides a useful basis for identification and comparison of anthropogenic inputs to southeastern US coastal/estuarine sediments. By use of this approach sediments from the Savannah River, Biscayne Bay, and Pensacola Bay are compared.

  11. Accumulation of polychlorinated organic contaminants from sediment by three benthic marine species

    SciTech Connect

    Pruell, R.J.; Rubinstein, N.I.; Taplin, B.K.; LiVolsi, J.A.; Bowen, R.D.

    1993-01-01

    A laboratory experiment was conducted to measure the accumulation of selected polychlorinated compounds by marine benthos exposed to environmentally contaminated sediment. Sandworms (Nereis virens), clams (Macoma nasuta), and grass shrimp (Palaemonetes pugio) were exposed to sediment collected from the Passaic River, New Jersey. All three species accumulated 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and polychlorinated biphenyls (PCBs) from the sediment. In addition, a recently identified sulfur containing analog of tetrachlorinated dibenzofurans. The objectives of the study were to determine the relative bioavailability of 2,3,7,8-TCDD, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and selected PCB congeners from bottom sediments as well as to examine the relationship between contaminant concentrations in sediments and biota.

  12. Cathodic protection by zinc sacrificial anodes: impact on marine sediment metallic contamination.

    PubMed

    Rousseau, C; Baraud, F; Leleyter, L; Gil, O

    2009-08-15

    Cathodic protection by sacrificial zinc anodes is often applied to prevent immerged metallic structures from corrosion. But this technique induces the zinc anodes dissolution, which can induce marine sediments and seawater contamination. A large scale experiment, in natural seawater, was conducted during 12 months, in order to evaluate the potential environmental impact of this continuous zinc dissolution, and of some necessary cleaning operations of the anodes surfaces. The heavy metal (Cr, Cu, Pb and Zn) concentration in water and sediment samples was monitored. A sequential extraction procedure was applied on sediment samples to differentiate the zinc mobile fractions from the residual one. A significant increase of zinc concentration was observed in water as well as in the surface sediments under the specific operating conditions. Sediments then become a secondary pollution source, as the sorbed labile zinc can be remobilized to seawater.

  13. Subdivision of Holocene Baltic sea sediments by their physical properties [Gliederung holozaner ostseesedimente nach physikalischen Eigenschaften

    USGS Publications Warehouse

    Harff, Jan; Bohling, G.C.; Endler, R.; Davis, J.C.; Olea, R.A.

    1999-01-01

    The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.

  14. Comparative phosphorus sorption by marine sediments and agricultural soils in a tropical environment.

    PubMed

    Fox, Robert L; Fares, Ali; Wan, Y; Evensen, Carl I

    2006-01-01

    The influence of soil phosphorus (P) sources on P sorption characteristics of marine sediments was investigated for Pearl Harbor and off shore Molokai in Hawaii. Estuary sediments were sampled in seven locations; these represented different soils and on-shore activities. The soil samples included nine major soils that contributed sediment to the Harbor and coastal sediments near the island of Molokai. Sediment and soil samples were equilibrated for 6 days in 0.01 M CaCl(2) solution and synthetic seawater containing differing amounts of P. Phosphorus sorption curves were constructed. The equilibrated solution P, with no P added, ranged from 0.01 to 0.2 mg L(-1); P sorption by sediments at standard solution concentration 0.2 mg L(-1), ranged from 0 to 230 mg kg(-1). Sediment P sorption corresponded closely with soil sorption characteristics. Soils contributing sediments to the west reach of Pearl Harbor are highly weathered Oxisols with high standard P sorption values while those in the southeast of the Harbor were Vertisols and Mollisols which sorb little P. The influence of source materials on sediment P sorption was also observed for off-shore sediments near Molokai. Sediments serve as both source and sink for P in Pearl Harbor and in this role can be a stabilizing influence on P concentration in the water column. Phosphorus sorption curves in conjunction with water quality data can help to understand P dynamics between sediments and the water column and help evaluate concerns about P loading to a water body. For Pearl Harbor, solution P in equilibrium with sediments from the Lochs was 0.021 mg L(-1); a value unlikely to produce an algal bloom. (Measured total P in the water columns (mean) was 0.060.).

  15. REMOVAL OF AMMONIA TOXCITY IN MARINE SEDIMENT TIES: A COMPARISON OF ULVA LACTUCA, ZEOLITE AND AREATION METHODS

    EPA Science Inventory

    Ammonia is suspected of causing some of the toxicity observed in marine sediment toxicity tests because it is sometimes found at elevated concentrations in marine interstitial waters. In marine waters, ammonia exists as un-ionized ammonia (NH3) and ammonium (NH4+) which combine ...

  16. Sorption behaviors of a persistent toxaphene congener on marine sediments under different physicochemical conditions.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Gouteux, Bruno; Nikiforov, Vladimir; Awaleh, Mohamed Osman

    2014-11-01

    Sorptive processes are important parameters affecting the mobility, availability and fate of persistent organic pollutants (POPs), such as toxaphene, in aquatic systems. The sorption and desorption behaviors of the B7-1450, a stable toxaphene congener in environment, on marine sediment was studied under different temperature and salinity conditions to better understand the B-1450 distribution in estuarine systems. The data were fitted to different sorption models to characterize sorption behaviors by evaluating sorption coefficients and sequestrated fraction of B7-1450 on sediments. High carbon-normalized sorption coefficients (Koc) of the B7-1450 were observed with values ranging from 3.2×104 to 6.0×104 mL g(-1) under experimental conditions. The data showed an increase of B7-1450 sorption coefficients with the salinity and a decrease with temperature. These investigations indicate that B7-1450 is three times more sequestred on sediments in cold (2°C, 30 psu) than in warm marine conditions (20°C, 30 psu). These results suggest that the mobility and bioavailable of B7-1450 or other POPs from the sediments could be less important in cold marine comparatively in warm marine and warm freshwater media. As a result of climate changes, the warming of mid and high latitudes coastal waters could enhance the mobility of POPs.

  17. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  18. Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents†

    PubMed Central

    Teske, A.; Brinkhoff, T.; Muyzer, G.; Moser, D. P.; Rethmeier, J.; Jannasch, H. W.

    2000-01-01

    Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria. PMID:10919760

  19. Molybdenum Accumulation in Marine Sediments as an Indicator of Hypoxic Water Conditions (NACAETAC)

    EPA Science Inventory

    Direct monitoring of hypoxic water column conditions over large spatial and temporal extents is difficult due to the substantial logistical and financial investment required. Recent studies have indicated that concentrations of molybdenum (Mo) in marine sediments may serve as a u...

  20. Inhibitory effects of sodium azide on microbial growth in experimental resuspension of marine sediment.

    PubMed

    Cabrol, Léa; Quéméneur, Marianne; Misson, Benjamin

    2017-02-01

    Sodium azide (NaN3) was evaluated as inhibitor of microbial growth and activity in marine sediment resuspensions by monitoring the abundance of free-living and sessile bacteria using both flow cytometry and qPCR methods. Results show that 50mM of NaN3 strongly inhibits bacterial growth under natural and enriched resource conditions.

  1. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  2. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    PubMed

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally

  3. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment.

    PubMed

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0-2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20-40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment.

  4. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment

    PubMed Central

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0–2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20–40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment. PMID:28217124

  5. Coastal Marsh Sediments from Bodega Harbor: Archives of Environmental Changes at the Terrestrial-Marine Interface

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Rong, Y.; Hill, T. M.; Hiromoto, C.; Fisher, A.

    2010-12-01

    Coastal marsh sediments provide an important archive of environmental changes at the terrestrial-marine interface. Over the last century, humans have significantly altered the coastal environment near Bodega Bay, California, through changes in hydrology, sediment sources, and the dominant ecosystem. Previous investigations of recent coastal marsh sediments (< 50 years) suggest that physical barriers, such as roads, which limit the connection between Bodega Bay and the marshes, alters biogeochemical cycling (including carbon storage) in the coastal environment. The present study extends the record of changes in biogeochemical cycling in the coastal marshes back more than 100 years (approximately 90 cm) through the use of grain size analysis, C and N isotopes, and age dating. Sediments were analyzed for grain size distribution, the amount of carbon and nitrogen, and the stable isotopes of carbon and nitrogen in 1 cm intervals throughout the core. In addition, a subset of eight samples was analyzed for sediment age using a combination of Pb-210 and Cs-137 techniques. Sediments from >40 cm and <55 cm depth have a higher percentage of fine-grained sediment (>2%). In addition, these sediments also contain higher levels of total organic carbon and nitrogen, higher C:N ratios, we well as heavier carbon and nitrogen isotopic signatures. The sediments likely correspond to a pre-1900 depositional environment based on Pb-210 dates, when development in the region was increasing. These results suggest a stronger influence of the marine environment during that time. Interestingly, smaller transitions in sediment properties toward what appears to reflect a more marine environment also occur near the top of the core (<10 cm depth) and near the bottom of the core (>75 cm depth). Although these transitions are less pronounced, the significant shift in sediment properties suggests a less stable environment with greater communication between the terrestrial and marine environments

  6. usSEABED: Database Efforts in Marine Surficial Sediments of the US EEZ

    NASA Astrophysics Data System (ADS)

    Reid, J. A.; Jenkins, C. J.; Field, M. E.; Gardner, J. V.; Zimmermann, M.; Box, C. E.; Kneeshaw, T. A.

    2001-12-01

    The USGS, in partnership with the University of Sydney, Australia and National Marine Fisheries Service, Seattle is constructing a unique marine surficial sediment database, usSEABED, for the United States EEZ. usSEABED maximizes the knowledge of the seafloor by combining sedimentological and biological information, verbal sample and photographic descriptions (through fuzzy set theory), chemical, and acoustic data, along with other seabed geologic characteristics, into a single standardized format. In this way, usSEABED is more than a compilation of known quantitative surficial sediment data but rather provides an integrated view of the seabed. Decades of marine sediment research by federal, state, local, academic, and private institutions has provided temporal and spatial snapshots of the ocean floor, either as focused, tightly gridded sampling efforts, or in the earliest days, more widely scattered efforts. As is, these datasets had disparate purposes with dissimilar sampling parameters, statistics, and data types. usSEABED filters these datasets, providing uniform parameters for quantitative sediment textural data, parsed verbal data (using fuzzy set theory), modeled data, and both geologic and biologic compositional parameters. Access to our efforts is through our website, available in the fall of 2001, which includes an explanation of the processing involved, sample maps, an interactive GIS site, and a data-download site. usSEABED is held in a comma-delimited, field-defined, tree-d structure that can be brought into most COTS relational databases or GIS. Focussed originally on the U.S. Pacific margin, recent work is widening the coverage to areas in Hawaii, Alaska, the Gulf of Mexico, the Great Lakes, and the U.S. Atlantic margin. usSEABED is an ongoing project, with expanding data inclusions and new data-filtering modules available, such as sediment true-color displays and marine mineral locations. We invite the additions of new sedimentological, biological

  7. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  8. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  9. A new analytical approach for monitoring microplastics in marine sediments.

    PubMed

    Nuelle, Marie-Theres; Dekiff, Jens H; Remy, Dominique; Fries, Elke

    2014-01-01

    A two-step method was developed to extract microplastics from sediments. First, 1 kg sediments was pre-extracted using the air-induced overflow (AIO) method, based on fluidisation in a sodium chloride (NaCl) solution. The original sediment mass was reduced by up to 80%. As a consequence, it was possible to reduce the volume of sodium iodide (NaI) solution used for the subsequent flotation step. Recoveries of the whole procedure for polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polystyrene and polyurethane with sizes of approximately 1 mm were between 91 and 99%. After being stored for one week in a 35% H2O2 solution, 92% of selected biogenic material had dissolved completely or had lost its colour, whereas the tested polymers were resistant. Microplastics were extracted from three sediment samples collected from the North Sea island Norderney. Using pyrolysis gas chromatography/mass spectrometry, these microplastics were identified as PP, PVC and PET.

  10. Energetic constraints on life in deep marine sediments

    NASA Astrophysics Data System (ADS)

    Amend, J.; LaRowe, D.

    2013-12-01

    Microorganisms are abundant in deep-sea sediments, but what percentage of cells is active, how fast do they grow, and what factors control their diversity and population size? Geochemical modelling of redox reaction energetics can help in answering these questions. Calculations of Gibbs energies reveal which reactions are thermodynamically possible, but they also highlight which geochemical variables (e.g., temperature, pressure, pH, composition) may control microbial activity and how the amount and type of biomass are affected by energy limitations. We will discuss recent results from sediment cores collected at the Peru Margin (active continental shelf with high primary productivity and significant organic matter accumulation), the South Pacific Gyre (ultra-slow sedimentation rate and low organic carbon content), and the Juan de Fuca Ridge flank (high rate of sedimentation influenced by hydrothermal circulation). However, this approach to evaluating bioenergetic potential and predicting microbial activity can be applied to any environment where the geochemistry is well characterized, even if microbiology data have not been collected. When Gibbs energies are calculated on a basis of per mole of electrons transferred (as is commonly done), aerobic oxidation of hydrogen and organic matter in South Pacific Gyre sediments is the most exergonic. Based on this, one might posit that the fastest catabolic rates and the largest biomass would be found there. However, cell counts at Juan de Fuca and the Peru Margin are several orders of magnitude higher. When recast as energy densities (in J per cm3 of sediment), we observe far more energy available in sediments at Juan de Fuca and the Peru Margin than at those in the South Pacific Gyre. We also note that the identity of the most exergonic reaction changes with depth, suggesting corresponding changes in the microbial community structure. The thermodynamic approach used here for energy supply can also be used for energy

  11. Bioturbation: impact on the marine nitrogen cycle.

    PubMed

    Laverock, Bonnie; Gilbert, Jack A; Tait, Karen; Osborn, A Mark; Widdicombe, Steve

    2011-01-01

    Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.

  12. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  13. Occurrence and distribution of microplastics in marine sediments along the Belgian coast.

    PubMed

    Claessens, Michiel; De Meester, Steven; Van Landuyt, Lieve; De Clerck, Karen; Janssen, Colin R

    2011-10-01

    Plastic debris is known to undergo fragmentation at sea, which leads to the formation of microscopic particles of plastic; the so called 'microplastics'. Due to their buoyant and persistent properties, these microplastics have the potential to become widely dispersed in the marine environment through hydrodynamic processes and ocean currents. In this study, the occurrence and distribution of microplastics was investigated in Belgian marine sediments from different locations (coastal harbours, beaches and sublittoral areas). Particles were found in large numbers in all samples, showing the wide distribution of microplastics in Belgian coastal waters. The highest concentrations were found in the harbours where total microplastic concentrations of up to 390 particles kg(-1) dry sediment were observed, which is 15-50 times higher than reported maximum concentrations of other, similar study areas. The depth profile of sediment cores suggested that microplastic concentrations on the beaches reflect the global plastic production increase.

  14. Study of photocatalytic degradation of tributyltin, dibutylin and monobutyltin in water and marine sediments.

    PubMed

    Brosillon, Stephan; Bancon-Montigny, Chrystelle; Mendret, Julie

    2014-08-01

    This study reports on the first assessment of the treatment of sediments contaminated by organotin compounds using heterogeneous photocatalysis. Photocatalysis of organotins in water was carried out under realistic concentration conditions (μgL(-1)). Degradation compounds were analyzed by GC-ICP-MS; a quasi-complete degradation of tributyltin (TBT) in water (99.8%) was achieved after 30min of photocatalytic treatment. The degradation by photolysis was about (10%) in the same conditions. For the first time decontamination of highly polluted marine sediments (certified reference material and harbor sediments) by photocatalysis proves that the use of UV and the production of hydroxyl radicals are an efficient way to treat organotins adsorbed onto marine sediment despite the complexity of the matrix. In sediment, TBT degradation yield ranged from 32% to 37% after only 2h of irradiation (TiO2-UV) and the by-products: dibutyltin (DBT) and monobutyltin (MBT) were degraded very rapidly in comparison with TBT. It was shown that during photocatalysis of organotins in sediments, the hydroxyl radical attack and photolysis are the two ways for the degradation of adsorbed TBT.

  15. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  16. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin.

    PubMed

    Colwell, F S; Boyd, S; Delwiche, M E; Reed, D W; Phelps, T J; Newby, D T

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  17. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  18. The Growth and Decay of Hydrate Anomalies in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Irizarry, J. T.; Rempel, A. W.

    2014-12-01

    Natural gas hydrates, stored in huge quantities beneath permafrost, and in submarine sediments on the continental shelf, have the potential to become a vital clean-burning energy source. However, clear evidence is recorded in coastal sediments worldwide that past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. Arctic permafrost is thawing, and environmental changes can alter ocean circulation to warm the seafloor, causing hydrates to dissociate or dissolve in the sediments beneath. Decades of focused research provide a firm understanding of laboratory conditions under which hydrates become unstable and dissociate, and how hydrate reserves form when microbes convert organic material into methane, which can also dissolve and be carried by pore waters into the hydrate stability zone. Despite these advances, many key questions that concern both the resource potential of hydrates and their role in causing environmental geohazards, are intimately tied to the more poorly understood behavior of hydrate anomalies, which tend to be concentrated in the large pores of sand layers and form segregated lenses and nodules in muds. We present simple models designed to unravel the importance of the diverse physical interactions (i.e. flow focusing, free-gas infiltration, and pore-scale solubility effects) that help control how hydrate anomalies form. Predicted hydrate distributions are qualitatively different when accumulation in anomalies is supplied primarily by: 1. aqueous flow through sediments with enhanced permeability, 2. free-gas transport high above the three-phase stability boundary, or 3. diffusive transport along solubility gradients associated with pore-scale effects. We discuss examples that illustrate each of these distinct generation

  19. Biogeochemistry of Dissolved Free Amino Acids in Marine Sediments.

    DTIC Science & Technology

    1980-09-01

    detritus by bacteria, and excretion by zooplankton (Whittle, 1977). The dissolved compounds may be taken up by heterotrophic bacteria and decomposed to...inorganic nutrients or used to synthesize cellular material which provides food for higher heterotrophs (Gagosian and Lee, 1980). Several studies...Adsorption by clays and other sediment minerals could also affect dissolved organic distributions. Free amino acids and sugars are adsorbed by

  20. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era.

    PubMed

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment's complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment's reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying "omics" approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we

  1. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation.

  2. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  3. Frequency-dependent acoustic properties of gassy marine sediments

    NASA Astrophysics Data System (ADS)

    Best, Angus I.; Tuffin, Michael D. J.; Dix, Justin K.; Bull, Jonathan M.

    2003-10-01

    Acoustic velocity and attenuation were measured during two in-situ experiments in gassy intertidal muds in Southampton Water, United Kingdom. The horizontal transmission results gave frequency-independent velocity (1431 m/s) and attenuation (4 dB/m) over the frequency range 600 to 3000 Hz, representative of the soft (non-gassy) muds shallower than about 1 m. The results from a vertical transmission experiment straddling the top of the gassy zone (about 1 m depth) showed strong frequency-dependent velocity and attenuation over 600 to 3000 Hz. They showed velocity and attenuation maxima predicted by the Anderson and Hampton model, associated with gas bubble resonance. Moreover, attenuation maxima shifted in frequency with water depth over a tidal cycle that was monitored, suggesting variations in gas bubble size with hydrostatic pressure. X-ray CT images on a sealed core from the site revealed vertically-aligned, centimeter-scale, gas-filled cracks in the muddy sediments. Ultrasonic (300 to 700 kHz) velocities and attenuations were higher in the gassy zone than in the nongassy parts of the core. Overall, the results give a fascinating insight into the acoustical behavior of gassy sediments that could be used to extract sediment physical properties information from seabed acoustic reflection data. [Work supported by NERC].

  4. Abiotic Racemization Kinetics of Amino Acids in Marine Sediments

    PubMed Central

    Steen, Andrew D.; Jørgensen, Bo Barker; Lomstein, Bente Aa.

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10−5–11×10−5 yr−1. These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations. PMID:23951211

  5. Using marine bioassays to classify the toxicity of Dutch harbor sediments.

    PubMed

    Stronkhorst, Joost; Schipper, Cor; Brils, Jos; Dubbeldam, Marco; Postma, Jaap; van de Hoeven, Nelly

    2003-07-01

    A procedure was developed to assess contaminated marine sediments from Dutch harbors for possible adverse biological effects using three laboratory bioassays: A 10-d survival test with the amphipod Corophium volutator, a 14-d survival test with the heart urchin Echinocardium cordatum (adults), and the bioluminescence inhibition test with the bacterium Vibrio fischeri (Microtox solid phase test LSP]). Microtox results were mathematically corrected for the modifying influence of fine sediment particles. After a validation procedure on test performance and modifying factors, respectively, 81%, 99%, and 90% of the amphipod, heart urchin, and Microtox results were approved. Lower and upper threshold limits for biological effects were set at respectively 24 and 30% mortality for C. volutator, 27 and 35% mortality for E. cordatum, and 24 and 48 toxic units for the Microtox SP based on significant differences with control sediment and the performance of reference sediments. The bioassays clearly distinguished harbor sediments that give rise to acute effects and those that do not. Threshold limits for the amphipods, heart urchins, and bacteria were exceeded in, respectively, 9 to 17%, 33 to 40%, and 23 to 50% of the sediment samples. Highest effects were observed in sediments from the northerly harbors; there was significantly less response in sediments from the Delta Region and the port of Rotterdam (The Netherlands). The procedure outlined in this paper can be used for routine screening of contaminated dredged material that is proposed for open water disposal.

  6. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    SciTech Connect

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables.

  7. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    PubMed Central

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  8. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    PubMed

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  9. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review

    NASA Astrophysics Data System (ADS)

    Murray, John M. H.; Meadows, Azra; Meadows, Peter S.

    2002-09-01

    At the foundations of biogeomorphological processes in the sea lie interactions between the activities of marine benthic animals and the geotechnical properties of their sedimentary environments. The potential significance of these interactions, which take place at a microscale level of millimetres to metres, for the large-scale geomorphology of the seabed has rarely been appreciated. In the context of this review, large-scale is defined as greater than 50 m to hundreds of kilometres. The present review addresses this link, drawing examples from a wide range of marine environments, including estuaries, the intertidal zone, continental shelves and slopes, and the deep sea. It firstly considers sediment stabilisation, slope failure, sediment mixing, biodeposition, sediment compaction, and hydrodynamic effects. This is followed by a consideration of two extremes of the ecological pyramid—the effects of marine meiofauna and marine vertebrates. The final section draws attention to the central role of faunal mucus and extracellular polymeric material (ECPM) in many of the microscale interactions that we describe. The implications of these microscale biological processes and features are discussed in terms of their influence on and control of the large-scale geomorphology of the seabed.

  10. Effects of dredged sediment disposal on the coastal marine macrobenthic assemblage in Southern Brazil.

    PubMed

    Angonesi, L G; Bemvenuti, C E; Gandra, M S

    2006-05-01

    The aim of this study was to evaluate the deposition impact of dredged material from Patos lagoon estuary on a benthic macroinvertebrate assemblage structure in an adjacent coastal marine area. Nine sampling stations were chosen at random in the disposal area, and nine others in the same way in an adjacent control area. Samples were collected at a 19 m depth before sediment disposal (11 July 2000), during dredging and disposal operations (25 Oct. 2000), and three months thereafter (24 Aug. 2001). Statistical analysis indicated that sampling periods presented similar characteristics in both the control and disposal sites. Disposal of dredged sediment from Patos lagoon had no detectable detrimental effects upon macrobenthic faunal assemblage at the dumping site. This result is attributed both to adaptation of resident biota to dynamic sedimentary conditions and to the fine estuarine sediment dredged, the dispersion of which in the water column might have minimized sediment deposition and consequent damage to the benthic fauna.

  11. Evaluation of bioremediation potential of three benthic annelids in organically polluted marine sediment.

    PubMed

    Ito, Mana; Ito, Katsutoshi; Ohta, Kohei; Hano, Takeshi; Onduka, Toshimitsu; Mochida, Kazuhiko; Fujii, Kazunori

    2016-11-01

    This study aimed to evaluate the possible remedial effects of three marine benthic annelids on organically polluted sediments from the waters of Hatsukaichi Marina, Hiroshima, Japan. Two polychaetes, Perinereis nuntia and Capitella cf. teleta, and an oligochaete, Thalassodrilides sp., were incubated in sediments for 50 days. Their effects on physicochemical properties such as organic matter (loss on ignition), redox potential (Eh), acid volatile sulfides (AVS), and degradation of polycyclic aromatic hydrocarbons (PAHs) were assessed. The polychaetes P. nuntia and C. cf. teleta significantly increased Eh level and decreased AVS level compared with the oligochaete Thalassodrilides sp. and control (without benthic organisms). Total PAH concentration significantly decreased from the initial level with all three groups; Thalassodrilides sp. had a marked ability to reduce PAHs in sediment. These results indicate that benthic organisms have species-specific remediation properties and ecological functions in organically polluted sediments.

  12. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    PubMed

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  13. Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions.

    PubMed

    Zhang, Zhen; Zheng, Guanyu; Lo, Irene M C

    2015-06-01

    The effect of microemulsion on the biodegradation of total petroleum hydrocarbons (TPH) in nitrate-induced bioremediation of marine sediment was investigated in this study. It was shown that the microemulsion formed with non-ionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), 1-pentanol, linseed oil, and either deionized water or seawater was stable when subjected to dilution by seawater. Desorption tests revealed that microemulsion was more effective than the Tween 80 solution or the solution containing Tween 80 and 1-pentanol to desorb TPH from marine sediment. In 3 weeks of bioremediation treatment, the injection of microemulsion and NO3 (-) seems to have delayed the autotrophic denitrification between NO3 (-) and acid volatile sulfide (AVS) in sediment compared to the control with NO3 (-) injection alone. However, after 6 weeks of treatment, the delaying effect of microemulsion on the autotrophic denitrification process was no longer observed. In the meantime, the four injections of microemulsion and NO3 (-) resulted in as high as 29.73 % of TPH degradation efficiency, higher than that of two injections of microemulsion and NO3 (-) or that of four or two injections of NO3 (-) alone. These results suggest that microemulsion can be potentially applied to enhance TPH degradation in the nitrate-induced bioremediation of marine sediment.

  14. Experimental insights on dissolution and transport of CO2 in marine sediments at hydrate forming conditions.

    NASA Astrophysics Data System (ADS)

    Bigalke, Nikolaus; Savy, Jean Philippe; Pansegrau, Moritz; Aloisi, Giovanni; Kossel, Elke; Haeckel, Matthias

    2010-05-01

    Various strategies are presently being discussed to reduce greenhouse gas emissions into the atmosphere. The idea to inject and store liquefied carbon dioxide in(to) marine sediments is particularly attractive for various reasons. Most convincing is the fact that carbon dioxide can be immobilized within the sediments if it reacts with the pore water to form a solid gas hydrate. However, current understanding of the large-scale technical feasibility of this prospect is still poor and requires accurate knowledge of the physicochemical processes following injection of the liquefied gas. High-pressure experiments designed to simulate the deep marine environment open the possibility to fill this knowledge gap. In this study, laboratory experiments were targeted at quantifying (a) the rate of carbon dioxide transfer across the two-phase interface (dissolution), (b) transport kinetics of dissolved carbon dioxide in a seawater-sediment mixture, and (c) formation of carbon dioxide hydrates within the sediment. Selecting experimental temperatures and pressures to conditions within and outside the carbon dioxide hydrate stability field (HSF) allowed highlighting the effect of hydrate presence on both, dissolution and transport kinetics. Concentration increase and hydrate presence were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved carbon dioxide at conditions both inside and outside the HSF. These first results could have major significance for safety-related issues in the discussion of carbon storage in the marine environment.

  15. Diversity of oligotrichia and choreotrichia ciliates in coastal marine sediments and in overlying plankton.

    PubMed

    Doherty, Mary; Tamura, Maiko; Vriezen, Jan A C; McManus, George B; Katz, Laura A

    2010-06-01

    Elucidating the relationship between ciliate communities in the benthos and the plankton is critical to understanding ciliate diversity in marine systems. Although data for many lineages are sparse, at least some members of the dominant marine ciliate clades Oligotrichia and Choreotrichia can be found in both plankton and benthos, in the latter either as cysts or active forms. In this study, we developed a molecular approach to address the relationship between the diversity of ciliates in the plankton and those of the underlying benthos in the same locations. Samples from plankton and sediments were compared across three sites along the New England coast, and additional subsamples were analyzed to assess reproducibility of methods. We found that sediment and plankton subsamples differed in their robustness to repeated subsampling. Sediment subsamples (i.e., 1-g aliquots from a single approximately 20-g sample) gave variable estimates of diversity, while plankton subsamples produced consistent results. These results indicate the need for additional study to determine the spatial scale over which diversity varies in marine sediments. Clustering of phylogenetic types indicates that benthic assemblages of oligotrichs and choreotrichs appear to be more like those from spatially remote benthic communities than the ciliate communities sampled in the water above them.

  16. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    PubMed Central

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, D. Martin; Bowler, Bernard F. J.; Head, Ian M.

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P

  17. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments.

    PubMed

    Singh, Arvind K; Sherry, Angela; Gray, Neil D; Jones, D Martin; Bowler, Bernard F J; Head, Ian M

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P

  18. Localised remobilization of metals in a marine sediment.

    PubMed

    Zhang, Hao; Davison, William; Mortimer, Robert J G; Krom, Michael D; Hayes, Peter J; Davies, Ian M

    2002-09-16

    Trace metals and Fe and Mn were measured at vertical spatial resolutions of 2.5 and 5 mm in the top 35 cm of the profundal sediment of a Scottish sea-loch using DGT (diffusive gradients in thin films) technique. DGT probes lower adjacent metal concentrations in pore waters and induce a flux of metal from the solid phase to porewater. The concentrations of metals in porewaters at the interface of the probe were measured during its deployment in a box core. These measurements reflect porewater concentrations of metals and their rates of resupply from the local solid phase of a very small volume (25 microl) of sediment. There was pronounced horizontal and vertical structure in the interfacial concentrations. Horizontal variations were shown by results from adjacent DGT assemblies being markedly different in detail, while vertical structure was measured directly by the DGT-depth profiles. Iron and Mn varied systematically with depth, with both broad and detailed features of Co aligning with those of Mn. There was, however, evidence of additional localised sources of Co that were apparently unrelated to the redox behaviour that Mn typifies, but associated with the remobilization of Ni, possibly from mineral dissolution. Arsenic(III) was remobilized in well-defined zones. Detailed correspondence of As(II) with some Fe features suggest that its release is mechanistically-related to iron oxide dissolution, but the 3 orders of magnitude higher concentrations of Fe may sometimes obscure the association. These results demonstrate that, within sediments, metals may be released in discrete locations that are not measured by conventional porewater sampling techniques due to their horizontal averaging.

  19. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  20. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2–10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments. PMID:27806103

  1. Constraining magnesium cycling in marine sediments using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2010-09-01

    Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ 26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ 26Mg), the increase in pore-fluid δ 26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ 26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ 26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ 26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ 26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the

  2. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  3. Geochemical Screening of Contaminated Marine and Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.

    2004-05-01

    Waterways near urban centers have been subject to pollution by human activities for centuries. This process greatly intensified with the advent of the Industrial Revolution and the attendant exponential population increase in coastal areas. The co-occurrence of port facilities for ocean-going vessels, large factories, major power generating stations, dense automotive transportation networks, and massive wastewater outfalls, all in compact geographical areas, has produced severe environmental stress. In recent decades, the growing awareness of the seriousness of coastal urban environmental degradation has inspired intensive efforts at pollution prevention and remediation. To better understand pollution dynamics over time in an aquatic urban setting, a program of intensive sampling and analysis leading to the creation of geographic information systems (GIS) would be desirable. Chemical evaluation of sediments for pollution remains a costly and time-consuming procedure, particularly for organic analysis. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) offers a practical alternative for rapid, inexpensive molecular organic analysis, simply employing milligram quantities of dry, whole sediment. The compounds detected comprise an information-rich mixture of thermally extractable components and the products of the thermal decomposition of (bio)polymers present in the sample. These include PAHs, petroleum-derived hopanes, organonitrogen compounds, and linear alkylbenzenes, as illustrated with examples from Long Island Sound and the Passaic River (USA) and Barcelona harbor (Spain).

  4. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    PubMed Central

    Mackey, Benjamin H.; Roering, Joshua J.; Lamb, Michael P.

    2011-01-01

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore. PMID:22084068

  5. Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Jung, Man-Young; Kim, So-Jeong; Chae, Jong-Chan; Roh, Yul; Forwick, Matthias; Yoon, Ho-Il; Rhee, Sung-Keun

    2011-10-01

    Increases in global temperatures have been shown to enhance glacier melting in the Arctic region. Here, we have evaluated the effects of meltwater runoff on the microbial communities of coastal marine sediment located along a transect of Temelfjorden, in Svalbard. As close to the glacier front, the sediment properties were clearly influenced by deglaciation. Denaturing gradient gel electrophoresis profiles showed that the sediment microbial communities of the stations of glacier front (stations 188-178) were distinguishable from that of outer fjord region (station 176). Canonical correspondence analysis indicated that total carbon and calcium carbonate in sediment and chlorophyll a in bottom water were key factors driving the change of microbial communities. Analysis of 16S rRNA gene clone libraries suggested that microbial diversity was higher within the glacier-proximal zone (station 188) directly affected by the runoffs than in the outer fjord region. While the crenarchaeotal group I.1a dominated at station 176 (62%), Marine Benthic Group-B and other Crenarchaeota groups were proportionally abundant. With regard to the bacterial community, alpha-Proteobacteria and Flavobacteria lineages prevailed (60%) at station 188, whereas delta-Proteobacteria (largely sulfate-reducers) predominated (32%) at station 176. Considering no clone sequences related to sulfate-reducers, station 188 may be more oxic compared to station 176. The distance-wise compositional variation in the microbial communities is attributable to their adaptations to the sediment environments which are differentially affected by melting glaciers.

  6. Polybrominated diphenyl ethers (PBDEs) in sediments and mussel tissues from Hong Kong marine waters.

    PubMed

    Liu, Ying; Zheng, Gene J; Yu, Hongxia; Martin, Michael; Richardson, Bruce J; Lam, Michael H W; Lam, Paul K S

    2005-11-01

    Sediments and green-lipped mussels, Perna viridis, were used to investigate concentrations of polybrominated diphenyl ethers (PBDEs) in Hong Kong's marine environment. PBDEs have been used extensively over the past two decades as flame retardants in polymer additives for a variety of plastics, computers, furniture, building materials, and fabrics. Many measurements of PBDEs in various environmental matrices have been reported from Belgium, Holland, Japan, Europe and North America, but few measurements are available for the southeast Asian region and Hong Kong. PBDE congeners (n=15) were measured in 13 sediments and nine mussel samples, taken from Hong Kong marine waters. The Sigma15PBDEs in sediments ranged between 1.7 and 53.6 ng g(-1) dry wt, with the highest concentrations located around the most heavily populated areas of Victoria Harbour and Sai Kung, while the lowest concentrations of Sigma15PBDEs were found at more remote locations of Sha Tau Kok, Wong Chuk Bay, Castle Peak Bay, and Gold Coast. Sigma15PBDEs ranged from 27.0 to 83.7 ng g(-1) dry wt of mussel tissues. Although not identical, most of the congeners in sediments were found in mussel tissues, with BDE-47, BDE-99, BDE-153 and BDE-183 being the most prominent in both matrices. On the basis of a literature survey, the concentrations of PBDEs reported in Hong Kong sediments and mussel tissues are amongst the highest in the world.

  7. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    NASA Astrophysics Data System (ADS)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  8. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish.

    PubMed

    Mackey, Benjamin H; Roering, Joshua J; Lamb, Michael P

    2011-11-22

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km(3) lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore.

  9. Comparison of four chronic sediment toxicity tests using selected marine/estuarine tests species

    SciTech Connect

    Sims, I.; Fleming, R.

    1995-12-31

    Several draft standard guidelines exist for acute marine/estuarine sediment bioassays which measure lethality over a 4 to 14 day exposure period. Although these are very useful tools for certain applications, such tests may not be useful for discriminating between sediments with the low levels of contaminants most likely to be found in UK estuaries. For this application, chronic sediment bioassays are required which allow the measurement of both lethal and sublethal effects (growth, development and reproduction). Some chronic bioassays are currently being developed for estuarine sediments by workers in Europe, America and Canada. The objectives of the study presented here were to compare four bioassays, currently in development, in terms of their sensitivity to sediment-bound lindane and to differences in particle size. The test species selected for the study were Corophium volutator, Arenicola marina, Macoma Balthica and Neanthes arenaceodentata. Three sediment types were used: high, medium and low percentage of fine material, These were achieved using mixtures of silica sand and a fine, natural, estuarine sediment, and spiked with lindane using a spiking protocol developed at WRc. The results of the study will be presented.

  10. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; de Beer, D.; Stief, P.

    2013-05-01

    The relative importance of two dissimilatory nitrate reduction pathways, denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA), was investigated in intact sediment cores from five different coastal marine field sites. The vertical distribution of DEN activity was examined using the acetylene inhibition technique combined with N2O microsensor measurements, whereas NH4+ production via DNRA was measured with a recently developed gel probe-stable isotope technique. At all field sites, dissimilatory nitrate reduction was clearly dominated by DEN (> 59% of the total NO3- reduced) rather than by DNRA, irrespective of the sedimentary inventories of electron donors such as organic carbon, sulfide, and iron. Ammonium production via DNRA (8.9% of the total NO3- reduced) was exclusively found at one site with very high concentrations of total sulfide and NH4+ in the layer of NO3- reduction and below. Sediment from two field sites, one with and one without DNRA activity in the core incubations, was also used for slurry incubations. Now, in both sediments high DNRA activity was detected accounting for 37-77% of the total NO3- reduced. These contradictory results can be explained by enhanced NO3- availability for DNRA bacteria in the sediment slurries compared to the core-incubated sediments. It can be argued that the gel probe technique gives more realistic estimates of DNRA activity in diffusion-dominated sediments, while slurry incubations are more suitable for advection-dominated sediments.

  11. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems.

  12. Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles.

    PubMed

    Leighton, T G; Robb, G B N

    2008-11-01

    Bubbles of gas (usually methane) in marine sediments affect the load-bearing properties of the seabed and act as a natural reservoir of "greenhouse" gas. This paper describes a simple method which can be applied to historical and future subbottom profiles to infer bubble void fractions and map the vertical and horizontal distributions of gassy sediments, and the associated sound speed perturbations, even with single-frequency insonification. It operates by identifying horizontal features in the geology and interpreting any perceived change of depth in these as a bubble-mediated change in sound speed.

  13. AMS measurement of 10Be concentrations in marine sediments from Chile Trench at the TANDAR laboratory

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Arazi, A.; Fernández Niello, J. O.; Martí, G. V.; Negri, A. E.; Abriola, D.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Gollan, F.; Hojman, D.; Pacheco, A. J.; Samsolo, N.; Togneri, M.; Villanueva, D.

    2017-03-01

    The 10Be/9Be ratios in marine sediments samples from the Southern Chile Trench have been measured using accelerator mass spectrometry (AMS). The samples were measured at the TANDAR accelerator, where the discrimination of the 10Be radionuclides was achieved by means of a passive absorber in front of an ionization chamber. This setup along with the high voltage available, provided a complete suppression of the 10B isobar interference. The obtained values for the 10Be concentrations, of the order of 109 atoms/g, are the first 10Be measurements from the Southern Chile Trench and offer an excellent tracer to quantitatively study the recycling of sediments in Andean magmas.

  14. Application of glass capillary columns to monitor petroleum-type hydrocarbons in marine sediments.

    PubMed

    Overton, E B; Bracken, J; Laseter, J L

    1977-05-10

    High resolution glass capillary columns coated with SE 52 liquid phase were used to resolve the indigenous hydrocarbons extracted from sediment samples collected from three outer continental shelf areas. The extracts were than spiked with small amounts of aliphatic or aromatic components isolated from a Louisiana crude oil and rechromatographed. The resolution was sufficient to separate almost all the isoprenoid, branched and cyclic alkanes associated with petroleum. Additionally, many of the key petroleum aromatics could also be resolved from naturally occurring organics. Such chromatographic procedures will aid in distinguishing between indigenous hydrocarbons of contemporary origin and those known to be associated with fossil hydrocarbon pollution of marine sediments.

  15. Salinispora pacifica sp. nov., an actinomycete from marine sediments.

    PubMed

    Ahmed, Lina; Jensen, Paul R; Freel, Kelle C; Brown, Ros; Jones, Amanda L; Kim, Byung-Yong; Goodfellow, Michael

    2013-05-01

    A polyphasic analysis was carried out to clarify the taxonomic status of four marine actinomycete strains that share a phylogenetic relationship and phenotypic characteristics with the genus Salinispora. These strains formed a distinct lineage within the Salinispora 16S rRNA and gyrB trees and were found to possess a range of phenotypic properties and DNA:DNA hybridization values that distinguished them from the type strains of the two validly named species in this genus, Salinispora tropica (CNB-440(T), ATCC BAA-916(T)) and Salinispora arenicola (CNH-643(T), ATCC BAA-917(T)). The combined genotypic and phenotypic data support this conclusion. It is proposed that the strains be designated as Salinispora pacifica sp. nov., the type strain of which is CNR-114(T) (DSMZ YYYYT = KACC 17160(T)).

  16. Cr Isotope Response to Ocean Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.; Jacobson, A. D.; Sageman, B. B.; Hurtgen, M.

    2015-12-01

    The element Cr offers a redox sensitive isotopic proxy with potential for tracing past oxygen levels in the oceans. We examine this potential in a marine carbonate section deposited during Cretaceous Ocean Anoxic Event 2 (OAE 2) in the Western Interior Seaway, Colorado. Redox changes are the main source of Cr isotope fractionation in Earth surface environments. Cr(VI), in the form of the chromate oxyanion, is the thermodynamically favoured species in oxygenated seawater. Reduction of Cr(VI) causes light isotopes to partition into Cr(III), which is reactive and susceptible to removal into marine sediment. Therefore, widespread ocean anoxia should correlate with positive shifts in seawater chromate Cr isotope values (δ53Cr), assuming that all Cr input fluxes remained constant during the event. We find instead that inferred seawater δ53Cr values decreased during OAE 2. The minima of the sedimentary δ53Cr excursion coincides with the peak interval of anomalously enriched concentrations of Cr and other trace metals of basaltic affinity attributed to eruption of the Caribbean Large Igneous Province (CLIP). We propose that an anoxic, hydrothermal plume enriched in Cr(III) with low δ53Cr values characteristic of igneous rocks moved from deep waters of the CLIP eruption site in the eastern Pacific into deep waters of the proto-North Atlantic through an oceanic gateway in the Central Americas. Once inside, metal-rich waters upwelled against the surrounding continental margins. CLIP volcanism delivered a submarine weathering flux of Cr to the oceans during OAE 2 that was large enough to mask the expected isotopic response of the ocean Cr cycle to increasing anoxia, particularly in the proto-North Atlantic Ocean.

  17. [Characteristics of Pahs pollution in sediments from Leizhou coastal marine area, Liusha Bay and Shenzhen Bay].

    PubMed

    Zhao, Li-Rong; Sun, Sheng-Li; Ke, Sheng

    2012-04-01

    Leizhou coastal marine area, Liusha Bay and Shenzhen Bay represented open coastal area and half-closed bay, respectively. This study discussed the differences of PAHs concentration levels, spatial distribution and sources in sediments from these three marine areas. The results showed that detected ratios of 15 PAHs were 100%, and major compounds were 3-ring and 4-ring PAHs, especialy Phe, Fla, Pry and Bbf; Sigma PAHs concentration was Leizhou < Shenzhen < Liusha. In spatial distribution, PAHs concentrations were the east < the south < the west in Leizhou; the inside > the outside, and the aquaculture > the non-aquaculture in Liusha Bay and Shenzhen Bay. It suggested that large-scale mariculture inside bay played an important role in PAHs pollution and might make it serious. Oil, fossil fuels and biomass burning were the dominant sources of PAHs in sediments from Leizhou coastal area, Liusha Bay and Shenzhen Bay.

  18. A note on the relationships between organic matter and some geotechnical properties of a marine sediment

    USGS Publications Warehouse

    1986-01-01

    Comparing the results of regression analyses from this and several similar studies shows that although there is good qualitative agreement, there are quantitative inconsistencies. In particular there is considerable overall variability in the regression coefficients. Among studies on marine sediments the inconsistencies are less pronounced, yet still evident. The increase in liquid limit as organic carbon increased by 1 % sediment dry weight ranged from 9 to 28% water content; in the plastic limit the range was from 4 to 18%. However, in these marine studies regression coefficients are relatively close in value in some cases, levels of significance of the regressions are high in most cases, and in all cases the relationships appear to be linear over the range of organic carbon percentage studied. Finally, we believe that a relatively clear relationship between plasticity and organic carbon begins to emerge when the latter exceeds a value of 2%.

  19. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis

    NASA Technical Reports Server (NTRS)

    Ishiwatari, R.; Ishiwatari, M.; Rohrback, B. G.; Kaplan, I. R.

    1977-01-01

    Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5-116 hr) and temperatures (150-410 C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid less than 1%. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2-C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.

  20. Relationships between sulphur, organic carbon, and iron in the modern sediments of the Black Sea

    NASA Astrophysics Data System (ADS)

    Calvert, S. E.; Karlin, R. E.

    1991-09-01

    The ratio of sedimentary S to organic C has been used as a diagnostic criterion for recognizing anoxic environments in the sedimentary record. Here we examine the relationship between pyrite S and organic C in the modern (Unit 1) sediments of the Black Sea to re-evaluate this suggested relationship. In box cores from shallow oxic or near-oxic water, pyrite S contents, ranging from 0.1 and 2.5% by weight, do not correlate with organic C contents. In cores from the deep anoxic basin, pyrite S concentrations range between 1.0 and 2.5% and are linearly related to organic C contents with an intercept that is not significantly different from zero. The S/C ratio is around 0.31 in these sediments, which is somewhat lower than the ratio of 0.36 considered to be characteristic of "normal" marine oxic sediments. Thus, the Black Sea anoxic sediments appear to be depleted in S relative to organic C. The degree of pyritization (DOP) of the sediments may be a better measure of anoxic conditions of sedimentation. The DOP values measured here show that pyrite formation is Fe limited, the correlation between organic C and pyrite S probably being induced by a positive correlation between fine-grained sediment components (the original Fe source for pyrite formation in the sediments) and organic matter. Such Fe-limitation is probably characteristic of anoxic basins where pyrite formation can take place in the water column and Fe oxyhydroxides do not accumulate in the surface sediments. The results on the sample set examined here are at variance with earlier data and interpretations for the Black Sea. In particular, the suggested S enrichment of anoxic Black Sea sediments was not found because of Fe limitation.

  1. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Löhr, S. C.; Kennedy, M. J.

    2014-05-01

    Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9-33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.

  2. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Löhr, S. C.; Kennedy, M. J.

    2014-09-01

    Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE 2 at the Demerara Rise was controlled by the co-occurrence of anoxic bottom water, sufficient productivity to saturate available mineral surfaces, and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2 = 0.92) occurs across a range of total organic carbon (TOC) values from 9 to 33%. X-ray diffraction data indicate the intercalation of OC in smectite interlayers, while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE 2 at the Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE 2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.

  3. Archaea in Organic-Lean and Organic-Rich Marine Subsurface Sediments: An Environmental Gradient Reflected in Distinct Phylogenetic Lineages

    PubMed Central

    Durbin, Alan M.; Teske, Andreas

    2012-01-01

    Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218

  4. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  5. Extreme seawater compositions during Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Bottini, C.; Dickson, A. J.; Izon, G. J.; Coe, A. L.

    2012-12-01

    For almost the entire duration of the Phanerozoic, the oceans have remained well oxygenated and highly conducive to the development of animal and plant life. However, there have been relatively brief intervals, known as Oceanic Anoxic Events (OAEs), when a very significant expansion of low-oxygen regions occurred throughout the world's oceans. OAEs were characterised by highly atypical seawater chemistry, as reflected in the chemical and isotopic compositions of contemporaneous sediments and fossil remains. These oxygen-deficient intervals also exerted profound pressures on many marine species as indicated by major changes in species populations and distributions. High-resolution chemical and isotopic data recovered from marine sediments and sedimentary rocks, together with biotic information, provide us with the best means of understanding the significance of OAEs and their place in the evolution of the Earth system. We present new Mo- and Os-isotope and geochemical data from OAE 1a (early Cretaceous), which help define how this event evolved in relation to the other major environmental parameters - including global warming, continental weathering and Ontong-Java volcanism - of that time. We compare these new observations with published results from other Mesozoic OAEs and the PETM. Recently published Os-isotope data from DSDP site 463 (mid-Pacific) [1] and northern Italy [1, 2] show that the Os budget of the oceans was dominated for a period of c. 880 ka during OAE 1a by the hydrothermal flux of unradiogenic Os from the Ontong-Java province. The observation of identical Os-isotope compositions at these two very distant sites indicates that seawater was well mixed at that time. Over the same interval, the seawater Mo-isotope composition, based upon well-preserved samples from Italy, was persistently atypical, with δ98/95Mo ranging between -0.7 and +0.7 permil [3]. All the samples analysed here accumulated under highly anoxic conditions and contain highly abundant

  6. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  7. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-10-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity ( V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln( x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  8. Stereochemistry of amino acids in surface samples of a marine sediment

    USGS Publications Warehouse

    Pollock, G.E.; Kvenvolden, K.A.

    1978-01-01

    In two surface samples of marine sediment, the percentages of d-alanine and d-aspartic acid are significantly higher than the other d-amino acids and are similar to the range found in soils. The percentage of d-glutamic acid is also higher than the other amino acids but less than d-alanine and d-aspartic acid. These d-amino acids may come mainly from bacteria. ?? 1978.

  9. Stereochemistry of amino acids in surface samples of a marine sediment

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Kvenvolden, K. A.

    1978-01-01

    In two surface samples of marine sediment, the percentages of D-alanine and D-aspartic acid are significantly higher than the other D-amino acids and are similar to the range found in soils. The percentage of D-glutamic acid is also higher than the other amino acids but less than D-alanine and D-aspartic acid. These D-amino acids may come mainly from bacteria.

  10. Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments

    USGS Publications Warehouse

    Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.

    2012-01-01

    Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.

  11. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  12. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    PubMed

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.

  13. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  14. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  15. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  16. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  17. Uranium-series dating of sediments from searles lake: differences between continental and marine climate records.

    PubMed

    Bischoff, J L; Rosenbauer, R J; Smith, G I

    1985-03-08

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial delta(18)O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 x 10(6) years. Uraniumseries dates on the salt beds range from 35 x 10(3) to 231x 10(3) years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  18. Uranium-series dating of sediments from Searles Lake: Differences between continental and marine climate records

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.; Smith, G.I.

    1985-01-01

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial ??18O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 ?? 106 years. Uranium-series dates on the salt beds range from 35 ?? 103 to 231 ?? 103 years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  19. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments

    PubMed Central

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges

    2015-01-01

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  20. Species richness and adaptation of marine fungi from deep-subseafloor sediments.

    PubMed

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges; Burgaud, Gaëtan

    2015-05-15

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi.

  1. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments.

    PubMed

    Riedinger, N; Formolo, M J; Lyons, T W; Henkel, S; Beck, A; Kasten, S

    2014-03-01

    Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.

  2. Gamma-emitting radionuclides in the shallow marine sediments off the Sindh coast, Arabian Sea.

    PubMed

    Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal

    2006-01-01

    Determination of gamma emitting radionuclides in shallow marine sediments off the Sindh coast has been carried out using a gamma spectrometry technique. The activity concentration measured in various sediment samples off the Sindh coast has been found to vary from 15.93 +/- 5.22 to 30.53 +/- 4.70 Bq kg(-1) for 226Ra, from 11.72 +/- 1.22 to 33.94 +/- 1.86 Bq kg(-1) for 228Ra and from 295.22 +/- 32.83 to 748.47 +/- 28.75 Bq kg(-1) for 40K. The calculated mean values of radium equivalent activity, absorbed dose rate and effective dose are 98 Bq kg(-1), 49 nGy h(-1) and 0.06 mSv y(-1), respectively. No artificial radionuclide was detected in the samples measured from the study area. As no data on radioactivity of the coastal environment of Pakistan are available, the data presented here will serve as baseline information on radionuclide concentration in shallow sea sediments off the Sindh coast. The data will also be useful for tracking pollution inventories from unusual radiological events (if any) in the territorial waters of the study area. Further, the information presented will contribute to modelling of a regional radioactivity database from the perspectives of the International Atomic Energy Agency's Asia-Pacific Marine Radioactivity Database and Global Marine Radioactivity Database.

  3. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China.

    PubMed

    Sun, Run-Xia; Lin, Qin; Ke, Chang-Liang; Du, Fei-Yan; Gu, Yang-Guang; Cao, Kun; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-02-15

    Polycyclic aromatic hydrocarbons (PAHs) were investigated in the marine ecosystem of the Daya Bay, South China. The PAH concentrations ranged from 340 to 710 ng/g dry weight in the sediments and from 110 to 520 ng/g wet weight in marine organisms, respectively. The dominant compounds were three- and four-ring PAHs in the sediments (53%-89%) and two- and three-ring PAHs in the marine species (67%-94%), respectively. PAHs mainly originated from both pyrolytic and petrogenic sources. Comparison with the effects-based sediment quality guideline values suggested that the ecological risk caused by the total PAHs was relatively low (less than 25% incidence of adverse effects) in the sedimentary environment. The median cancer risk level via seafood consumption (1.6 × 10(-5) for urban residents and 1.2 × 10(-5) for rural residents, respectively) was slightly higher than the maximum admissible level (10(-5)) set by US EPA, but lower than the priority risk level (10(-4)).

  4. Bacillus cellulasensis sp. nov., isolated from marine sediment.

    PubMed

    Mawlankar, Rahul; Thorat, Meghana N; Krishnamurthi, Srinivasan; Dastager, Syed G

    2016-01-01

    A novel bacterial strain NIO-1130(T) was isolated from sediment sample taken from Chorao Island, Goa Province, India, and subjected to a taxonomic investigation. The strain was Gram-positive, aerobic, and motile. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate within the genus Bacillus and strain NIO-1130(T) showed highest sequence similarity with Bacillus halosaccharovorans DSM 25387(T) (98.4%) and Bacillus niabensis CIP 109816(T) (98.1%), whereas other Bacillus species showed <97.0% similarity. Tree based on gyrB gene sequence revealed that strain bacillus group. The major menaquinone was MK-7 and the predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The strain showed a DNA G+C content of 39.9 mol%. DNA-DNA hybridization studies revealed that strain NIO-1130(T) exhibits 70% similarity with Bacillus halosaccharovorans DSM 25387(T) and Bacillus niabensis CIP 109816(T). On the basis of physiological, biochemical, chemotaxonomic and phylogenetic analyses, we consider the isolate to represent a novel species of the genus Bacillus, for which the name Bacillus cellulasensis sp. nov., is proposed. The type strain is NIO-1130(T) (=NCIM 5461(T)=CCTCC AB 2011126(T)).

  5. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  6. Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea.

    PubMed

    Du, Jikun; Xiao, Kai; Huang, Yali; Li, Huixian; Tan, Hongming; Cao, Lixiang; Lu, Yongjun; Zhou, Shining

    2011-10-01

    This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.

  7. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas.

  8. Distribution of cadmium, chromium, copper, lead and zinc in marine sediments in Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Choi, S. C.; Wai, Onyx W. H.; Choi, Thomas W. H.; Li, X. D.; Tsang, C. W.

    2006-11-01

    Partitioning of heavy metals (Cd, Cr, Cu, Pb, Zn) in marine sediments collected from various sites in Hong Kong waters were determined using sequential extraction method. Sediments from Kellette Bank, located in Victoria Harbour, had higher metal concentrations especially Cu and Zn than most other sites. Slightly over 20% of total Cu and Cr existed as readily available forms in Peng Chau and Kellette Bank. At most sampling sites, over 15% of the Cu existed as the exchangeable form indicating that Cu could be readily released into the aqueous phase from sediments. A significantly higher percentage of Pb and Zn was associated with the three non-residual fractions. Hence, there is a greater environmental concern for remobilization of Pb and Zn compared with Cr. The high amount of residual Cd (>50%) and the relatively lower Cd content indicate that little environmental concern is warranted for the remobilization of Cd. Distribution of metals in sediments collected from different depth at Kellette Bank shows that metal concentrations decreased with profile depth. The levels of Pb and Zn associated with the two readily available fractions increased sharply in the surface sediment. These metals represented the pollutants, which were introduced into the area in the mid-eighties through early nineties as a result of rapid economic and industrial development in the territory. As significant portions of these metals were bound to the readily available phases in the surface sediments, metal remobilization could be a concern.

  9. PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia.

    PubMed

    Bihari, Nevenka; Fafandel, Maja; Hamer, Bojan; Kralj-Bilen, Blanka

    2006-08-01

    Surface marine sediments collected from 8 sampling sites within the Rovinj coastal area, Northern Adriatic, Croatia, were used for determining priority pollutant polycyclic aromatic hydrocarbons (PAHs) and toxic/genotoxic potential of sediment organic extracts. Total PAH concentrations ranged from 32 microg/kg (protected area) to 13.2 mg/kg dry weight (harbor) and showed clear differences between pristine, urban industrial and harbor areas. PAHs distribution revealed their pyrogenic origin with some biogenic influence in harbor. At all sampling sites sediment extracts showed toxic potential that was consistent with the sediment type. No correlation between toxicity measured by Microtox assay and concentrations of individual or total PAHs was found. Noncytotoxic dose of sediment extracts showed no genotoxic potential in bacterial umu-test. DNA damage is positively related to total PAHs at 4 sampling sites (S-1, S-2, S-3, S-6), but the highest DNA damage was not observed at the site with the highest total sediment PAH content (S-5).

  10. Adherence and intracellular survival within human macrophages of Enterococcus faecalis isolates from coastal marine sediment.

    PubMed

    Sabatino, Raffaella; Di Cesare, Andrea; Pasquaroli, Sonia; Vignaroli, Carla; Citterio, Barbara; Amiri, Mehdi; Rossi, Luigia; Magnani, Mauro; Mauro, Alessandro; Biavasco, Francesca

    2015-09-01

    Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.

  11. Sorption and competition of two persistent organic pesticides onto marine sediments: Relevance to their distribution in aquatic system.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Nikiforov, Vladimir; Gouteux, Bruno; Osman, Awaleh Mohamed

    2015-07-01

    Sorption is a key process in the distribution of substances between environmental compartments in marine ecosystems. Two persistent organic pesticides, also known as toxaphene congeners, namely B8-1413 (P26) and B9-1679 (P50), are of special interest because they are not detected in sediments while relatively concentrated in marine mammals. Sorption-desorption, entrapment and competition behaviors of these pesticides onto marine sediments were studied to explain their environmental distribution. Data obtained under marine experimental conditions were fitted to sorption models to evaluate sorption coefficients and to assess the degree of B8-1413/B9-1679 entrapment of the two toxaphene congeners in sediments. Carbon normalized sorption coefficients (Koc) of both congeners were similar under in cold (2°C) marine (30 psu) conditions with high values ranging from 1.53×10(5) to 3.28×10(5) mL g(-1)indicative of a strong affinity to marine sediments However, the sorption-desorption investigations indicate that B8-1413/B9-1679 were on average 2.5 times less entrapped in sediments compared to B7-1450, a toxaphene congener known to accumulate predominantly in sediments. These results suggest that the low entrapment of B8-1413 and B9-1679 favor their availability and transfer to biological matrices.

  12. Unified classical formula for non-cohesive total-load sediment transport in marine coastal zones

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2016-11-01

    This paper proposes the concept of a significant transport rate, in coastal environments that contains different spatial and temporal scales and multiple interacting forces (e.g., waves, tides, wave-current, and wind density currents) as well as, the complex physical processes of total-load sediment which is not easy to calculate for practical needs due to restricted range of applicability. The present study develops a unified classical formula for non-cohesive total-load sediment transport in marine coastal zones by using dimensional analysis and self-similarity concepts where a set of independent variables considered. A dataset of total-load collected at both field observation stations and from the laboratory flume conditions and the six well-known relevant formulas were used to evaluate the predictive capability of the proposed formula. Since the results show that, the new formula is in good agreement with both field and flume data sets measures, the authors are suggesting the use of it for the sediment-carrying capacity predictions of total-load sediment transport in marine coastal zones.

  13. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions.

    PubMed

    Zanaroli, Giulio; Balloi, Annalisa; Negroni, Andrea; Borruso, Luigimaria; Daffonchio, Daniele; Fava, Fabio

    2012-03-30

    We investigated the reductive dechlorination of Aroclor 1254 PCBs by a coplanar PCB-dechlorinating microbial community enriched from an actual site contaminated marine sediment of the Venice lagoon in sterile slurry microcosms of the same sediment suspended in its site water, i.e., under biogeochemical conditions that closely mime those occurring in situ. The culture dechlorinated more than 75% of the penta- through hepta-chlorinated biphenyls to tri- and tetra-chlorinated congeners in 30 weeks. The dechlorination rate was reduced by the addition of H(2) and short chain fatty acids, which stimulated sulfate-reduction and methane production, and markedly increased by the presence of vancomycin or ampicillin. DGGE analysis of 16S rRNA genes on PCB-spiked and PCB-free cultures ruled out sulfate-reducing and methanogenic bacteria and revealed the presence of a single Chloroflexi phylotype closely related to the uncultured bacteria m-1 and SF1 associated to PCB dechlorination. These findings suggest that a single dechlorinator is responsible for the observed extensive dechlorination of Aroclor 1254 and that a Chloroflexi species similar to those already detected in freshwater and estuarine contaminated sediments mediates PCB dechlorination in the marine sediment adopted in this study under biogeochemical conditions resembling those occurring in situ in the Brentella Canal of Venice Lagoon.

  14. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent.

    PubMed

    Powell, Shane M; Harvey, Paul McA; Stark, Jonathan S; Snape, Ian; Riddle, Martin J

    2007-04-01

    Clean sediment collected from O'Brien Bay, East Antarctica, was artificially contaminated with a mix of Special Antarctic Blend diesel fuel and lubricating oil and deployed in two uncontaminated locations (O'Brien and Sparkes Bays) and a previously contaminated bay (Brown Bay) to evaluate whether a history of prior contamination would influence the biodegradation process. Detailed analysis of the hydrocarbon composition in the sediment after 11 weeks revealed different patterns of degradation in each bay. Biodegradation indices showed that hydrocarbon biodegradation occurred in all three bays but was most extensive in Brown Bay. This study shows that even within a relatively small geographical area, the longevity of hydrocarbons in Antarctic marine sediments can be variable. Our results are consistent with faster natural attenuation of spilt oil at sites with previous exposure to oil but further work is needed to confirm this. Such information would be useful when evaluating the true risk and longevity of oils spills.

  15. Petroleum hydrocarbon concentrations in marine sediments along Nagapattinam - Pondicherry coastal waters, Southeast coast of India.

    PubMed

    Kamalakannan, K; Balakrishnan, S; Sampathkumar, P

    2017-01-30

    In this present study, petroleum hydrocarbons were statistically analyzed in three different coastal sediment cores viz., (N1, P1 and P2) from the Southeast coast of Tamil Nadu, India to examine the viability of PHCs. The significant positive relationship between mud (silt+clay+sand) and PHC unveiled that high specific surface of area of mud content raise the level of PHCs. Cluster analysis was used to discriminate the sediment samples based on their degree of contamination. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of PHC in marine sediments. This baseline PHCs data can be used for regular ecological monitoring and effective management for the mining and tourism related activities in the coastal ecosystem.

  16. Sediment characteristics and benthic ecological status in contrasting marine environments of subtropical Hong Kong.

    PubMed

    Chan, Alice K Y; Xu, Wen-Zhe; Liu, Xiao-Shou; Cheung, Siu Gin; Shin, Paul K S

    2016-02-15

    Sediment characteristics and benthic communities on a finer sampling scale in four contrasting environments in subtropical Hong Kong were analyzed in summer and winter 2012. In two harbour habitats which suffered from historic sewage pollution or hypoxic events, organic carbon, nutrient and trace metal content in the sediment were significantly higher than that in an offshore area and a marine reserve. The relatively low organic and nutrient content in the offshore habitat could be resulted from enhanced resuspension of such materials from the seabed owing to intense water mixing and disturbance caused by bottom trawling. The biotic indices AMBI and M-AMBI were shown to be useful in assessing the benthic ecological status of these habitats. Such indices can also be more sensitive than sediment physico-chemical parameters in differentiating the response of macrofauna to seasonal changes in the benthic environment.

  17. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Keil, Richard

    2017-01-01

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers—including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments—all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  18. The effect of temperature on organic carbon degradation in marine sediments

    PubMed Central

    Malinverno, Alberto; Martinez, Ernesto A.

    2015-01-01

    The degradation of sedimentary particulate organic carbon (POC) is a key carbon cycle process that fuels the deep subseafloor biosphere. The reactivity of POC is expected to decrease with increasing sediment age, severely restricting the energy available to microorganisms. Conversely, increasing temperatures during burial have been proposed to stimulate POC degradation, possibly supplying significant energy to the deep biosphere. To test the importance of temperature, we assembled POC measurements in two global sets of drill sites where sediments underwent either relatively low or high temperatures during burial, which should have resulted in different rates of POC degradation. For ages 5–10 Ma, the decrease of the average POC content with burial is clearly more pronounced in the sites with high temperature histories. Our results support the hypothesis that temperature is one of the fundamental controls on the rate of POC degradation within deeply buried marine sediments. PMID:26640172

  19. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    PubMed

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation.

  20. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225)

    PubMed Central

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-01-01

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum. PMID:27681926

  1. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225).

    PubMed

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-09-06

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.

  2. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Atkins, Amy L.; Shaw, Samuel; Peacock, Caroline L.

    2014-11-01

    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments, and through coupled sorption and redox exerts a strong control on the oceanic concentration of micronutrient trace metals. However, under diagenesis and mild hydrothermal conditions, birnessite undergoes transformation to the tectomanganate todorokite. The mechanistic details of this transformation are important for the speciation and mobility of metals sequestered by birnessite, and are necessary in order to quantify the role of marine sediments in global trace element cycles. Here we transform a synthetic, poorly crystalline, hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterize our birnessite and reflux products as a time series, employing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET surface area analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure spectroscopy (EXAFS). We provide new insight into the crystallization pathway and mechanism of todorokite formation from birnessite under conditions analogous to those found in marine diagenetic and hydrothermal settings. Specifically we propose a new four-stage process for the transformation of birnessite to todorokite, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening. We suggest that, contrary to current understanding, trace metals like Ni might retard the transformation of birnessite to todorokite and be released to marine sedimentary pore-waters during this diagenetic process, thus potentially providing a benthic flux of these micronutrients to seawater.

  3. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view

    NASA Astrophysics Data System (ADS)

    Rowan, Christopher J.; Roberts, Andrew P.; Broadbent, Thomas

    2009-01-01

    In many anoxic sedimentary environments, the onset of sulfate reduction, and pyritization of detrital iron-bearing minerals, leads to a precipitous decline in magnetic mineral concentration during early diagenesis. The usefulness of the surviving paleomagnetic record in such environments is usually argued to depend on how much of the primary detrital magnetic assemblage survives diagenetic dissolution. Detailed rock magnetic and electron microscope analyses of rapidly deposited (~ 7 cm/kyr) latest Pleistocene-Holocene sediments from the continental margins of Oman (22°22.4'N, 60°08.0'E) and northern California (38°24.8'N, 123°58.2'W) demonstrate that pyritization during early diagenesis also leads to the progressive down-core growth of the ferrimagnetic iron sulfide greigite. Greigite growth begins with nucleation of large concentrations of superparamagnetic (SP) nanoparticles at the inferred position of the sulfate-methane transition, which can explain the apparently paradoxical suggestion that diagenetically reduced sediments contain enhanced concentrations of SP particles. Looping of hysteresis parameters on a "Day" plot records the dissolution of single domain (SD) (titano-)magnetite and the formation of SP greigite, which then slowly and progressively grows through its SD blocking volume and acquires a stable paleomagnetic signal. This looping trend is also evident in data from several published records (Oregon margin, Korea Strait, Japan Sea, Niger Fan, Argentine margin, and the Ontong-Java Plateau), indicating that these processes may be widespread in reducing environments. Our observations have profound implications for paleomagnetic records from sulfate-reducing environments. The paleomagnetic signal recorded by greigite is offset from the age of the surrounding sediments by 10's of kyr, and ongoing growth of greigite at depth results in smoothing of the recorded signal over intervals of 10's to 100's of kyr. We therefore expect the presence of

  4. Assessment of radionuclides and heavy metals in marine sediments along the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Khuntong, S.; Phaophang, C.; Sudprasert, W.

    2015-05-01

    Due to the Fukushima Daiichi nuclear disaster in 2011 and the development of nuclear power plant in neighboring countries such as Vietnam in the near future, radionuclide assessment in marine sediment during 2010 - 2011 may be useful as background levels for radiation protection in Thailand. Marine sediments (10 samples) were collected approximately 1 km away from the coastline along Chonburi to Pattaya, Chonburi Province. The sediments were ground and sieved through 2-mm test sieve after air drying. Radionuclides were measured with a gamma spectrometer equipped with a well-calibrated HPGe detector. The samples were prepared in the same geometry as the reference material. The optimal counting time was 60,000 - 80,000 s for statistical evaluation and uncertainties. No contamination of 137Cs as an artificial radionuclide was found. Naturally-occurring radionuclides including 238U, 232Th and 40K were found. The mean specific activities of 238U, 232Th and 40K were 44 ± 10, 59 ± 17 and 463 ± 94 Bq/kg in the rainy season (2010); 41 ± 6, 50 ± 9 and 484 ± 83 Bq/kg in the winter (2010), and 39 ± 6, 41 ± 7 and 472 ± 81 Bq/kg in the summer (2011), respectively. The mean specific activities were higher than the values in the UNSCEAR report of 35, 30 and 400 Bq/kg for 238U, 232Th and 40K, respectively. From the measured specific activities, the absorbed dose rate, radium equivalent activity, external hazard index and annual external effective dose rate were calculated in order to assess the health risk. No radiation hazards related to the radioactivity in the sediment were expected. The accumulation of radionuclides varied with the particle size and the organic matter content in the sediment. The accumulation of heavy metals showed similar results to that of the radionuclides in the sediment.

  5. A comparison of the accumulation of phenanthrene by marine amphipods in water versus sediment

    SciTech Connect

    Fusi, T.; Weber, L.J.

    1995-12-31

    The objective of this research is to compare the accumulation of the polycyclic aromatic hydrocarbon phenanthrene by marine amphipods from sediment and interstitial water versus from a water only exposure system. The equilibrium partitioning theory assumes that the exposure and response of benthic invertebrates are the same when exposed to the same contaminant concentration in water and interstitial water. In this series of experiments, three infaunal marine amphipod species; Eohaustorius estuarius (non tube-forming, burrowing amphipod), Leptocheirus plumulosus (burrow-building amphipod) and Grandidierella japonica (tube-building amphipod), were exposed to {sup 14}C-phenanthrene under three experimental conditions: (1) sediment spiked at a concentration resulting in an interstitial water concentration of 2.5 {micro}g/l phenanthrene; (2) sediment spiked at a concentration resulting in interstitial water concentration of 2.5 {micro}g/l and the overlying water spiked at 2.5 {micro}g/l phenanthrene; (3) a water only exposure with the water at a concentration of 2.5 {micro}g/l phenanthrene, The exposures were conducted in a static renewal system with the overlying and exposure water being replaced every 8 hours. The bioaccumulation of phenanthrene was followed over 72 hours. In all three species of amphipods, the accumulation of phenanthrene was significantly greater in the water only exposure than in the two sediment exposures. At 72 hours, the amphipod body burdens of phenanthrene in the water only exposures were, depending on the species, 7 to 24 times that of the sediment only exposures. The results suggest that water only exposures may overestimate sediment or interstitial exposure to phenanthrene and other nonionic, lipophilic compounds.

  6. Marine sediments and Beryllium-10 record of the geomagnetic moment variations during the Brunhes period.

    NASA Astrophysics Data System (ADS)

    Ménabréaz, Lucie; Thouveny, Nicolas; Bourlès, Didier; Demory, François

    2010-05-01

    Over millennial time scales, the atmospheric production of the cosmonuclid 10Be (half-life 1.387 ± 0.012 Ma [Shmeleff et al., 2009; Korschinek et al., 2009]) is modulated by the geomagnetic field strength, following a negative power law (e.g. Lal, 1988; Masarik and Beer, 2009). With respect to paleomagnetic reconstructions, 10Be-derived paleointensity records can therefore constitute an alternative, global and independent reading of the dipole moment variations. During the last years, efforts have been made to extract a geomagnetic signal from single and stacked 10Be records in natural archives such as ice and marine sediments (e.g. Carcaillet et al., 2004; Christl et al., 2007; Muscheler et al., 2005). In marine sediments, the 10Be concentration results from complex interplay of several processes: cosmogenic production, adsorption on sediment particles, redistribution by fluviatile and oceanic transport, and deposition. Therefore, a correction procedure is required to consider both sediment redistribution and enhanced scavenging, which can alter the primary signatures. To reconstruct the succession of field intensity lows accompanying excursions during the Brunhes chron, we investigated authigenic 10Be/9Be record of marine sequences also studied for paleomagnetism and oxygen isotopes. Mid and low latitude sites were preferred in order to benefit from the most efficient modulation by the magnetospheric shielding. We present a high resolution authigenic 10Be/9Be record of the last 50 ka recovered from the Portuguese Margin, that deciphers the cosmonuclide 10Be overproduction created by the geomagnetic dipole low associated with the Laschamp excursion. This record is compared to other proxy records of the geomagnetic field variations for the same time interval: (1) the relative paleointensity (RPI) reconstructed from the same sediments and the GLOPIS-75 record (Laj et al., 2004), (2) the absolute VDM record based on absolute paleointensities measured on lava flows

  7. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  8. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  9. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  10. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment.

    PubMed

    Cai, Lin; Shao, Ming-Fei; Zhang, Tong

    2014-06-15

    Here, we report a type strain AST-10 representing a novel species Sulfurimonas hongkongensis within Epsilonproteobacteria, which is involved in marine sedimentary sulfur oxidation and denitrification. Strain AST-10(T) (= DSM 22096(T) = JCM 18418(T)) was isolated from the coastal sediment at the Kai Tak Approach Channel connected to Victoria Harbour in Hong Kong. It grew chemolithoautotrophically using thiosulfate, sulfide or hydrogen as the sole electron donor and nitrate as the electron acceptor under anoxic conditions. It was rod-shaped and grew at 15-35°C (optimum at 30°C), pH 6.5-8.5 (optimum at 7.0-7.5), and 10-60 g L(-1) NaCl (optimum at 30 g L(-1)). Genome sequencing and annotation of strain AST-10(T) showed a 2,302,023 bp genome size, with 34.9% GC content, 2,290 protein-coding genes, and 42 RNA genes, including 3 rRNA genes.

  11. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with

  12. Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic.

    PubMed

    Foster, Karen L; Stern, Gary A; Carrie, Jesse; Bailey, Joscelyn N-L; Outridge, Peter M; Sanei, Hamed; Macdonald, Robie W

    2015-02-15

    With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane p