2012-01-01
Background Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2–repeat containing transcription factor, regulates cell production during fruit growth in apple. Results Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, ‘Gala’ and ‘Golden Delicious Smoothee’ (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to ‘Gala’, the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Conclusions Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple. PMID:22731507
Dash, Madhumita; Malladi, Anish
2012-06-25
Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2-repeat containing transcription factor, regulates cell production during fruit growth in apple. Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, 'Gala' and 'Golden Delicious Smoothee' (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to 'Gala', the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple.
An ant-plant mutualism through the lens of cGMP-dependent kinase genes.
Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E
2017-09-13
In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).
Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology.
Meng, Jia; Lei, Jiaxin; Davitt, Andrew; Holt, Jocelyn R; Huang, Jian; Gold, Roger; Vargo, Edward L; Tarone, Aaron M; Zhu-Salzman, Keyan
2018-05-22
The tawny crazy ant (Nylanderia fulva) is a new invasive pest in the United States. At present, its management mainly relies on the use of synthetic insecticides, which are generally ineffective at producing lasting control of the pest, necessitating alternative environmentally friendly measures. In this study, we evaluated the feasibility of gene silencing to control this ant species. Six housekeeping genes encoding actin (NfActin), coatomer subunit β (NfCOPβ), arginine kinase (NfArgK), and V-type proton ATPase subunits A (NfvATPaseA), B (NfvATPaseB) and E (NfvATPaseE) were cloned. Phylogenetic analysis revealed high sequence similarity to homologs from other ant species, particularly the Florida carpenter ant (Camponotus floridanus). To silence these genes, vector L4440 was used to generate 6 specific RNAi constructs for bacterial expression. Heat-inactivated, dsRNA-expressing Escherichia coli were incorporated into artificial diet. Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 days. However, only ingestion of dsRNAs of NfCOPβ (a gene involved in protein trafficking) and NfArgK (a cellular energy reserve regulatory gene in invertebrates) caused modest but significantly higher ant mortality than the control. These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities. Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fan, Yanhua; Pereira, Roberto M; Kilic, Engin; Casella, George; Keyhani, Nemat O
2012-01-01
Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β-neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT(50), but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed.
Fan, Yanhua; Pereira, Roberto M.; Kilic, Engin; Casella, George; Keyhani, Nemat O.
2012-01-01
Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed. PMID:22238569
Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng
2015-01-01
Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921
Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos
2016-01-01
The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT’s voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the ‘thinness ratio’ and the ‘cobalt-calcein’ technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca2+ levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760
Bequette, Carlton J.; Fu, Zheng Qing; Loraine, Ann E.
2016-01-01
AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae. These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense. PMID:27208279
Acquisition and expression of memories of distance and direction in navigating wood ants.
Fernandes, A Sofia D; Philippides, Andrew; Collett, Tom S; Niven, Jeremy E
2015-11-01
Wood ants, like other central place foragers, rely on route memories to guide them to and from a reliable food source. They use visual memories of the surrounding scene and probably compass information to control their direction. Do they also remember the length of their route and do they link memories of direction and distance? To answer these questions, we trained wood ant (Formica rufa) foragers in a channel to perform either a single short foraging route or two foraging routes in opposite directions. By shifting the starting position of the route within the channel, but keeping the direction and distance fixed, we tried to ensure that the ants would rely upon vector memories rather than visual memories to decide when to stop. The homeward memories that the ants formed were revealed by placing fed or unfed ants directly into a channel and assessing the direction and distance that they walked without prior performance of the food-ward leg of the journey. This procedure prevented the distance and direction walked being affected by a home vector derived from path integration. Ants that were unfed walked in the feeder direction. Fed ants walked in the opposite direction for a distance related to the separation between start and feeder. Vector memories of a return route can thus be primed by the ants' feeding state and expressed even when the ants have not performed the food-ward route. Tests on ants that have acquired two routes indicate that memories of the direction and distance of the return routes are linked, suggesting that they may be encoded by a common neural population within the ant brain. © 2015. Published by The Company of Biologists Ltd.
Sugahara, Ryohei; Jouraku, Akiya; Nakakura, Takayo; Kusakabe, Takahiro; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto; Shiotsuki, Takahiro
2015-01-01
Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4. PMID:25742135
USDA-ARS?s Scientific Manuscript database
Similarly to others advanced social insects, ants and bees have an age-associated division of labor, whereby young workers normally perform tasks inside the colony and old workers forage outside the nest, but this pattern is more variable in ants. It is unknown whether, notwithstanding their differe...
Miler, Krzysztof; Yahya, Bakhtiar Effendi; Czarnoleski, Marcin
2017-11-01
Some ants display rescue behaviour, which is performed by nearby nestmates and directed at individuals in danger. Here, using several ant species, we demonstrate that rescue behaviour expression matches predicted occurrences based on certain aspects of species' ecological niches. Rescue occurred in sand-dwelling ants exposed both to co-occurring antlion larvae, representing the threat of being captured by a predator, and to nest cave-ins, representing the threat of being trapped in a collapsed nest chamber. Rescue also occurred in forest groundcover ants exposed to certain entrapment situations. However, rescue never occurred in species associated with open plains, which nest in hardened soils and forage largely on herbaceous plants, or in ants living in close mutualistic relationships with their host plants. In addition, because we tested each species in two types of tests, antlion larva capture tests and artificial entrapment tests, we highlight the importance of accounting for test context in studying rescue behaviour expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers.
Krizek, Beth A
2015-10-12
The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. In flowers, AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers. Transgenic plants expressing a copy of the coding region of AIL6 in the context of 7.7 kb of 5' sequence and 919 bp of 3' sequence (AIL6:cAIL6-3') fail to fully complement AIL6 function when assayed in the ant-4 ail6-2 double mutant background. In contrast, a genomic copy of AIL6 with the same amount of 5' and 3' sequence (AIL6:gAIL6-3') can fully complement ant-4 ail6-2. In addition, a genomic copy of AIL6 with 590 bp of 5' sequence and 919 bp of 3' sequence (AIL6m:gAIL6-3') complements ant-4 ail6-2 and contains all regulatory elements needed to confer normal AIL6 expression in inflorescences. Efforts to map cis-regulatory elements reveal that the third intron of AIL6 contains enhancer elements that confer expression in young flowers but in a broader pattern than that of AIL6 mRNA in wild-type flowers. Some AIL6:gAIL6-3' and AIL6m:gAIL6-3' lines confer an over-rescue phenotype in the ant-4 ail6-2 background that is correlated with higher levels of AIL6 mRNA accumulation. The results presented here indicate that AIL6 intronic sequences serve as transcriptional enhancer elements. In addition, the results show that increased expression of AIL6 can partially compensate for loss of ANT function in flowers.
VisANT 3.0: new modules for pathway visualization, editing, prediction and construction.
Hu, Zhenjun; Ng, David M; Yamada, Takuji; Chen, Chunnuan; Kawashima, Shuichi; Mellor, Joe; Linghu, Bolan; Kanehisa, Minoru; Stuart, Joshua M; DeLisi, Charles
2007-07-01
With the integration of the KEGG and Predictome databases as well as two search engines for coexpressed genes/proteins using data sets obtained from the Stanford Microarray Database (SMD) and Gene Expression Omnibus (GEO) database, VisANT 3.0 supports exploratory pathway analysis, which includes multi-scale visualization of multiple pathways, editing and annotating pathways using a KEGG compatible visual notation and visualization of expression data in the context of pathways. Expression levels are represented either by color intensity or by nodes with an embedded expression profile. Multiple experiments can be navigated or animated. Known KEGG pathways can be enriched by querying either coexpressed components of known pathway members or proteins with known physical interactions. Predicted pathways for genes/proteins with unknown functions can be inferred from coexpression or physical interaction data. Pathways produced in VisANT can be saved as computer-readable XML format (VisML), graphic images or high-resolution Scalable Vector Graphics (SVG). Pathways in the format of VisML can be securely shared within an interested group or published online using a simple Web link. VisANT is freely available at http://visant.bu.edu.
Chevrollier, Arnaud; Loiseau, Dominique; Gautier, Fabien; Malthièry, Yves; Stepien, Georges
2005-01-01
Under hypoxic conditions, mitochondrial ATP production ceases, leaving cells entirely dependent on their glycolytic metabolism. The cytoplasmic and intramitochondrial ATP/ADP ratios, partly controlled by the adenine nucleotide translocator (ANT), are drastically modified. In dividing and growing cells that have a predominantly glycolytic metabolism, the ANT isoform 2, which has kinetic properties allowing ATP import into mitochondria, is over-expressed in comparison to control cells. We studied the cellular metabolic and proliferative response to hypoxia in two transformed human cell lines with different metabolic backgrounds: HepG2 and 143B, and in their rho(o) derivatives, i.e., cells with no mitochondrial DNA. Transformed 143B and rho(o) cells continued their proliferation whereas HepG2 cells, with a more differentiated phenotype, arrested their cell-cycle at the G(1)/S checkpoint. Hypoxia induced an increase in glycolytic activity, correlated to an induction of VEGF and hexokinase II (HK II) expression. Thus, according to their tumorigenicity, transformed cells may adopt one of two distinct behaviors to support hypoxic stress, i.e., proliferation or quiescence. Our study links the constitutive glycolytic activity and ANT2 expression levels of transformed cells with the loss of cell-cycle control after oxygen deprivation. ATP import by ANT2 allows cells to maintain their mitochondrial integrity while acquiring insensitivity to any alterations in the proteins involved in oxidative phosphorylation. This loss of cell dependence on oxidative metabolism is an important factor in the development of tumors.
The life of a dead ant: the expression of an adaptive extended phenotype.
Andersen, Sandra B; Gerritsma, Sylvia; Yusah, Kalsum M; Mayntz, David; Hywel-Jones, Nigel L; Billen, Johan; Boomsma, Jacobus J; Hughes, David P
2009-09-01
Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings approximately 25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.
Sakharov, Dmitry A; Maltseva, Diana V; Riabenko, Evgeniy A; Shkurnikov, Maxim U; Northoff, Hinnak; Tonevitsky, Alexander G; Grigoriev, Anatoly I
2012-03-01
High and moderate intensity endurance exercise alters gene expression in human white blood cells (WBCs), but the understanding of how this effect occurs is limited. To increase our knowledge of the nature of this process, we investigated the effects of passing the anaerobic threshold (AnT) on the gene expression profile in WBCs of athletes. Nineteen highly trained skiers participated in a treadmill test with an incremental step protocol until exhaustion (ramp test to exhaustion, RTE). The average total time to exhaustion was 14:40 min and time after AnT was 4:50 min. Two weeks later, seven of these skiers participated in a moderate treadmill test (MT) at 80% peak O(2) uptake for 30 min, which was slightly below their AnTs. Blood samples were obtained before and immediately after both tests. RTE was associated with substantially greater leukocytosis and acidosis than MT. Gene expression in WBCs was measured using whole genome microarray expression analysis before and immediately after each test. A total of 310 upregulated genes were found after RTE, and 69 genes after MT of which 64 were identical to RTE. Both tests influenced a variety of known gene pathways related to inflammation, stress response, signal transduction and apoptosis. A large group of differentially expressed previously unknown small nucleolar RNA and small Cajal body RNA was found. In conclusion, a 15-min test to exhaustion was associated with substantially greater changes of gene expression than a 30-min test just below the AnT.
Miler, Krzysztof; Symonowicz, Beata; Godzińska, Ewa J
2017-01-01
In social insects behavioral consequences of shortened life expectancy include, among others, increased risk proneness and social withdrawal. We investigated the impact of experimental shortening of life expectancy of foragers of the ant Formica cinerea achieved by their exposure to carbon dioxide on the expression of rescue behavior, risky pro-social behavior, tested by means of two bioassays during which a single worker (rescuer) was confronted with a nestmate (victim) attacked by a predator (antlion larva capture bioassay) or immobilized by an artificial snare (entrapment bioassay). Efficacy of carbon dioxide poisoning in shortening life expectancy was confirmed by the analysis of ant mortality. Rescue behavior observed during behavioral tests involved digging around the victim, transport of the sand covering the victim, pulling the limbs/antennae/mandibles of the victim, direct attack on the antlion (in antlion larva capture tests), and snare biting (in entrapment tests). The rate of occurrence of rescue behavior was lower in ants with shortened life expectancy, but that effect was significant only in the case of the entrapment bioassay. Similarly, only in the case of the entrapment bioassay ants with shortened life expectancy displayed rescue behavior after a longer latency and devoted less time to that behavior than ants from the control groups. Our results demonstrated that in ant workers shortened life expectancy may lead to reduced propensity for rescue behavior, most probably as an element of the social withdrawal syndrome that had already been described in several studies on behavior of moribund ants and honeybees.
Krizek, Beth A.
2015-01-01
AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884
Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício
2011-06-17
Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.
2011-01-01
Background Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. Conclusion The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters. PMID:21682882
Yamada, Toshihiro; Hirayama, Yumiko; Imaichi, Ryoko; Kato, Masahiro
2008-01-01
The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava
2011-08-05
Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less
Ants avoid superinfections by performing risk-adjusted sanitary care.
Konrad, Matthias; Pull, Christopher D; Metzler, Sina; Seif, Katharina; Naderlinger, Elisabeth; Grasse, Anna V; Cremer, Sylvia
2018-03-13
Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.
Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta
Paviala, Jenni; Morandin, Claire; Wheat, Christopher; Sundström, Liselotte; Helanterä, Heikki
2017-01-01
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon. PMID:29177112
Vardhana, Pratibhasri A.; Julius, Martin A.; Pollak, Susan V.; Lustbader, Evan G.; Trousdale, Rhonda K.; Lustbader, Joyce W.
2009-01-01
Ovarian hyperstimulation syndrome (OHSS) is a complication of in vitro fertilization associated with physiological changes after hCG administration to induce final oocyte maturation. It presents as widespread increases in vascular permeability and, in rare cases, results in cycle cancellation, multi-organ dysfunction, and pregnancy termination. These physiological changes are due primarily to activation of the vascular endothelial growth factor (VEGF) system in response to exogenous human chorionic gonadotropin (hCG). An hCG antagonist (hCG-Ant) could attenuate these effects by competitively binding to the LH/CG receptor, thereby blocking LH activity in vivo. We expressed a form of hCG that lacks three of its four N-linked glycosylation sites and tested its efficacy as an antagonist. The hCG-Ant binds the LH receptor with an affinity similar to native hCG and inhibits cAMP response in vitro. In a rat model for ovarian stimulation, hCG-Ant dramatically reduces ovulation and steroid hormone production. In a well-established rat OHSS model, vascular permeability and vascular endothelial growth factor (VEGF) expression are dramatically reduced after hCG-Ant treatment. Finally, hCG-Ant does not appear to alter blastocyst development when given after hCG in mice. These studies demonstrate that removing specific glycosylation sites on native hCG can produce an hCG-Ant that is capable of binding without activating the LH receptor and blocking the actions of hCG. Thus hCG-Ant will be investigated as a potential therapy for OHSS. PMID:19443574
Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D
2017-11-01
Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.
Baines, Christopher P; Molkentin, Jeffery D
2009-06-01
Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.
Search for hidden messenger molecules: capa-gene expression in ants
USDA-ARS?s Scientific Manuscript database
Recent genome analyses suggested the absence of a number of neuropeptide genes and corresponding receptor genes in ants. That absence raised questions about compensation of functions of these peptides in hymenopteran insects. One of the missing genes is the capa-gene. CAPA-peptides are known to regu...
Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species
USDA-ARS?s Scientific Manuscript database
Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the yo...
Plant defences against ants provide a pathway to social parasitism in butterflies.
Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio
2015-07-22
Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.
Plant defences against ants provide a pathway to social parasitism in butterflies
Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M.; Bonelli, Simona; Casacci, Luca P.; Zebelo, Simon A.; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E.; Thomas, Jeremy A.; Balletto, Emilio
2015-01-01
Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Morrow, Ryan M; Picard, Martin; Derbeneva, Olga; Leipzig, Jeremy; McManus, Meagan J; Gouspillou, Gilles; Barbat-Artigas, Sébastien; Dos Santos, Carlos; Hepple, Russell T; Murdock, Deborah G; Wallace, Douglas C
2017-03-07
Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.
A chromatin link to caste identity in the carpenter ant Camponotus floridanus
Simola, Daniel F.; Ye, Chaoyang; Mutti, Navdeep S.; Dolezal, Kelly; Bonasio, Roberto; Liebig, Jürgen; Reinberg, Danny; Berger, Shelley L.
2013-01-01
In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants. PMID:23212948
De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.
2013-01-01
Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060
De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J
2013-01-08
Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.
Yan, Hua; Opachaloemphan, Comzit; Mancini, Giacomo; Yang, Huan; Gallitto, Matthew; Mlejnek, Jakub; Leibholz, Alexandra; Haight, Kevin; Ghaninia, Majid; Huo, Lucy; Perry, Michael; Slone, Jesse; Zhou, Xiaofan; Traficante, Maria; Penick, Clint A; Dolezal, Kelly; Gokhale, Kaustubh; Stevens, Kelsey; Fetter-Pruneda, Ingrid; Bonasio, Roberto; Zwiebel, Laurence J; Berger, Shelley L; Liebig, Jürgen; Reinberg, Danny; Desplan, Claude
2017-08-10
Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality. Copyright © 2017 Elsevier Inc. All rights reserved.
Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J
2010-12-31
Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
Hawkings, Chloe; Tamborindeguy, Cecilia
2018-01-01
Vitellogenin has been proposed to regulate division of labor and social organization in social insects. The red imported fire ant ( Solenopsis invicta ) harbors four distinct, adjacent vitellogenin genes (Vg1, Vg2, Vg3, and Vg4). Contrary to honey bees that have a single Vg ortholog as well as potentially fertile nurses, and to other ant species that lay trophic eggs, S. invicta workers completely lack ovaries or the ability to lay eggs. This provides a unique model to investigate whether Vg duplication in S. invicta was followed by subfunctionalization to acquire non-reproductive functions and whether Vg was co-opted to regulate behavior within the worker caste. To investigate these questions, we compared the expression patterns of S. invicta Vg genes among workers from different morphological subcastes or performing different tasks. RT-qPCRs revealed higher relative expression of Vg1 in major workers compared to both medium and minor workers, and of Vg2 in major workers when compared to minor workers. Relative expression of Vg1 was also higher in carbohydrate foragers when compared to nurses and protein foragers. By contrast, the level of expression of Vg2, Vg3, and Vg4 were not significantly different among the workers performing the specific tasks. Additionally, we analyzed the relationship between the expression of the Vg genes and S-hydroprene, a juvenile hormone analog. No changes in Vg expression were recorded in workers 12 h after application of the analog. Our results suggest that in S. invicta the Vg gene underwent subfunctionalization after duplication to new functions based on the expression bias observed in these data. This may suggest an alternative and still unknown function for Vg in the workers that needs to be investigated further.
2018-01-01
Vitellogenin has been proposed to regulate division of labor and social organization in social insects. The red imported fire ant (Solenopsis invicta) harbors four distinct, adjacent vitellogenin genes (Vg1, Vg2, Vg3, and Vg4). Contrary to honey bees that have a single Vg ortholog as well as potentially fertile nurses, and to other ant species that lay trophic eggs, S. invicta workers completely lack ovaries or the ability to lay eggs. This provides a unique model to investigate whether Vg duplication in S. invicta was followed by subfunctionalization to acquire non-reproductive functions and whether Vg was co-opted to regulate behavior within the worker caste. To investigate these questions, we compared the expression patterns of S. invicta Vg genes among workers from different morphological subcastes or performing different tasks. RT-qPCRs revealed higher relative expression of Vg1 in major workers compared to both medium and minor workers, and of Vg2 in major workers when compared to minor workers. Relative expression of Vg1 was also higher in carbohydrate foragers when compared to nurses and protein foragers. By contrast, the level of expression of Vg2, Vg3, and Vg4 were not significantly different among the workers performing the specific tasks. Additionally, we analyzed the relationship between the expression of the Vg genes and S-hydroprene, a juvenile hormone analog. No changes in Vg expression were recorded in workers 12 h after application of the analog. Our results suggest that in S. invicta the Vg gene underwent subfunctionalization after duplication to new functions based on the expression bias observed in these data. This may suggest an alternative and still unknown function for Vg in the workers that needs to be investigated further. PMID:29868280
An ant colony optimization based algorithm for identifying gene regulatory elements.
Liu, Wei; Chen, Hanwu; Chen, Ling
2013-08-01
It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nutrition mediates the expression of cultivar-farmer conflict in a fungus-growing ant.
Shik, Jonathan Z; Gomez, Ernesto B; Kooij, Pepijn W; Santos, Juan C; Wcislo, William T; Boomsma, Jacobus J
2016-09-06
Attine ants evolved farming 55-60 My before humans. Although evolutionarily derived leafcutter ants achieved industrial-scale farming, extant species from basal attine genera continue to farm loosely domesticated fungal cultivars capable of pursuing independent reproductive interests. We used feeding experiments with the basal attine Mycocepurus smithii to test whether reproductive allocation conflicts between farmers and cultivars constrain crop yield, possibly explaining why their mutualism has remained limited in scale and productivity. Stoichiometric and geometric framework approaches showed that carbohydrate-rich substrates maximize growth of both edible hyphae and inedible mushrooms, but that modest protein provisioning can suppress mushroom formation. Worker foraging was consistent with maximizing long-term cultivar performance: ant farmers could neither increase carbohydrate provisioning without cultivars allocating the excess toward mushroom production, nor increase protein provisioning without compromising somatic cultivar growth. Our results confirm that phylogenetically basal attine farming has been very successful over evolutionary time, but that unresolved host-symbiont conflict may have precluded these wild-type symbioses from rising to ecological dominance. That status was achieved by the evolutionarily derived leafcutter ants following full domestication of a coevolving cultivar 30-35 Mya after the first attine ants committed to farming.
Nutrition mediates the expression of cultivar–farmer conflict in a fungus-growing ant
Shik, Jonathan Z.; Gomez, Ernesto B.; Kooij, Pepijn W.; Santos, Juan C.; Wcislo, William T.; Boomsma, Jacobus J.
2016-01-01
Attine ants evolved farming 55–60 My before humans. Although evolutionarily derived leafcutter ants achieved industrial-scale farming, extant species from basal attine genera continue to farm loosely domesticated fungal cultivars capable of pursuing independent reproductive interests. We used feeding experiments with the basal attine Mycocepurus smithii to test whether reproductive allocation conflicts between farmers and cultivars constrain crop yield, possibly explaining why their mutualism has remained limited in scale and productivity. Stoichiometric and geometric framework approaches showed that carbohydrate-rich substrates maximize growth of both edible hyphae and inedible mushrooms, but that modest protein provisioning can suppress mushroom formation. Worker foraging was consistent with maximizing long-term cultivar performance: ant farmers could neither increase carbohydrate provisioning without cultivars allocating the excess toward mushroom production, nor increase protein provisioning without compromising somatic cultivar growth. Our results confirm that phylogenetically basal attine farming has been very successful over evolutionary time, but that unresolved host–symbiont conflict may have precluded these wild-type symbioses from rising to ecological dominance. That status was achieved by the evolutionarily derived leafcutter ants following full domestication of a coevolving cultivar 30–35 Mya after the first attine ants committed to farming. PMID:27551065
Tirosh, Y; Morpurgo, N; Cohen, M; Linial, M; Bloch, G
2012-06-01
We identified a predicted compact cysteine-rich sequence in the honey bee genome that we called 'Raalin'. Raalin transcripts are enriched in the brain of adult honey bee workers and drones, with only minimum expression in other tissues or in pre-adult stages. Open-reading frame (ORF) homologues of Raalin were identified in the transcriptomes of fruit flies, mosquitoes and moths. The Raalin-like gene from Drosophila melanogaster encodes for a short secreted protein that is maximally expressed in the adult brain with negligible expression in other tissues or pre-imaginal stages. Raalin-like sequences have also been found in the recently sequenced genomes of six ant species, but not in the jewel wasp Nasonia vitripennis. As in the honey bee, the Raalin-like sequences of ants do not have an ORF. A comparison of the genome region containing Raalin in the genomes of bees, ants and the wasp provides evolutionary support for an extensive genome rearrangement in this sequence. Our analyses identify a new family of ancient cysteine-rich short sequences in insects in which insertions and genome rearrangements may have disrupted this locus in the branch leading to the Hymenoptera. The regulated expression of this transcript suggests that it has a brain-specific function. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.
Loreto, R G; Hughes, D P
2016-01-01
It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism. Copyright © 2016 Elsevier Inc. All rights reserved.
Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo; Choi, Moon Seok; Houk, Kendall N.; Tang, Yi; Walsh, Christopher T.
2013-01-01
The bimodular 276 kDa nonribosomal peptide synthetase AspA from Aspergillus alliaceus, heterologously expressed in Saccharomyces cerevisiae, converts tryptophan and two molecules of the aromatic β-amino acid anthranilate (Ant) into a pair of tetracyclic peptidyl alkaloids asperlicin C and D in a ratio of 10:1. The first module of AspA activates and processes two molecules of Ant iteratively to generate a tethered Ant-Ant-Trp-S-enzyme intermediate on module two. Release is postulated to involve tandem cyclizations, in which the first step is the macrocyclization of the linear tripeptidyl-S-enzyme, by the terminal condensation (CT) domain to generate the regioisomeric tetracyclic asperlicin scaffolds. Computational analysis of the transannular cyclization of the 11-membered macrocyclic intermediate shows that asperlicin C is the kinetically favored product due to the high stability of a conformation resembling the transition state for cyclization, while asperlicin D is thermodynamically more stable. PMID:23890005
Guderley, Helga; Turner, Nigel; Else, Paul L; Hulbert, A J
2005-10-01
We studied the molecular composition of muscle mitochondria to evaluate whether the contents of cytochromes or adenine nucleotide translocase (ANT) or phospholipid acyl compositions reflect differences in mitochondrial oxidative capacities. We isolated mitochondria from three vertebrates of similar size and preferred temperature, the rat (Rattus norvegicus), the cane toad (Bufo marinus) and the bearded dragon lizard (Pogona vitticeps). Mitochondrial oxidative capacities were higher in rats and cane toads than in bearded dragon, whether rates were expressed relative to protein, cytochromes or ANT. Inter-specific differences were least pronounced when rates were expressed relative to cytochrome A, a component of cytochrome C oxidase (CCO), or ANT. In mitochondria from rat and cane toad, cytochrome A was more abundant than C followed by B and then C(1), while in bearded dragon mitochondria, the cytochromes were present in roughly equal levels. Analysis of correlations between mitochondrial oxidative capacities and macromolecular components revealed that cytochrome A explained at least half of the intra- and inter-specific variability in substrate oxidation rates. ANT levels were an excellent correlate of state 3 rates while phospholipid contents were correlated with state 4 rates. As the % poly-unsaturation and the % 20:4n-6 in mitochondrial phospholipids were equivalent in toads and rats, and exceeded the levels in lizards, they may contribute to the inter-specific differences in oxidative capacities. We suggest that the numbers of CCO and ANT together with the poly-unsaturation of phospholipids explain the higher oxidative capacities in muscle mitochondria from rats and cane toads.
Schrader, Lukas; Helanterä, Heikki; Oettler, Jan
2017-03-01
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hollis, Karen L
2017-06-01
A behavioural ecological approach to the relationship between pit-digging larval antlions and their common prey, ants, provides yet another example of how the specific ecological niche that species inhabit imposes selection pressures leading to unique behavioural adaptations. Antlions rely on multiple strategies to capture prey with a minimal expenditure of energy and extraordinary efficiency while ants employ several different strategies for avoiding capture, including rescue of trapped nestmates. Importantly, both ants and antlions rely heavily on their capacity for learning, a tool that sometimes is overlooked in predator-prey relationships, leading to the implicit assumption that behavioural adaptations are the result of fixed, hard-wired responses. Nonetheless, like hard-wired responses, learned behaviour, too, is uniquely adapted to the ecological niche, a reminder that the expression of associative learning is species-specific. Beyond the study of ants and antlions, per se, this particular predator-prey relationship reveals the important role that the capacity to learn plays in coevolutionary arms races. Copyright © 2016 Elsevier B.V. All rights reserved.
Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies.
Loreto, Raquel G; Hughes, David P
2016-01-01
Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested.
Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies
Loreto, Raquel G.; Hughes, David P.
2016-01-01
Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested. PMID:27529548
Increased host aggression as an induced defense against slave-making ants
Pennings, Pleuni S.; Foitzik, Susanne
2011-01-01
Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it. PMID:22476194
Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host
Konrad, Matthias; Grasse, Anna V.; Tragust, Simon; Cremer, Sylvia
2015-01-01
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. PMID:25473011
Nonlinear dynamics of steep surface waves as derived from a Lagrangian
NASA Astrophysics Data System (ADS)
Longuet-Higgins, Michael
1999-11-01
A simple and natural method for calculating the deformation of surface gravity waves on deep water was recently formulated by A.M. Balk (1996). The equations of motion are derived from a Lagrangian (T-V) where T and V are the kinetic and potential energies, expressed in terms of the Fourier coefficients a_n(t) of the motion in an auxiliary half-space. The method has certain advantages over the more usual Hamiltonian equations: (1) The expressions for T and V are of finite order N <= 4 in the Fourier coefficients a_n(t) and their rates of change dota(t); (2) the constants in these expressions are low integers, mainly ± 1 or 0; (3) breaking or overturning waves are described by single-valued functions of a parameter. The analysis leads to dynamical equations for än of the form sumj P_ij äj = Qi (a, ; dota) (P_ij and Qi being polynomials of low degree in the coefficients a_n) which can in general be solved to allow time-stepping to proceed. Conveniently, the determinant Δ of P_ij is found to factorise. Some examples will be discussed, particularly the case of standing waves, when the coefficients a_n(t) are all real. The phenomena of ``flip through'' and jet formation are of special interest.
Panteleeva, Sofia; Reznikova, Zhanna; Vygonyailova, Olga
2013-01-01
We simulated the situation of risky hunting in the striped field mouse Apodemus agrarius in order to examine whether these animals are able to make a choice between small and large quantities of live prey (ants). In the first (preliminary) experiment we investigated to what extent mice were interested in ants as a live prey and how their hunting activity depended on the quantity of these edible but rather aggressive insects. We placed mice one by one into arenas together with ant groups of different quantities, from 10 to 60. Surprisingly, animals, both wild-caught and laboratory-reared, displayed rather skilled predatory attacks: mice killed and ate from 0.37 ± 003 to 4 ± 0.5 ants per minute. However, there was a threshold number of ants in the arenas when rodents expressed signs of discomfort and started to panic, likely because ants bit them. This threshold corresponds to the dynamic density (about 400 individuals per m2 per min) in the vicinity of anthills and ants' routes in natural environment. In the second experiment mice had to choose between different quantities of ants placed in two transparent tunnels. Ants here served both as food items and as a source of danger. As far as we know, this is the first experimental paradigm based on evaluation of quantity judgments in the context of risk/reward decision making where the animals face a trade-off between the hedonistic value of the prey and the danger it presents. We found that when mice have to choose between 5 vs. 15, 5 vs. 30, and 10 vs. 30 ants, they always tend to prefer the smaller quantity, thus displaying the capacity for distinguishing more from less in order to ensure comfortable hunting. The results of this study are ecologically relevant as they reflect situations and challenges faced by free-living small rodents. PMID:23407476
Bonasio, Roberto; Li, Qiye; Lian, Jinmin; Mutti, Navdeep S.; Jin, Lijun; Zhao, Hongmei; Zhang, Pei; Wen, Ping; Xiang, Hui; Ding, Yun; Jin, Zonghui; Shen, Steven S.; Wang, Zongji; Wang, Wen; Wang, Jun; Berger, Shelley L.; Liebig, Jürgen; Zhang, Guojie; Reinberg, Danny
2012-01-01
SUMMARY Background Ant societies comprise individuals belonging to different castes characterized by specialized morphologies and behaviors. Because ant embryos can follow different developmental trajectories, epigenetic mechanisms must play a role in caste determination. Ants have a full set of DNA methyltransferase and their genomes contain methylcytosine. To determine the relationship between DNA methylation and phenotypic plasticity in ants, we obtained and compared the genome-wide methylomes of different castes and developmental stages of Camponotus floridanus and Harpegnathos saltator. Results In the ant genomes, methylcytosines are found both in CpG and non-CpG contexts and are strongly enriched at exons of active genes. Changes in exonic DNA methylation correlate with alternative splicing events such as exon skipping and alternative splice site selection. Several genes exhibit caste-specific and developmental changes in DNA methylation that are conserved between the two species, including genes involved in reproduction, telomere maintenance, and noncoding RNA metabolism. Several loci are methylated and expressed monoallelically, and in some cases the choice of methylated allele depends on the caste. Conclusions These first ant methylomes and their intra- and inter-species comparison reveal an exonic methylation pattern that points to a connection between DNA methylation and splicing. The presence of monoallelic DNA methylation and the methylation of non-CpG sites in all samples suggest roles in genome regulation in these social insects, including the intriguing possibility of parental or caste-specific genomic imprinting. PMID:22885060
The Postpharyngeal Gland: Specialized Organ for Lipid Nutrition in Leaf-Cutting Ants
Decio, Pâmela; Vieira, Alexsandro Santana; Dias, Nathalia Baptista; Palma, Mario Sergio; Bueno, Odair Correa
2016-01-01
There are several hypotheses about the possible functions of the postpharyngeal gland (PPG) in ants. The proposed functions include roles as cephalic or gastric caeca and diverticulum of the digestive tract, mixing of hydrocarbons, nestmate recognition, feeding larvae, and the accumulation of lipids inside this gland, whose origin is contradictory. The current study aimed to investigate the functions of these glands by examining the protein expression profile of the PPGs of Atta sexdens rubropilosa (Hymenoptera, Formicidae). Mated females received lipid supplementation and their glands were extracted and analyzed using a proteomic approach. The protocol used combined two-dimensional electrophoresis and shotgun strategies, followed by mass spectrometry. We also detected lipid β-oxidation by immunofluorescent marking of acyl-CoA dehydrogenase. Supplying ants with lipids elicited responses in the glandular cells of the PPG; these included increased expression of proteins related to defense mechanisms and signal transduction and reorganization of the cytoskeleton due to cell expansion. In addition, some proteins in PPG were overexpressed, especially those involved in lipid and energy metabolism. Part of the lipids may be reduced, used for the synthesis of fatty alcohol, transported to the hemolymph, or may be used as substrate for the synthesis of acetyl-CoA, which is oxidized to form molecules that drive oxidative phosphorylation and produce energy for cellular metabolic processes. These findings suggest that this organ is specialized for lipid nutrition of adult leaf-cutting ants and characterized like a of diverticulum foregut, with the ability to absorb, store, metabolize, and mobilize lipids to the hemolymph. However, we do not rule out that the PPG may have other functions in other species of ants. PMID:27149618
The Postpharyngeal Gland: Specialized Organ for Lipid Nutrition in Leaf-Cutting Ants.
Decio, Pâmela; Vieira, Alexsandro Santana; Dias, Nathalia Baptista; Palma, Mario Sergio; Bueno, Odair Correa
2016-01-01
There are several hypotheses about the possible functions of the postpharyngeal gland (PPG) in ants. The proposed functions include roles as cephalic or gastric caeca and diverticulum of the digestive tract, mixing of hydrocarbons, nestmate recognition, feeding larvae, and the accumulation of lipids inside this gland, whose origin is contradictory. The current study aimed to investigate the functions of these glands by examining the protein expression profile of the PPGs of Atta sexdens rubropilosa (Hymenoptera, Formicidae). Mated females received lipid supplementation and their glands were extracted and analyzed using a proteomic approach. The protocol used combined two-dimensional electrophoresis and shotgun strategies, followed by mass spectrometry. We also detected lipid β-oxidation by immunofluorescent marking of acyl-CoA dehydrogenase. Supplying ants with lipids elicited responses in the glandular cells of the PPG; these included increased expression of proteins related to defense mechanisms and signal transduction and reorganization of the cytoskeleton due to cell expansion. In addition, some proteins in PPG were overexpressed, especially those involved in lipid and energy metabolism. Part of the lipids may be reduced, used for the synthesis of fatty alcohol, transported to the hemolymph, or may be used as substrate for the synthesis of acetyl-CoA, which is oxidized to form molecules that drive oxidative phosphorylation and produce energy for cellular metabolic processes. These findings suggest that this organ is specialized for lipid nutrition of adult leaf-cutting ants and characterized like a of diverticulum foregut, with the ability to absorb, store, metabolize, and mobilize lipids to the hemolymph. However, we do not rule out that the PPG may have other functions in other species of ants.
Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina.
Valles, Steven M; Porter, Sanford D; Calcaterra, Luis A
2018-01-01
Metagenomics and next generation sequencing were employed to discover new virus natural enemies of the fire ant, Solenopsis invicta Buren in its native range (i.e., Formosa, Argentina) with the ultimate goal of testing and releasing new viral pathogens into U.S. S. invicta populations to provide natural, sustainable control of this ant. RNA was purified from worker ants from 182 S. invicta colonies, which was pooled into 4 groups according to location. A library was created from each group and sequenced using Illumina Miseq technology. After a series of winnowing methods to remove S. invicta genes, known S. invicta virus genes, and all other non-virus gene sequences, 61,944 unique singletons were identified with virus identity. These were assembled de novo yielding 171 contiguous sequences with significant identity to non-plant virus genes. Fifteen contiguous sequences exhibited very high expression rates and were detected in all four gene libraries. One contig (Contig_29) exhibited the highest expression level overall and across all four gene libraries. Random amplification of cDNA ends analyses expanded this contiguous sequence yielding a complete virus genome, which we have provisionally named Solenopsis invicta virus 5 (SINV-5). SINV-5 is a positive-sense, single-stranded RNA virus with genome characteristics consistent with insect-infecting viruses from the family Dicistroviridae. Moreover, the replicative genome strand of SINV-5 was detected in worker ants indicating that S. invicta serves as host for the virus. Many additional sequences were identified that are likely of viral origin. These sequences await further investigation to determine their origins and relationship with S. invicta. This study expands knowledge of the RNA virome diversity found within S. invicta populations.
Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina
Porter, Sanford D.; Calcaterra, Luis A.
2018-01-01
Metagenomics and next generation sequencing were employed to discover new virus natural enemies of the fire ant, Solenopsis invicta Buren in its native range (i.e., Formosa, Argentina) with the ultimate goal of testing and releasing new viral pathogens into U.S. S. invicta populations to provide natural, sustainable control of this ant. RNA was purified from worker ants from 182 S. invicta colonies, which was pooled into 4 groups according to location. A library was created from each group and sequenced using Illumina Miseq technology. After a series of winnowing methods to remove S. invicta genes, known S. invicta virus genes, and all other non-virus gene sequences, 61,944 unique singletons were identified with virus identity. These were assembled de novo yielding 171 contiguous sequences with significant identity to non-plant virus genes. Fifteen contiguous sequences exhibited very high expression rates and were detected in all four gene libraries. One contig (Contig_29) exhibited the highest expression level overall and across all four gene libraries. Random amplification of cDNA ends analyses expanded this contiguous sequence yielding a complete virus genome, which we have provisionally named Solenopsis invicta virus 5 (SINV-5). SINV-5 is a positive-sense, single-stranded RNA virus with genome characteristics consistent with insect-infecting viruses from the family Dicistroviridae. Moreover, the replicative genome strand of SINV-5 was detected in worker ants indicating that S. invicta serves as host for the virus. Many additional sequences were identified that are likely of viral origin. These sequences await further investigation to determine their origins and relationship with S. invicta. This study expands knowledge of the RNA virome diversity found within S. invicta populations. PMID:29466388
Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.
Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas
2018-03-01
IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.
Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host.
Konrad, Matthias; Grasse, Anna V; Tragust, Simon; Cremer, Sylvia
2015-01-22
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex.
Sullivan, Stuart; Takemiya, Atsushi; Kharshiing, Eros; Cloix, Catherine; Shimazaki, Ken-Ichiro; Christie, John M
2016-12-01
Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m -2 sec -1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Sociogenomics of Cooperation and Conflict during Colony Founding in the Fire Ant Solenopsis invicta
Manfredini, Fabio; Riba-Grognuz, Oksana; Wurm, Yannick; Keller, Laurent; Shoemaker, DeWayne; Grozinger, Christina M.
2013-01-01
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals. PMID:23950725
Qiu, Hua-Long; Zhao, Cheng-Yin; He, Yu-Rong
2017-01-01
The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Smith, Chris R.; Helms Cahan, Sara; Kemena, Carsten; Brady, Seán G.; Yang, Wei; Bornberg-Bauer, Erich; Eriksson, Ti; Gadau, Juergen; Helmkampf, Martin; Gotzek, Dietrich; Okamoto Miyakawa, Misato; Suarez, Andrew V.; Mikheyev, Alexander
2015-01-01
A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects. PMID:26226984
Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De
2002-03-01
To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.
Neurokinin B regulates reproduction via inhibition of kisspeptin in a teleost, the striped bass.
Zmora, Nilli; Wong, Ten-Tsao; Stubblefield, John; Levavi-Sivan, Berta; Zohar, Yonathan
2017-05-01
Kisspeptin and neurokinin B (NKB) are neuropeptides co-expressed in the mammalian hypothalamus and coordinately control GnRH signaling. We have found that Nkb and kisspeptin neurons are distinct in the teleost, striped bass (STB) and capitalized on this phenomenon to study the mode of action of Nkb and its related neuropeptide-F (Nkf), both of which are encoded by the tac3 gene. In vitro brain slices and in vivo administration studies revealed that Nkb/f consistently downregulated kiss2 , whereas antagonist (AntD) administration restored this effect. Overall, a minor effect was noted on gnrh1 expression, whereas Gnrh1 content in the pituitaries was reduced after Nkb/f treatment and increased with AntD. Concomitantly, immunostaining demonstrated that hypothalamic Nkb neurons border and densely innervate the largest kiss2 neuronal population in the hypothalamus, which also coexpresses Nkb receptor. No expression of Nkb receptor or Nkb neuronal projections was detected near/in Gnrh1 soma in the preoptic area. At the level of the pituitary, however, the picture was more complex: both Nkb/f and AntD upregulated lhb and fshb expression and Lh secretion in vivo Together with the stimulatory effect of Nkb/f on Lh/Fsh secretion from pituitary cells, in vitro , this may indicate an additional independent action of Nkb/f within the pituitary, in which the hypothalamic pathway is more dominant. The current study demonstrates that Nkb/f utilizes multiple pathways to regulate reproduction in the STB and that in the brain, Nkb mainly acts as a negative modulator of kiss2 to regulate the release of Gnrh1. © 2017 Society for Endocrinology.
Cardouat, G; Duparc, T; Fried, S; Perret, B; Najib, S; Martinez, L O
2017-09-01
Ecto-F 1 -ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F 1 -ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y 13 -mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F 1 -ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F 1 -ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F 1 -ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis. Copyright © 2017. Published by Elsevier B.V.
Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun
2015-05-15
Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.
Máximo, Wesley P. F.; Zanetti, Ronald; Paiva, Luciano V.
2018-01-01
Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR) data normalization. We provide here an extensive study to identify and validate suitable reference genes for gene expression analysis in the ant Atta sexdens, a threatening agricultural pest in South America. The optimal number of reference genes varies according to each sample and the result generated by RefFinder differed about which is the most suitable reference gene. Results suggest that the RPS16, NADH and SDHB genes were the best reference genes in the sample pool according to stability values. The SNF7 gene expression pattern was stable in all evaluated sample set. In contrast, when using less stable reference genes for normalization a large variability in SNF7 gene expression was recorded. There is no universal reference gene suitable for all conditions under analysis, since these genes can also participate in different cellular functions, thus requiring a systematic validation of possible reference genes for each specific condition. The choice of reference genes on SNF7 gene normalization confirmed that unstable reference genes might drastically change the expression profile analysis of target candidate genes. PMID:29419794
Lockwood, Stephanie A; Haghipour-Peasley, Jilla; Hoffman, Donald R; Deslippe, Richard J
2012-10-01
We report on two low-molecular weight proteins that are stored in the venom of queen red imported fire ants (Solenopsis invicta). Translated amino acid sequences identified one protein to have 74.8% identity with the Sol i 2w worker allergen, and the other protein was found to have 96/97% identity with Sol i 4.01w/4.02w worker allergens. Both Sol i 2 and Sol i 4 queen and worker proteins were expressed using pEXP1-DEST vector in SHuffle™ T7 Express lysY Escherichia coli. Proteins were expressed at significant concentrations, as opposed to the μg/ml amounts by our previous expression methods, enabling further study of these proteins. Sol i 2q protein bound weakly to human IgE, sera pooled from allergic patients, whereas Sol i 2w, Sol i 4.01w, and Sol i 4q proteins bound strongly. Despite Sol i 2w and Sol i 2q proteins having 74.8% identity, the queen protein is less immuno-reactive than the worker allergen. This finding is consistent with allergic individuals being less sensitive to queen than worker venom. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bevilacqua, Lisa; Seifert, Erin L; Estey, Carmen; Gerrits, Martin F; Harper, Mary-Ellen
2010-08-01
Calorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2 weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated 'energy-wasting' process during CR. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Kooij, Pepijn W.; Liberti, Joanito; Giampoudakis, Konstantinos; Schiøtt, Morten; Boomsma, Jacobus J.
2014-01-01
The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland), but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes. PMID:24718261
The effects of age and social interactions on innate immunity in a leaf-cutting ant.
Armitage, Sophie A O; Boomsma, Jacobus J
2010-07-01
Both developmental and environmental factors shape investment in costly immune defences. Social insect workers have different selection pressures on their innate immune system compared to non-social insects because workers do not reproduce and their longevity affects the fitness of relatives. Furthermore, hygienic behavioural defences found in social insects can result in increased survival after fungal infection, although it is not known if there is modulation in physiological immune defence associated with group living vs. solitary living. Here we investigated whether physiological immune defence is affected by both age and the short-term presence or absence of nestmates in the leaf-cutting ant Acromyrmex octospinosus. We predicted that older ants would show immune senescence and that group living may result in prophylactic differences in immune defence compared to solitarily kept ants. We kept old and young workers alone or in nestmate groups for 48h and assayed a key innate immune system enzyme, expressing phenoloxidase (PO) and its stored precursor (proPO), a defence that acts immediately, i.e. it is constitutive. Short-term solitary living did not affect PO or proPO levels relative to group living controls and we found no evidence for immunosenescence in proPO. However, we found a significant increase in active PO in older workers, which is consistent with two non-mutually exclusive explanations: it could be an adaptive response or indicative of immunosenescence. Our results suggest that future studies of immunosenescence should consider both active immune effectors in the body, such as PO, and the stored potential to express immune defences, such as proPO. Copyright 2010 Elsevier Ltd. All rights reserved.
Dong, Ya-Lu; Zhang, Jing; Wang, Yong-Qiang; Liu, Lili; Zhang, He-Long; Huang, Jian-Guo; Liao, Cheng-Gong
2016-01-01
Accumulating evidence suggests that the tumor suppressor gene Krüppel-like factor 6 (KLF6) plays important roles in both development and progression of cancer. However, the role of KLF6 in hepatocellular carcinoma (HCC) remains unclear. Cancer-related molecule basigin-2 plays an important role in HCC progression and metastasis. Sp1, one of Sp/KLFs family members, regulates basigin-2 expression in HCC. The involvement of KLFs in basigin-2 regulation and HCC progression and metastasis has not been investigated. We first measured KLF6 expression levels in 50 pairs of HCC and adjacent normal tissues (ANTs) by immunohistochemistry. Specifically, low KLF6 expression but high Sp1 and basigin-2 expression were found in HCC tissues. By contrast, the ANTs showed high KLF6 expression but low Sp1 and basigin-2 expression. Kaplan–Meier analysis showed that higher expression of KLF6 was associated with better overall survival. The survival rate of KLF6-negative patients was lower than that of KLF6-positive patients (P = 0.015). We also found that KLF6 binds to the basigin-2 and Sp1 promoters and decreases their expression. Thus, we identified a microcircuitry mechanism in which KLF6 can repress basigin-2 expression directly by binding to its promoter or indirectly by inhibiting the expression of the transcription factor Sp1 to block gene expression. Additionally, overexpression of KLF6 suppressed the invasion, metastasis and proliferation of HCC cells in vitro and in vivo by targeting basigin-2. Our study provides new evidence that interaction of KLF6 and Sp1 regulates basigin-2 expression in HCC and that KLF6 represses the invasive and metastatic capacities of HCC through basigin-2. PMID:27057625
Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.
Detrain, Claire; Prieur, Jacques
2014-05-01
Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose. Copyright © 2014 Elsevier Ltd. All rights reserved.
How might you compare mitochondria from different tissues and different species?
Hulbert, A J; Turner, Nigel; Hinde, Jack; Else, Paul; Guderley, Helga
2006-02-01
Mitochondria were isolated from the liver, kidney and mixed hindlimb skeletal muscle of three vertebrate species; the laboratory rat Rattus norvegicus, the bearded dragon lizard Pogona vitticeps, and the cane toad Bufo marinus. These vertebrate species are approximately the same body mass and have similar body temperatures. The content of cytochromes B, C, C1, and A were measured in these isolated mitochondria by oxidised-reduced difference spectra. Adenine nucleotide translocase (ANT) was measured by titration of mitochondrial respiration with carboxyactractyloside and the protein and phospholipid content of isolated mitochondria were also measured. Fatty acid composition of mitochondrial phospholipids was measured. Mitochondrial respiration was measured at 37 degrees C under states III and IV conditions as well as during oligomycin inhibition. Species differed in the ratios of different mitochondrial cytochromes. Muscle mitochondria differed from kidney and liver mitochondria by having a higher ANT content relative to cytochrome content. Respiration rates were compared relative to a number of denominators and found to be most variable when expressed relative to mitochondrial protein content and least variable when expressed relative to mitochondrial cytochrome A and ANT content. The turnover of cytochromes was calculated and found to vary between 1 and 94 electrons s(-1). The molecular activity of mitochondrial cytochromes was found to be significantly positively correlated with the relative polyunsaturation of mitochondrial membrane lipids.
Non-enzymatic hydrolysis of RNA in workers of the ant Nylanderia pubens
USDA-ARS?s Scientific Manuscript database
During preparation of total RNA from Nylanderia pubens (Forel) workers for use in expression library construction, severe RNA degradation consistently occurred that was masked by spectrophotometric analysis but clearly evident by microfluidic-based assay. Although not specifically identified, the ...
Arthropods vector grapevine trunk disease pathogens.
Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F
2014-10-01
Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.
Pask, Gregory M; Slone, Jesse D; Millar, Jocelyn G; Das, Prithwiraj; Moreira, Jardel A; Zhou, Xiaofan; Bello, Jan; Berger, Shelley L; Bonasio, Roberto; Desplan, Claude; Reinberg, Danny; Liebig, Jürgen; Zwiebel, Laurence J; Ray, Anandasankar
2017-08-17
Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs.
Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin
2011-06-01
An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).
de Bekker, Charissa; Ohm, Robin A; Loreto, Raquel G; Sebastian, Aswathy; Albert, Istvan; Merrow, Martha; Brachmann, Andreas; Hughes, David P
2015-08-19
Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.
Che, Lianqiang; Xu, Qin; Wu, Cheng; Luo, Yuheng; Huang, Xiaobo; Zhang, Bo; Auclair, Eric; Kiros, Tadele; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Feng, Bin; Li, Jian; Wu, De
2017-12-01
This study aimed to investigate the effects of dietary live yeast (LY) supplementation on growth, intestinal permeability and immunological parameters of piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Piglets weaned at 21 d were allocated into three treatments with six pens and six piglets per pen, receiving the control diet (CON), diets supplemented with antibiotics plus zinc oxide (ANT-ZnO) and LY (Saccharomyces cerevisiae strain CNCM I-4407), respectively, for a period of 2 weeks. On day 8, thirty-six piglets were selected as control without ETEC (CON), CON-ETEC, ANT-ZnO-ETEC and LY-ETEC groups challenged with ETEC until day 10 for sample collections. Piglets fed ANT-ZnO diet had the highest average daily gain and average daily feed intake (P<0·05) during the 1st week, but ADG of piglets fed the ANT-ZnO diet was similar as piglets fed LY diet during the second week. Piglets with LY-ETEC or ANT-ZnO-ETEC had markedly lower diarrhoea score (P<0·05) than piglets with CON-ETEC during the 24 h after ETEC challenge. Relative to piglets with CON, the counts of E. coli, urinary ratio of lactulose to mannitol, plasma IL-6 concentration, mRNA abundances of innate immunity-related genes in ileum and mesenteric lymph node tissues were increased (P<0·05), whereas the villous height of jejunum and relative protein expression of ileum claudin-1 were decreased (P<0·05) in piglets with CON-ETEC; however, these parameters did not markedly change in piglets with LY-ETEC or ANT-ZnO-ETEC. In summary, dietary LY supplementation could alleviate the severity of diarrhoea in piglets with ETEC, which may be associated with the improved permeability, innate immunity and bacterial profile.
Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan
2013-01-01
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702
Immune defense in leaf-cutting ants: a cross-fostering approach.
Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández; Nash, David R; Boomsma, Jacobus J
2011-06-01
To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour.
Pull, Christopher D; Cremer, Sylvia
2017-10-13
Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.
Chen, Mei-Er; Holmes, Steven P; Pietrantonio, Patricia V
2006-06-01
We have cloned the fire ant glucose transporter 8 (GLUT8) cDNA providing the first molecular characterization of a GLUT8 in insects. Glucose is a poly-alcohol and, due to its high hydrophilicity, cannot move across cell membranes. GLUT8 is a putative facilitative transporter for the cellular import and export of glucose. The complete 2,974-bp cDNA encodes a 501-residue protein with a predicted molecular mass of 54.8 kDa. Transcripts were detected in the brain, midgut, hindgut, Malpighian tubule, fat body, ovary, and testis. The highest transcriptional expression was found in fat body. Northern blot analysis revealed different transcript sizes in mated queen brains, alate female ovaries, and male testes. We propose that four other sequences obtained from insect genome projects from the honey bee Apis mellifera (ENSAPMP00000006624), the malaria mosquito Anopheles gambiae (EAA11842), and the fruit fly Drosophila melanogaster (AAQ23604 and AAM52591) are likely the orthologues of the fire ant GLUT8. Phylogenetic relationships in insect glucose transporters are presented.
Lu, Hsiao-Ling; Vinson, S B; Pietrantonio, Patricia V
2009-06-01
In ant species in which mating flights are a strategic life-history trait for dispersal and reproduction, maturation of virgin queens occurs. However, the specific molecular mechanisms that mark this transition and the effectors that control premating ovarian growth are unknown. The vitellogenin receptor (VgR) is responsible for vitellogenin uptake during egg formation in insects. In the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), virgin queens have more abundant VgR transcripts than newly mated queens, but limited egg formation. To elucidate whether the transition to egg production involved changes in VgR expression, we investigated both virgin and mated queens. In both queens, western blot analysis showed an ovary-specific VgR band (approximately 202 kDa), and immunofluorescence analysis of ovaries detected differential VgR localization in early- and late-stage oocytes. However, the VgR signal was much lower in virgin queens ready to fly than in mated queens 8 h post mating flight. In virgin queens, the receptor signal was first observed at the oocyte membrane beginning at day 12 post emergence, coinciding with the 2 weeks of maturation required before a mating flight. Thus, the membrane localization of VgR appears to be a potential marker for queen mating readiness. Silencing of the receptor in virgin queens through RNA interference abolished egg formation, demonstrating that VgR is involved in fire ant ovary development pre mating. To our knowledge, this is the first report of RNA interference in any ant species and the first report of silencing of a hymenopteran VgR.
What are the Mechanisms Behind a Parasite-Induced Decline in Nestmate Recognition in Ants?
Beros, Sara; Foitzik, Susanne; Menzel, Florian
2017-09-01
Social insects have developed sophisticated recognition skills to defend their nests against intruders. They do this by aggressively discriminating against non-nestmates with deviant cuticular hydrocarbon (CHC) signatures. Studying nestmate recognition can be challenging as individual insects do not only vary in their discriminatory abilities, but also in their motivation to behave aggressively. To disentangle the influence of signaling and behavioral motivation on nestmate recognition, we investigated the ant Temnothorax nylanderi, where the presence of tapeworm-infected nestmates leads to reduced nestmate recognition among uninfected workers. The parasite-induced decline in nestmate recognition could be caused by higher intra-colonial cue diversity as tapeworm-infected workers are known to exhibit a modified hydrocarbon signature. This in turn may broaden the neuronal template of their nestmates, leading to a higher tolerance towards alien conspecifics. To test this hypothesis, we exchanged infected ants between colonies and analyzed their impact on CHC profiles of uninfected workers. We demonstrate that despite frequent grooming, which should promote the transfer of recognition cues, CHC profiles of uninfected workers neither changed in the presence of tapeworm-infected ants, nor did it increase cue diversity among uninfected nestmates within or between colonies. However, CHC profiles were systematically affected by the removal of nestmates and addition of non-nestmates, independently from the ants' infection status. For example, when non-nestmates were present workers expressed more dimethyl alkanes and higher overall CHC quantities, possibly to achieve a better distinction from non-nestmates. Workers showed clear task-specific profiles with tapeworm-infected workers resembling more closely young nurses than older foragers. Our results show that the parasite-induced decline in nestmate recognition is not due to increased recognition cue diversity or altered CHC profiles of uninfected workers, but behavioral changes might explain tolerance towards intruders.
Ant- and Ant-Colony-Inspired ALife Visual Art.
Greenfield, Gary; Machado, Penousal
2015-01-01
Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.
Persistence of pollination mutualisms in the presence of ants.
Wang, Yuanshi; Wang, Shikun
2015-01-01
This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.
NASA Astrophysics Data System (ADS)
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Ant-lepidopteran associations along African forest edges
NASA Astrophysics Data System (ADS)
Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno
2017-02-01
Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.
Chomicki, Guillaume; Ward, Philip S.; Renner, Susanne S.
2015-01-01
Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems. PMID:26582029
Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.
Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675
Sendoya, Sebastián F; Oliveira, Paulo S
2015-03-01
Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Dynamics of an ant-plant-pollinator model
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.
2015-03-01
In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.
Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy; Vincent, James; Vangala, Mahesh; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J; Cahan, Sara Helms
2016-03-02
The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response (enhanced response), constitutively elevated expression of protective genes (genetic assimilation) or a shift from damage resistance to passive mechanisms of thermal stability (tolerance), we conducted an analysis of the reactionome: the reaction norm for all genes in an organism's transcriptome measured across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth. We found that at least 2 % of all genes changed expression with temperature. The majority of upregulation was specific to exposure to low temperatures. The cool-adapted A. picea induced expression of more genes in response to extreme temperatures than did A. carolinensis, consistent with the enhanced response hypothesis. In contrast, under high temperatures the warm-adapted A. carolinensis downregulated many of the genes upregulated in A. picea, and required more extreme temperatures to induce down-regulation in gene expression, consistent with the tolerance hypothesis. We found no evidence for a trade-off between constitutive and inducible gene expression as predicted by the genetic assimilation hypothesis. These results suggest that increases in upper thermal limits may require an evolutionary shift in response mechanism away from damage repair toward tolerance and prevention.
Ant-seed mutualisms: Can red imported fire ants sour the relationship?
Zettler, J.A.; Spira, T.P.; Allen, Craig R.
2001-01-01
Invasion by the red imported fire ant, Solenopsis invicta, has had negative impacts on individual animal and plant species, but little is known about how S. invicta affects complex mutualistic relationships. In some eastern forests of North America, 30% of herbaceous species have ant-dispersed seeds. We conducted experiments to determine if fire ants are attracted to seeds of these plant species and assessed the amount of scarification or damage that results from handling by fire ants. Fire ants removed nearly 100% of seeds of the ant-dispersed plants Trillium undulatum, T. discolor, T. catesbaei, Viola rotundifolia, and Sanguinaria canadensis. In recovered seeds fed to ant colonies, fire ants scarified 80% of S. canadensis seeds and destroyed 86% of V. rotundifolia seeds. Our study is the first to document that red imported fire ants are attracted to and remove seeds of species adapted for ant dispersal. Moreover, fire ants might damage these seeds and discard them in sites unfavorable for germination and seedling establishment. ?? 2001 Elsevier Science Ltd. All rights reserved.
de Vega, Clara; Herrera, Carlos M
2013-04-01
Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.
Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M
2012-11-01
The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.
ERIC Educational Resources Information Center
Daugherty, Belinda
2001-01-01
Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)
Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber
2014-11-01
Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny.
de la Fuente, Marie Ann S; Marquis, Robert J
1999-02-01
One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack.
Positive selection on sociobiological traits in invasive fire ants.
Privman, Eyal; Cohen, Pnina; Cohanim, Amir B; Riba-Grognuz, Oksana; Shoemaker, DeWayne; Keller, Laurent
2018-06-19
The fire ant Solenopsis invicta and its close relatives are highly invasive. Enhanced social cooperation may facilitate invasiveness in these and other invasive ant species. We investigated whether invasiveness in Solenopsis fire ants was accompanied by positive selection on sociobiological traits by applying a phylogenomics approach to infer ancient selection, and a population genomics approach to infer recent and ongoing selection in both native and introduced S. invicta populations. A combination of whole-genome sequencing of 40 haploid males and reduced-representation genomic sequencing of 112 diploid workers identified 1,758,116 and 169,682 polymorphic markers, respectively. The resulting high-resolution maps of genomic polymorphism provide high inference power to test for positive selection. Our analyses provide evidence of positive selection on putative ion channel genes, which are implicated in neurological functions, and on vitellogenin, which is a key regulator of development and caste determination. Furthermore, molecular functions implicated in pheromonal signaling have experienced recent positive selection. Genes with signatures of positive selection were significantly more often those over-expressed in workers compared with queens and males, suggesting that worker traits are under stronger selection than queen and male traits. These results provide insights into selection pressures and ongoing adaptation in an invasive social insect and support the hypothesis that sociobiological traits are under more positive selection than traits related to non-social traits in such invasive species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.
Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E
2017-12-01
Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.
Nicklen, E Fleur; Wagner, Diane
2006-05-01
Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.
Li, Qiao; Hoffmann, Benjamin D.; Zhang, Wei
2014-01-01
This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the first two factors. PMID:24887398
Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul
2015-01-01
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.
The interactions of ants with their biotic environment.
Chomicki, Guillaume; Renner, Susanne S
2017-03-15
This s pecial feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this s pecial feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. © 2017 The Author(s).
Quantifying Ant Activity Using Vibration Measurements
Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C. S.; Evans, Theodore A.
2014-01-01
Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult. PMID:24658467
The interactions of ants with their biotic environment
Renner, Susanne S.
2017-01-01
This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352
Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico
2017-09-01
Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.
Evidence that insect herbivores are deterred by ant pheromones.
Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit
2004-01-01
It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596
Dutton, Emily M; Luo, Elaine Y; Cembrowski, Adam R; Shore, Joel S; Frederickson, Megan E
2016-07-01
Many plants attract insect pollinators with floral nectar (FN) and ant "bodyguards" with extrafloral nectar (EFN). If nectar production is costly or physiologically linked across glands, investment in one mutualism may trade off with investment in the other. We confirmed that changes in FN and EFN availability alter pollination and ant defense mutualisms in a field population of Turnera ulmifolia. Plants with additional FN tended to produce more seeds, while plants with reduced EFN production experienced less florivory. We then mimicked the consumptive effects of mutualists by removing FN or EFN daily for 50 days in a full factorial design using three Turnera species (T. joelii, T. subulata, and T. ulmifolia) in a glasshouse experiment. For T. ulmifolia and T. subulata, but not T. joelii, removing either nectar reduced production of the other, showing for the first time that EFN and FN production can trade off. In T. subulata, increased investment in FN decreased seed set, suggesting that nectar production can have direct fitness costs. Through the linked expression of EFN and FN, floral visitors may negatively affect biotic defense, and extrafloral nectary visitors may negatively affect pollination.
Chamberlain, Scott A; Holland, J Nathaniel
2008-05-01
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.
Phase reversal of biomechanical functions and muscle activity in backward pedaling.
Ting, L H; Kautz, S A; Brown, D A; Zajac, F E
1999-02-01
Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to the directionally insensitive Ext function in both forward and backward pedaling. Other muscles also appear to have contributed to more than one function, which was especially evident in backward pedaling (i.e. , BF, SM, MG, and TA to Flex). We conclude that the phasing of only the Ant and Post biomechanical functions are directionally sensitive. Further, we suggest that task-dependent modulation of the expression of the functions in the motor output provides this biomechanics-based neural control scheme with the capability to execute a variety of lower limb tasks, including walking.
Ants and ant scent reduce bumblebee pollination of artificial flowers.
Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E
2014-01-01
Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.
Mathis, Kaitlyn A; Tsutsui, Neil D
2016-08-17
Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant-myrmecophile interactions beyond just their pairwise context. © 2016 The Author(s).
2016-01-01
Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant–myrmecophile interactions beyond just their pairwise context. PMID:27512148
Ré Jorge, Leonardo; Benitez-Vieyra, Santiago; Amorim, Felipe W.
2017-01-01
Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms. PMID:29211790
King, Joshua R; Tschinkel, Walter R
2006-11-01
1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.
Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial
NASA Astrophysics Data System (ADS)
Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam
2016-01-01
Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.
2011-01-01
Background The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully established in nearly all continents across the globe. Argentine ants are characterised by a social structure known as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is particularly pronounced in introduced populations and results in the formation of large and spatially expansive supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa. We use behavioural (aggression tests) and chemical (CHC) approaches to investigate the population structure of Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions. Results Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates. This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two supercolonies. Conclusions The presence of these two distinct supercolonies is suggestive of at least two independent introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study, with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings are of interest because recent studies show that Argentine ants from South Africa are different from those identified in other introduced ranges and therefore provide an opportunity to further understand factors that determine the distributional and spread patterns of Argentine ant supercolonies. PMID:21288369
Chong, Cheong-Meng; Leung, Siu Wai; Prieto-da-Silva, Álvaro R. B.; Havt, Alexandre; Quinet, Yves P.; Martins, Alice M. C.; Lee, Simon M. Y.; Rádis-Baptista, Gandhi
2014-01-01
Background Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. Results We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. Conclusions To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans. PMID:24498135
Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.
Perrichot, Vincent; Wang, Bo; Engel, Michael S
2016-06-06
Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiaobing; Wang, Ruifeng; Liu, Guangzhong; Dong, Jingmei; Zhao, Guanqi; Tian, Jingpu; Sun, Jiayu; Jia, Xiuyue; Wei, Lin; Wang, Yuping; Li, Weimin
2016-01-01
The role of the β3-adrenergic receptor (β3-AR) agonist BRL37344 in atrial fibrillation (AF) structural remodeling and the underlying mechanisms as a therapeutic target were investigated. Four groups of dogs were evaluated: sham, pacing, β3-AR agonist BRL37344 (β3-AGO), and β3-AR antagonist L748337 (β3-ANT) groups. Dogs in the pacing, β3-AGO and β3-ANT groups were subjected to rapid atrial pacing for four weeks. Atrial structure and function, AF inducibility and duration, atrial myocyte apoptosis and interstitial fibrosis were assessed. Atrial superoxide anions were evaluated by fluorescence microscopy and colorimetric assays. Cardiac nitrate+nitrite levels were used to assess nitric oxide (NO) production. Protein and mRNA expression of β3-AR, neuronal NO synthase (nNOS), inducible NO synthase (iNOS), endothelial NO synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GCH-1) as well as tetrahydrobiopterin (BH4) levels were measured. β3-AR was up-regulated in AF. Stimulation of β3-AR significantly increased atrial myocyte apoptosis, fibrosis and atrial dilatation, resulting in increased AF induction and prolonged duration. These effects were attenuated by β3-ANT. Moreover, β3-AGO reduced BH4 and NO production and increased superoxide production, which was inhibited by the specific iNOS inhibitor, 1400w β3-AGO also increased iNOS but decreased eNOS and had no effect on nNOS expression in AF. β3-AR stimulation resulted in atrial structural remodeling by increasing iNOS uncoupling and related oxidative stress. β3-AR up-regulation and iNOS uncoupling might be underlying AF therapeutic targets. © 2016 The Author(s) Published by S. Karger AG, Basel.
Rodríguez-Castañeda, G; Brehm, G; Fiedler, K; Dyer, L A
2016-04-01
Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.
Transposable element islands facilitate adaptation to novel environments in an invasive species
Schrader, Lukas; Kim, Jay W.; Ence, Daniel; Zimin, Aleksey; Klein, Antonia; Wyschetzki, Katharina; Weichselgartner, Tobias; Kemena, Carsten; Stökl, Johannes; Schultner, Eva; Wurm, Yannick; Smith, Christopher D.; Yandell, Mark; Heinze, Jürgen; Gadau, Jürgen; Oettler, Jan
2014-01-01
Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species. PMID:25510865
Mathieson, Melissa; Toft, Richard; Lester, Philip J
2012-08-01
The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.
Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.
Pringle, Elizabeth G
2014-06-22
In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.
ERIC Educational Resources Information Center
Walters, Glenn D.; Diamond, Pamela M.; Magaletta, Philip R.; Geyer, Matthew D.; Duncan, Scott A.
2007-01-01
The Antisocial Features (ANT) scale of the Personality Assessment Inventory (PAI) was subjected to taxometric analysis in a group of 2,135 federal prison inmates. Scores on the three ANT subscales--Antisocial Behaviors (ANT-A), Egocentricity (ANT-E), and Stimulus Seeking (ANT-S)--served as indicators in this study and were evaluated using the…
Vicente, R E; Dáttilo, W; Izzo, T J
2014-12-01
Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants' capability in discerning plants' chemical compounds (innate attraction) or by ants' learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant's learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.
Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.
2015-01-01
Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416
The Evolution of Invasiveness in Garden Ants
Cremer, Sylvia; Ugelvig, Line V.; Drijfhout, Falko P.; Schlick-Steiner, Birgit C.; Steiner, Florian M.; Seifert, Bernhard; Hughes, David P.; Schulz, Andreas; Petersen, Klaus S.; Konrad, Heino; Stauffer, Christian; Kiran, Kadri; Espadaler, Xavier; d'Ettorre, Patrizia; Aktaç, Nihat; Eilenberg, Jørgen; Jones, Graeme R.; Nash, David R.; Pedersen, Jes S.; Boomsma, Jacobus J.
2008-01-01
It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects. PMID:19050762
Endothermy in birds: underlying molecular mechanisms.
Walter, Isabel; Seebacher, Frank
2009-08-01
Endothermy is significant in vertebrate evolution because it changes the relations between animals and their environment. How endothermy has evolved in archosaurs (birds, crocodiles and dinosaurs) is controversial especially because birds do not possess brown adipose tissue, the specialized endothermic tissue of mammals. Internal heat production is facilitated by increased oxidative metabolic capacity, accompanied by the uncoupling of aerobic metabolism from energy (ATP) production. Here we show that the transition from an ectothermic to an endothermic metabolic state in developing chicken embryos occurs by the interaction between increased basal ATP demand (Na(+)/K(+)-ATPase activity and gene expression), increased oxidative capacity and increased uncoupling of mitochondria; this process is controlled by thyroid hormone via its effect on PGC1alpha and adenine nucleotide translocase (ANT) gene expression. Mitochondria become more uncoupled during development, but unlike in mammals, avian uncoupling protein (avUCP) does not uncouple electron transport from oxidative phosphorylation and therefore plays no role in heat production. Instead, ANT is the principal uncoupling protein in birds. The relationship between oxidative capacity and uncoupling indicates that there is a continuum of phenotypes that fall between the extremes of selection for increased heat production and increased aerobic activity, whereas increased cellular ATP demand is a prerequisite for increased oxidative capacity.
Chemically armed mercenary ants protect fungus-farming societies.
Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J
2013-09-24
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.
Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants
Russell, Jacob A.; Moreau, Corrie S.; Goldman-Huertas, Benjamin; Fujiwara, Mikiko; Lohman, David J.; Pierce, Naomi E.
2009-01-01
Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with “herbivores” feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous “turtle ants” from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution. PMID:19948964
Valles, Steven M.; Oi, David H.; Yu, Fahong; Tan, Xin-Xing; Buss, Eileen A.
2012-01-01
Background Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. Methodology and Principal Findings Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. Conclusions Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest. PMID:22384082
Usefulness of fire ant genetics in insecticide efficacy trials
USDA-ARS?s Scientific Manuscript database
Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...
Campbell, Heather; Fellowes, Mark D E; Cook, James M
2015-12-01
Myrmecophyte plants house ants within domatia in exchange for protection against herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: (i) domatia nest sites are a limiting resource and (ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilizing multispecies systems to further our understanding of mutualism biology.
Predaceous ants, beach replenishment, and nest placement by sea turtles.
Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie
2007-10-01
Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.
Evolution of the Insect Desaturase Gene Family with an Emphasis on Social Hymenoptera
Helmkampf, Martin; Cash, Elizabeth; Gadau, Jürgen
2015-01-01
Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes. PMID:25425561
Roadside Survey of Ants on Oahu, Hawaii
Tong, Reina L.; Grace, J. Kenneth; Krushelnycky, Paul D.
2018-01-01
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a timed hand-collection of ants was made at 44 sites in a systematic, roadside survey throughout Oahu. Ants were identified and species distribution in relation to elevation, precipitation and soil type was analyzed. To assess possible convenience sampling bias, 15 additional sites were sampled further from roads to compare with the samples near roads. Twenty-four species of ants were found and mapped; Pheidole megacephala (F.), Ochetellus glaber (Mayr), and Technomyrmex difficilis Forel were the most frequently encountered ants. For six ant species, a logistic regression was performed with elevation, average annual precipitation, and soil order as explanatory variables. O. glaber was found in areas with lower precipitation around Oahu. Paratrechina longicornis (Latrielle) and Tetramorium simillimum (Smith, F.) were found more often in lower elevations and in areas with the Mollisol soil order. Elevation, precipitation, and soil type were not significant sources of variation for P. megacephala, Plagiolepis alluaudi Emery, and T. difficilis. P. megacephala was associated with fewer mean numbers of ants where it occurred. Ant assemblages near and far from roads did not significantly differ. Many species of ants remain established on Oahu, and recent invaders are spreading throughout the island. Mapping ant distributions contributes to continued documentation and understanding of these pests. PMID:29439503
Nectar Theft and Floral Ant-Repellence: A Link between Nectar Volume and Ant-Repellent Traits?
Ballantyne, Gavin; Willmer, Pat
2012-01-01
As flower visitors, ants rarely benefit a plant. They are poor pollinators, and can also disrupt pollination by deterring other flower visitors, or by stealing nectar. Some plant species therefore possess floral ant-repelling traits. But why do particular species have such traits when others do not? In a dry forest in Costa Rica, of 49 plant species around a third were ant-repellent at very close proximity to a common generalist ant species, usually via repellent pollen. Repellence was positively correlated with the presence of large nectar volumes. Repellent traits affected ant species differently, some influencing the behaviour of just a few species and others producing more generalised ant-repellence. Our results suggest that ant-repellent floral traits may often not be pleiotropic, but instead could have been selected for as a defence against ant thieves in plant species that invest in large volumes of nectar. This conclusion highlights to the importance of research into the cost of nectar production in future studies into ant-flower interactions. PMID:22952793
Oña, L; Lachmann, M
2011-03-01
Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
Red imported fire ant impacts on upland arthropods in Southern Mississippi
Epperson, D.M.; Allen, Craig R.
2010-01-01
Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.
Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.
Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana
2016-11-01
One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
The effects of ant nests on soil fertility and plant performance: a meta-analysis.
Farji-Brener, Alejandro G; Werenkraut, Victoria
2017-07-01
Ants are recognized as one of the major sources of soil disturbance world-wide. However, this view is largely based on isolated studies and qualitative reviews. Here, for the first time, we quantitatively determined whether ant nests affect soil fertility and plant performance, and identified the possible sources of variation of these effects. Using Bayesian mixed-models meta-analysis, we tested the hypotheses that ant effects on soil fertility and plant performance depend on the substrate sampled, ant feeding type, latitude, habitat and the plant response variable measured. Ant nests showed higher nutrient and cation content than adjacent non-nest soil samples, but similar pH. Nutrient content was higher in ant refuse materials than in nest soils. The fertilizer effect of ant nests was also higher in dry habitats than in grasslands or savannas. Cation content was higher in nests of plant-feeding ants than in nests of omnivorous species, and lower in nests from agro-ecosystems than in nests from any other habitat. Plants showed higher green/root biomass and fitness on ant nests soils than in adjacent, non-nest sites; but plant density and diversity were unaffected by the presence of ant nests. Root growth was particularly higher in refuse materials than in ant nest soils, in leaf-cutting ant nests and in deserts habitats. Our results confirm the major role of ant nests in influencing soil fertility and vegetation patterns and provide information about the factors that mediate these effects. First, ant nests improve soil fertility mainly through the accumulation of refuse materials. Thus, different refuse dump locations (external or in underground nest chambers) could benefit different vegetation life-forms. Second, ant nests could increase plant diversity at larger spatial scales only if the identity of favoured plants changes along environmental gradients (i.e. enhancing β-diversity). Third, ant species that feed on plants play a relevant role fertilizing soils, which may balance their known influence as primary consumers. Fourth, the effects of ant nests as fertility islands are larger in arid lands, possibly because fertility is intrinsically lower in these habitats. Overall, this study provide novel and quantitative evidence confirming that ant nests are key soil modifiers, emphasizing their role as ecological engineers. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Vasse, Marie; Voglmayr, Hermann; Mayer, Veronika; Gueidan, Cécile; Nepel, Maximilian; Moreno, Leandro; de Hoog, Sybren; Selosse, Marc-André; McKey, Doyle; Blatrix, Rumsaïs
2017-03-15
The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales. © 2017 The Author(s).
Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants.
Ruiz-González, Mario X; Malé, Pierre-Jean G; Leroy, Céline; Dejean, Alain; Gryta, Hervé; Jargeat, Patricia; Quilichini, Angélique; Orivel, Jérôme
2011-06-23
Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.
The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants. PMID:23902334
The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants.
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants.
Chemically armed mercenary ants protect fungus-farming societies
Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.
2013-01-01
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482
The Ants Go Marching Millions by Millions: Invasive Ant Research
USDA-ARS?s Scientific Manuscript database
Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...
The ants go marching millions by millions: invasive ant research
USDA-ARS?s Scientific Manuscript database
Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...
NASA Astrophysics Data System (ADS)
Pereira, Marcela Fernandes; Trigo, José Roberto
2013-08-01
Crotalaria pallida (Fabaceae) is a pantropical plant with extrafloral nectaries (EFNs) near the reproductive structures. EFN-visiting ants attack and remove arctiid moth Utetheisa ornatrix larvae, the main pre-dispersal seed predator, but the impact of ants on C. pallida fitness is unknown. To assess this impact, we controlled ant presence on plants and evaluated the reproductive output of C. pallida with and without ants. Predatory wasps also visit EFNs, prey upon U. ornatrix larvae, and may be driven out by ants during EFN feeding. Does this agonistic interaction affect the multitrophic interaction outcome? We found it difficult to evaluate the effect of both visitors because cages excluding wasps affect plant growth and do not allow U. ornatrix oviposition. Therefore, we verified whether ant presence inhibited wasp EFN visitation and predicted that (1) if ants confer a benefit for C. pallida, any negative effect of ants on wasps would be negligible for the plant because ants would be the best guardians, and (2) if ants are poor guardians, they would negatively affect wasps and negatively impact the fitness of C. pallida. Surprisingly, we found that the number of seeds/pods significantly increased, ca. 4.7 times, after ant removal. Additionally, we unexpectedly verified that controls showed a higher percentage of herbivore bored pods than ant-excluded plants. We found that wasps spent less time visiting EFNs patrolled by ants (ca. 299 s less). These results support our second prediction and suggest that the outcome of multitrophic interactions may vary with natural enemy actors.
Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?
Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi
2015-12-01
In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.
Martínez-Bauer, Angélica E; Martínez, Gerardo Cerón; Murphy, Daniel J; Burd, Martin
2015-06-01
Plant associations with protective ants are widespread among angiosperms, but carry the risk that ants will deter pollinators as well as herbivores. Such conflict, and adaptations to ameliorate or prevent the conflict, have been documented in African and neotropical acacias. Ant-acacia associations occur in Australia, but little is known of their ecology. Moreover, recent phylogenetic evidence indicates that Australian acacias are only distantly related to African and American acacias, providing an intercontinental natural experiment in the management of ant-pollinator conflict. We examined four populations of Acacia myrtifolia over a 400-km environmental gradient in southeastern Australia using ant and pollinator exclusion as well as direct observation of ants and pollinators to assess the potential for ant-pollinator conflict to affect seed set. Native bees were the only group of floral visitors whose visitation rates were a significant predictor of fruiting success, although beetles and wasps may play an important role as "insurance" pollinators. We found no increase in pollinator visitation or fruiting success following ant exclusion, even with large sample sizes and effective exclusion. Because ants are facultative visitors to A. myrtifolia plants, their presence may be insufficient to interfere greatly with floral visitors. It is also likely that the morphological location of extrafloral nectaries tends to draw ants away from reproductive parts, although we commonly observed ants on inflorescences, so the spatial separation is not strict. A. myrtifolia appears to maintain a generalized mutualism over a wide geographic range without the need for elaborate adaptations to resolve ant-pollinator conflict.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resasco, Julian; et al,
2014-04-01
Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors thanmore » in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.« less
Distributed nestmate recognition in ants.
Esponda, Fernando; Gordon, Deborah M
2015-05-07
We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.
Navigation in wood ants Formica japonica: context dependent use of landmarks.
Fukushi, Tsukasa; Wehner, Rüdiger
2004-09-01
Wood ants Formica japonica can steer their outbound (foraging) and inbound (homing) courses without using celestial compass information, by relying exclusively on landmark cues. This is shown by training ants to run back and forth between the nest and an artificial feeder, and later displacing the trained ants either from the nest (when starting their foraging runs: outbound full-vector ants) or from the feeder (when starting their home runs: inbound full-vector ants) to various nearby release sites. In addition, ants that have already completed their foraging and homing runs are displaced after arrival either at the feeder (outbound zero-vector ants) or at the nest (inbound zero-vector ants), respectively, to the very same release sites. Upon release, the full-vector ants steer their straight courses by referring to panoramic landmark cues, while the zero-vector ants presented with the very same visual scenery immediately search for local landmark cues defining their final goal. Hence, it depends on the context, in this case on the state of the forager's round-trip cycle, what visual cues are picked out from a given set of landmarks and used for navigation.
Musings on the management of Nylanderia fulva Crazy Ants
USDA-ARS?s Scientific Manuscript database
Nylanderia fulva is an invasive crazy ant that can inundate landscapes and structures. This invasive ant has been called the Caribbean crazy ant in Florida and the Rasberry [sic] crazy ant in Texas. The species was thought to be Nylanderia pubens or Nylanderia near pubens, in Florida and Texas, resp...
Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants
Yek, Sze Huei; Nash, David R.; Jensen, Annette B.; Boomsma, Jacobus J.
2012-01-01
Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced. PMID:22915672
Foraging Distance of the Argentine Ant in California Vineyards.
Hogg, Brian N; Nelson, Erik H; Hagler, James R; Daane, Kent M
2018-04-02
Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), form mutualisms with hemipteran pests in crop systems. In vineyards, they feed on honeydew produced by mealybugs and soft scales, which they tend and protect from natural enemies. Few options for controlling Argentine ants are available; one of the more effective approaches is to use liquid baits containing a low dose of an insecticide. Knowledge of ant foraging patterns is required to estimate how many bait stations to deploy per unit area. To measure how far ants move liquid bait in vineyards, we placed bait stations containing sugar water and a protein marker in plots for 6 d, and then collected ants along transects extending away from bait stations. The ants moved an average of 16.08 m and 12.21 m from bait stations in the first and second years of the study, respectively. Marked ants were found up to 63 m from bait stations; however, proportions of marked ants decreased exponentially as distance from the bait station increased. Results indicate that Argentine ants generally forage at distances <36 m in California vineyards, thus suggesting that insecticide bait stations must be deployed at intervals of 36 m or less to control ants. We found no effect of insecticide on distances that ants moved the liquid bait, but this may have been because bait station densities were too low to affect the high numbers of Argentine ants that were present at the study sites.
Fredericksen, Maridel A.; Zhang, Yizhe; Hazen, Missy L.; Loreto, Raquel G.; Mangold, Colleen A.; Chen, Danny Z.; Hughes, David P.
2017-01-01
Some microbes possess the ability to adaptively manipulate host behavior. To better understand how such microbial parasites control animal behavior, we examine the cell-level interactions between the species-specific fungal parasite Ophiocordyceps unilateralis sensu lato and its carpenter ant host (Camponotus castaneus) at a crucial moment in the parasite’s lifecycle: when the manipulated host fixes itself permanently to a substrate by its mandibles. The fungus is known to secrete tissue-specific metabolites and cause changes in host gene expression as well as atrophy in the mandible muscles of its ant host, but it is unknown how the fungus coordinates these effects to manipulate its host’s behavior. In this study, we combine techniques in serial block-face scanning-electron microscopy and deep-learning–based image segmentation algorithms to visualize the distribution, abundance, and interactions of this fungus inside the body of its manipulated host. Fungal cells were found throughout the host body but not in the brain, implying that behavioral control of the animal body by this microbe occurs peripherally. Additionally, fungal cells invaded host muscle fibers and joined together to form networks that encircled the muscles. These networks may represent a collective foraging behavior of this parasite, which may in turn facilitate host manipulation. PMID:29114054
Yellow jackets may be an underestimated component of an ant-seed mutualism
Bale, M.T.; Zettler, J.A.; Robinson, B.A.; Spira, T.P.; Allen, Craig R.
2003-01-01
Yellow jackets (Hymenoptera: Vespidae) are attracted to the typically ant-dispersed seeds of trilliums and will take seeds from ants in the genus Aphaenogaster. To determine if yellow jacket, Vespula maculifrons (Buysson), presence interferes with seed foraging by ants, we presented seeds of Trillium discolor Wray to three species (A. texana carolinensis Wheeler, Formica schaufussi Mayr, and Solenopsis invicta Buren) of seed-carrying ants in areas where vespids were present or excluded. We found that interspecific aggression between yellow jackets and ants is species specific. Vespid presence decreased average foraging time and increased foraging efficiency of two of the three ant species studied, a situation that might reflect competition for a limited food source. We also found that yellow jackets removed more seeds than ants, suggestive that vespids are important, albeit underestimated, components of ant-seed mutualisms.
Current and potential ant impacts in the Pacific region
Loope, Lloyd L.; Krushelnycky, Paul D.
2007-01-01
Worldwide, ants are a powerful ecological force, and they appear to be dominant components of animal communities of many tropical and temperate ecosystems in terms of biomass and numbers of individuals (Bluthgen et al. 2000). For example, ants comprise up to 94% of arthropod individuals in fogging samples taken from diverse lowland tropical rainforest canopies, and 86% of the biomass (Davidson et al. 2003). The majority of these ant species and individuals obtain carbohydrates either from extrafloral nectaries or from sap-feeding Hemiptera that pass carbohydrate-rich “honeydew” to attending ants while concentrating nitrogen (N) from N-poor plant sap (Davidson et al. 2003). Honeydew and nectar represent key resources for arboreal ant species, although most ant species are at least partly carnivorous or scavengers (Bluthgen et al. 2004). In contrast to most of the terrestrial world, the biotas of many Pacific islands evolved without ants. Whereas endemic ant species are found in New Zealand (ca. 10 spp.), Tonga (ca. 10 spp.), and Samoa (ca. 12 spp.), other islands of Polynesia and parts of Micronesia likely lack native ants (Wilson and Taylor 1967, Wetterer 2002, Wetterer and Vargo 2003). About 20 Indo-Australian and western Pacific ant species range to the east and north of Samoa, but it is unclear how many of these were transported there by humans at some time (Wilson and Taylor 1967). Most of the remainder of the ant species currently found on Pacific islands are widespread species that fall in the category of “tramp species,” dispersed by recent human commerce and generally closely tied to human activity and urban areas (Wilson and Taylor 1967, McGlynn 1999). In Pacific island situations, some of these tramp ant species are able to thrive beyond areas of human activity. Relatively few ant species have been successful invaders of native communities on continents, and these include most of the species that pose the greatest problems for Pacific islands. They generally have multiple queens per colony, are unicolonial (lacking internest aggression), quickly recruit to food items, thrive in a variety of habitats including disturbed areas, and can be highly aggressive to other ant species (McGlynn 1999). Hawaii’s arthropod fauna evolved in the absence of ants and has been observed by many biologists to be highly vulnerable to displacement by non-native ants. Pacific island biotas have also very likely suffered greatly from displacement by ants. However, in contrast to Hawaii, virtually nothing has been published on effects of non-native ants on native arthropod fauna elsewhere on Pacific islands, with the exception of the Galapagos archipelago, which may have at least four species of endemic ants (Lubin 1984, Nishida and Evenhuis 2000) and New Caledonia (Jourdan et al. 2001, Le Breton et al. 2005). In addition, many ant species in the Pacific have long been a nuisance for humans, and significant agricultural impacts have occurred from ants tending hemipteran insects of crop plants.
Opposing effects of allogrooming on disease transmission in ant societies
Theis, Fabian J.; Ugelvig, Line V.; Marr, Carsten; Cremer, Sylvia
2015-01-01
To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems. PMID:25870394
Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior
Chung, Yuan-Kai
2017-01-01
The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation. PMID:28355235
A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism
Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André
2014-01-01
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551
A specialist herbivore uses chemical camouflage to overcome the defenses of an ant-plant mutualism.
Whitehead, Susan R; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M; Posto, Amanda L; Kessler, André
2014-01-01
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.
Ant species confer different partner benefits on two neotropical myrmecophytes.
Frederickson, Megan E
2005-04-01
The dynamics of mutualistic interactions involving more than a single pair of species depend on the relative costs and benefits of interaction among alternative partners. The neotropical myrmecophytes Cordia nodosa and Duroia hirsuta associate with several species of obligately symbiotic ants. I compared the ant partners of Cordia and Duroia with respect to two benefits known to be important in ant-myrmecophyte interactions: protection against herbivores provided by ants, and protection against encroaching vegetation provided by ants. Azteca spp., Myrmelachista schumanni, and Allomerus octoarticulatus demerarae ants all provide the leaves of Cordia and Duroia some protection against herbivores. However, Azteca and Allomerus provide more protection than does Myrmelachista to the leaves of their host plants. Although Allomerus protects the leaves of its hosts, plants occupied by Allomerus suffer more attacks by herbivores to their stems than do plants occupied by other ants. Relative to Azteca or Allomerus, Myrmelachista ants provide better protection against encroaching vegetation, increasing canopy openness over their host plants. These differences in benefits among the ant partners of Cordia and Duroia are reflected in the effect of each ant species on host plant size, growth rate, and reproduction. The results of this study show how mutualistic ant partners can differ with respect to both the magnitude and type of benefits they provide to the same species of myrmecophytic host.
Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto
2015-01-01
Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397
Imported fire ants in the southeast
David F. Williams
1998-01-01
Two species of imported fire ants were introduced into the U.S. at Mobile, Alabama. The black imported fire ant, Solenopsis richteri Forel, was introduced around the early 1900's while the red imported fire ant, Solenopsis invicta Buren entered in the late 1930' or early 1940's. The red imported fire ant is the most...
Why are there few seedlings beneath the myrmecophyte Triplaris americana?
NASA Astrophysics Data System (ADS)
Larrea-Alcázar, Daniel M.; Simonetti, Javier A.
2007-07-01
We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.
No alcohol, but wine is permitted: a survey of obstetric units in Scotland.
McGarva, K; Murray, A K
1989-08-01
Many health-care professionals have expressed increasing concern over the growing use of licit and illicit substances. Considerable interest has also been shown in the effects of substance use on the developing fetus. In view of both the media and academic coverage of this subject, the possible dangers to health of both mother and child should (presumably) be common knowledge. It would seem reasonable, therefore, to assume that screening women in the early ante-natal period for their use of tobacco, alcohol and other drugs would be routine practice. This survey attempted to obtain an overview of the approach of ante-natal clinics to substance use and, if possible, identify any areas of need which might exist. The responses obtained indicate that the approach taken by midwives and obstetricians was not uniform. A number of factors were identified as influencing service provision.
ERIC Educational Resources Information Center
France, Bev; Birdsall, Sally; Simonneaux, Laurence
2017-01-01
There is a need to develop an understanding of how science knowledge is interpreted and used when a Socially Acute Question (SAQ) is discussed on the "agora" of the Internet. A case is made for using Actor-Network Theory (ANT) to unravel the diversity of participants taking part, their stance, source and expression of their…
NASA Astrophysics Data System (ADS)
Guénard, Benoit; Silverman, Jules
2011-08-01
An important aspect of social insect biology lies in the expression of collective foraging strategies developed to exploit food. In ants, four main types of foraging strategies are typically recognized based on the intensity of recruitment and the importance of chemical communication. Here, we describe a new type of foraging strategy, "tandem carrying", which is also one of the most simple recruitment strategies, observed in the Ponerinae species Pachycondyla chinensis. Within this strategy, workers are directly carried individually and then released on the food resource by a successful scout. We demonstrate that this recruitment is context dependent and based on the type of food discovered and can be quickly adjusted as food quality changes. We did not detect trail marking by tandem-carrying workers. We conclude by discussing the importance of tandem carrying in an evolutionary context relative to other modes of recruitment in foraging and nest emigration.
Moll, Karin; Roces, Flavio; Federle, Walter
2013-01-01
Background Foraging workers of grass-cutting ants (Atta vollenweideri) regularly carry grass fragments larger than their own body. Fragment length has been shown to influence the ants’ running speed and thereby the colony’s food intake rate. We investigated whether and how grass-cutting ants maintain stability when carrying fragments of two different lengths but identical mass. Principal Findings Ants carried all fragments in an upright, backwards-tilted position, but held long fragments more vertically than short ones. All carrying ants used an alternating tripod gait, where mechanical stability was increased by overlapping stance phases of consecutive steps. The overlap was greatest for ants carrying long fragments, resulting in more legs contacting the ground simultaneously. For all ants, the projection of the total centre of mass (ant and fragment) was often outside the supporting tripod, i.e. the three feet that would be in stance for a non-overlapping tripod gait. Stability was only achieved through additional legs in ground contact. Tripod stability (quantified as the minimum distance of the centre of mass to the edge of the supporting tripod) was significantly smaller for ants with long fragments. Here, tripod stability was lowest at the beginning of each step, when the center of mass was near the posterior margin of the supporting tripod. By contrast, tripod stability was lowest at the end of each step for ants carrying short fragments. Consistently, ants with long fragments mainly fell backwards, whereas ants carrying short fragments mainly fell forwards or to the side. Assuming that transporting ants adjust neither the fragment angle nor the gait, they would be less stable and more likely to fall over. Conclusions In grass-cutting ants, the need to maintain static stability when carrying long grass fragments has led to multiple kinematic adjustments at the expense of a reduced material transport rate. PMID:23300994
[Syagrus romanzoffiana (Arecaceae) seed utilization by ants in a secondary forest in South Brazil].
Silva, Fernanda R; Begnini, Romualdo M; Klier, Vinícius A; Scherer, Karla Z; Lopes, Benedito C; Castellani, Tânia T
2009-01-01
Ants can nest in a wide variety of substracts. This paper shows Syagrus romanzoffiana seed utilization by ants in an Atlantic secondary forest. We report 29 seeds occupied by small-bodied ants, with 27 of them showing at least two ant development stages. Although a large number of seeds were sampled, a low level of ant occupation was observed.
DeFisher, Luke E.; Bonter, David N.
2013-01-01
Various invasive ant species have negatively affected reproductive success in birds by disrupting nest site selection, incubation patterns, food supply, and by direct predation on nestlings. Impacts can be particularly severe when non-native ants colonize seabird nesting islands where thousands of birds may nest in high densities on the ground or in burrows or crevices. Here we report on the first documented effects of Myrmica rubra, the European fire ant, on the reproduction of birds in its non-native range. We documented herring gulls (Larus argentatus) on Appledore Island, Maine, engaging in more erratic incubation behaviors at nests infested by the ants. Newly-hatched chicks in some nests were swarmed by ants, leading to rapid chick death. Due to high overall rates of chick mortality, survival probabilities did not vary between nests with and without ant activity, however chick growth rates were slower at nests with ants than at ant-free nests. Ant infestation likely leads to longer-term fitness consequences because slower growth rates early in life may ultimately lead to lower post-fledging survival probabilities. PMID:23691168
Ješovnik, Ana; González, Vanessa L; Schultz, Ted R
2016-01-01
Fungus-farming ("attine") ants are model systems for studies of symbiosis, coevolution, and advanced eusociality. A New World clade of nearly 300 species in 15 genera, all attine ants cultivate fungal symbionts for food. In order to better understand the evolution of ant agriculture, we sequenced, assembled, and analyzed transcriptomes of four different attine ant species in two genera: three species in the higher-attine genus Sericomyrmex and a single lower-attine ant species, Apterostigma megacephala, representing the first genomic data for either genus. These data were combined with published genomes of nine other ant species and the honey bee Apis mellifera for phylogenomic and divergence-dating analyses. The resulting phylogeny confirms relationships inferred in previous studies of fungus-farming ants. Divergence-dating analyses recovered slightly older dates than most prior analyses, estimating that attine ants originated 53.6-66.7 million of years ago, and recovered a very long branch subtending a very recent, rapid radiation of the genus Sericomyrmex. This result is further confirmed by a separate analysis of the three Sericomyrmex species, which reveals that 92.71% of orthologs have 99% - 100% pairwise-identical nucleotide sequences. We searched the transcriptomes for genes of interest, most importantly argininosuccinate synthase and argininosuccinate lyase, which are functional in other ants but which are known to have been lost in seven previously studied attine ant species. Loss of the ability to produce the amino acid arginine has been hypothesized to contribute to the obligate dependence of attine ants upon their cultivated fungi, but the point in fungus-farming ant evolution at which these losses occurred has remained unknown. We did not find these genes in any of the sequenced transcriptomes. Although expected for Sericomyrmex species, the absence of arginine anabolic genes in the lower-attine ant Apterostigma megacephala strongly suggests that the loss coincided with the origin of attine ants.
Belchior, Ceres; Sendoya, Sebastián F; Del-Claro, Kleber
2016-01-01
Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation.
Belchior, Ceres; Sendoya, Sebastián F.
2016-01-01
Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722
Distribution of invasive ants and methods for their control in Hawai'i Volcanoes National Park
Peck, Robert W.; Banko, Paul C.; Snook, Kirsten; Euaparadorn, Melody
2013-01-01
The first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites, upper boundaries of big-headed ants coincided with lower boundaries of Argentine ants. Significantly, Wasmannia auropunctata (little fire ant) was not detected during our surveys. Formicidal baits tested for controlling Argentine ants included XstinguishTM (containing fipronil at 0.01%), Maxforce® (hydramethylnon 1.0%), and Australian Distance® (pyriproxyfen 0.5%). Each bait was distributed evenly over four 2500 m2 replicate plots. Applications were repeated approximately four weeks after the initial treatment. Plots were subdivided into 25 subplots and ants monitored within each subplot using paper cards containing tuna bait at approximately one week intervals for about 14 weeks. All treatments reduced ant numbers, but none eradicated ants on any of the plots. XstinguishTM produced a strong and lasting effect, depressing ant abundance below 1% of control plot levels within the first week and for about eight weeks afterward. Maxforce® was slower to attain maximum effectiveness, reducing ants to 8% of control levels after one week and 3% after six weeks. Australian Distance® was least effective, decreasing ant abundance to 19% of control levels after one week with numbers subsequently rebounding to 40% of controls at four weeks and 72% at 10 weeks. In measurements of the proportion of bait cards at which ants were detected, XstinguishTM clearly out-performed Maxforce®, reaching a minimum detection rate of 3% of bait cards at one week compared to a low of 19% for Maxforce® two weeks following the second treatment. Although ant abundances were dramatically reduced on XstinguishTM plots, it is not currently registered for use in the USA. Our results suggest that ant abundance can be greatly reduced using registered baits, but further research is needed before even small-scale eradication of Argentine ants can be achieved. Formicidal baits tested to control big-headed ants included Amdro® (hydramethylnon 0.75%), XstinguishTM (fipronil 0.01%), Extinguish® Plus (a blend of hydramethylnon 0.365% and S- methoprene 0.25%), and Australian Distance® Plus (hydramethylnon 0.365% and pyriproxyfen 0.25%). Application methods were the same as used for Argentine ants, with baits being applied on two occasions (approximately four weeks apart) on four 2500 m2 replicate plots. All four baits reduced populations to below 2% of control plot levels within one week of treatment. Amdro® was particularly effective as no ants were detected on two of the four Amdro® plots immediately following treatment. Suppression was long-lived in three of the treatments; Amdro®, Australian Distance® Plus, and Extinguish® Plus all maintained ant abundances at levels less than 1% of control plots over 12 weeks of study. In contrast, ant abundances in XstinguishTM plots rose to 7% of control plots after four weeks and 20% after 10 weeks. Our results corroborate other recent studies indicating that small populations of big-headed ants can be controlled in natural areas using products registered in the USA.
Ants as vectors of pathogenic microorganisms in a hospital in São Paulo county, Brazil.
Máximo, Heros J; Felizatti, Henrique L; Ceccato, Marcela; Cintra-Socolowski, Priscila; Beretta, Ana Laura R Zeni
2014-08-20
The present study aimed to identify and characterize the presence of bacteria carried by ants, and check the distribution of these ants in the physical confines of a medium-sized hospital in São Paulo county, Brazil. The ants were collected from March 2012 to February 2013. Attractive non-toxic baits were used to catch the ants, and the sectors considered for the study were medical wards, outdoor areas, obstetric unit, reception area, kitchen, surgical centres, paediatric clinic and intensive care unit. Captured ants were classified using taxonomic keys and subsequently immersed in Brain Heart Infusion broth. Paratrechina spp. and Monomorium floricola ants were found most frequently in the hospital. Ants had a high capacity for carrying bacteria, and the isolates comprised 68.8% Gram-positive, spore-producing bacilli (Bacillus spp. and Listeria spp.); 14.7% Gram-negative bacilli (Pseudomonas aeruginosa and Klebsiella spp.); and 16.4% Gram-positive cocci (Streptococcus spp. and Staphylococcus aureus). Among the areas being evaluated, the medical wards had the largest number of ants captured, and therefore the most bacteria. Ants in hospitals may carry both Gram-positive and Gram-negative bacteria, and methods of controlling urban ants should be adopted and strictly adhered to, to minimize the risk of infection in hospital patients.
Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve
2003-02-01
Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.
Dejean, Alain; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Bonhomme, Camille; Talaga, Stanislas; Pelozuelo, Laurent; Hénaut, Yann; Corbara, Bruno
2018-03-01
In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks. Copyright © 2018. Published by Elsevier Masson SAS.
Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo
2018-04-05
Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.
Variation in Extrafloral Nectary Productivity Influences the Ant Foraging
2017-01-01
Extrafloral nectar is the main food source offered by plants to predatory ants in most land environments. Although many studies have demonstrated the importance of extrafloral nectaries (EFNs) to plant defense against herbivores, the influence of EFNs secretory activity pattern on predatory ants remains yet not fully understood. Here, we verified the relation between the extrafloral nectar production of a plant community in Cerrado in different times of the day, and its attractiveness to ants. The extrafloral nectaries (EFNs) of seven plant species showed higher productivity overnight. Ant abundance was higher in times of large extrafloral nectar production, however, there was no positive relation between ant richness on plants and EFNs productivity. There was temporal resource partitioning among ant species, and it indicates strong resource competition. The nectar productivity varied among plant species and time of the day, and it influenced the visitation patterns of ants. Therefore, EFNs are a key ant-plant interaction driver in the studied system. PMID:28046069
orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.
Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C
2017-08-10
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Local and Landscape Drivers of Ant Parasitism in a Coffee Landscape.
De la Mora, Aldo; Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul; Philpott, Stacy M
2015-08-01
Parasitism of ants that nest in rotting wood by eucharitid wasps was studied in order to examine whether habitat and season influence ant parasitism, vegetation complexity and agrochemical use correlate with ant parasitism, and whether specific local and landscape features of agricultural landscapes correlate with changes in ant parasitism. In a coffee landscape, 30 coffee and 10 forest sites were selected in which local management (e.g., vegetation, agrochemical use) and landscape features (e.g., distance to forest, percent of rustic coffee nearby) were characterized. Rotten logs were sampled and ant cocoons were collected from logs and cocoons were monitored for parasitoid emergence. Sixteen ant morphospecies in three ant subfamilies (Ectatomminae, Ponerinae, and Formicinae) were found. Seven ant species parasitized by two genera of Eucharitidae parasitoids (Kapala and Obeza) were reported and some ant-eucharitid associations were new. According to evaluated metrics, parasitism did not differ with habitat (forest, high-shade coffee, low-shade coffee), but did increase in the dry season for Gnamptogenys ants. Parasitism increased with vegetation complexity for Gnamptogenys and Pachycondyla and was high in sites with both high and low agrochemical use. Two landscape variables and two local factors positively correlated with parasitism for some ant genera and species. Thus, differences in vegetation complexity at the local and landscape scale and agrochemical use in coffee landscapes alter ecological interactions between parasitoids and their ant hosts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Flores-Flores, Rocío Vianey; Aguirre, Armando; Anjos, Diego V.; Neves, Frederico S.; Campos, Ricardo I.; Dáttilo, Wesley
2018-02-01
In this study, we conducted a series of experiments in a population of Vachellia constricta (Fabaceae) in the arid Tehuacan-Cuicatláan valley, Mexico, in order to evaluate if the food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions. Using an experiment with artificial nectaries, we observed that ants foraging on food sources with higher concentration of sugar are quicker in finding and attacking potential herbivorous insects. More specifically, we found that the same ant species may increase their defence effectiveness according to the quality of food available. These findings indicate that ant effectiveness in plant protection is context-dependent and may vary according to specific individual characteristics of plants. In addition, we showed that competitively superior ant species tend to dominate plants in periods with high nectar activity, emphasizing the role of the dominance hierarchy structuring ant-plant interactions. However, when high sugar food sources were experimentally available ad libitum, the nocturnal and competitively superior ant species, Camponotus atriceps, did not dominate the artificial nectaries during the day possibly due to limitation of its thermal tolerance. Therefore, temporal niche partitioning may be allowing the coexistence of two dominant ant species (Camponotus rubritorax during the day and C. atriceps at night) on V. constricta. Our findings indicate that the quality of the food source, and temporal shifts in ant dominance are key factors which structure the biotic plant defences in an arid environment.
Grangier, Julien; Lester, Philip J.
2011-01-01
This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The ‘ant-dropping’ behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726
Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L
2014-01-01
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534
Pestana, Cezar R; Silva, Carlos H T P; Uyemura, Sérgio A; Santos, Antonio C; Curti, Carlos
2010-08-01
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT "c" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT "c" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT "c" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Tetramorium tsushimae Ants Use Methyl Branched Hydrocarbons of Aphids for Partner Recognition.
Sakata, Itaru; Hayashi, Masayuki; Nakamuta, Kiyoshi
2017-10-01
In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.
Shi, Yonglei; Wang, Quanfu; Hou, Yanhua; Hong, Yanyan; Han, Xiao; Yi, Jiali; Qu, Junjie; Lu, Yi
2014-01-01
A glutathione S-transferase (GST) gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506 (namely PsGST), was cloned and expressed in Escherichia coli. The open reading frame of PsGST comprised 654 bp encoding a protein of 217 amino acids with a calculated molecular size of 24.3 kDa. The rPsGST possesses the conserved amino acid defining the binding sites of glutathione (G-site) and substrate binding pocket (H-site) in GST N_3 family. PsGST was expressed in E. coli and the recombinant PsGST (rPsGST) was purified by Ni-affinity chromatography with a high specific activity of 74.21 U/mg. The purified rPsGST showed maximum activity at 40 °C and exhibited 14.2% activity at 0 °C. It was completely inactivated at 50 °C for 40 min. These results indicated that rPsGST was a typical cold active GST with low thermostability. The enzyme was little affected by H2O2 and Triton X-100, and 50.2% of the remaining activity was detected in the presence of high salt concentrations (2M NaCl). The enzymatic Km values for CDNB and GSH was 0.22 mM and 1.01 mM, respectively. These specific enzyme properties may be related to the survival environment of Antarctic sea ice bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.
... Favorite Name: Category: Share: Yes No, Keep Private Fire Ant Bites Share | Fire ants are aggressive, venomous insects that have pinching ... across the United States, even into Puerto Rico. Fire ant stings usually occur on the feet or ...
Fast and flexible: argentine ants recruit from nearby trails.
Flanagan, Tatiana P; Pinter-Wollman, Noa M; Moses, Melanie E; Gordon, Deborah M
2013-01-01
Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources.
Fast and Flexible: Argentine Ants Recruit from Nearby Trails
Flanagan, Tatiana P.; Pinter-Wollman, Noa M.; Moses, Melanie E.; Gordon, Deborah M.
2013-01-01
Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources. PMID:23967129
USDA-ARS?s Scientific Manuscript database
Tawny crazy ants, Nylanderia fulva, is an invasive ant that are known to readily forage on the liquid, carbohydrate rich honeydew produced by hemipterans such as aphids and scales. There is interest in developing liquid ant baits that can eliminate tawny crazy ant colonies. Preliminary and anecdot...
Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant–plant mutualism
Pringle, Elizabeth G.
2014-01-01
In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant–plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output. PMID:24807259
Cammaerts, Marie-Claire
2014-01-01
Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
John C. Moser
1967-01-01
The trails of leaf-cutting ants are among the most conspicuous and long-lived of all ant roadways. In tropical America, where such ants are abundant, paths leading from underground nests are often a foot wide and extended for 100 yards or more to trees or other plants whose leaves the ants gather. The ants commonly carry their forage above their heads, and when the...
González-Teuber, Marcia; Silva Bueno, Juan Carlos; Heil, Martin; Boland, Wilhelm
2012-01-01
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained. PMID:23056362
The direct and ecological costs of an ant-plant symbiosis.
Frederickson, Megan E; Ravenscraft, Alison; Miller, Gabriel A; Arcila Hernández, Lina M; Booth, Gregory; Pierce, Naomi E
2012-06-01
How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.
Sankoda, Kenshi; Nomiyama, Kei; Yonehara, Takayuki; Kuribayashi, Tomonori; Shinohara, Ryota
2012-07-01
This study investigated environmental distributions and production mechanisms of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in the sediments from some tidal flats located in Asia. Cl-PAHs were found in sediments taken from Arao tidal flat, Kikuchigawa River and Shirakawa River. The range of ∑Cl-PAHs was from 25.5 to 483 pg g(-1) for Kikuchigawa River and Arao tidal flat, respectively. Concentrations of PAHs and Cl-PAHs showed no significant correlations (r=0.134). This result suggests that the origins of these compounds differ. In the identified Cl-PAH isomers, the most abundant Cl-PAH isomer was 9,10-dichloroanthracene (9,10-di-Cl-ANT) in the three sites. In general, concentrations of Cl-ANTs in the coastal environment are about 3-5 orders of magnitude lower than those of anthracene (ANT). However, concentration ratios between Cl-ANTs and ANT (Cl-ANTs/ANT) in the sediments ranged from 4.1% to 24.6%. This result indicated that Cl-PAHs were not generated under industrial processes but the high concentration ratios have resulted from the contribution of photochemical production of Cl-ANTs in the sediments because ANT is known to have high photochemical reactivity. For examining this phenomenon, ANT adsorbed onto glass beads was irradiated with UV under the mimicked field conditions of tidal flats. As a result, it was noticed that, while chlorinated derivatives were negligible in a light-controlled group, production of 2-Cl-ANT, 9-Cl-ANT and 9,10-diCl-ANT on the irradiated surface were found in this study. These results suggest that photochemical reaction of PAHs can be a potential source of the occurrence of Cl-PAHs in the coastal environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship
Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor
2014-01-01
Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750
Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul
2014-01-01
Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as 'hot-points' of biodiversity that urgently require special attention as a component of conservation and management programs.
Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.
2016-01-01
Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919
Consuming fire ants reduces northern bobwhite survival and weight gain
Myers, P.E.; Allen, Craig R.; Birge, Hannah E.
2014-01-01
Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.
Imported fire ants: the ants from hell!
Freeman, T M
1994-01-01
Imported fire ants may certainly be considered the ANTS FROM HELL! This review focuses on both the interesting entomology of fire ants and the important medical characteristics of fire ant stings. They sting and they kill; they destroy; they mate in mid-air; and we may not be able to stop them. However, although they inject extremely potent venom, individuals can prevent secondary infections by leaving the so-called pustules alone and not opening them. Individuals who suffer systemic reactions may receive adequate treatment with the whole body extract immunotherapy.
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.
2015-01-01
Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group – with free access of spiders and ants; exclusion group – spiders and ants excluded; ant group – absence of spiders; and spider group – absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage. PMID:26168036
Stefani, Vanessa; Pires, Tayna Lopes; Torezan-Silingardi, Helena Maura; Del-Claro, Kleber
2015-01-01
Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group - with free access of spiders and ants; exclusion group - spiders and ants excluded; ant group - absence of spiders; and spider group - absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage.
Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.
Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi
2016-03-01
Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.
Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods
Lubertazzi, David; Tschinkel, Walter R.
2003-01-01
Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237
Effect of density on traffic and velocity on trunk trails of Formica pratensis.
Hönicke, C; Bliss, P; Moritz, R F A
2015-04-01
The allocation of large numbers of workers facilitates the swift intake of locally available resources which is essential for ant colony survival. To organise the traffic between nest and food source, the black-meadow ant Formica pratensis establishes permanent trunk trails, which are maintained by the ants. To unravel the ant organisation and potential traffic rules on these trails, we analysed velocity and lane segregation under various densities by experimentally changing feeding regimes. Even under the highest ant densities achieved, we never observed any traffic jams. On the contrary, velocity increased after supplementary feeding despite an enhanced density. Furthermore, inbound ants returning to the nest had a higher velocity than those leaving the colony. Whilst at low and medium density the ants used the centre of the trail, they used the full width of the trail at high density. Outbound ants also showed some degree of lane segregation which contributes to traffic organisation.
Non-native Ants Are Smaller than Related Native Ants.
McGlynn, Terrence P
1999-12-01
I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.
Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii.
Jiang, Yan; Qi, Hui; Zhang, Xian M
2018-04-16
NAP (Naphthalene) and ANT (anthracene) usually co-exist in environment and possessed interactional effects on their biodegradation in environment. Presently, a strain of Acinetobacter johnsonii was employed to degrade NAP and ANT in single- and dual-substrate systems. NAP was utilized as prefer substrate by cells to accelerate ANT biodegradation. As much as 200 mg L -1 ANT could be entirely degraded with 1,500 mg L -1 NAP, which was beyond bacterial potential in single substrate system. Especially, the shortest biodegradation period (103 h) for ANT was observed with the presence of 50 mg L -1 NAP. By contrast, ANT showed strong inhibition on NAP degradation, while the peak biodegradation of 1,950 mg L -1 NAP with 50 mg L -1 ANT could still proceed. By introducing an inhibition constant parameter to fit the inhibition on cells, modeling indicated the substrate inhibition for NAP and ANT over the concentrations of 174 and 49 mg L -1 , respectively. Furthermore, enzyme assay revealed the pathway of meta fission in NAP biodegradation due to the appearance of catechol 2,3-dioxygenase activity, and low-level lipase excretion was also found in both NAP and ANT biodegradation, but hardly affect NAP and ANT biodegradation in the present study. To research the interplay of NAP and ANT is conducive to targeted decontamination.
Absence of jamming in ant trails: feedback control of self-propulsion and noise.
Chaudhuri, Debasish; Nagar, Apoorva
2015-01-01
We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first-order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Technical Reports Server (NTRS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-01-01
ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
The exploitation of an ant-defended host plant by a shelter-building herbivore.
Eubanks, Micky D; Nesci, Kimberly A; Petersen, Mette K; Liu, Zhiwei; Sanchez, Horacio Bonfil
1997-02-01
Larvae of a Polyhymno species (Lepidoptera: Gelechiidae) feed on the ant-defended acacia, Acacia cornigera, in the tropical lowlands of Veracruz, Mexico. Polyhymno larvae construct sealed shelters by silking together the pinna or pinnules of acacia leaves. Although larval density and larval survival are higher on acacias not occupied by ants, shelters serve as a partial refuge from the ant Pseudomyrmex ferruginea (Hymenoptera: Formicidae), which defends A. cornigera plants; thus, shelters provide Polyhymno larvae access to an ant-defended host plant. P. ferruginea ants act as the primary antiherbivore defense of A. cornigera plants, which lack the chemical and mechanical defenses of non-ant-defended acacias. Thus, defeating the ant defense of A. cornigera provides Polyhymno larvae access to an otherwise poorly defended host plant. Damage caused by Polyhymno larval feeding reaches levels which can kill A. cornigera plants.
NASA Astrophysics Data System (ADS)
Brouat, Carine; McKey, Doyle; Bessière, Jean-Marie; Pascal, Laurence; Hossaert-McKey, Martine
2000-12-01
While observations suggest that plant chemicals could be important in maintaining the specificity and permitting the functioning of ant-plant symbioses, they have been little studied. We report here the strongest evidence yet for chemical signalling between ants and plants in a specific ant-plant protection symbiosis. In the mutualism between Leonardoxa africana subsp. africana and Petalomyrmex phylax, ants continuously patrol young leaves, which are vulnerable to attacks by phytophagous insects. We provide experimental evidence for chemical mediation of ant attraction to young leaves in this system. By a comparative analysis of the related non-myrmecophytic tree L. africana subsp. gracilicaulis, we identify likely candidates for attractant molecules, and suggest they may function not only as signals but also as resources. We also propose hypotheses on the evolutionary origin of these plant volatiles, and of the responses to them by mutualistic ants.
The invasive ant, Solenopsis invicta, reduces herpetofauna richness and abundance
Allen, Craig R.; Birge, Hannah E.; Slater, J.; Wiggers, E.
2017-01-01
Amphibians and reptiles are declining globally. One potential cause of this decline includes impacts resulting from co-occurrence with non-native red imported fire ant, Solenopsis invicta. Although a growing body of anecdotal and observational evidence from laboratory experiments supports this hypothesis, there remains a lack of field scale manipulations testing the effect of fire ants on reptile and amphibian communities. We addressed this gap by measuring reptile and amphibian (“herpetofauna”) community response to successful fire ant reductions over the course of 2 years following hydramethylnon application to five 100–200 ha plots in southeastern coastal South Carolina. By assessing changes in relative abundance and species richness of herpetofauna in response to fire ant reductions, we were able to assess whether some species were particularly vulnerable to fire ant presence, and whether this sensitivity manifested at the community level. We found that herpetofauna abundance and species richness responded positively to fire ant reductions. Our results document that even moderate populations of red imported fire ants decrease both the abundance and diversity of herpetofauna. Given global herpetofauna population declines and continued spread of fire ants, there is urgency to understand the impacts of fire ants beyond anecdotal and singles species studies. Our results provides the first community level investigation addressing these dynamics, by manipulating fire ant abundance to reveal a response in herpetofauna species abundance and richness.
ERIC Educational Resources Information Center
Conway, John R.
1984-01-01
Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)
Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles
ERIC Educational Resources Information Center
Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick
2010-01-01
Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.
Insect navigation: do ants live in the now?
Graham, Paul; Mangan, Michael
2015-03-01
Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment. © 2015. Published by The Company of Biologists Ltd.
Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park
Lessard, J.-P.; Dunn, R.R.; Parker, C.R.; Sanders, N.J.
2007-01-01
We report on a systematic survey of the ant fauna occurring in hardwood forests in the Great Smoky Mountains National Park. At 22-mixed hardwood sites, we collected leaf-litter ant species using Winkler samplers. At eight of those sites, we also collected ants using pitfall and Malaise traps. In total, we collected 53 ant species. As shown in other studies, ant species richness tended to decline with increasing elevation. Leaf-litter ant assemblages were also highly nested. Several common species were both locally abundant and had broad distributions, while many other species were rarely detected. Winkler samplers, pitfall traps, and Malaise traps yielded samples that differed in composition, but not richness, from one another. Taken together, our work begins to illuminate the factors that govern the diversity, distribution, abundance, and perhaps rarity of ants of forested ecosystems in the Great Smoky Mountains National Park.
Penn, Hannah J; Dale, Andrew M
2017-08-01
Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Gammans, Nicola; Drummond, Frank; Groden, Eleanor
2018-05-16
We investigated the impact of an invasive ant species from Europe, Myrmica rubra (L.), on a myrmecochorous system (seeds dispersed by ants) in its invaded range in North America. We assessed: 1) how M. rubra process the myrmecochorous diapsores (seeds and elaiosome as a single dispersal unit transported by ants) in comparison with native ants; 2) its preference for common native and invasive diaspore species relative to native ants; 3) how far they disperse diaspores in the field; and 4) the diaspore removal rate by invertebrates and vertebrates in infested areas compared to noninvaded sites. Field experiments demonstrated higher diaspore removal rates over a 10-min and 24-h period by M. rubra compared to native ants. M. rubra's diaspore dispersal distance was 40% greater compared to native ants. In two of three laboratory studies and one field study, there was no significant difference between the seed species which M. rubra and native ants selected. Our data suggest no long-term deleterious effects of M. rubra's invasion on diaspore dispersal in the Maine plant community that is comprised of both native and invasive species. This implies that M. rubra benefits from the myrmechorous plant species' diaspores by increasing their dispersal range away from the parent plant and potentially reducing seed predation. However, it is not known whether the fact that the native ant fauna and M. rubra are attracted to the same plant species' diaspores creates a high level of competition between the ants with deleterious effects on the native ant community.
Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb
Bollmann, Felix; Saville, David; Riedel, Michael
2018-01-01
The number of plants pollinated by ants is surprisingly low given the abundance of ants and the fact that they are common visitors of angiosperms. Generally ants are considered as nectar robbers that do not provide pollination service. We studied the pollination system of the endangered dry grassland forb Euphorbia seguieriana and found two ant species to be the most frequent visitors of its flowers. Workers of Formica cunicularia carried five times more pollen than smaller Tapinoma erraticum individuals, but significantly more viable pollen was recovered from the latter. Overall, the viability of pollen on ant cuticles was significantly lower (p < 0.001)—presumably an antibiotic effect of the metapleural gland secretion. A marking experiment suggested that ants were unlikely to facilitate outcrossing as workers repeatedly returned to the same individual plant. In open pollinated plants and when access was given exclusively to flying insects, fruit set was nearly 100%. In plants visited by ants only, roughly one third of flowers set fruit, and almost none set fruit when all insects were excluded. The germination rate of seeds from flowers pollinated by flying insects was 31 ± 7% in contrast to 1 ± 1% resulting from ant pollination. We conclude that inbreeding depression may be responsible for the very low germination rate in ant pollinated flowers and that ants, although the most frequent visitors, play a negligible or even deleterious role in the reproduction of E. seguieriana. Our study reiterates the need to investigate plant fitness effects beyond seed set in order to confirm ant-plant mutualisms. PMID:29479496
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.
Fock, Heino O; Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems.
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health
Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems. PMID:27509185
LeVan, Katherine E; Hung, Keng-Lou James; McCann, Kyle R; Ludka, John T; Holway, David A
2014-01-01
Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.
Harvester ant bioassay for assessing hazardous chemical waste sites. [Pogonomyrmex owhyeei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gano, K.A.; Carlile, D.W.; Rogers, L.E.
1985-05-01
A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three complex industrial waste residuals, wood preservative sludge, drilling fluid, and slop oil; and three heavy metals, copper zinc, and cadium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants weremore » sensitive to the insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material followed by Dieldrin, Endrin, wood preservative sludge, drilling fluid, and slop oil. 12 refs., 2 figs., 2 tabs.« less
Gocník, M; Fislová, T; Mucha, V; Sládková, T; Russ, G; Kostolansky, F; Varecková, E
2008-04-01
The haemagglutinin (HA) of influenza A virus consists of two glycopolypeptides designated HA1 and HA2. Antibodies recognizing HA1 inhibit virus haemagglutination, neutralize virus infectivity and provide good protection against infection, but do not cross-react with the HA of other subtypes. Little is known regarding the biological activities of antibodies against HA2. To study the role of antibodies directed against HA2 during influenza virus infection, two vaccinia virus recombinants (rVVs) were used expressing chimeric molecules of HA, in which HA1 and HA2 were derived from different HA subtypes. The KG-11 recombinant expressed HA1 from A/PR/8/34 (H1N1) virus and HA2 from A/NT/60 (H3N2) virus, whilst KG-12 recombinant expressed HA1 from A/NT/60 virus and HA2 from A/PR/8/34 virus. Immunization of BALB/c mice with rVV expressing HA2 of the HA subtype homologous to the challenge virus [A/PR/8/34 (H1N1) or A/Mississippi/1/85 (H3N2)] did not prevent virus infection, but nevertheless resulted in an increase in mice survival and faster elimination of virus from the lungs. Passive immunization with antibodies purified from mice immunized with rVVs confirmed that antibodies against HA2 were responsible for the described effect on virus infection. Based on the facts that HA2 is a rather conserved part of the HA and that antibodies against HA2, as shown here, may moderate virus infection, future vaccine design should deal with the problem of how to increase the HA2 antibody response.
Leal, Laura Carolina; Lima Neto, Mário Correia; de Oliveira, Antônio Fernando Morais; Andersen, Alan N; Leal, Inara R
2014-02-01
Recent evidence suggests that the traditional view of myrmecochory as a highly diffuse interaction between diaspores and a wide range of ant species attracted to their elaiosomes may not be correct. The effectiveness of dispersal varies markedly among ant species, and combined with differential attractiveness of diaspores due to elaiosome size and composition, this raises the potential for myrmecochorous plants to target ant species that offer the highest quality dispersal services. We ask the question: Do particular physical and chemical traits of elaiosomes result in disproportionate removal of Euphorbiaceae diaspores by high-quality disperser ants in Caatinga vegetation of north-eastern Brazil? We offered seeds of five euphorb species that varied in morphological and chemical traits of elaiosomes to seed-dispersing ants. High-quality seed-disperser ants (species of Dinoponera, Ectatomma and Camponotus) were identified as those that rapidly collected and transported diaspores to their nests, often over substantial distances, whereas low-quality disperser ants (primarily species of Pheidole and Solenopsis) typically fed on elaiosomes in situ, and only ever transported diaspores very short distances. Low-quality disperser ants were equally attracted to the elaiosomes of all study species. However, high-quality dispersers showed a strong preference for diaspores with the highest elaiosome mass (and especially proportional mass). As far as we are aware, this is the first study to identify a mechanism of diaspore selection by high-quality ant dispersers based on elaiosome traits under field conditions. Our findings suggest that myrmecochorous plants can preferentially target high-quality seed-disperser ants through the evolution of particular elaiosome traits.
Tracing the Rise of Ants - Out of the Ground
Lucky, Andrea; Trautwein, Michelle D.; Guénard, Benoit S.; Weiser, Michael D.; Dunn, Robert R.
2013-01-01
The evolution of ants (Hymenoptera: Formicidae) is increasingly well-understood due to recent phylogenetic analyses, along with estimates of divergence times and diversification rates. Yet, leading hypotheses regarding the ancestral habitat of ants conflict with new findings that early ant lineages are cryptic and subterranean. Where the ants evolved, in respect to habitat, and how habitat shifts took place over time have not been formally tested. Here, we reconstruct the habitat transitions of crown-group ants through time, focusing on where they nest and forage (in the canopy, litter, or soil). Based on ancestral character reconstructions, we show that in contrast to the current consensus based on verbal arguments that ants evolved in tropical leaf litter, the soil is supported as the ancestral stratum of all ants. We also find subsequent movements up into the litter and, in some cases, into the canopy. Given the global importance of ants, because of their diversity, ecological influence and status as the most successful eusocial lineage on Earth, understanding the early evolution of this lineage provides insight into the factors that made this group so successful today. PMID:24386323
Cammaerts, Marie-Claire
2014-01-01
Abstract Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants’ ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102
Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations.
Brown, Charles R; Page, Catherine E; Robison, Grant A; O'Brien, Valerie A; Booth, Warren
2015-06-01
The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74-90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance. © 2015 The Society for Vector Ecology.
Ex Ante Research Explored: Numbers, Types and Use of Ex Ante Policy Studies by the Dutch Government
ERIC Educational Resources Information Center
Haarhuis, Carolien Maria Klein; Smit, Monika
2017-01-01
Ex ante research can contribute to evidence-informed policies. In this article, we explore numbers and types of ex ante studies as well as their use. First, we took stock of a potentially wide range of ex ante studies published by the Dutch government between 2005 and 2011, applying a systematic approach. Though unevenly distributed across…
Harvester ant bioassay for assessing hazardous chemical waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gano, K.A.; Carlile, D.W.; Rogers, L.E.
1984-12-01
A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three oil-like compounds, wood preservative, drilling fluid, and slop oil; and three heavy metals, copper, zinc, and cadmium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants were sensitive to themore » insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material, followed by Dieldrin, Endrin, wood preservative, drilling fluid, and slop oil. 10 refs., 2 figs., 2 tabs.« less
Synchronizable Series Expressions. Part 1. User’s Manual for the OSS Macro Package.
1987-11-01
and prognS are often used in such a wav that ant Oss serlv, grat uitonisl% ends tip as, the ret urn valute. For examiple. the iii ai itI rit ent of...as j)0sSIbI1l. -11hi akes it straighitforwa~rd to midi (ert arid thle interaction of the, jIe-cffect,, wilit a sigeniapi)ed subexpression. Several
Methods for Casting Subterranean Ant Nests
Tschinkel, Walter R.
2010-01-01
The study of subterranean ant nests has been impeded by the difficulty of rendering their structures in visible form. Here, several different casting materials are shown to make perfect casts of the underground nests of ants. Each material (dental plaster, paraffin wax, aluminum, zinc) has advantages and limitations, which are discussed. Some of the materials allow the recovery of the ants entombed in the casts, allowing a census of the ants to be connected with features of their nest architecture. The necessary equipment and procedures are described in the hope that more researchers will study this very important aspect of ant natural history. PMID:20673073
Looking and homing: how displaced ants decide where to go.
Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang
2014-01-01
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s(-1) and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information.
Use of fluorescent ANTS to examine the BBB-permeability of polysaccharide
Christopher, Kevin; Makani, Vishruti; Judy, Wesley; Lee, Erica; Chiaia, Nicolas; Kim, Dong Shik; Park, Joshua
2015-01-01
Recently, some polysaccharides showed therapeutic potentials for the treatment of neurodegenerative diseases while the most important property, their permeability to the blood brain barrier (BBB) that sheathes the brain and spinal cord, is not yet determined. The determination has been delayed by the difficulty in tracking a target polysaccharide among endogenous polysaccharides in animal. We developed an easy way to examine the BBB-permeability and, possibly, tissue distribution of a target polysaccharide in animal. We tagged a polysaccharide with fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS) for tracking. We also developed a simple method to separate ANTS-tagged polysaccharide from unconjugated free ANTS using 75% ethanol. After ANTS-polysaccharide was intra-nasally administered into animals, we could quantify the amounts of ANTS-polysaccharide in the brain and the serum by fluorocytometry. We could also separate free ANTS-polysaccharide from serum proteins using trichloroacetic acid (TCA) and 75% ethanol. Our method will help to track a polysaccharide in animal easily. • ANTS-labeling is less tedious than but as powerful as radiolabeling for tracking a target polysaccharide in animal. • Our simple method can separate structurally intact ANTS-polysaccharide from animal serum and tissues. • This method is good for the fluorometry-based measurement of ANTS-conjugated macromolecules in tissues. PMID:25914873
Bryn T.M. Dentinger; D.Jean Lodge; Andrew B. Munkacsi; Dennis E. Desjardin; David J. McLaughlin
2009-01-01
The ~50 million-year-old fungus-farming ant mutualism is a classic example of coevolution, involving ants that subsist on asexual, fungal biomass, in turn propagating the fungus clonally through nest-to-nest transmission. Most mutualistic ants cultivate two closely related groups of gilled mushrooms, whereas one small group of ants in the genus ...
Crab regulation of cross-ecosystem resource transfer by marine foraging fire ants.
Garcia, Erica A; Bertness, Mark D; Alberti, Juan; Silliman, Brian R
2011-08-01
Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.
Mutualism between co-introduced species facilitates invasion and alters plant community structure
Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.
2015-01-01
Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283
Electric ants: A cross-disciplinary approach to understanding insect behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slowik, T.J.; Thorvilson, H.G.; Green, B.L.
1996-12-31
The response and attraction of the red imported fire ant, Solenopsis invicta, to electrical equipment was examined using an interdisciplinary approach. Entomologists specializing in fire ant behavior combined expertise with electrical engineers to investigate the economically damaging interaction of fire ants with electrical circuitry. Knowledge from the realms of physics, engineering, and biology were integrated in experimentation to test for a fire ant response to electric fields and magnetic fields associated with electrical equipment. It was determined that fire ants react to electrified conductive material and the alternating-current magnetic fields associated with electricity.
Bajracharya, Prati; Lu, Hsiao-Ling; Pietrantonio, Patricia V.
2014-01-01
Neuropeptides and their receptors play vital roles in controlling the physiology and behavior of animals. Short neuropeptide F (sNPF) signaling regulates several physiological processes in insects such as feeding, locomotion, circadian rhythm and reproduction, among others. Previously, the red imported fire ant (Solenopsis invicta) sNPF receptor (S. invicta sNPFR), a G protein-coupled receptor, was immunolocalized in queen and worker brain and queen ovaries. Differential distribution patterns of S. invicta sNPFR protein in fire ant worker brain were associated both with worker subcastes and with presence or absence of brood in the colony. However, the cognate ligand for this sNPFR has not been characterized and attempts to deorphanize the receptor with sNPF peptides from other insect species which ended in the canonical sequence LRLRFamide, failed. Receptor deorphanization is an important step to understand the neuropeptide receptor downstream signaling cascade. We cloned the full length cDNA of the putative S. invicta sNPF prepropeptide and identified the putative “sNPF” ligand within its sequence. The peptide ends with an amidated Tyr residue whereas in other insect species sNPFs have an amidated Phe or Trp residue at the C-terminus. We stably expressed the HA-tagged S. invicta sNPFR in CHO-K1 cells. Two S. invicta sNPFs differing at their N-terminus were synthesized that equally activated the sNPFR, SLRSALAAGHLRYa (EC50 = 3.2 nM) and SALAAGHLRYa (EC50 = 8.6 nM). Both peptides decreased the intracellular cAMP concentration, indicating signaling through the Gαi-subunit. The receptor was not activated by sNPF peptides from other insect species, honey bee long NPF (NPY) or mammalian PYY. Further, a synthesized peptide otherwise identical to the fire ant sequence but in which the C-terminal amidated amino acid residue ‘Y’ was switched to ‘F’, failed to activate the sNPFR. This discovery will now allow us to investigate the function of sNPY and its cognate receptor in fire ant biology. PMID:25310341
Andersen, Sandra B; Yek, Sze Huei; Nash, David R; Boomsma, Jacobus J
2015-02-25
The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population.
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
Objective To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. Methods We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. Results P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. Conclusions The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures. PMID:26529407
Bot, A N; Rehner, S A; Boomsma, J J
2001-10-01
We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf-cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant-fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Amplified fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, confirming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants. We show that incompatibility between ants and transplanted, genetically different cultivars is indeed due to active killing of the novel cultivar by the ants. This incompatibility disappears when ants are force-fed the novel cultivar for about a week, a result that is consistent with our hypothesis of recognition induced by the resident fungus and eventual replacement of incompatibility compounds during force-feeding.
Swarm Intelligence Optimization and Its Applications
NASA Astrophysics Data System (ADS)
Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu
Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.
Ants: the supreme soil manipulators
USDA-ARS?s Scientific Manuscript database
This review focuses on the semiochemical interactions between ants and their soil environment. Ants occupy virtually every ecological niche and have evolved mechanisms to not just cope with, but also manipulate soil organisms. The metapleural gland, specific to ants was thought to be the major sourc...
Just follow your nose: homing by olfactory cues in ants.
Steck, Kathrin
2012-04-01
How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C
2018-01-01
Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.
Bologna, Audrey; Detrain, Claire
2015-01-01
Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.
Desert ants achieve reliable recruitment across noisy interactions
Razin, Nitzan; Eckmann, Jean-Pierre; Feinerman, Ofer
2013-01-01
We study how desert ants, Cataglyphis niger, a species that lacks pheromone-based recruitment mechanisms, inform each other about the presence of food. Our results are based on automated tracking that allows us to collect a large database of ant trajectories and interactions. We find that interactions affect an ant's speed within the nest. Fast ants tend to slow down, whereas slow ones increase their speed when encountering a faster ant. Faster ants tend to exit the nest more frequently than slower ones. So, if an ant gains enough speed through encounters with others, then she tends to leave the nest and look for food. On the other hand, we find that the probability for her to leave the nest depends only on her speed, but not on whether she had recently interacted with a recruiter that has found the food. This suggests a recruitment system in which ants communicate their state by very simple interactions. Based on this assumption, we estimate the information-theoretical channel capacity of the ants’ pairwise interactions. We find that the response to the speed of an interacting nest-mate is very noisy. The question is then how random interactions with ants within the nest can be distinguished from those interactions with a recruiter who has found food. Our measurements and model suggest that this distinction does not depend on reliable communication but on behavioural differences between ants that have found the food and those that have not. Recruiters retain high speeds throughout the experiment, regardless of the ants they interact with; non-recruiters communicate with a limited number of nest-mates and adjust their speed following these interactions. These simple rules lead to the formation of a bistable switch on the level of the group that allows the distinction between recruitment and random noise in the nest. A consequence of the mechanism we propose is a negative effect of ant density on exit rates and recruitment success. This is, indeed, confirmed by our measurements. PMID:23486172
Berman, Maïa; Andersen, Alan N.; Hély, Christelle; Gaucherel, Cédric
2013-01-01
Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities. PMID:23840639
Seed Dispersal by Ants in the Semi-arid Caatinga of North-east Brazil
Leal, Inara R.; Wirth, Rainer; Tabarelli, Marcelo
2007-01-01
Background and Aims Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km2 area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. Methods Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. Key Results Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12·8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38–84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. Conclusions Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not to be restricted to regions of nutrient-impoverished soil or to fire-prone regions. PMID:17430980
Berghoff, Stefanie M; Maschwitz, Ulrich; Linsenmair, K Eduard
2003-03-01
The majority of army ant species forage hypogaeically. Due to the difficulties in observing these ants, their potential influence on hypogaeic and epigaeic arthropod communities has not yet been investigated. As the first hypogaeically foraging army ant studied in detail, we attracted Dorylus laevigatus to areas monitored for their arthropod diversity. Here, for the first time, the same sites were sampled before and after an army ant raid. Furthermore, interactions between D. laevigatus and the five most common ground-nesting ant species were noted and their life-history traits compared, allowing first inferences on possible mechanisms of their coexistence. The occurrence of D. laevigatus within a study plot had no evident effect on the number of arthropod taxa or individuals collected with epigaeic and hypogaeic pitfall traps. Likewise, juvenile arthropods, which are less mobile and thus are potentially easier prey for D. laevigatus, showed no differences in their collected numbers before and after the army ant had visited a plot. However, significantly fewer ant species were collected with hypogaeic traps after D. laevigatus had been within the study plots, indicating a possible predation of D. laevigatus especially on two Pseudolasius and one Pheidole species. The five most common ground-foraging ant species demonstrated their ability to avoid, kill, and even prey on the army ant. The reaction of Lophomyrmex bedoti towards D. laevigatus indicated the former to be a potential prey species, while Pachycondyla sp. 2 showed signs of "enemy specification." Odontoponera diversus and O. transversa actively preyed on D. laevigatus, while Pheidologeton affinis fought with D. laevigatus over resources. All ant species could co-occur with D. laevigatus at palm oil baits. Adding to the differences detected in previous studies between D. laevigatus and epigaeically foraging army ant species, the occurrence of this hypogaeic army ant seems to have less devastating effects on arthropod community compositions than those of epigaeically mass raiding species.
Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira
2016-03-01
Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.
Koptur, Suzanne; Jones, Ian M.; Peña, Jorge E.
2015-01-01
A field experiment was conducted with outplantings of the native perennial shrub Senna mexicana var. chapmanii in a semi-natural area adjacent to native pine rockland habitat in southern Florida. The presence of ants and the availability of extrafloral nectar were manipulated in a stratified random design. Insect communities were monitored and recorded over a period of six months with a view to addressing three main questions. Do ants provide biotic defense against key herbivores on S. chapmanii? Is the presence of ants on S. chapmanii mediated by EFN? Finally, are there ecological costs associated with the presence of ants on S. chapmanii, such as a reduction in alternative predator or parasitoid numbers? Herbivores on S. chapmanii included immature stages of three pierid butterflies, and adult weevils. Eight species of ants were associated with the plants, and other predators included spiders, ladybugs, wasps, and hemipterans. Parasitic, haemolymph-sucking midges (Ceratopogonidae) and parasitoid flies were also associated with the caterpillar herbivores, and possibly the extrafloral nectaries of the plants. The presence of ants did not appear to influence oviposition by butterflies, as numbers of lepidopterans of all developmental stages did not differ among treatments. Significantly more late instar caterpillars, however, were observed on plants with ants excluded, indicating that ants remove small caterpillars from plants. Substantially more alternative predators (spiders, ladybugs, and wasps) were observed on plants with ants excluded. Rates of parasitization did not differ among the treatments, but there were substantially fewer caterpillars succumbing to virus among those collected from control plants. We provide a rare look at facultative ant-plant mutualisms in the context of the many other interactions with which they overlap. We conclude that ants provide some biotic defense against herbivores on S. chapmanii, and plants benefit overall from the presence of ants, despite negative impacts on non-ant predators. PMID:26394401
Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul
2014-01-01
Introduction Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. Materials and Methods We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. Results We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Conclusions Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as ‘hot-points’ of biodiversity that urgently require special attention as a component of conservation and management programs. PMID:24941047
Biotic and abiotic controls of argentine ant invasion success at local and landscape scales
Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.
2007-01-01
Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where introduced species will occur and how their range limits may shift as a result of climate change. ?? 2007 by the Ecological Society of America.
Bujan, Jelena; Yanoviak, Stephen P; Kaspari, Michael
2016-09-01
Desiccation resistance, the ability of an organism to reduce water loss, is an essential trait in arid habitats. Drought frequency in tropical regions is predicted to increase with climate change, and small ectotherms are often under a strong desiccation risk. We tested hypotheses regarding the underexplored desiccation potential of tropical insects. We measured desiccation resistance in 82 ant species from a Panama rainforest by recording the time ants can survive desiccation stress. Species' desiccation resistance ranged from 0.7 h to 97.9 h. We tested the desiccation adaptation hypothesis, which predicts higher desiccation resistance in habitats with higher vapor pressure deficit (VPD) - the drying power of the air. In a Panama rainforest, canopy microclimates averaged a VPD of 0.43 kPa, compared to a VPD of 0.05 kPa in the understory. Canopy ants averaged desiccation resistances 2.8 times higher than the understory ants. We tested a number of mechanisms to account for desiccation resistance. Smaller insects should desiccate faster given their higher surface area to volume ratio. Desiccation resistance increased with ant mass, and canopy ants averaged 16% heavier than the understory ants. A second way to increase desiccation resistance is to carry more water. Water content was on average 2.5% higher in canopy ants, but total water content was not a good predictor of ant desiccation resistance or critical thermal maximum (CT max), a measure of an ant's thermal tolerance. In canopy ants, desiccation resistance and CT max were inversely related, suggesting a tradeoff, while the two were positively correlated in understory ants. This is the first community level test of desiccation adaptation hypothesis in tropical insects. Tropical forests do contain desiccation-resistant species, and while we cannot predict those simply based on their body size, high levels of desiccation resistance are always associated with the tropical canopy.
Extrafloral nectar content alters foraging preferences of a predatory ant
Wilder, Shawn M.; Eubanks, Micky D.
2010-01-01
We tested whether the carbohydrate and amino acid content of extrafloral nectar affected prey choice by a predatory ant. Fire ants, Solenopsis invicta, were provided with artificial nectar that varied in the presence of carbohydrates and amino acids and were then provided with two prey items that differed in nutritional content, female and male crickets. Colonies of fire ants provided with carbohydrate supplements consumed less of the female crickets and frequently did not consume the high-lipid ovaries of female crickets. Colonies of fire ants provided with amino acid supplements consumed less of the male crickets. While a number of studies have shown that the presence of extrafloral nectar or honeydew can affect ant foraging activity, these results suggest that the nutritional composition of extrafloral nectar is also important and can affect subsequent prey choice by predatory ants. Our results suggest that, by altering the composition of extrafloral nectar, plants could manipulate the prey preferences of ants foraging on them. PMID:19864270
LIVESTOCK GRAZING EFFECTS ON ANT COMMUNITIES IN THE EASTERN MOJAVE DESERT, USA
The effects of livestock grazing on composition and structure of ant communities were examined in the eastern Mojave Desert, USA for the purpose of evaluating ant communities as potential indicators of rangeland condition. Metrics for ant communities, vegetation, and other groun...
Fire ant microsporidia acquired by parasitoid flies of fire ants
USDA-ARS?s Scientific Manuscript database
The microsporidium Kneallhazia (formerly Thelohania) solenopsae and parasitoid flies in the genus Pseudacteon are natural enemies of the invasive fire ant, Solenopsis invicta. Pseudacteon flies oviposit into adult fire ants, where maggots that eclose from eggs migrate to the ants’ head, pupate, and...
Ueda, Shouhei; Komatsu, Takashi; Itino, Takao; Arai, Ryusuke; Sakamoto, Hironori
2016-11-03
Large blue butterflies, Phengaris (Maculinea), are an important focus of endangered-species conservation in Eurasia. Later-instar Phengaris caterpillars live in Myrmica ant nests and exploit the ant colony's resources, and they are specialized to specific host-ant species. For example, local extinction of P. arion in the U. K. is thought to have been due to the replacement of its host-ant species with a less-suitable congener, as a result of changes in habitat. In Japan, Myrmica kotokui hosts P. teleius and P. arionides caterpillars. We recently showed, however, that the morphological species M. kotokui actually comprises four genetic clades. Therefore, to determine to which group of ants the hosts of these two Japanese Phengaris species belong, we used mitochondrial COI-barcoding of M. kotokui specimens from colonies in the habitats of P. teleius and P. arionides to identify the ant clade actually parasitized by the caterpillars of each species. We found that these two butterfly species parasitize different ant clades within M. kotokui.
Infection of army ant pupae by two new parasitoid mites (Mesostigmata: Uropodina).
Brückner, Adrian; Klompen, Hans; Bruce, Andrew Iain; Hashim, Rosli; von Beeren, Christoph
2017-01-01
A great variety of parasites and parasitoids exploit ant societies. Among them are the Mesostigmata mites, a particularly common and diverse group of ant-associated arthropods. While parasitism is ubiquitous in Mesostigmata, parasitoidism has only been described in the genus Macrodinychus . Yet information about the basic biology of most Macrodinychus species is lacking. Out of 24 formally described species, information about basic life-history traits is only available for three species. Here we formally describe two new Macrodinychus species, i.e. Macrodinychus hilpertae and Macrodinychus derbyensis . In both species, immature stages developed as ecto-parasitoids on ant pupae of the South-East Asian army ant Leptogenys distinguenda . By piercing the developing ant with their chelicera, the mites apparently suck ant hemolymph, ultimately killing host individuals. We compare infection rates among all studied Macrodinychus species and discuss possible host countermeasures against parasitoidism. The cryptic lifestyle of living inside ant nests has certainly hampered the scientific discovery of Macrodinychus mites and we expect that many more macrodinychid species await scientific discovery and description.
Moreira, Xoaquín; Mooney, Kailen A.; Zas, Rafael; Sampedro, Luis
2012-01-01
While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance. PMID:22951745
Savage, Amy M; Rudgers, Jennifer A
2013-06-01
In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.
Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps.
Oberst, Sebastian; Bann, Glen; Lai, Joseph C S; Evans, Theodore A
2017-02-01
Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships. © 2017 John Wiley & Sons Ltd/CNRS.
Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad
2003-11-01
For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and diverse tropical omnivore communities.
A synoptic review of the ant genera (Hymenoptera, Formicidae) of the Philippines
General, David M.; Alpert, Gary D.
2012-01-01
Abstract An overview of the history of myrmecology in the Philippine archipelago is presented. Keys are provided to the 11 ant subfamilies and the 92 ant genera known from the Philippines. Eleven ant genera (12%), including 3 undescribed genera, are recorded for the first time from the Philippines. The biology and ecology of the 92 genera, illustrated by full-face and profile photo-images, of Philippine ants are summarized in the form of brief generic accounts. A bibliography of significant taxonomic and behavioral papers on Philippine ants and a checklist of valid species and subspecies and their island distributions are provided. PMID:22767999
A synoptic review of the ant genera (Hymenoptera, Formicidae) of the Philippines.
General, David M; Alpert, Gary D
2012-01-01
An overview of the history of myrmecology in the Philippine archipelago is presented. Keys are provided to the 11 ant subfamilies and the 92 ant genera known from the Philippines. Eleven ant genera (12%), including 3 undescribed genera, are recorded for the first time from the Philippines. The biology and ecology of the 92 genera, illustrated by full-face and profile photo-images, of Philippine ants are summarized in the form of brief generic accounts. A bibliography of significant taxonomic and behavioral papers on Philippine ants and a checklist of valid species and subspecies and their island distributions are provided.
Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.
Galen, Candace; Geib, Jennifer C
2007-05-01
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.
An ants-eye view of an ant-plant protection mutualism
Lanan, M. C.; Bronstein, J. L.
2013-01-01
Ant protection of extrafloral nectar-secreting plants (EFN plants) is a common form of mutualism found in most habitats around the world. However, very few studies have considered these mutualisms from the ant, rather than the plant, perspective. In particular, a whole-colony perspective that takes into account the spatial structure and nest arrangement of the ant colonies that visit these plants has been lacking, obscuring when and how colony-level foraging decisions might affect tending rates on individual plants. Here, we experimentally demonstrate that recruitment of Crematogaster opuntiae (Buren) ant workers to the extrafloral nectar-secreting cactus Ferocactus wislizeni (Englem) is not independent between plants up to 5m apart. Colony territories of C. opuntiae are large, covering areas of up to 5000m2, and workers visit between five and thirty-four extrafloral nectar-secreting barrel cacti within the territories. These ants are highly polydomous, with up to twenty nest entrances dispersed throughout the territory and interconnected by trail networks. Our study demonstrates that worker recruitment is not independent within large polydomous ant colonies, highlighting the importance of considering colonies rather than individual workers as the relevant study unit within ant/plant protection mutualisms PMID:23515612
Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants.
Eyer, P A; Leniaud, L; Darras, H; Aron, S
2013-02-01
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single-queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis. © 2012 Blackwell Publishing Ltd.
Czaczkes, Tomer J.; Heinze, Jürgen
2015-01-01
Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. PMID:26063845
An ant colony based algorithm for overlapping community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di
2015-06-01
Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.
The Biochemical Toxin Arsenal from Ant Venoms
Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain
2016-01-01
Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882
Model Specification Searches Using Ant Colony Optimization Algorithms
ERIC Educational Resources Information Center
Marcoulides, George A.; Drezner, Zvi
2003-01-01
Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.
Enslaved ants: not as helpless as they were thought to be.
Czechowski, W; Godzińska, E J
Slavery in ants involves robbing of brood of host ant species and rearing captured individuals in the enslaver's nest. Whereas slaves of facultative slave-makers increase the workforce of the colony, in obligate slave-makers presence of slaves is vital for colony survival. Until recently, it was generally believed that enslaved workers act solely for the benefit of their social parasite and are wholly lost for their own colony and population. However, evidence that slaves may act also in favour of their own maternal population by engaging in various forms of the so-called slave rebellions is already quite extensive and may be found in both old and recent myrmecological literature, although, unfortunately, these data are often neglected or overlooked. They may be classified into four categories: (1) acts of physical aggression directed by slaves to slave-makers, (2) attempts of slaves to reproduce within a slave-maker colony, (3) 'sabotage', i.e. activities of slaves leading to weakening of the slave-maker colony and population, and (4) slave emancipation, i.e. partial or complete self-liberation of slaves from slave-maker colonies. In this review, we present and discuss all these diverse (often interrelated) expressions of slave opposition to their enslavers, focussing our discussion on both proximate and evolutionary causation of the discussed phenomena. We also indicate some open questions which remain to be answered by future research.
Biogeography of mutualistic fungi cultivated by leafcutter ants
USDA-ARS?s Scientific Manuscript database
Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the USA, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA-sequence an...
Evolution and ecology of directed aerial descent in arboreal ants.
Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert
2011-12-01
Directed aerial descent (DAD) is used by a variety of arboreal animals to escape predators, to remain in the canopy, and to access resources. Here, we build upon the discovery of DAD in ants of tropical canopies by summarizing its known phylogenetic distribution among ant genera, and within both the subfamily Pseudomyrmecinae and the genus Cephalotes. DAD has multiple evolutionary origins in ants, occurring independently in numerous genera in the subfamilies Myrmicinae, Formicinae, and Pseudomyrmecinae. Ablation experiments and video recordings of ants in a vertical wind tunnel showed that DAD in Cephalotes atratus is achieved via postural changes, specifically orientation of the legs and gaster. The occurrence of DAD in Formicinae indicates that the presence of a postpetiole is not essential for the behavior. Evidence to date indicates that gliding behavior is accomplished by visual targeting mediated by the compound eyes, and is restricted to diurnally active ants that nest in trees. Occlusion of ocelli in Pseudomyrmex gracilis workers had no effect on their success or performance in gliding. Experimental assessment of the fate of ants that fall to the understory showed that ants landing in water are 15 times more likely to suffer lethal attacks than are ants landing in leaf litter. Variation in both the aerodynamic mechanisms and selective advantages of DAD merits further study given the broad taxonomic diversity of arboreal ants that engage in this intriguing form of flight.
Insecticide Transfer Efficiency and Lethal Load in Argentine Ants
Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.; ...
2015-07-03
Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), butmore » dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.« less
Insecticide Transfer Efficiency and Lethal Load in Argentine Ants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.
Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), butmore » dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.« less
Effect of exit locations on ants escaping a two-exit room stressed with repellent
NASA Astrophysics Data System (ADS)
Wang, Shujie; Cao, Shuchao; Wang, Qiao; Lian, Liping; Song, Weiguo
2016-09-01
In order to investigate the effect of the distance between two exits on ant evacuation efficiency and the behavior of ants escaping from a two-exit room, we conducted ant egress experiments using Camponotus japonicus in multiple situations. We found that the ants demonstrated the phenomenon of "symmetry breaking" in this stress situation. It was also shown that different locations for the exits obviously affected the ants' egress efficiency by measuring the time intervals between individual egress and flow rate in eight repeated experiments, each of which contained five different distance between the two exits. In addition, it is demonstrated that there are differences between the predictions of Social Force Model of pedestrians and the behaviors of ants in stress conditions through comparing some important behavioral features, including position, trajectory, velocity, and density map.
Peeters, Christian; Foldi, Imre; Matile-Ferrero, Danièle; Fisher, Brian L
2017-01-01
Mutualisms between ants and sap-sucking insects generally involve clear benefits for both partners: the ants provide protection in exchange for honeydew. However, a single ant genus associates with armoured scale insects (Diaspididae) that do not excrete honeydew. We studied three colonies of Melissotarsus emeryi ants from two localities in Mozambique. Vast numbers of the diaspidid Morganella conspicua occupied galleries dug by the ants under the bark of living trees. Unlike free-living M. conspicua and other diaspidids, M. conspicua living with ants are known to lack shields, likely because they gain protection against enemies and desiccation. Nevertheless, we documented the occurrence of rare individuals with shields inside ant galleries, indicating that their glands continue to secrete wax and proteins as building material. This is likely to constitute a significant portion of the ants' diet, in addition to diaspidid exuviae and excretions from the Malpighian tubules. Indeed, Melissotarsus workers cannot walk outside the galleries due to modified middle legs, forcing them to obtain all nourishment within the tree. Melissotarsus founding queens, however, must locate a suitable host tree while flying, and acquire diaspidid crawlers. This mutualism involves ants that are highly specialised to chew through living wood, and diaspidids that can also live freely outside the bark. It is extremely widespread in Africa and Madagascar, recorded from 20 tree families, and harmful effects on plant hosts require rapid study.
Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.
2014-01-01
Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a “back-seat driver” role and affects pest management strategies. As demonstrated by T. sessile, this article concludes native species can become back-seat drivers of biodiversity loss and potentially thrive as “metro-invasive” species. PMID:25551819
Wan, Guoxing; Tian, Lin; Yu, Yuandong; Li, Fang; Wang, Xuanbin; Li, Chen; Deng, Shouheng; Yu, Xiongjie; Cai, Xiaojun; Zuo, Zhigang; Cao, Fengjun
2017-09-09
The present study was to evaluate the prognostic value of protein expression of Pofut1 and Notch1 signaling in breast cancer. Formalin-fixed paraffin-embedded 314 breast specimens including 174 infiltrating ductal carcinoma(IDC), 50 ductal carcinoma in situ(DCIS) and 90 adjacent normal tissue(ANT) were immunohistochemically examined to evaluate the protein expression of Pofut1, activated Notch1(N1IC) and Slug on specimens. Survival analysis was performed by Kaplan-Meier method and Cox's proportional-hazards model. A online database was computationally used to further explore the prognostic role of Pofut1 and Notch1 mRNA expression by Kaplan-Meier Plotter. Pofut1, Slug and N1IC expression were significantly increased in IDC compared to ANT(all p < 0.05). High expression of Pofut1, Slug and N1IC were associated with tumor aggressiveness including lymph node metastasis (LNM: p = 0.005 for Pofut1, p < 0.001 for N1IC, p = 0.017 for Slug), advanced stage(p = 0.039 for Pofut1, p = 0.025 for N1IC) and higher histological grade(p = 0.001 for N1IC). Additionally, high expression of Pofut1 was found to be significantly associated with high expressions of N1IC and Slug in IDC(r = 0.244, p = 0.001; r = 0.374, p < 0.001, respectively), similar correlation was also observed between high N1IC and Slug expression(r = 0.496, p < 0.001). Moreover, Kaplan-Meier and Cox's regression analysis indicated the significant prognostic value of elevated Pofut1, N1IC, Slug expressions, positive LNM and advanced tumor stage for the prediction of a shorter disease-free survival (DFS) and overall survival(OS). The web-based analysis also suggested a significant association of high Pofut1 and Notch1 mRNA expression with worse survival outcome. Our findings suggested that overexpression of Pofut1 and activated Notch1 signaling may be associated with a poor prognosis in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kilowasid, Laode Muhammad Harjoni; Budianto, Wayan; Syaf, Hasbullah; Tufaila, Muhammad; Safuan, La Ode
2015-09-01
Ant and earthworm can act as soil ecosystem engineers. Ant and earthworm are very dominant in smallholder cocoa plantation. The first experiment aimed to study the effect of the abundance of ants and earthworms on soil microbial activity and microfauna, and the second experiment to analyse the effect of soil modified by ants and earthworms on the cocoa seedlings growth. Ant (Ponera sp.) and earthworm (Pontoscolex sp.) collected from smallholder cocoa plantation, and kept in a container up to applied. In the first experiment, nine combinations of the abundance of ants and earthworms applied to each pot containing 3 kg of soil from smallholder cocoa plantation, and each combination of the abundance was repeated five times in a completely randomized design. After the soil was incubated for thirty days, ants and earthworms removed from the soil using hand sorting techniques. Soil from each pot was analysed for soil microbial activity, abundance of flagellates and nematodes. In the second experiment, the soil in each pot was planted with cocoa seedlings and maintained up to ninety days. The results showed the FDA hydrolytic activity of microbes, the abundance of flagellates and nematodes between the combination of the abundance of ants and earthworms have been significantly different. Dry weight of root, shoot and seedling cacao have been significantly different between the combination of the abundance of ants and earthworms. It was concluded that the combination of the abundance of ants and earthworms can be used in ecological engineering to improve soil quality.
Indirect effects of tending ants on holm oak volatiles and acorn quality
Llusia, Joan; Peñuelas, Josep
2011-01-01
The indirect effect of ants on plants through their mutualism with honeydew-producing insects has been extensively investigated. Honeydew-producing insects that are tended by ants impose a cost on plant fitness and health by reducing seed production and/or plant growth. This cost is associated with sap intake and virus transmissions but may be overcompesated by tending ants if they deter or prey on hebivorous insects. The balance between cost and benefits depends on the tending ant species. In this study we report other indirect effects on plants of the mutualism between aphids and ants. We have found that two Lasius ant species, one native and the other invasive, may change the composition of volatile organic compounds (VOCs) of the holm oak (Quercus ilex) blend when they tend the aphid Lachnus roboris. The aphid regulation of its feeding and honeydew production according to the ant demands was proposed as a plausible mechanism that triggers changes in VOCs. Additionally, we now report here that aphid feeding, which is located most of the time on acorns cap or petiole, significantly increased the relative content of linolenic acid in acorns from holm oak colonized by the invasive ant. This acid is involved in the response of plants to insect herbivory as a precursor or jasmonic acid. No effect was found on acorn production, germination or seedlings quality. These results suggest that tending-ants may trigger the physiological response of holm oaks involved in plant resistance toward aphid herbivory and this response is ant species-dependent. PMID:21494087
Using Ants To Investigate the Environment.
ERIC Educational Resources Information Center
Hagevik, Rita A.
2003-01-01
Describes three inquiry-based activities designed for students to begin to understand complex environmental relationships in their own backyard. Includes investigations of ants, which allow students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenances, and increase student…
Tallgrass prairie ants: their species composition, ecological roles, and response to management
USDA-ARS?s Scientific Manuscript database
Ants are highly influential organisms in terrestrial ecosystems, including the tallgrass prairie, one of the most endangered ecosystems in North America. Through their tunneling, ants affect soil properties and resource availability for animals and plants. Ants also have important ecological roles a...
Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants.
Hu, L; Balusu, R R; Zhang, W-Q; Ajayi, O S; Lu, Y-Y; Zeng, R-S; Fadamiro, H Y; Chen, L
2017-12-10
Some fire ants of the genus Solenopsis have become invasive species in the southern United States displacing native species by competition. Although the displacement pattern seems clear, the mechanisms underlying competitive advantage remain unclear. The ability of ant workers to produce relatively larger amount of alarm pheromone may correspond to relative greater fitness among sympatric fire ant species. Here we report on quantitative intra-specific (i.e. inter-caste) and inter-specific differences of alarm pheromone component, 2-ethyl-3,6-dimethylpyrazine (2E36DMP), for several fire ant species. The alarm pheromone component was extracted by soaking ants in hexane for 48 h and subsequently quantified by gas chromatography-mass spectrometry at single ion monitoring mode. Solenopsis invicta workers had more 2E36DMP than male or female alates by relative weight; individual workers, however, contained significantly less pyrazine. We thus believe that alarm pheromones may serve additional roles in alates. Workers of Solenopsis richteri, S. invicta, and hybrid (S. richteri × S. invicta) had significantly more 2E36DMP than a native fire ant species, Solenopsis geminata. The hybrid fire ant had significantly less 2E36DMP than the two parent species, S. richteri and S. invicta. It seems likely that higher alarm pheromone content may have favored invasion success of exotic fire ants over native species. We discuss the potential role of inter-specific variation in pyrazine content for the relationship between the observed shifts in the spatial distributions of the three exotic fire ant species in southern United States and the displacement of native fire ant species.
Ant tending influences soldier production in a social aphid.
Shingleton, A W; Foster, W A
2000-09-22
The aphid Pseudoregma sundanica (Van der Goot) (Homoptera: Aphididae) has two defence strategies. It is obligatorily tended by various species of ant and also produces sterile soldiers. We investigated how they allocate their investment in these two strategies. We measured the size, number of soldiers, number and species of tending ant, and number and species of predators in P. sundanica populations. We found that the level of ant tending correlated negatively with soldier investment in P. sundanica. The species of tending ant also influenced soldier investment. We excluded ants from aphid populations and recorded changes in population size and structure over four weeks. Ant exclusion led to population decline and extinction. At the same time, surviving populations showed a significant increase in soldier investment. The data demonstrate that social aphids can adjust their investment in soldiers in direct response to environmental change.
NASA Astrophysics Data System (ADS)
Djiéto-Lordon, Champlain; Dejean, Alain; Gibernau, Marc; Hossaert-McKey, Martine; McKey, Doyle
2004-10-01
Barteria nigritana is a myrmecophyte tree of Lower Guinea coastal vegetation. Unlike the more specialised B. fistulosa, which harbours a single host-specific mutualistic ant, B. nigritana is associated with several opportunistic ants. Such symbiotic, yet opportunistic, ant-plant associations have been little studied. On 113 clumps of B. nigritana, we censused ant associates and herbivores and compared herbivory on plants occupied by different ants. In addition to these correlative data, protection conferred by different ant species was compared by herbivore-placement experiments. Identity of ant associate changed predictably over plant ontogeny. Pheidole megacephala was restricted to very small plants; saplings were occupied by either Oecophylla longinoda or Crematogaster sp., and the latter species was the sole occupant of larger trees. Damage by caterpillars of the nymphalid butterfly Acraea zetes accounted for much of the herbivory to leaves. Ant species differed in the protection provided to hosts. While P. megacephala provided no significant protection, plants occupied by O. longinoda and Crematogaster sp. suffered less damage than did unoccupied plants or those occupied by P. megacephala. Furthermore, O. longinoda provided more effective protection than did Crematogaster sp. Herbivore-placement experiments confirmed these results. Workers of O. longinoda killed or removed all larval instars of A. zetes. Crematogaster preyed on only the two first larval instars, and P. megacephala preyed mainly on eggs, only rarely attacking the two first larval instars. Opportunistic ants provided significant protection to this relatively unspecialised myrmecophyte. The usual associate of mature trees was not the species that provided most protection.
Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.
Barden, Phillip; Grimaldi, David A
2016-02-22
Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession." Copyright © 2016 Elsevier Ltd. All rights reserved.
Using Ants to Investigate the Environment
ERIC Educational Resources Information Center
Hagevik, Rita A.
2005-01-01
The best place for students to begin to understand complex environmental relationships is in their own back yards. Doing investigations of ants allows students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenance, and increase their understanding of the environment and their…
The responses of ant communities to structural change (removal of an invasive were studied in a replicated experiment in a Chihuahuan Desert grassland. The results from sampling of ant communities by pit-fall trapping were validated by mapping ant colonies on the experimental plo...
9 CFR 354.121 - Ante-mortem inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... he may issue from time to time, be made of rabbits on the day of slaughter in any official plant... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Inspection Procedures; Ante-Mortem Inspections § 354.121 Ante-mortem inspection. An ante-mortem inspection of rabbits...
9 CFR 354.121 - Ante-mortem inspection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... he may issue from time to time, be made of rabbits on the day of slaughter in any official plant... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Inspection Procedures; Ante-Mortem Inspections § 354.121 Ante-mortem inspection. An ante-mortem inspection of rabbits...
2015-05-20
Transfer Robo Ant The 3D printer was used to rapidly prototype a robot ant . The robot ant was used to model the behavior of the fire ant and to model...computer models and 3D printed ant robots are shown below. Snake Bot We used the 3D printed to rapidly design a modular, easily-modified snake...living organism (modern mudskippers, a terrestrial fish) and extinct early tetrapods (e.g. Ichthyostega, Acanthostega) while allowing us to explore
Psomas, Elizabeth; Holdsworth, Sholto; Eggleton, Paul
2018-04-20
Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants. © 2018 Wiley Periodicals, Inc.
COMPARISON OF ANOVA AND KRIGING IN DETECTING ANT RESPONSES TO ENVIRONMENTAL STRESSORS
In an ecosystems, ants effect ecosystem functions such as water infiltration, soil nutrient distribution and composition of the soil seed bank. Ants have also been used as indicators of ecosystems health. In a study, we hypothesized that some ant species would respond to changes ...
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
NASA Astrophysics Data System (ADS)
Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen
2013-08-01
Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.
Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants.
Gemperline, Erin; Horn, Heidi A; DeLaney, Kellen; Currie, Cameron R; Li, Lingjun
2017-08-18
Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.
Helmkampf, Martin; Mikheyev, Alexander S; Kang, Yun; Fewell, Jennifer; Gadau, Jürgen
2016-08-01
A key requirement for social cooperation is the mitigation and/or social regulation of aggression towards other group members. Populations of the harvester ant Pogonomyrmex californicus show the alternate social phenotypes of queens founding nests alone (haplometrosis) or in groups of unrelated yet cooperative individuals (pleometrosis). Pleometrotic queens display an associated reduction in aggression. To understand the proximate drivers behind this variation, we placed foundresses of the two populations into social environments with queens from the same or the alternate population, and measured their behaviour and head gene expression profiles. A proportion of queens from both populations behaved aggressively, but haplometrotic queens were significantly more likely to perform aggressive acts, and conflict escalated more frequently in pairs of haplometrotic queens. Whole-head RNA sequencing revealed variation in gene expression patterns, with the two populations showing moderate differentiation in overall transcriptional profile, suggesting that genetic differences underlie the two founding strategies. The largest detected difference, however, was associated with aggression, regardless of queen founding type. Several modules of coregulated genes, involved in metabolism, immune system and neuronal function, were found to be upregulated in highly aggressive queens. Conversely, nonaggressive queens exhibited a striking pattern of upregulation in chemosensory genes. Our results highlight that the social phenotypes of cooperative vs. solitary nest founding tap into a set of gene regulatory networks that seem to govern aggression level. We also present a number of highly connected hub genes associated with aggression, providing opportunity to further study the genetic underpinnings of social conflict and tolerance. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Min, Huang; Na, Cai
2017-06-01
These years, ant colony algorithm has been widely used in solving the domain of discrete space optimization, while the research on solving the continuous space optimization was relatively little. Based on the original optimization for continuous space, the article proposes the improved ant colony algorithm which is used to Solve the optimization for continuous space, so as to overcome the ant colony algorithm’s disadvantages of searching for a long time in continuous space. The article improves the solving way for the total amount of information of each interval and the due number of ants. The article also introduces a function of changes with the increase of the number of iterations in order to enhance the convergence rate of the improved ant colony algorithm. The simulation results show that compared with the result in literature[5], the suggested improved ant colony algorithm that based on the information distribution function has a better convergence performance. Thus, the article provides a new feasible and effective method for ant colony algorithm to solve this kind of problem.
Krushelnycky, Paul D.; Hodges, Cathleen S.N.; Medeiros, Arthur C.; Loope, Lloyd L.
2001-01-01
The endemic biota of the Hawaiian islands is believed to have evolved in the absence of ant predation. However, it was suspected that this endemic biota is highly vulnerable to the effect of immigrant ants especially with regard to an aggressive predator known as the Argentine ant (Linepithema humile). First recorded in the Haleakala National Park on the island of Maui in 1967, this ant was believed to have reduced populations of native arthropods in high-elevation subalpine shrublands. In addition, concerns were raised that this immigrant ant may have also reduced the breeding success of the endangered Hawaiian Dark-rumped Petrel (Pterodroma phaeopygia sandwichensis), a native seabird. If so, then it was believe that this ant could become another major threat to the survival of this endangered seabird in addition to the threat that was caused by the introduction of introduced mammals, the advent of hunting by the Polynesians, and a loss of breeding habitat. As a result, the purpose of this study was to determine if the Argentine ant affects the nesting success of this native Hawaiian seabird.
Newly discovered sister lineage sheds light on early ant evolution.
Rabeling, Christian; Brown, Jeremy M; Verhaagh, Manfred
2008-09-30
Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time.
Newly discovered sister lineage sheds light on early ant evolution
Rabeling, Christian; Brown, Jeremy M.; Verhaagh, Manfred
2008-01-01
Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time. PMID:18794530
The descent of ant: field-measured performance of gliding ants.
Munk, Yonatan; Yanoviak, Stephen P; Koehl, M A R; Dudley, Robert
2015-05-01
Gliding ants avoid predatory attacks and potentially mortal consequences of dislodgement from rainforest canopy substrates by directing their aerial descent towards nearby tree trunks. The ecologically relevant measure of performance for gliding ants is the ratio of net horizontal to vertical distance traveled over the course of a gliding trajectory, or glide index. To study variation in glide index, we measured three-dimensional trajectories of Cephalotes atratus ants gliding in natural rainforest habitats. We determined that righting phase duration, glide angle, and path directness all significantly influence variation in glide index. Unsuccessful landing attempts result in the ant bouncing off its target and being forced to make a second landing attempt. Our results indicate that ants are not passive gliders and that they exert active control over the aerodynamic forces they experience during their descent, despite their apparent lack of specialized control surfaces. © 2015. Published by The Company of Biologists Ltd.
78 FR 70530 - Notice of Determination; New and Revised Treatments for the Imported Fire Ant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
...] Notice of Determination; New and Revised Treatments for the Imported Fire Ant Program AGENCY: Animal and... adding or revising certain treatment schedules for the Imported Fire Ant Program in the Plant Protection... imported fire ant program. Based on the treatment evaluation document, the environmental assessment, and...
Cascading trait-mediated interactions induced by ant pheromones
Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette
2012-01-01
Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877
Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R
2010-02-01
Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.
Estimating ladybird predation of aphids in the presence of foraging ants in lab bioassays
USDA-ARS?s Scientific Manuscript database
Foraging or tending ants often disrupt ladybird beetle predation of aphids on crop plants. In this study, we assessed the foraging behavior of the red imported fire ant (Solenopsis invicta) and tested the hypothesis that foraging ants disrupt ladybird predation. We setup experiments in the laborator...
Herbert, John J; Horn, David J
2008-10-01
Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.
Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.
Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon
2010-02-01
Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone.
USDA-ARS?s Scientific Manuscript database
. Invasive ants are among the most serious of arthropod invaders. These ants infest a wide range of habitats and impact biodiversity, agriculture, and human health. Self-sustaining biological control is one of the few hopes for permanent regional suppression of these established invasive ants. Fo...
Visual cues for the retrieval of landmark memories by navigating wood ants.
Harris, Robert A; Graham, Paul; Collett, Thomas S
2007-01-23
Even on short routes, ants can be guided by multiple visual memories. We investigate here the cues controlling memory retrieval as wood ants approach a one- or two-edged landmark to collect sucrose at a point along its base. In such tasks, ants store the desired retinal position of landmark edges at several points along their route. They guide subsequent trips by retrieving the appropriate memory and moving to bring the edges in the scene toward the stored positions. The apparent width of the landmark turns out to be a powerful cue for retrieving the desired retinal position of a landmark edge. Two other potential cues, the landmark's apparent height and the distance that the ant walks, have little effect on memory retrieval. A simple model encapsulates these conclusions and reproduces the ants' routes in several conditions. According to this model, the ant stores a look-up table. Each entry contains the apparent width of the landmark and the desired retinal position of vertical edges. The currently perceived width provides an index for retrieving the associated stored edge positions. The model accounts for the population behavior of ants and the idiosyncratic training routes of individual ants. Our results imply binding between the edge of a shape and its width and, further, imply that assessing the width of a shape does not depend on the presence of any particular local feature, such as a landmark edge. This property makes the ant's retrieval and guidance system relatively robust to edge occlusions.
Effect of Interactions between Harvester Ants on Forager Decisions
Davidson, Jacob D.; Arauco-Aliaga, Roxana P.; Crow, Sam; Gordon, Deborah M.; Goldman, Mark S.
2017-01-01
Harvester ant colonies adjust their foraging activity to day-to-day changes in food availability and hour-to-hour changes in environmental conditions. This collective behavior is regulated through interactions, in the form of brief antennal contacts, between outgoing foragers and returning foragers with food. Here we consider how an ant, waiting in the entrance chamber just inside the nest entrance, uses its accumulated experience of interactions to decide whether to leave the nest to forage. Using videos of field observations, we tracked the interactions and foraging decisions of ants in the entrance chamber. Outgoing foragers tended to interact with returning foragers at higher rates than ants that returned to the deeper nest and did not forage. To provide a mechanistic framework for interpreting these results, we develop a decision model in which ants make decisions based upon a noisy accumulation of individual contacts with returning foragers. The model can reproduce core trends and realistic distributions for individual ant interaction statistics, and suggests possible mechanisms by which foraging activity may be regulated at an individual ant level. PMID:28758093
Pringle, Elizabeth G; Ableson, Ian; Kerber, Jennifer; Vannette, Rachel L; Tao, Leiling
2017-12-01
Predictable effects of resource availability on plant growth-defense strategies provide a unifying theme in theories of direct anti-herbivore defense, but it is less clear how resource availability modulates plant indirect defense. Ant-plant-hemipteran interactions produce mutualistic trophic cascades when hemipteran-tending ants reduce total herbivory, and these interactions are a key component of plant indirect defense in most terrestrial ecosystems. Here we conducted an experiment to test how ant-plant-hemipteran interactions depend on nitrogen (N) availability by manipulating the presence of ants and aphids under different N fertilization treatments. Ants increased plant flowering success by decreasing the densities of herbivores, and the effects of ants on folivores were positively related to the density of aphids. Unexpectedly, N fertilization produced no changes in plant N concentrations. Plants grown in higher N grew and flowered more, but aphid honeydew chemistry stayed the same, and neither the density of aphids nor the rate of ant attraction per aphid changed with N addition. The positive effects of ants and N addition on plant fitness were thus independent of one another. We conclude that N was the plant's limiting nutrient and propose that addition of the limiting nutrient is unlikely to alter the strength of mutualistic trophic cascades. © 2017 by the Ecological Society of America.
The assembly of ant-farmed gardens: mutualism specialization following host broadening
Janda, Milan
2017-01-01
Ant-gardens (AGs) are ant/plant mutualisms in which ants farm epiphytes in return for nest space and food rewards. They occur in the Neotropics and Australasia, but not in Africa, and their evolutionary assembly remains unclear. We here use phylogenetic frameworks for important AG lineages in Australasia, namely the ant genus Philidris and domatium-bearing ferns (Lecanopteris) and flowering plants in the Apocynaceae (Hoya and Dischidia) and Rubiaceae (Myrmecodia, Hydnophytum, Anthorrhiza, Myrmephytum and Squamellaria). Our analyses revealed that in these clades, diaspore dispersal by ants evolved at least 13 times, five times in the Late Miocene and Pliocene in Australasia and seven times during the Pliocene in Southeast Asia, after Philidris ants had arrived there, with subsequent dispersal between these two areas. A uniquely specialized AG system evolved in Fiji at the onset of the Quaternary. The farming in the same AG of epiphytes that do not offer nest spaces suggests that a broadening of the ants' plant host spectrum drove the evolution of additional domatium-bearing AG-epiphytes by selecting on pre-adapted morphological traits. Consistent with this, we found a statistical correlation between the evolution of diaspore dispersal by ants and domatia in all three lineages. Our study highlights how host broadening by a symbiont has led to new farming mutualisms. PMID:28298344
Larabee, Fredrick J; Fisher, Brian L; Schmidt, Chris A; Matos-Maraví, Pável; Janda, Milan; Suarez, Andrew V
2016-10-01
Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization. Copyright © 2016 Elsevier Inc. All rights reserved.
Salticid predation as one potential driving force of ant mimicry in jumping spiders
Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min
2011-01-01
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898
Czaczkes, Tomer J; Heinze, Jürgen
2015-07-07
Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Ant-plant-herbivore interactions in the neotropical cerrado savanna.
Oliveira, Paulo S; Freitas, André V L
2004-12-01
The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant-plant-herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant-plant-butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant-plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.
The responses of ant communities to structural change (removal of an invasive
were studied in a replicated experiment in a Chihuahuan Desert grassland. The
results from sampling of ant communities by pit-fall trapping were validated by
mapping ant colonies on the expe...
Nosov, Nikita Yu; Krasnov, Yaroslav M.; Oglodin, Yevgeny G.; Kukleva, Lyubov M.; Guseva, Natalia P.; Kuznetsov, Alexander A.; Abdikarimov, Sabyrzhan T.; Dzhaparova, Aigul K.; Kutyrev, Vladimir V.
2017-01-01
Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains. PMID:29073248
Eroshenko, Galina A; Nosov, Nikita Yu; Krasnov, Yaroslav M; Oglodin, Yevgeny G; Kukleva, Lyubov M; Guseva, Natalia P; Kuznetsov, Alexander A; Abdikarimov, Sabyrzhan T; Dzhaparova, Aigul K; Kutyrev, Vladimir V
2017-01-01
Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains.
Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.
Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C
2017-04-01
Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Wasps robbing food from ants: a frequent behavior?
NASA Astrophysics Data System (ADS)
Lapierre, Louis; Hespenheide, Henry; Dejean, Alain
2007-12-01
Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.
Low-Cost Simulation to Teach Anesthetists' Non-Technical Skills in Rwanda.
Skelton, Teresa; Nshimyumuremyi, Isaac; Mukwesi, Christian; Whynot, Sara; Zolpys, Lauren; Livingston, Patricia
2016-08-01
Safe anesthesia care is challenging in developing countries where there are shortages of personnel, drugs, equipment, and training. Anesthetists' Non-technical Skills (ANTS)-task management, team working, situation awareness, and decision making-are difficult to practice well in this context. Cesarean delivery is the most common surgical procedure in sub-Saharan Africa. This pilot study investigates whether a low-cost simulation model, with good psychological fidelity, can be used effectively to teach ANTS during cesarean delivery in Rwanda. Study participants were anesthesia providers working in a tertiary referral hospital in Rwanda. Baseline observations were conducted for 20 anesthesia providers during cesarean delivery using the established ANTS framework. After the first observation set was complete, participants were randomly assigned to either simulation intervention or control groups. The simulation intervention group underwent ANTS training using low-cost high psychological fidelity simulation with debriefing. No training was offered to the control group. Postintervention observations were then conducted in the same manner as the baseline observations. The primary outcome was the overall ANTS score (maximum, 16). The median (range) ANTS score of the simulation group was 13.5 (11-16). The ANTS score of the control group was 8 (8-9), with a statistically significant difference (P = .002). Simulation participants showed statistically significant improvement in subcategories and in the overall ANTS score compared with ANTS score before simulation exposure. Rwandan anesthesia providers show improvement in ANTS practice during cesarean delivery after 1 teaching session using a low-cost high psychological fidelity simulation model with debriefing.
Extrafloral nectar fuels ant life in deserts.
Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte
2014-11-07
Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant-plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. Published by Oxford University Press on behalf of the Annals of Botany Company.
Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants
2015-01-01
Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161
Ligon, Russell A.; Siefferman, Lynn; Hill, Geoffrey E.
2011-01-01
Background Introduced organisms can alter ecosystems by disrupting natural ecological relationships. For example, red imported fire ants (Solenopsis invicta) have disrupted native arthropod communities throughout much of their introduced range. By competing for many of the same food resources as insectivorous vertebrates, fire ants also have the potential to disrupt vertebrate communities. Methodology/Principal Findings To explore the effects of fire ants on a native insectivorous vertebrate, we compared the reproductive success and strategies of eastern bluebirds (Sialia sialis) inhabiting territories with different abundances of fire ants. We also created experimental dyads of adjacent territories comprised of one territory with artificially reduced fire ant abundance (treated) and one territory that was unmanipulated (control). We found that more bluebird young fledged from treated territories than from adjacent control territories. Fire ant abundance also explained significant variation in two measures of reproductive success across the study population: number of fledglings and hatching success of second clutches. Furthermore, the likelihood of bluebird parents re-nesting in the same territory was negatively influenced by the abundance of foraging fire ants, and parents nesting in territories with experimentally reduced abundances of fire ants produced male-biased broods relative to pairs in adjacent control territories. Conclusions/Significance Introduced fire ants altered both the reproductive success (number of fledglings, hatching success) and strategies (decision to renest, offspring sex-ratio) of eastern bluebirds. These results illustrate the negative effects that invasive species can have on native biota, including species from taxonomically distant groups. PMID:21799904
Pires, L. P.; Del-Claro, K.
2014-01-01
Abstract Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora , and the most abundant genera were Crematogaster , Cephalotes , and Camponotus . Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna. PMID:25368040
Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter
2013-01-01
Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.
Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem
Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David S.
2016-01-01
Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.
De La Riva, Deborah G; Trumble, John T
2016-06-01
Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C
2015-06-01
Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.
Canedo-Júnior, Ernesto Oliveira; Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida
2017-01-01
Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.
Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida
2017-01-01
Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849
NASA Astrophysics Data System (ADS)
Geiselhardt, Stefanie F.; Peschke, Klaus; Nagel, Peter
2007-11-01
Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant-beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.
Improving liquid bait programs for Argentine ant control: bait station density.
Nelson, Erik H; Daane, Kent M
2007-12-01
Argentine ants, Linepithema humile (Mayr), have a positive effect on populations of mealybugs (Pseudococcus spp.) in California vineyards. Previous studies have shown reductions in both ant activity and mealybug numbers after liquid ant baits were deployed in vineyards at densities of 85-620 bait stations/ha. However, bait station densities may need to be <85 bait stations/ha before bait-based strategies for ant control are economically comparable to spray-based insecticide treatments-a condition that, if met, will encourage the commercial adoption of liquid baits for ant control. This research assessed the effectiveness of baits deployed at lower densities. Two field experiments were conducted in commercial vineyards. In experiment 1, baits were deployed at 54-225 bait stations/ha in 2005 and 2006. In experiment 2, baits were deployed at 34-205 bait stations/ha in 2006 only. In both experiments, ant activity and the density of mealybugs in grape fruit clusters at harvest time declined with increasing bait station density. In 2005 only, European fruit lecanium scale [Parthenolecanium corni (Bouché)] were also present in fruit clusters, and scale densities were negatively related to bait station density. The results indicate that the amount of ant and mealybug control achieved by an incremental increase in the number of bait stations per hectare is constant across a broad range of bait station densities. The results are discussed in the context of commercializing liquid ant baits to provide a more sustainable Argentine ant control strategy.
Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants
Elizalde, Luciana; Folgarait, Patricia Julia
2012-01-01
Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking. The presence of phorids was a significant determinant for the presence of defensive behaviors by the ants. Although ant species varied in the incidence levels of these defensive behaviors, most ant species reacted against different phorids by utilizing similar behaviors, in contrast to what parasitoids do. General features of the observed phorid-ant interactions were parasitoid specialization and corresponding high interspecific variation in their behaviors, while their hosts showed generalized responses to attacks with high intraspecific variation. Behavioral patterns as well as specific features of these ant-parasitoid interactions are described, and their ecological importance discussed. PMID:23448343
De Fine Licht, Henrik H; Boomsma, Jacobus J
2014-12-04
Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A
2010-01-01
Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests.
Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.
Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy
2016-07-01
As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.
Cushman, J Hall; Compton, Stephen G; Zachariades, Costas; Ware, Anthony B; Nefdt, Rory J C; Rashbrook, Vanessa K
1998-09-01
Although species pairs and assemblages often occur across geographic regions, ecologists know very little about the outcome of their interactions on such large spatial scales. Here, we assess the geographic distribution and taxonomic diversity of a positive interaction involving ant-tended homopterans and fig trees in the genus Ficus. Previous experimental studies at a few locations in South Africa indicated that Ficus sur indirectly benefited from the presence of a homopteran (Hilda patruelis) because it attracted ants (primarily Pheidole megacephala) that reduced the effects of both pre-dispersal ovule gallers and parasitoids of pollinating wasps. Based on this work, we evaluated three conditions that must be met in order to support the hypothesis that this indirect interaction involves many fig species and occurs throughout much of southern Africa and Madagascar. Data on 429 trees distributed among five countries indicated that 20 of 38 Ficus species, and 46% of all trees sampled, had ants on their figs. Members of the Sycomorus subgenus were significantly more likely to attract ants than those in the Urostigma subgenus, and ant-colonization levels on these species were significantly greater than for Urostigma species. On average, each ant-occupied F.sur tree had 37% of its fig crop colonized by ants, whereas the value was 24% for other Ficus species. H. patruelis was the most common source for attracting ants, although figs were also attacked by a range of other ant-tended homopterans. P. megacephala was significantly more common on figs than other ant species, being present on 58% of sampled trees. Ant densities commonly exceeded 4.5 per fig, which a field experiment indicated was sufficient to provide protection from ovule gallers and parasitoids of pollinators. Forty-nine percent of all colonized F. sur trees sampled had ant densities equal to or greater than 4.5 per fig, whereas this value was 23% for other Ficus species. We conclude that there is considerable evidence to suggest that this indirect interaction occurs across four southern African countries and Madagascar, and involves many Ficus species.
Savage, Amy M.; Rudgers, Jennifer A.
2013-01-01
Background and Aims In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Methods Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. Key Results The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. Conclusions It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions. PMID:23609021
Niches and coexistence of ant communities in Puerto Rico
J.A. Torres
1984-01-01
I studied ant coexistence in adjacent areas of upland tropical forest, grassland, and agricultural land in San Lorenzo, Puerto Rico. Data on food utilization, daily activity, nesting sites, microhabitat utilization and interspecific aggression were collected. Ants' tolerance to 45 degree C was determined in the laboratory. Agricultural and grassland ants eat grain...
Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann
2014-01-01
Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield. PMID:24307667
Short-term effects of fire on Sky Island ant communities
Elliot B. Wilkinson; Edward G. Lebrun; Mary Lou Spencer; Caroline Whitby; Chris Kleine
2005-01-01
Few studies investigating effects of fire on ant communities have been conducted worldwide, and none in the biologically diverse and fire prone region of the Sky Islands. Ant genera richness and total abundance are significantly higher in burned areas. Ant community structure changes between unburned and burned sites, implying that disturbance may influence the role of...
Competition between harvester ants and rodents in the cold desert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landeen, D.S.; Jorgensen, C.D.; Smith, H.D.
1979-09-30
Local distribution patterns of three rodent species (Perognathus parvus, Peromyscus maniculatus, Reithrodontomys megalotis) were studied in areas of high and low densities of harvester ants (Pogonomyrmex owyheei) in Raft River Valley, Idaho. Numbers of rodents were greatest in areas of high ant-density during May, but partially reduced in August; whereas, the trend was reversed in areas of low ant-density. Seed abundance was probably not the factor limiting changes in rodent populations, because seed densities of annual plants were always greater in areas of high ant-density. Differences in seasonal population distributions of rodents between areas of high and low ant-densities weremore » probably due to interactions of seed availability, rodent energetics, and predation.« less
Choe, Dong-Hwan; Vetter, Richard S; Rust, Michael K
2010-10-01
A novel bait station referred to as a virtual bait station was developed and tested against field populations of the invasive Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), at White Beach, Camp Pendleton, in Oceanside, CA. White Beach is a nesting habitat for an endangered seabird, the California least tern (Sterna antillarum browni Mearns). The beach is heavily infested with Argentine ants, one of the threats for the California least tern chicks. Conventional pest control strategies are prohibited because of the existence of the protected bird species and the site's proximity to the ocean. The bait station consisted of a polyvinyl chloride pipe that was treated on the inside with fipronil insecticide at low concentrations to obtain delayed toxicity against ants. The pipe was provisioned with an inverted bottle of 25% sucrose solution, then capped, and buried in the sand. Foraging ants crossed the treated surface to consume the sucrose solution. The delayed toxicity of fipronil deposits allowed the ants to continue foraging on the sucrose solution and to interact with their nestmates, killing them within 3-5 d after exposure. Further modification of the bait station design minimized the accumulation of dead ants in the sucrose solution, significantly improving the longevity and efficacy of the bait station. The virtual bait station exploits the foraging behavior of the ants and provides a low impact approach to control ants in environmentally sensitive habitats. It excluded all insects except ants, required only milligram quantities of toxicant, and eliminated the problem of formulating toxicants into aqueous sugar baits.
Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)
Perna, Andrea; Granovskiy, Boris; Garnier, Simon; Nicolis, Stamatios C.; Labédan, Marjorie; Theraulaz, Guy; Fourcassié, Vincent; Sumpter, David J. T.
2012-01-01
We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed. PMID:22829756
Jesovnik, A; Sosa-Calvo, J; Lopes, C T; Vasconcelos, H L; Schultz, T R
2013-01-01
All known fungus-growing ants (tribe Attini) are obligately symbiotic with their cultivated fungi. The fungal cultivars of "lower" attine ants are facultative symbionts, capable of living apart from ants, whereas the fungal cultivars of "higher" attine ants, including leaf-cutting genera Atta and Acromyrmex , are highly specialized, obligate symbionts. Since higher attine ants and fungi are derived from lower attine ants and fungi, understanding the evolutionary transition from lower to higher attine agriculture requires understanding the historical sequence of change in both ants and fungi. The biology of the poorly known ant genus Mycetagroicus is of special interest in this regard because it occupies a phylogenetic position intermediate between lower and higher ant agriculture. Here, based on the excavations of four nests in Pará, Brazil, we report the first biological data for the recently described species Mycetagroicus inflatus , including the first descriptions of Mycetagroicus males and larvae. Like M. cerradensis , the only other species in the genus for which nesting biology is known, the garden chambers of M. inflatus are unusually deep and the garden is most likely relocated vertically in rainy and dry seasons. Due to the proximity of nests to the Araguaia River, it is likely that even the uppermost chambers and nest entrances of M. inflatus are submerged during the rainy season. Most remarkably, all three examined colonies of M. inflatus cultivate the same fungal species as their congener, M. cerradensis , over 1,000 km away, raising the possibility of long-term symbiont fidelity spanning speciation events within the genus.
Neves, F S; Queiroz-Dantas, K S; da Rocha, W D; Delabie, J H C
2013-06-01
Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological-evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.
Hoover, Kevin M; Bubak, Andrew N; Law, Isaac J; Yaeger, Jazmine D W; Renner, Kenneth J; Swallow, John G; Greene, Michael J
2016-06-01
Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and aggression. In this article, we develop and explore an agent-based model that conceptualizes how individual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based decision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions.
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei
2016-09-01
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.
Ants of the national park of American Samoa
Banko, Paul C.; Peck, Robert W.
2015-01-01
American Samoa makes up the eastern end of the Samoan Archipelago. On the islands of Tutuila, Taʽū and Ofu, the National Park of American Samoa (NPSA) protects about 4,000 ha of coastal, mid-slope and ridge-top forest. While the ant fauna of the Samoan Archipelago is considered relatively well documented, much of NPSA has never been surveyed for ants, leaving the fauna and its distribution poorly known. To address this shortfall, we systematically surveyed ants within the Tutuila and Taʽū units of NPSA using standard methods (hand collecting, litter sifting, and baits) at 39 sites within six vegetation types ranging from 8 to 945 m elevation. Forty-four ant species were identified, 19 of which are exotic to the Samoan Archipelago. Two notoriously aggressive species, Anoplolepis gracilipes and Pheidole megacephala were detected at two and seven sites, respectively. Both of these species largely excluded all other ants from bait, although their impact on ant community composition is unclear. A suite of habitat variables measured at each site was assessed to explain park-wide ant distributions. Of eight variables evaluated, only elevation was associated with ant community structure, as the ratio of native to exotic ant species increased significantly with elevation on Tutuila. Our survey documented two species not previously reported from American Samoa. Strumigenys eggersi, detected at 12 sites, appears to be a new immigrant to the Pacific Basin. A species of Pheidole was collected that likely represents an undescribed species. Solenopsis geminata, an aggressive species first reported on Tutuila in 2002, was not detected during our survey.
The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens
Harholt, Jesper; Willats, William G. T.; Boomsma, Jacobus J.
2011-01-01
The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants. PMID:21423735
Abril, S; Oliveras, J; Gómez, C
2007-10-01
We analyzed the foraging activity and the dietary spectrum of the Argentine ant (Linepithema humile Mayr) and select native ants on cork oaks from Mediterranean open cork oak (Quercus suber) secondary forests. The study areas included invaded and noninvaded zones in close proximity. The Argentine ant's daily foraging activity was correlated to the abiotic factors studied, whereas the seasonal foraging activity was related not only to the variations in the average air temperature, but also to the trophic needs of the colony. Argentine ant workers focused their attention on protein foods during the queens' oviposition periods and during the larvae development phase, and on carbohydrate foods, such as honeydew, when males and workers were hatching. There were no significant differences over the entire year in the quantity of liquid food collected by the Argentine ant workers in comparison with the native ants studied. The solid diet of the Argentine ant on cork oaks is composed of insects, most of which are aphids. Our results have clear applications for control methods based on toxic baits in the invaded natural ecosystems of the Iberian Peninsula.
Mestre, L; Piñol, J; Barrientos, J A; Espadaler, X
2013-09-01
Ants and spiders are ubiquitous generalist predators that exert top-down control on herbivore populations. Research shows that intraguild interactions between ants and spiders can negatively affect spider populations, but there is a lack of long-term research documenting the strength of such interactions and the potentially different effects of ants on the diverse array of species in a spider assemblage. Similarly, the suitability of family-level surrogates for finding patterns revealed by species-level data (taxonomic sufficiency) has almost never been tested in spider assemblages. We present a long-term study in which we tested the impact of ants on the spider assemblage of a Mediterranean citrus grove by performing sequential 1-year experimental exclusions on tree canopies for 8 years. We found that ants had a widespread influence on the spider assemblage, although the effect was only evident in the last 5 years of the study. During those years, ants negatively affected many spiders, and effects were especially strong for sedentary spiders. Analyses at the family level also detected assemblage differences between treatments, but they concealed the different responses to ant exclusion shown by some related spider species. Our findings show that the effects of experimental manipulations in ecology can vary greatly over time and highlight the need for long-term studies to document species interactions.
Weaver ant role in cashew orchards in Vietnam.
Peng, Renkang; Lan, La Pham; Christian, Keith
2014-08-01
Cashew (Anacardium occidentale L.) is a very important source of income for more than 200,000 farmer households in Vietnam. The present cashew productivity in Vietnam is low and unstable, and pest damage is partly responsible for this. Cashew farmers rely on pesticides to minimize the damage, resulting in adverse impacts on farm environment and farmers' health. Weaver ants (Oecophylla spp) are effective biocontrol agents of a range of cashew insect pests in several cashew-growing countries, and these ants are widely distributed in Vietnam. The aim of this study is to evaluate the potential of weaver ants in cashew orchards in Vietnam. Field surveys and field experiment were conducted in five cashew orchards from July 2006 to January 2008 in Binh Phuoc, Dong Nai, and Ba Ria Vung Tau provinces, Vietnam. Based on the field surveys, the most important pests that damage flushing foliar and floral shoots and young cashew fruits and nuts were mosquito bugs, brown shoot borers, blue shoot borers, and fruit-nut borers. The damage caused by each of these pests was significantly lower on trees with weaver ants compared with trees without the ants, showing that the ants were able to keep these pest damages under the control threshold. Regular monitoring of the field experiment showed that weaver ants were similar to insecticides for controlling mosquito bugs, blue shoot borers, fruit-nut borers, leaf rollers, and leaf miners. Aphids did not become major pests in plot with weaver ants. To manage insect pest assemblage in cashew orchards, an integrated pest management using weaver ants as a major component is discussed.
Effect of an invasive ant and its chemical control on a threatened endemic Seychelles millipede.
Lawrence, James M; Samways, Michael J; Henwood, Jock; Kelly, Janine
2011-06-01
The impact of invasive species on island faunas can be of major local consequence, while their control is an important part of island ecosystem restoration. Among these invasive species are ants, of which some have a disruptive impact on indigenous arthropod populations. Here, we study the impact of the invasive African big-headed ant, Pheidole megacephala, on a small Seychelles island, Cousine, and assess the impact of this ant, and its chemical control, using the commercially available hydramethylnon-based bait, Siege, on the endemic keystone Seychelles giant millipede species, Sechelleptus seychellarum. We found no significant correlations in landscape-scale spatial overlap and abundance between the ant and the millipede. Furthermore, the ant did not attack healthy millipedes, but fed only on dying and dead individuals. The chemical defences of the millipede protected it from ant predation. Ingestion of the bait at standard concentration had no obvious impact on the millipede. The most significant threat to the Seychelles giant millipede in terms of P. megacephala invasion is from possible catastrophic shifts in ecosystem function through ant hemipteran mutualisms which can lead to tree mortality, resulting in alteration of the millipede's habitat.
Schwartzberg, Ezra G; Johnson, D W; Brown, G C
2010-12-01
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America
Botnevik, C F; Malagocka, J; Jensen, A B; Fredensborg, B L
2016-10-01
The lancet fluke, Dicrocoelium dendriticum, is perhaps the best-known example of parasite manipulation of host behavior, which is manifested by a radically changed behavior that leaves infected ants attached to vegetation at times when transmission to an herbivore host is optimal. Despite the publicity surrounding this parasite, curiously little is known about factors inducing and maintaining behavioral changes in its ant intermediate host. This study examined the importance of 3 environmental factors on the clinging behavior of red wood ants, Formica polyctena , infected with D. dendriticum . This behavior, hypothesized to involve cramping of the mandibular muscles in a state of tetany, was observed in naturally infected F. polyctena under controlled temperature, light, and humidity conditions. We found that low temperature significantly stimulated and maintained tetany in infected ants while light, humidity, ant size, and infection intensity had no influence on this behavior. Under none of the experimental conditions did uninfected ants attach to vegetation, demonstrating that tetany was induced by D. dendriticum . Temperature likely has a direct impact on the initiation of clinging behavior, but it may also serve as a simple but reliable indicator of the encounter rate between infected ants and ruminant definitive hosts. In addition, temperature-sensitive behavior manipulation may protect infected ants from exposure to temperatures in the upper thermal range of the host.
Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N
2016-10-01
The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.
Orchid seed removal by ants in Neotropical ant-gardens.
Morales-Linares, J; García-Franco, J G; Flores-Palacios, A; Valenzuela-González, J E; Mata-Rosas, M; Díaz-Castelazo, C
2018-05-01
Most plants that inhabit ant-gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind. We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non-AG orchid Catasetum integerrimum. The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non-AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non-AG orchids, which should favour myrmecochory. Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain
2017-01-01
In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation. PMID:29152414
Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain; Carval, Dominique
2017-01-01
In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation.
Foldi, Imre; Matile-Ferrero, Danièle; Fisher, Brian L.
2017-01-01
Mutualisms between ants and sap-sucking insects generally involve clear benefits for both partners: the ants provide protection in exchange for honeydew. However, a single ant genus associates with armoured scale insects (Diaspididae) that do not excrete honeydew. We studied three colonies of Melissotarsus emeryi ants from two localities in Mozambique. Vast numbers of the diaspidid Morganella conspicua occupied galleries dug by the ants under the bark of living trees. Unlike free-living M. conspicua and other diaspidids, M. conspicua living with ants are known to lack shields, likely because they gain protection against enemies and desiccation. Nevertheless, we documented the occurrence of rare individuals with shields inside ant galleries, indicating that their glands continue to secrete wax and proteins as building material. This is likely to constitute a significant portion of the ants’ diet, in addition to diaspidid exuviae and excretions from the Malpighian tubules. Indeed, Melissotarsus workers cannot walk outside the galleries due to modified middle legs, forcing them to obtain all nourishment within the tree. Melissotarsus founding queens, however, must locate a suitable host tree while flying, and acquire diaspidid crawlers. This mutualism involves ants that are highly specialised to chew through living wood, and diaspidids that can also live freely outside the bark. It is extremely widespread in Africa and Madagascar, recorded from 20 tree families, and harmful effects on plant hosts require rapid study. PMID:28761787
Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich
2015-01-01
Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649
Horvitz, C C
1981-10-01
The evolutionary effects of a tropical ant-seed interaction are examined by posing questions about the fate of Calathea seeds carried by neotropical ants. Where do ants take seeds and what do they do with them? How do ant behaviors affect seed germination? Treatment of seeds by ants is determined by a series of seed-fate trials in captive colonies. There is no evidence of seed predation by ants. Odontomachus laticeps, Pachycondyla spp, and Solenopsis geminata rapidly displace seeds to ant nests, determine the microsites of seeds, and remove the seed arils for food. The seed arils are rich in lipids. The effects on germination of microsite selection and aril removal are quantitatively evaluated. Seeds which are immediately taken to a consistently moist spot germinate readily; 72% germinate, with a mean germination speed of 29 days. For such seeds aril removal does not significantly affect germination. In contrast, seeds which experience a delay before encountering appropriate germination conditions seem to exhibit an induced dormancy (sensu, Harper 1977) and a lower germination percentage. They take longer to germinate (up to 85 days) even after conditions become appropriate. It appears that their germination is enhanced by aril removal, which may act as an environmental cue to break dormancy. Such a mechanism would indicate that ant-handling of seeds is predictive of favorable conditions for seedling growth and establishment. The exact nature of such conditions and the effects on plant population dynamics remain to be seen.
Lighton, John R B; Turner, Robbin J
2008-02-01
The discontinuous gas exchange cycle (DGC) of insects and other tracheate arthropods temporally decouples oxygen uptake and carbon dioxide emission and generates powerful concentration gradients for both gas species between the outside world and the tracheal system. Although the DGC is considered an adaptation to reduce respiratory water loss (RWL) - the "hygric hypothesis" - it is absent from many taxa, including xeric ones. The "chthonic hypothesis" states that the DGC originated as an adaptation to gas exchange in hypoxic and hypercapnic, i.e. underground, environments. If that is the case then the DGC is not the ancestral condition, and its expression is not necessarily a requirement for reducing RWL. Here we report a study of water loss rate in the ant Camponotus vicinus, measured while its DGC was slowly eliminated by gradual hypoxia (hypoxic ramp de-DGCing). Metabolic rate remained constant. The DGC ceased at a mean P(O2) of 8.4 kPa. RWL in the absence of DGCs was not affected until P(O2) declined below 3.9 kPa. Below that value, non-DGC spiracular regulation failed, accompanied by a large increase in RWL. Thus, the spiracular control strategy of the DGC is not required for low RWL, even in animals that normally express the DGC.
USDA-ARS?s Scientific Manuscript database
The red imported fire ant, Solenopsis invicta, is an aggressive, highly invasive pest ant species from South America that has been introduced into North America, Asia and Australia. Quarantine efforts have been imposed in the United States to minimize the spread of the ant. There remains an acute ...
Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C
2016-09-01
The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.
A new fire ant (Hymenoptera: Formicidae) bait base carrier for moist conditions.
Kafle, Lekhnath; Wu, Wen-Jer; Shih, Cheng-Jen
2010-10-01
A new water-resistant fire ant bait (T-bait; cypermethrin 0.128%) consisting of dried distillers grains with solubles (DDGS) as a carrier was developed and evaluated against a standard commercial bait (Advion; indoxacarb 0.045%) under both laboratory and field conditions. When applying the normal T-bait or Advion in the laboratory, 100% of Solenopsis invicta Buren worker ants were killed within 4 days. However, when the T-bait and Advion were wetted, 70.6 and 39.7% of the ants were killed respectively. Under field conditions, dry T-bait and dry Advion had almost the same efficacy against ant colonies. However, when T-bait and Advion came in contact with water, the former's ability to kill S. invicta colonies in the field was only marginally reduced, while Advion lost virtually all of its activity. In addition, DDGS was also shown to be compatible with a number of other insecticides, such as d-allethrin, permethrin and pyrethrin. Based on its properties of remaining attractive to the fire ants when wetted, combined with its ant-killing abilities both in the laboratory and in the field, T-bait is an efficient fire ant bait, especially under moist conditions.
Contact rate modulates foraging efficiency in leaf cutting ants.
Bouchebti, S; Ferrere, S; Vittori, K; Latil, G; Dussutour, A; Fourcassié, V
2015-12-21
Lane segregation is rarely observed in animals that move in bidirectional flows. Consequently, these animals generally experience a high rate of head-on collisions during their journeys. Although these collisions have a cost (each collision induces a delay resulting in a decrease of individual speed), they could also have a benefit by promoting information transfer between individuals. Here we explore the impact of head-on collisions in leaf-cutting ants moving on foraging trails by artificially decreasing the rate of head-on collisions between individuals. We show that head-on collisions do not influence the rate of recruitment in these ants but do influence foraging efficiency, i.e. the proportion of ants returning to the nest with a leaf fragment. Surprisingly, both unladen and laden ants returning to the nest participate in the modulation of foraging efficiency: foraging efficiency decreases when the rate of contacts with both nestbound laden or unladen ants decreases. These results suggest that outgoing ants are able to collect information from inbound ants even when these latter do not carry any leaf fragment and that this information can influence their foraging decisions when reaching the end of the trail.
Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)
Zettler, J.A.; Taylor, M.D.; Allen, Craig R.; Spira, T.P.
2004-01-01
Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.
Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen
2013-01-01
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946
Extrafloral nectar fuels ant life in deserts
Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte
2014-01-01
Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant–plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. PMID:25381258
NASA Astrophysics Data System (ADS)
Bain, Anthony; Harrison, Rhett D.; Schatz, Bertrand
2014-05-01
Mutualistic interactions are open to exploitation by one or other of the partners and a diversity of other organisms, and hence are best understood as being embedded in a complex network of biotic interactions. Figs participate in an obligate mutualism in that figs are dependent on agaonid fig wasps for pollination and the wasps are dependent on fig ovules for brood sites. Ants are common insect predators and abundant in tropical forests. Ants have been recorded on approximately 11% of fig species, including all six subgenera, and often affect the fig-fig pollinator interaction through their predation of either pollinating and parasitic wasps. On monoecious figs, ants are often associated with hemipterans, whereas in dioecious figs ants predominantly prey on fig wasps. A few fig species are true myrmecophytes, with domatia or food rewards for ants, and in at least one species this is linked to predation of parasitic fig wasps. Ants also play a role in dispersal of fig seeds and may be particularly important for hemi-epiphytic species, which require high quality establishment microsites in the canopy. The intersection between the fig-fig pollinator and ant-plant systems promises to provide fertile ground for understanding mutualistic interactions within the context of complex interaction networks.
Ants regulate colony spatial organization using multiple chemical road-signs
Heyman, Yael; Shental, Noam; Brandis, Alexander; Hefetz, Abraham; Feinerman, Ofer
2017-01-01
Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical ‘road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony. PMID:28569746
Ants regulate colony spatial organization using multiple chemical road-signs.
Heyman, Yael; Shental, Noam; Brandis, Alexander; Hefetz, Abraham; Feinerman, Ofer
2017-06-01
Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical 'road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony.
USDA-ARS?s Scientific Manuscript database
Ants are common hitchhiker pests on traded agricultural commodities that could be controlled by postharvest irradiation treatment. We studied radiation tolerance in queens of the red imported fire ant Solenopsis invicta Buren to determine the dose sufficient for its control. Virgin or fertile queens...
Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Gao, Ruiru; Yang, Fan; Wei, Lingling; Li, Leilei; He, Hongju; Huang, Zhenying
2013-12-01
Post-dispersal seed removal by animals can lead to extensive seed loss and thus is an important factor in structuring plant communities. However, we know much less about post-dispersal seed predation than about other forms of herbivory. Mucilage plays many ecological roles in adaptation of plants to diverse environments; nevertheless, until now the role of mucilage in ant-mediated seed movement remains largely hypothetical. We studied the role of mucilage in seed removal of Artemisia sphaerocephala by ants in Mu Us Sandland in Inner Mongolia, China. Messor aciculatus was the most active seed predator of Artemisia sphaerocephala. Time to first ant collecting (T 1st) of wet intact seeds was longest and significantly different from that for dry intact seeds, wet demucilaged seeds, and dry demucilaged seeds; number of seeds removed to ant nests was lowest for wet intact seeds. After they were collected by ants, 5 % of wet intact seeds were dropped during transport. Our results indicate that seed mucilage of Artemisia sphaerocephala may play a significant role in post-dispersal seed removal by (1) making seeds less attractive to ants, thus resulting in a delay of collection time; (2) forming a strong bond to soil particles, making it difficult for ants to remove seeds; and (3) making seeds more likely to be dropped during transport, thereby allowing them to escape from predation even after collection by ants. This study demonstrates the importance of mucilage in reducing seed removal by ants and thus in anchoring seeds of desert plants in the vicinity of mother plants.
Congestion and communication in confined ant traffic
NASA Astrophysics Data System (ADS)
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.
2014-03-01
Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.
Trail pheromone disruption of Argentine ant trail formation and foraging.
Suckling, David Maxwell; Peck, Robert W; Stringer, Lloyd D; Snook, Kirsten; Banko, Paul C
2010-01-01
Trail pheromone disruption of invasive ants is a novel tactic that builds on the development of pheromone-based pest management in other insects. Argentine ant trail pheromone, (Z)-9-hexadecenal, was formulated as a micro-encapsulated sprayable particle and applied against Argentine ant populations in 400 m2 field plots in Hawai'i Volcanoes National Park. A widely dispersed point source strategy for trail pheromone disruption was used. Traffic rates of ants in bioassays of treated filter paper, protected from rainfall and sunlight, indicated the presence of behaviorally significant quantities of pheromone being released from the formulation for up to 59 days. The proportion of plots, under trade wind conditions (2–3 m s−1), with visible trails was reduced for up to 14 days following treatment, and the number of foraging ants at randomly placed tuna-bait cards was similarly reduced. The success of these trail pheromone disruption trials in a natural ecosystem highlights the potential of this method for control of invasive ant species in this and other environments.
[Ants as carriers of microorganisms in hospital environments].
Pereira, Rogério Dos Santos; Ueno, Mariko
2008-01-01
Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.
Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages
Dunn, R.R.; Parker, C.R.; Sanders, N.J.
2007-01-01
In this study, we use 12 months of data from 11 ant assemblages to test whether seasonal variation in ant diversity is governed by either the structuring influences of interspecific competition or environmental conditions. Because the importance of competition might vary along environmental gradients, we also test whether the signature of competition depends on elevation. We find little evidence that competition structures the seasonal patterns of activity in the ant assemblages considered, but find support for the effects of temperature on seasonal patterns of diversity, especially at low-elevation sites. Although, in general, both competition and the environment interact to structure ant assemblages, our results suggest that environmental conditions are the primary force structuring the seasonal activity of the ant assemblages studied here. ?? 2007 The Linnean Society of London.
Graham, J.H.; Hughie, H.H.; Jones, S.; Wrinn, K.; Krzysik, A.J.; Duda, J.J.; Freeman, D. Carl; Emlen, J.M.; Zak, J.C.; Kovacic, D.A.; Chamberlin-Graham, C.; Balbach, H.
2004-01-01
We examined habitat disturbance, species richness, equitability, and abundance of ants in the Fall-Line Sandhills, at Fort Benning, Georgia. We collected ants with pitfall traps, sweep nets, and by searching tree trunks. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We collected 48 species of ants, in 23 genera (141,468 individuals), over four years of sampling. Highly disturbed areas had fewer species, and greater numbers of ants than did moderately or lightly disturbed areas. The ant communities in disturbed areas were also less equitable, and were dominated by Dorymyrmex smithi.
9 CFR 354.123 - Segregation of suspects on ante-mortem inspection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Segregation of suspects on ante-mortem inspection. 354.123 Section 354.123 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Inspection Procedures; Ante-Mortem Inspections § 354.123 Segregation of suspects on ante-mortem inspection...
9 CFR 354.123 - Segregation of suspects on ante-mortem inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Segregation of suspects on ante-mortem inspection. 354.123 Section 354.123 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Inspection Procedures; Ante-Mortem Inspections § 354.123 Segregation of suspects on ante-mortem inspection...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
The Haleakala Argentine ant project: a synthesis of past research and prospects for the future
Krushelnycky, Paul; Haines, William; Loope, Lloyd; Van Gelder, Ellen
2011-01-01
1. The Haleakala Argentine Ant Project is an ongoing effort to study the ecology of the invasive Argentine ant in the park, and if possible to develop a strategy to control this destructive species. 2. Past research has demonstrated that the Argentine ant causes very significant impacts on native arthropods where it invades, threatening a large portion of the park’s biodiversity in subalpine shrubland and alpine aeolian ecosystems. 3. Patterns of spread over the past 30+ years indicate that the invasion process is influenced to a substantial degree by abiotic factors such as elevation, rainfall and temperature, and that the ant has not reached its potential range. Predictions of total range in the park suggest that it has only invaded a small fraction of available suitable habitat, confirming that this species is one of most serious threats to the park’s natural resources. 4. Numerous experiments have been conducted since 1994 in an attempt to develop a method for eradicating the Argentine ant at Haleakala using pesticidal ant baits. Thirty baits have been screened for attractiveness to ants in the park, and ten of these were tested for effectiveness of control in field plots. While some of these baits have been very effective in reducing numbers of ants, none has been able to eliminate all nests in experimental plots. 5. Research into a secondary management goal of ant population containment was initiated in 1996. By treating only expanding margins of the park’s two ant populations with an ant pesticide, rates of outward spread were substantially reduced in some areas. While this strategy was implemented from 1997 to 2004, it was ultimately discontinued after 2004 because of the difficulty and insufficient effectiveness of the technique. 6. In order to achieve the types of results necessary for eradication, the project would probably need to explore the possibility of developing a specialized bait, rather than relying on a commercially produced bait. An alternative would be to pursue approval to use Xstinguish bait, a commercial bait manufactured in New Zealand and not registered for use in the US, which has yielded good results against Argentine ants. Either route would involve significant regulatory hurdles. Because the baits ultimately used would likely be liquid or paste in form, there would also be major logistical challenges in devising methods to successfully apply the baits across the two large ant populations at Haleakala.
Mueller, Ulrich G.; Ishak, Heather; Lee, Jung C.; Sen, Ruchira; Gutell, Robin R.
2010-01-01
We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species. PMID:20333466
Mueller, Ulrich G; Ishak, Heather; Lee, Jung C; Sen, Ruchira; Gutell, Robin R
2010-08-01
We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant-associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species.
USDA-ARS?s Scientific Manuscript database
Ants may be the most thoroughly documented group of insects inhabiting the cedar glades of the Central Basin of Tennessee with two studies conducted in the late 1930s reporting ants found in cedar glades of the region. To compare the ant fauna of modern cedar glades with the lists produced in earlie...
A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.
Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu
2014-09-01
A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
... a fire ant delivers a harmful substance, called venom, into your skin. This article is for information ... in the United States. Poisonous Ingredient Fire ant venom contains a chemical called piperidine. Where Found Fire ...
Fluid intake rates in ants correlate with their feeding habits.
Paul, J; Roces, F
2003-04-01
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.
Farder-Gomes, C F; Oliveira, M A; Gonçalves, P L; Gontijo, L M; Zanuncio, J C; Bragança, M A L; Pires, E M
2017-08-01
The leaf-cutting ant Atta sexdens Forel (Hymenoptera: Formicidae) is one of the most damaging agricultural pests in the Neotropics. Management strategies predominantly rely on the use of general insecticides. What is needed are more species-specific and environmentally friendly options. Parasitioids such as phorid flies (Diptera: Phoridae) may be one such option, but a greater understanding of the ecology of the flies and their ant hosts is essential to devise biological control strategies. Here we report parasitism rates, ant host size, parasitoid abundance per host and resultant sex ratios of two phorid species Apocephalus attophilus Borgmeier and Eibesfeldtphora tonhascai Brown parasitizing A.sexdens. The two species achieved parasitism rates of 1.48 and 1.46%, respectively and the pupal period was 14.7 ± 1.1 days and 22.1 ± 2.8 days, respectively. There was no significant difference between the head capsule width of ants parasitized by either A. attophilus or E. tonhascai. Likewise, there was no significant effect between the head capsule width of parasitized and unparasitized ants for both species. A significant positive correlation was found between the head capsule width of the parasitized ants and the number of adult parasitoids A. attophilus emerged. Ants parasitized by E. tonhascai survived significantly longer than those parasitized by A. attophilus. There was no significant effect of ant head width on the sex ratio of the offspring of either parasitoid species and no significant difference in the sex ratio (male: female) of their offspring. In summary, these data addressed here are important steps when considering natural enemies for biological control. Studying survival of the parasitized ants, parasitoid offspring sex ratio and host size preference allows for a better understanding of ant natural biological control in the field and can help in rearing of A. attophilus and E. tonhascai in laboratory.
Bieber, Ana Gabriela D.; Silva, Paulo S. D.; Sendoya, Sebastián F.; Oliveira, Paulo S.
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic ‘seed’ covered by a lipid-rich ‘pulp’), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes. PMID:24587341
Bieber, Ana Gabriela D; Silva, Paulo S D; Sendoya, Sebastián F; Oliveira, Paulo S
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.
Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M
2015-01-01
The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community. Synthesis and applications. Our results suggest that riparian reserves are comparable to areas of logged forest in terms of ant community composition and ant-mediated scavenging. Hence, in addition to protecting large continuous areas of primary and logged forest, maintaining riparian reserves is a successful strategy for conserving leaf litter ants and their scavenging activities in tropical agricultural landscapes. PMID:25678717
USDA-ARS?s Scientific Manuscript database
Ants collected in pitfall traps were identified and compared between native vegetation and monoculture stands of arundo, Arundo donax L., monthly at 10 locations for a year. A total of 82,752 ants representing 28 genera and 76 species were collected. More ants were collected in the native vegetation...
Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.
Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto
2013-08-01
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.
A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism
Bazile, Vincent; Moran, Jonathan A.; Le Moguédec, Gilles; Marshall, David J.; Gaume, Laurence
2012-01-01
Scarcity of essential nutrients has led plants to evolve alternative nutritional strategies, such as myrmecotrophy (ant-waste-derived nutrition) and carnivory (invertebrate predation). The carnivorous plant Nepenthes bicalcarata grows in the Bornean peatswamp forests and is believed to have a mutualistic relationship with its symbiotic ant Camponotus schmitzi. However, the benefits provided by the ant have not been quantified. We tested the hypothesis of a nutritional mutualism, using foliar isotopic and reflectance analyses and by comparing fitness-related traits between ant-inhabited and uninhabited plants. Plants inhabited by C. schmitzi produced more leaves of greater area and nitrogen content than unoccupied plants. The ants were estimated to provide a 200% increase in foliar nitrogen to adult plants. Inhabited plants also produced more and larger pitchers containing higher prey biomass. C. schmitzi-occupied pitchers differed qualitatively in containing C. schmitzi wastes and captured large ants and flying insects. Pitcher abortion rates were lower in inhabited plants partly because of herbivore deterrence as herbivory-aborted buds decreased with ant occupation rate. Lower abortion was also attributed to ant nutritional service. The ants had higher δ15N values than any tested prey, and foliar δ15N increased with ant occupation rate, confirming their predatory behaviour and demonstrating their direct contribution to the plant-recycled N. We estimated that N. bicalcarata derives on average 42% of its foliar N from C. schmitzi wastes, (76% in highly-occupied plants). According to the Structure Independent Pigment Index, plants without C. schmitzi were nutrient stressed compared to both occupied plants, and pitcher-lacking plants. This attests to the physiological cost of pitcher production and poor nutrient assimilation in the absence of the symbiont. Hence C. schmitzi contributes crucially to the nutrition of N. bicalcarata, via protection of assimilatory organs, enhancement of prey capture, and myrmecotrophy. This combination of carnivory and myrmecotrophy represents an outstanding strategy of nutrient sequestration. PMID:22590524
Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?
Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor
2015-01-01
Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962
An uneasy alliance: a nesting association between aggressive ants and equally fierce social wasps.
Servigne, Pablo; Orivel, Jérôme; Azémar, Frédéric; Carpenter, James; Dejean, Alain; Corbara, Bruno
2018-04-16
Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder, its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta (F.). In French Guiana, 83.33% of the 48 P. rejecta nests recorded were found side by side with those of A. chartifex. This nesting association results in mutual protection from predators (i.e., the wasps protected from army ants; the ants protected from birds). We conducted field studies, laboratory-based behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association. Due to differences in the cuticular profiles of the two species, we eliminated thepossibility of chemical mimicry. Also, analyses of the carton nests did not reveal traces of marking on the envelopes. Because ant forager flows were not perturbed by extracts from the wasps' Dufour's and venom glands, we rejected any hypothetical action of repulsive chemicals. Nevertheless, we noted that the wasps 'scraped' the surface of the upper part of their nest envelope using their mandibles, likely removing the ants' scent trails, and an experiment showed that ant foragers were perturbed by the removal of their scent trails. This leads us to use the term 'erasure hypothesis'. Thus, this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to 'contain' their associated ants through the elimination of their scent trails, direct attacks, 'wing-buzzing' behavior and ejecting the ants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
How to find home backwards? Navigation during rearward homing of Cataglyphis fortis desert ants.
Pfeffer, Sarah E; Wittlinger, Matthias
2016-07-15
Cataglyphis ants are renowned for their impressive navigation skills, which have been studied in numerous experiments during forward locomotion. However, the ants' navigational performance during backward homing when dragging large food loads has not been investigated until now. During backward locomotion, the odometer has to deal with unsteady motion and irregularities in inter-leg coordination. The legs' sensory feedback during backward walking is not just a simple reversal of the forward stepping movements: compared with forward homing, ants are facing towards the opposite direction during backward dragging. Hence, the compass system has to cope with a flipped celestial view (in terms of the polarization pattern and the position of the sun) and an inverted retinotopic image of the visual panorama and landmark environment. The same is true for wind and olfactory cues. In this study we analyze for the first time backward-homing ants and evaluate their navigational performance in channel and open field experiments. Backward-homing Cataglyphis fortis desert ants show remarkable similarities in the performance of homing compared with forward-walking ants. Despite the numerous challenges emerging for the navigational system during backward walking, we show that ants perform quite well in our experiments. Direction and distance gauging was comparable to that of the forward-walking control groups. Interestingly, we found that backward-homing ants often put down the food item and performed foodless search loops around the left food item. These search loops were mainly centred around the drop-off position (and not around the nest position), and increased in length the closer the ants came to their fictive nest site. © 2016. Published by The Company of Biologists Ltd.
Folgarait, Patricia; Gorosito, Norma; Poulsen, Michael; Currie, Cameron R
2011-09-01
Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.
Herrera-Rangel, J; Jiménez-Carmona, E; Armbrecht, I
2015-10-01
Hunting ants are predators of organisms belonging to different trophic levels. Their presence, abundance, and diversity may reflect the diversity of other ants and contribute to evaluate habitat conditions. Between 2003 and 2005 the restoration of seven corridors in an Andean rural landscape of Colombia was performed. The restoration took place in lands that were formerly either forestry plantations or pasturelands. To evaluate restoration progress, hunting ants were intensely sampled for 7 yr, using sifted leaf litter and mini-Winkler, and pitfall traps in 21 plots classified into five vegetation types: forests, riparian forests, two types of restored corridors, and pasturelands. The ant communities were faithful to their habitat over time, and the main differences in ant composition, abundance, and richness were due to differences among land use types. The forests and riparian forests support 45% of the species in the landscape while the restored corridors contain between 8.3-25%. The change from forest to pasturelands represents a loss of 80% of the species. Ant composition in restored corridors was significantly different than in forests but restored corridors of soil of forestry plantations retained 16.7% more species than restored corridors from pasturelands. Ubiquitous hunting ants, Hypoponera opacior (Forel) and Gnamptogenys ca andina were usually associated with pastures and dominate restored corridors. Other cryptic, small, and specialized hunting ants are not present in the restored corridors. Results suggest that the history of land use is important for the biodiversity of hunting ants but also that corridors have not yet effectively contributed toward conservation goals. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Trail pheromone disruption of red imported fire ant.
Suckling, David M; Stringer, Lloyd D; Bunn, Barry; El-Sayed, Ashraf M; Vander Meer, Robert K
2010-07-01
The fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is considered one of the most aggressive and invasive species in the world. Toxic bait systems are used widely for control, but they also affect non-target ant species and cannot be used in sensitive ecosystems such as organic farms and national parks. The fire ant uses recruitment pheromones to organize the retrieval of large food resources back to the colony, with Z,E-alpha-farnesene responsible for the orientation of workers along trails. We prepared Z,E-alpha-farnesene, (91% purity) from extracted E,E-alpha-farnesene and demonstrated disruption of worker trail orientation after presentation of an oversupply of this compound from filter paper point sources (30 microg). Trails were established between queen-right colony cells and food sources in plastic tubs. Trail-following behavior was recorded by overhead webcam, and ants were digitized before and after presentation of the treatment, using two software approaches. The linear regression statistic, r(2) was calculated. Ants initially showed high linear trail integrity (r(2) = 0.75). Within seconds of presentation of the Z,E-alpha-farnesene treatment, the trailing ants showed little or no further evidence of trail following behavior in the vicinity of the pheromone source. These results show that trailing fire ants become disorientated in the presence of large amounts of Z,E-alpha-farnesene. Disrupting fire ant recruitment to resources may have a negative effect on colony size or other effects yet to be determined. This phenomenon was demonstrated recently for the Argentine ant, where trails were disrupted for two weeks by using their formulated trail pheromone, Z-9-hexadecenal. Further research is needed to establish the long term effects and control potential for trail disruption in S. invicta.
USDA-ARS?s Scientific Manuscript database
Most diets for rearing fire ants and other ants contain insects such as crickets or mealworms. Unfortunately, insect diets are expensive, especially for large rearing operations, and are not always easily available. This study was designed to examine colony growth of Solenopsis fire ants on beef liv...
Pacheco, Simone Muniz; Soares, Mayara Sandrielly Pereira; Gutierres, Jessié Martins; Gerzson, Mariana Freire Barbieri; Carvalho, Fabiano Barbosa; Azambuja, Juliana Hofstatter; Schetinger, Maria Rosa Chitolina; Stefanello, Francieli Moro; Spanevello, Roselia Maria
2018-06-01
Anthocyanins (ANT) are polyphenolic flavonoids with antioxidant and neuroprotective properties. This study evaluated the effect of ANT treatment on cognitive performance and neurochemical parameters in an experimental model of sporadic dementia of Alzheimer's type (SDAT). Adult male rats were divided into four groups: control (1 ml/kg saline, once daily, by gavage), ANT (200 mg/kg, once daily, by gavage), streptozotocin (STZ, 3 mg/kg) and STZ plus ANT. STZ was administered via bilateral intracerebroventricular (ICV) injection (5 μl). ANT were administered after ICV injection for 25 days. Cognitive deficits (short-term memory and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) and Na + -K + -ATPase activity in the cerebral cortex and hippocampus were evaluated. ANT treatment protected against the worsening of memory in STZ-induced SDAT. STZ promoted an increase in AChE and Na + -K + -ATPase total and isoform activity in both structures; ANT restored this change. STZ administration induced an increase in lipid peroxidation and decrease in the level of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the cerebral cortex; ANT significantly attenuated these effects. In the hippocampus, an increase in reactive oxygen species (ROS), nitrite and lipid peroxidation levels, and SOD activity and a decrease in CAT and GPx activity were seen after STZ injection. ANT protected against the changes in ROS and antioxidant enzyme levels. In conclusion, the present study showed that treatment with ANT attenuated memory deficits, protected against oxidative damage in the brain, and restored AChE and ion pump activity in an STZ-induced SDAT in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Kafle, Lekhnath; Shih, Cheng-Jen
2012-03-01
The purpose of this study was to determine the most effective particle size of DDGS (distiller's dried grains with solubles) as fire ant bait carrier, as well as the most effective concentration of cypermethrin as a toxicant against the red imported fire ant (RIFA) Solenopsis invicta Buren under laboratory conditions. The DDGS particle size did not affect the fire ant's preference for the bait, but it did affect the mass of DDGS being carried back to the nest. The size of the DDGS particles and the mass of DDGS being carried back to the nest were positively correlated. The most efficient particle size of DDGS was 0.8-2 mm. The concentration of cypermethrin has a specific range for killing fire ants in an efficient manner. Neither a very low nor a very high concentration of cypermethrin was able to kill fire ants efficiently. The most effective concentration of cypermethrin was 0.13% in DDGS when mixed with 15% shrimp shell powders and 11% soybean oil. Based on its ability to kill fire ants when mixed with cypermethrin, as well as the advantage of having a larger area coverage when sprayed in the field, DDGS as the carrier and cypermethrin as the toxicant can be considered to be an efficient way to prepare fire ant bait for controlling fire ants in infested areas. Copyright © 2012 Society of Chemical Industry.
Fault tolerant features and experiments of ANTS distributed real-time system
NASA Astrophysics Data System (ADS)
Dominic-Savio, Patrick; Lo, Jien-Chung; Tufts, Donald W.
1995-01-01
The ANTS project at the University of Rhode Island introduces the concept of Active Nodal Task Seeking (ANTS) as a way to efficiently design and implement dependable, high-performance, distributed computing. This paper presents the fault tolerant design features that have been incorporated in the ANTS experimental system implementation. The results of performance evaluations and fault injection experiments are reported. The fault-tolerant version of ANTS categorizes all computing nodes into three groups. They are: the up-and-running green group, the self-diagnosing yellow group and the failed red group. Each available computing node will be placed in the yellow group periodically for a routine diagnosis. In addition, for long-life missions, ANTS uses a monitoring scheme to identify faulty computing nodes. In this monitoring scheme, the communication pattern of each computing node is monitored by two other nodes.
Robbins, T R; Langkilde, T
2012-10-01
Responses to novel threats (e.g. invasive species) can involve genetic changes or plastic shifts in phenotype. There is controversy over the relative importance of these processes for species survival of such perturbations, but we are realizing they are not mutually exclusive. Native eastern fence lizards (Sceloporus undulatus) have adapted to top-down predation pressure imposed by the invasive red imported fire ant (Solenopsis invicta) via changes in adult (but not juvenile) lizard antipredator behaviour. Here, we examine the largely ignored, but potentially equally important, bottom-up effect of fire ants as toxic prey for lizards. We test how fire ant consumption (or avoidance) is affected by lifetime (via plasticity) and evolutionary (via natural selection) exposure to fire ants by comparing field-caught and laboratory-reared lizards, respectively, from fire ant-invaded and uninvaded populations. More naive juveniles from invaded populations ate fire ants than did adults, reflecting a natural ontogenetic dietary shift away from ants. Laboratory-reared lizards from the invaded site were less likely to eat fire ants than were those from the uninvaded site, suggesting a potential evolutionary shift in feeding behaviour. Lifetime and evolutionary exposure interacted across ontogeny, however, and field-caught lizards from the invaded site exhibited opposite ontogenetic trends; adults were more likely to eat fire ants than were juveniles. Our results suggest that plastic and evolutionary processes may both play important roles in permitting species survival of novel threats. We further reveal how complex interactions can shape adaptive responses to multimodal impacts imposed by invaders: in our system, fire ants impose stronger bottom-up selection than top-down selection, with each selection regime changing differently across lizard ontogeny. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F
2015-10-01
The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.
Optic flow odometry operates independently of stride integration in carried ants.
Pfeffer, Sarah E; Wittlinger, Matthias
2016-09-09
Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.
Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich
2015-02-22
Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Pheromone disruption of Argentine ant trail integrity.
Suckling, D M; Peck, R W; Manning, L M; Stringer, L D; Cappadonna, J; El-Sayed, A M
2008-12-01
Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m(2)) to 1- and 4-m(2) plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected.
Pheromone disruption of Argentine ant trail integrity
Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.
2008-01-01
Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.
Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna.
Palmer, Todd M; Stanton, Maureen L; Young, Truman P; Goheen, Jacob R; Pringle, Robert M; Karban, Richard
2008-01-11
Mutualisms are key components of biodiversity and ecosystem function, yet the forces maintaining them are poorly understood. We investigated the effects of removing large mammals on an ant-Acacia mutualism in an African savanna. Ten years of large-herbivore exclusion reduced the nectar and housing provided by plants to ants, increasing antagonistic behavior by a mutualistic ant associate and shifting competitive dominance within the plant-ant community from this nectar-dependent mutualist to an antagonistic species that does not depend on plant rewards. Trees occupied by this antagonist suffered increased attack by stem-boring beetles, grew more slowly, and experienced doubled mortality relative to trees occupied by the mutualistic ant. These results show that large mammals maintain cooperation within a widespread symbiosis and suggest complex cascading effects of megafaunal extinction.
Fire ants self-assemble into waterproof rafts to survive floods
Mlot, Nathan J.; Tovey, Craig A.; Hu, David L.
2011-01-01
Why does a single fire ant Solenopsis invicta struggle in water, whereas a group can float effortlessly for days? We use time-lapse photography to investigate how fire ants S. invicta link their bodies together to build waterproof rafts. Although water repellency in nature has been previously viewed as a static material property of plant leaves and insect cuticles, we here demonstrate a self-assembled hydrophobic surface. We find that ants can considerably enhance their water repellency by linking their bodies together, a process analogous to the weaving of a waterproof fabric. We present a model for the rate of raft construction based on observations of ant trajectories atop the raft. Central to the construction process is the trapping of ants at the raft edge by their neighbors, suggesting that some “cooperative” behaviors may rely upon coercion. PMID:21518911
Denison, R Ford
2014-07-01
Two recent reports discuss interactions between plants and ants that defend them from herbivores. Acacia trees provide their ant bodyguards with a diet that reduces their ability to benefit from alternate hosts. Provisioning of ants by Cordia trees during drought may buy insurance against extreme defoliation events, not just average-year benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Martín-Vega, Daniel; Garbout, Amin; Ahmed, Farah; Wicklein, Martina; Goater, Cameron P; Colwell, Douglas D; Hall, Martin J R
2018-06-05
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
Interactions Increase Forager Availability and Activity in Harvester Ants.
Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M
2015-01-01
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.
Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-01-01
In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait. PMID:29168742
Zhu, Yaguang; Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-11-23
Abstract : In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait.
Sinotte, Veronica M; Freedman, Samantha N; Ugelvig, Line V; Seid, Marc A
2018-06-01
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia , but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum , suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.
Ants (Hymenoptera:Formicidae) of the Savannah River Plant, South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Pelt, A.; Gentry, J.B.
1985-03-01
This report lists each ant species collected on the SRP by habitat and, where determined, the nesting site within a particular habitat. Through the use of baited traps, relative frequencies of foraging ants were determined and listed. A key to the subfamilies and genera of ants occurring on the SRP is included along with illustrations of species representative of the major genera. 10 refs., 32 figs., 2 tabs.
Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit
Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken
2013-01-01
Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644
Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo
2017-08-01
Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loreto, Raquel G.; Hart, Adam G.; Pereira, Thairine M.; Freitas, Mayara L. R.; Hughes, David P.; Elliot, Simon L.
2013-10-01
Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants ( Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.
Anu, Anto; Sabu, Thomas K.
2007-01-01
The diversity of litter ant assemblages in evergreen, deciduous and Shola evergreen (Shola) forest vegetation types of the Wayanad region of the Western Ghats was assessed employing conventional and taxonomic diversity indices. Non-dependence on quantitative data and the ability to relate the phylogenetic structure of assemblages with ecological conditions of the habitat, and to ascertain priorities for conservation of habitats, makes non-parametric taxonomic diversity measures, such as variation in taxonomic distinctness Λ+ and average taxonomic distinctness Δ+, highly useful tools for assessment of litter ant biodiversity. Although Δ+ values saturated leading to closer values for the 3 litter ant assemblages, Λ+ proved to be a more dependable index. Evenness in taxonomic spread was high in ant assemblages in deciduous forests and low in evergreen forests compared to the regional master list. Low Λ+ of ant assemblage in deciduous forests indicates that among the 3 forest vegetation types, deciduous forests provided the most favorable habitat conditions for litter ants. Low evenness, as is indicated by Λ+ in evergreen forests, was attributed to the presence of a group of taxonomically closely related ant assemblage more adapted to prevail in moist and wet ecological conditions. PMID:20334594
Sabu, Thomas K.; Vineesh, P. J.; Vinod, K.V.
2008-01-01
Litter ant diversity and abundance in relation to biotic and abiotic factors were analyzed at five primary forest sites lying between 300 to 1650 meter above mean sea level in the Wayanad region of the Western Ghats in Kerala, southern India. Ant abundance and species richness peaked at mid-elevations influenced by the presence of favourable physical conditions and abundance of prey resources. Dominance of ants preferring termites and Collembola as prey at sites rich in their specific prey resources indicate the influence of local prey resource availability in determining ant distribution. Dominant species (Tapinoma sp. and Solenopsis sp.) had wider distributions, being present at all elevations. Physical factors (slope of the terrain, rainfall, moisture, humidity, temperature) and prey resource availability (insect larvae, termites, Collembola) influenced ant species abundance at a regional scale, whereas at local scales, site specific variations in the relationship between abundance of ants and prey-predators and physical factors were recorded. The present study highlights the need to consider site-specific abiotic and biotic factors while examining the distribution patterns of litter ants along altitudinal gradients in other regions of the Western Ghats, which is a recognised hot spot of biodiversity with wide regional variation in vegetation types and faunal distribution patterns.
Horned lizards (Phrynosoma) incapacitate dangerous ant prey with mucus.
Sherbrooke, Wade C; Schwenk, Kurt
2008-10-01
Horned lizards (Iguanidae, Phrynosomatinae, Phrynosoma) are morphologically specialized reptiles characterized by squat, tank-like bodies, short limbs, blunt snouts, spines and cranial horns, among other traits. They are unusual among lizards in the degree to which they specialize on a diet of ants, but exceptional in the number of pugnacious, highly venomous, stinging ants they consume, especially harvester ants (genus Pogonomyrmex). Like other iguanian lizards, they capture insect prey on the tongue, but unlike other lizards, they neither bite nor chew dangerous prey before swallowing. Instead, they employ a unique kinematic pattern in which prey capture, transport and swallowing are combined. Nevertheless, horned lizards consume dozens of harvester ants without harm. We show that their derived feeding kinematics are associated with unique, mucus-secreting pharyngeal papillae that apparently serve to immobilize and incapacitate dangerous ants as they are swallowed by compacting them and binding them in mucus strands. Radially branched esophageal folds provide additional mucus-secreting surfaces the ants pass through as they are swallowed. Ants extracted from fresh-killed horned lizard stomachs are curled ventrally into balls and bound in mucus. We conclude that the pharyngeal papillae, in association with a unique form of hyolingual prey transport and swallowing, are horned lizard adaptations related to a diet of dangerous prey. Harvester ant defensive weapons, along with horned lizard adaptations against such weapons, suggest a long-term, predator-prey, co-evolutionary arms race between Phrynosoma and Pogonomyrmex. Copyright 2008 Wiley-Liss, Inc.
Adams, Rachelle M M; Jones, Tappey H; Longino, John T; Weatherford, Robert G; Mueller, Ulrich G
2015-04-01
Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.
Simoncini, Costanza; Siciliano, Gabriele; Tognoni, Gloria
2017-01-01
ANT1 is one of the nuclear genes responsible of autosomal dominant progressive external ophthalmoplegia (adPEO) with mitochondrial DNA multiple deletions. The course of ANT1- related adPEO is relatively benign, symptoms being generally restricted to skeletal muscle. Here we report the case of an Italian 74 years old woman with ANT1-related adPEO and dementia. Further studies are needed to assess the prevalence of central neurological manifestations in ANT1 mitochondrial disease. PMID:28690391
Ant algorithms for discrete optimization.
Dorigo, M; Di Caro, G; Gambardella, L M
1999-01-01
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.
Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders.
Durkee, Caitlin A; Weiss, Martha R; Uma, Divya B
2011-10-01
Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.
Allen, Craig R.; Willey, R.D.; Myers, P.E.; Horton, P.M.; Buffa, J.
2000-01-01
Northern bobwhite quail (Colinus virginianus L.) populations are declining throughout their range. One factor contributing to the decline in the southeastern United States may be the red imported fire ant (Solenopsis invicta Buren). Recent research in Texas has documented that red imported fire ants can have a significant impact on northern bobwhite quail. That research was conducted in areas where fire ants are predominately polygynous (multiple queen). Polygynous infestations have much higher mound densities than the monogynous (single queen) form. In most of the southeastern United States, fire ants are predominately monogynous. We determined if there was a relationship between the invasion of monogynous red imported fire ants and abundance trends in northern bobwhite quail in the southeastern United States. For Florida, Georgia, and South Carolina we compared average northern bobwhite quail abundance based on Christmas Bird Count data for each county before and after fire ant invasion, and conducted regression analyses on bobwhite quail abundance and year preinvasion, and abundance and year postinvasion. Regionally, northern bobwhite quail were more abundant before (0.067 ??0.018 bobwhite quail per observer hour) than after fire ants invaded (0.019 ?? 0.006; Z = -3.746, df = 18, P 30-yr variation in invasion dates.
Parris, L.B.; Lamont, M.M.; Carthy, R.R.
2002-01-01
Hatching sea turtles may be at risk to fire ant predation during egg incubation, and especially at risk once pipped from the egg, prior to hatchling emergence from the nest. In addition to direct mortality, fire ants have the potential to inflict debilitating injuries that may directly affect survival of the young. The increased incidence of red imported fire ant induced mortality and envenomization of loggerhead sea turtle hatchlings on Cape San Blas suggests this invasive ant species may pose a serious threat to the future of this genetically distinct population.
ERIC Educational Resources Information Center
Pawson, J. Marke
1975-01-01
Suggests experiments with field ants which can demonstrate the effect an organism has on its surroundings. The ecological aspects explored are plant distribution on the ant hills and the differences between ant hills and the undisturbed soil surrounding. (BR)
Ants defend aphids against lethal disease
Nielsen, Charlotte; Agrawal, Anurag A.; Hajek, Ann E.
2010-01-01
Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138
Fire ants perpetually rebuild sinking towers.
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta , cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
NASA Astrophysics Data System (ADS)
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Tovey, Craig
2017-01-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers. PMID:28791170
Water stress strengthens mutualism among ants, trees, and scale insects.
Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M
2013-11-01
Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.
Some effects of predaceous birds and ants on the western spruce budworm on conifer seedlings.
Robert W. Campbell; Clinton E. Carlson; Leon J. Theroux; Thomas H. Egan
1984-01-01
Effects of predaceous birds and ants on the western spruce budworm, Choristoneura occidentalis, were studied on seedlings of western larch and Douglas-fir in western Montana. On western larch, both birds and ants reduced survival of larval budworm (instars IV-VI). On Douglas-fir, larval survival on one site was reduced by ants but not by birds. On a second site,...
Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.
Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S
2016-06-01
In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).
Negative feedback in ants: crowding results in less trail pheromone deposition
Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.
2013-01-01
Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196
Trail Pheromone Disruption of Argentine Ant Trail Formation and Foraging
Suckling, D.M.; Peck, R.W.; Stringer, L.D.; Snook, K.; Banko, P.C.
2010-01-01
Trail pheromone disruption of invasive ants is a novel tactic that builds on the development of pheromone-based pest management in other insects. Argentine ant trail pheromone, (Z)-9-hexadecenal, was formulated as a micro-encapsulated sprayable particle and applied against Argentine ant populations in 400 m2 field plots in Hawai'i Volcanoes National Park. A widely dispersed point source strategy for trail pheromone disruption was used. Traffic rates of ants in bioassays of treated filter paper, protected from rainfall and sunlight, indicated the presence of behaviorally significant quantities of pheromone being released from the formulation for up to 59 days. The proportion of plots, under trade wind conditions (2-3 m s-1), with visible trails was reduced for up to 14 days following treatment, and the number of foraging ants at randomly placed tuna-bait cards was similarly reduced. The success of these trail pheromone disruption trials in a natural ecosystem highlights the potential of this method for control of invasive ant species in this and other environments. ?? Springer Science+Business Media, LLC 2010.
USDA-ARS?s Scientific Manuscript database
Effective diets are necessary for many kinds of laboratory studies of ants. We conducted a year-long study of imported fire ant colonies reared on either chicken liver, beef liver, banded crickets, or domestic crickets all with a sugar water supplement. Fire ant colonies thrived on diets of sugar ...
Gibb, Heloise; Parr, Catherine L
2013-01-01
Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.
Lnc-ATB contributes to gastric cancer growth through a MiR-141-3p/TGFβ2 feedback loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Kecheng; Liang, Xin; Gao, Yuwei
The long noncoding RNA (lncRNA) ATB is an important regulator in human tumors. Here, we aimed to investigate the potential molecular mechanisms of lnc-ATB in gastric cancer (GC) tumorigenesis. RT-qPCR analysis was used to detect lnc-ATB expression level in 20 pairs of gastric cancer tissues and adjacent normal gastric mucosa tissues (ANTs). Moreover, the biological role of lnc-ATB was determined in vitro. We found that lnc-ATB was significantly upregulated in GC tissues compared to lnc-ATB expression in ANTs. These high lnc-ATB expression levels predicted poor prognosis in GC patients. Low levels of lnc-ATB inhibited GC cell proliferation and cell cycle arrestmore » in vitro. Lnc-ATB was found to directly bind miR-141-3p. Moreover, TGF-β actives lnc-ATB and TGF-β2 directly binds mir-141-3p. Finally, we demonstrated that lnc-ATB fulfilled its oncogenic roles in a ceRNA-mediated manner. Our study suggests that lnc-ATB promotes tumor progression by interacting with miR-141-3p and that Lnc-ATB may be a valuable prognostic predictor for GC. In conclusion, the positive feedback loop of lnc-ATB/miR-141-3p/TGF-β2 may be a potential therapeutic target for the treatment of GC. - Highlights: • Lnc-ATB was up-regulated in GC tissue. • Knockdown of lnc-ATB inhibited proliferation and cell cycle arrest. • The positive feedback loop of lnc-ATB/miR-141-3p/TGF-β2 may be a potential therapeutic target for the treatment of GC.« less
NASA Astrophysics Data System (ADS)
Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan
2002-02-01
Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.
NASA Astrophysics Data System (ADS)
Tejera, F.; Reyes, A.; Altshuler, E.
2016-07-01
It is well established that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we abduct leaf cutting ants of the species Atta insularis while they forage in their natural environment at a certain point of the foraging line, so ants make a "U" turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit "danger information" to other nestmates marching towards the abduction area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.
Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands
NASA Technical Reports Server (NTRS)
Prinz, M.; Keil, K.
1977-01-01
Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.
Recurrence analysis of ant activity patterns
2017-01-01
In this study, we used recurrence quantification analysis (RQA) and recurrence plots (RPs) to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic) ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena. PMID:29016648
Masiulionis, Virginia E; Weber, Roland Ws; Pagnocca, Fernando C
2013-12-01
It is generally accepted that material collected by leaf-cutting ants of the genus Acromyrmex consists solely of plant matter, which is used in the nest as substrate for a symbiotic fungus providing nutrition to the ants. There is only one previous report of any leaf-cutting ant foraging directly on fungal basidiocarps. Basidiocarps of Psilocybe coprophila growing on cow dung were actively collected by workers of Acromyrmex lobicornis in Santa Fé province, Argentina. During this behaviour the ants displayed typical signals of recognition and continuously recruited other foragers to the task. Basidiocarps of different stages of maturity were being transported into the nest by particular groups of workers, while other workers collected plant material. The collection of mature basidiocarps with viable spores by leaf-cutting ants in nature adds substance to theories relating to the origin of fungiculture in these highly specialized social insects.
The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants
Aylward, Frank O.; Currie, Cameron R.; Suen, Garret
2012-01-01
Fungus-growing ants gain access to nutrients stored in plant biomass through their association with a mutualistic fungus they grow for food. This 50 million-year-old obligate mutualism likely facilitated some of these species becoming dominant Neotropical herbivores that can achieve immense colony sizes. Recent culture-independent investigations have shed light on the conversion of plant biomass into nutrients within ant fungus gardens, revealing that this process involves both the fungal cultivar and a symbiotic community of bacteria including Enterobacter, Klebsiella, and Pantoea species. Moreover, the genome sequences of the leaf-cutter ants Atta cephalotes and Acromyrmex echinatior have provided key insights into how this symbiosis has shaped the evolution of these ants at a genetic level. Here we summarize the findings of recent research on the microbial community dynamics within fungus-growing ant fungus gardens and discuss their implications for this ancient symbiosis. PMID:26467948
Non-technical skills of anaesthesia providers in Rwanda: an ethnography
Livingston, Patricia; Zolpys, Lauren; Mukwesi, Christian; Twagirumugabe, Theogene; Whynot, Sara; MacLeod, Anna
2014-01-01
Introduction Patient safety depends on excellent practice of anaesthetists’ non-technical skills (ANTS). The ANTS framework has been validated in developed countries but there is no literature on the practice of ANTS in low-income countries. This study examines ANTS in this unexplored context. Methods This qualitative ethnographic study used observations of Rwandan anaesthesia providers and in-depth interviews with both North American and Rwandan anaesthesia providers to understand practice of ANTS in Rwanda. Results Communication is central to the practice of ANTS. Cultural factors in Rwanda, such as lack of assertiveness and discomfort taking leadership, and the strains of working in a resource-limited environment hinder the unfettered and focused communication needed for excellent anaesthesia practice. Conclusion Despite the challenges, anaesthesia providers are able to coordinate activities when good communication is actively encouraged. Future teaching interventions should address leadership and communication skills through encouraging both role definition and speaking up for patient safety. PMID:25722770
Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K
2017-06-01
Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Endophytic fungi reduce leaf-cutting ant damage to seedlings
Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.
2011-01-01
Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-03-01
ANTS (Autonomous Nano Technology Swarm of hundreds of picoclass autonomous spacecraft) have many applications. A version designed for surveying and the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
2014-01-12
ISS038-E-029062 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029077 (12 Jan. 2014) --- In the International Space Station's Harmony node, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029065 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029059 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
Myrmecophagy by Yellowstone grizzly bears
Mattson, D.J.
2001-01-01
I used data collected during a study of radio-marked grizzly bears (Ursus arctos horribilis) in the Yellowstone region from 1977 to 1992 to investigate myrmecophagy by this population. Although generally not an important source of energy for the bears (averaging 8 mm long) nested in logs over small ants (6 mm long) nested under stones. Optimal conditions for consumption of ants occurred on the warmest sites with ample substrate suitable for ant nests. For ants in mounds, this occurred at low elevations at non-forested sites. For ants in logs, this occurred at low elevations or on southerly aspects where there was abundant, large-diameter, well-decomposed woody debris under an open forest canopy. Grizzly bears selected moderately decomposed logs 4a??5 dm in diameter at midpoint. Ants will likely become a more important food for Yellowstone's grizzly bears as currently important foods decline, owing to disease and warming of the regional climate.
Seasonal dynamics of ant community structure in the Moroccan Argan Forest.
El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah
2012-01-01
In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.
Evaluation of the attention network test using vibrotactile stimulations.
Salzer, Yael; Oron-Gilad, Tal; Henik, Avishai
2015-06-01
We report a vibrotactile version of the attention network test (ANT)-the tactile ANT (T-ANT). It has been questioned whether attentional components are modality specific or not. The T-ANT explores alertness, orienting, cognitive control, and their relationships, similar to its visual counterpart, in the tactile modality. The unique features of the T-ANT are in utilizing stimuli on a single plane-the torso-and replacing the original imperative flanker task with a tactile Simon task. Subjects wore a waist belt mounted with two vibrotactile stimulators situated on the back and positioned to the right and left of the spinal column. They responded by pressing keys with their right or left hand in reaction to the type of vibrotactile stimulation (pulsed/continuous signal). On a single trial, an alerting tone was followed by a short tactile (informative/noninformative) peripheral cue and an imperative tactile Simon task target. The T-ANT was compared with a variant of the ANT in which the flanker task was replaced with a visual Simon task. Experimental data showed effects of orienting over control only when the peripheral cues were informative. In contrast to the visual task, interactions between alertness and control or alertness and orienting were not found in the tactile task. A possible rationale for these results is discussed. The T-ANT allows examination of attentional processes among patients with tactile attentional deficits and patients with eyesight deficits who cannot take part in visual tasks. Technological advancement would enable implementation of the T-ANT in brain-imaging studies.
Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole
2005-07-01
Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
Carvalho, Fabiano B; Gutierres, Jessié M; Bueno, Andressa; Agostinho, Paula; Zago, Adriana M; Vieira, Juliano; Frühauf, Pâmela; Cechella, José L; Nogueira, Cristina Wayne; Oliveira, Sara M; Rizzi, Caroline; Spanevello, Roselia M; Duarte, Marta M F; Duarte, Thiago; Dellagostin, Odir A; Andrade, Cinthia M
2017-07-01
Peripheral inflammatory stimuli may activate a brain neuroinflammatory processes with consequences in brain function. The present study investigated if anthocyanins (ANT) consumption was able to prevent the memory loss, the neuronal damage, and the neuroinflammatory processes triggered by the intraperitoneal lipopolysaccharide (LPS) administration. C57BL6 male mice were treated with ANT (30-100 mg/kg by gavage). With a single dose or during 10 days, before be challenged with LPS (250 μg/kg intraperitoneally single administration), a classical inductor of inflammation. The data obtained showed that ANT was able to confer protection against the memory impairment after 10 days of ANT treatment (100 mg/kg). This phytonutrient also prevented the hypothermia episode induced by LPS. Moreover, ANT prevented the increase in protein carbonyl, NOx, and MDA levels in the hippocampus and cerebral cortex (4 and 24 h) in animal challenged with LPS. ANT showed a protective effect on the increase in the pro-inflammatory cytokines content, especially Interleukin (IL)-1β, tumoral necrosis factor-α and on the reduction of IL-10 induced by LPS. ANT 100 mg/kg prevented the infiltration of peripheral immune cells in the hippocampus at 24 h post-LPS administration. In parallel, LPS increased the activity of myeloperoxidase in cortex and hippocampus, and ANT prevented this effect, also reducing microglia (Iba-1) and astrocyte (GFAP) immunoreactivity. Thus, our data support that ANT are a promising therapeutic component against brain disorders associated with process of neuroinflammation. Graphical Abstract ᅟ.