Sample records for ant colony optimization

  1. Production scheduling with ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu

    2017-10-01

    The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.

  2. Model Specification Searches Using Ant Colony Optimization Algorithms

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Drezner, Zvi

    2003-01-01

    Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.

  3. Ant colony algorithm for clustering in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Subekti, R.; Sari, E. R.; Kusumawati, R.

    2018-03-01

    This research aims to describe portfolio optimization using clustering methods with ant colony approach. Two stock portfolios of LQ45 Indonesia is proposed based on the cluster results obtained from ant colony optimization (ACO). The first portfolio consists of assets with ant colony displacement opportunities beyond the defined probability limits of the researcher, where the weight of each asset is determined by mean-variance method. The second portfolio consists of two assets with the assumption that each asset is a cluster formed from ACO. The first portfolio has a better performance compared to the second portfolio seen from the Sharpe index.

  4. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  5. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    NASA Astrophysics Data System (ADS)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  6. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  7. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  8. Ant-cuckoo colony optimization for feature selection in digital mammogram.

    PubMed

    Jona, J B; Nagaveni, N

    2014-01-15

    Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.

  9. ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization.

    PubMed

    Sagban, Rafid; Ku-Mahamud, Ku Ruhana; Abu Bakar, Muhamad Shahbani

    2015-01-01

    A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens' acoustics of their ant hosts. The parasites' reaction results from their ability to indicate the state of penetration. The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance's matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied. The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms. Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation. The analytical results showed that the proposed indicator is more informative and more robust.

  10. A seismic fault recognition method based on ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  11. Application of ant colony optimization to optimal foragaing theory: comparison of simulation and field results

    USDA-ARS?s Scientific Manuscript database

    Ant Colony Optimization (ACO) refers to the family of algorithms inspired by the behavior of real ants and used to solve combinatorial problems such as the Traveling Salesman Problem (TSP).Optimal Foraging Theory (OFT) is an evolutionary principle wherein foraging organisms or insect parasites seek ...

  12. All-Optical Implementation of the Ant Colony Optimization Algorithm

    PubMed Central

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-01-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098

  13. An ant colony optimization based algorithm for identifying gene regulatory elements.

    PubMed

    Liu, Wei; Chen, Hanwu; Chen, Ling

    2013-08-01

    It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. On the problem of solving the optimization for continuous space based on information distribution function of ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Min, Huang; Na, Cai

    2017-06-01

    These years, ant colony algorithm has been widely used in solving the domain of discrete space optimization, while the research on solving the continuous space optimization was relatively little. Based on the original optimization for continuous space, the article proposes the improved ant colony algorithm which is used to Solve the optimization for continuous space, so as to overcome the ant colony algorithm’s disadvantages of searching for a long time in continuous space. The article improves the solving way for the total amount of information of each interval and the due number of ants. The article also introduces a function of changes with the increase of the number of iterations in order to enhance the convergence rate of the improved ant colony algorithm. The simulation results show that compared with the result in literature[5], the suggested improved ant colony algorithm that based on the information distribution function has a better convergence performance. Thus, the article provides a new feasible and effective method for ant colony algorithm to solve this kind of problem.

  15. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  16. Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization

    ERIC Educational Resources Information Center

    Rastegarmoghadam, Mahin; Ziarati, Koorush

    2017-01-01

    Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…

  17. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  18. Predicting Flood in Perlis Using Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Nadia Sabri, Syaidatul; Saian, Rizauddin

    2017-06-01

    Flood forecasting is widely being studied in order to reduce the effect of flood such as loss of property, loss of life and contamination of water supply. Usually flood occurs due to continuous heavy rainfall. This study used a variant of Ant Colony Optimization (ACO) algorithm named the Ant-Miner to develop the classification prediction model to predict flood. However, since Ant-Miner only accept discrete data, while rainfall data is a time series data, a pre-processing steps is needed to discretize the rainfall data initially. This study used a technique called the Symbolic Aggregate Approximation (SAX) to convert the rainfall time series data into discrete data. As an addition, Simple K-Means algorithm was used to cluster the data produced by SAX. The findings show that the predictive accuracy of the classification prediction model is more than 80%.

  19. Dynamic optimization of chemical processes using ant colony framework.

    PubMed

    Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D

    2001-11-01

    Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.

  20. Research on cutting path optimization of sheet metal parts based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.

  1. Ant system: optimization by a colony of cooperating agents.

    PubMed

    Dorigo, M; Maniezzo, V; Colorni, A

    1996-01-01

    An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

  2. Ant- and Ant-Colony-Inspired ALife Visual Art.

    PubMed

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  3. Using Ant Colony Optimization for Routing in VLSI Chips

    NASA Astrophysics Data System (ADS)

    Arora, Tamanna; Moses, Melanie

    2009-04-01

    Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.

  4. Improved ant colony optimization for optimal crop and irrigation water allocation by incorporating domain knowledge

    USDA-ARS?s Scientific Manuscript database

    An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...

  5. Ant colony system algorithm for the optimization of beer fermentation control.

    PubMed

    Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin

    2004-12-01

    Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.

  6. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  7. Ant algorithms for discrete optimization.

    PubMed

    Dorigo, M; Di Caro, G; Gambardella, L M

    1999-01-01

    This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.

  8. [Application of rational ant colony optimization to improve the reproducibility degree of laser three-dimensional copy].

    PubMed

    Cui, Xiao-Yan; Huo, Zhong-Gang; Xin, Zhong-Hua; Tian, Xiao; Zhang, Xiao-Dong

    2013-07-01

    Three-dimensional (3D) copying of artificial ears and pistol printing are pushing laser three-dimensional copying technique to a new page. Laser three-dimensional scanning is a fresh field in laser application, and plays an irreplaceable part in three-dimensional copying. Its accuracy is the highest among all present copying techniques. Reproducibility degree marks the agreement of copied object with the original object on geometry, being the most important index property in laser three-dimensional copying technique. In the present paper, the error of laser three-dimensional copying was analyzed. The conclusion is that the data processing to the point cloud of laser scanning is the key technique to reduce the error and increase the reproducibility degree. The main innovation of this paper is as follows. On the basis of traditional ant colony optimization, rational ant colony optimization algorithm proposed by the author was applied to the laser three-dimensional copying as a new algorithm, and was put into practice. Compared with customary algorithm, rational ant colony optimization algorithm shows distinct advantages in data processing of laser three-dimensional copying, reducing the error and increasing the reproducibility degree of the copy.

  9. Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model

    NASA Astrophysics Data System (ADS)

    Deng, Guang-Feng; Lin, Woo-Tsong

    This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.

  10. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  11. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  12. Routing and spectrum assignment based on ant colony optimization of minimum consecutiveness loss in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Tian, Qinghua; Zhang, Qi; Rao, Lan; Tian, Feng; Luo, Biao; Liu, Yingjun; Tang, Bao

    2016-10-01

    Elastic Optical Networks are considered to be a promising technology for future high-speed network. In this paper, we propose a RSA algorithm based on the ant colony optimization of minimum consecutiveness loss (ACO-MCL). Based on the effect of the spectrum consecutiveness loss on the pheromone in the ant colony optimization, the path and spectrum of the minimal impact on the network are selected for the service request. When an ant arrives at the destination node from the source node along a path, we assume that this path is selected for the request. We calculate the consecutiveness loss of candidate-neighbor link pairs along this path after the routing and spectrum assignment. Then, the networks update the pheromone according to the value of the consecutiveness loss. We save the path with the smallest value. After multiple iterations of the ant colony optimization, the final selection of the path is assigned for the request. The algorithms are simulated in different networks. The results show that ACO-MCL algorithm performs better in blocking probability and spectrum efficiency than other algorithms. Moreover, the ACO-MCL algorithm can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness. Compared with other algorithms, the ACO-MCL algorithm can reduce the blocking rate by at least 5.9% in heavy load.

  13. Finite grade pheromone ant colony optimization for image segmentation

    NASA Astrophysics Data System (ADS)

    Yuanjing, F.; Li, Y.; Liangjun, K.

    2008-06-01

    By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.

  14. Improved multi-objective ant colony optimization algorithm and its application in complex reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing

    2013-09-01

    The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and

  15. Efficient distribution of toy products using ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Hidayat, S.; Nurpraja, C. A.

    2017-12-01

    CV Atham Toys (CVAT) produces wooden toys and furniture, comprises 13 small and medium industries. CVAT always attempt to deliver customer orders on time but delivery costs are high. This is because of inadequate infrastructure such that delivery routes are long, car maintenance costs are high, while fuel subsidy by the government is still temporary. This study seeks to minimize the cost of product distribution based on the shortest route using one of five Ant Colony Optimization (ACO) algorithms to solve the Vehicle Routing Problem (VRP). This study concludes that the best of the five is the Ant Colony System (ACS) algorithm. The best route in 1st week gave a total distance of 124.11 km at a cost of Rp 66,703.75. The 2nd week route gave a total distance of 132.27 km at a cost of Rp 71,095.13. The 3rd week best route gave a total distance of 122.70 km with a cost of Rp 65,951.25. While the 4th week gave a total distance of 132.27 km at a cost of Rp 74,083.63. Prior to this study there was no effort to calculate these figures.

  16. Dynamic Network Formation Using Ant Colony Optimization

    DTIC Science & Technology

    2009-03-01

    backhauls, VRP with pick-up and delivery, VRP with satellite facilities, and VRP with time windows (Murata & Itai , 2005). The general vehicle...given route is only visited once. The objective of the basic problem is to minimize a total cost as follows (Murata & Itai , 2005): M m mc 1 min...Problem based on Ant Colony System. Second Internation Workshop on Freight Transportation and Logistics. Palermo, Italy. Murata, T., & Itai , R. (2005

  17. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  18. Optimization research of railway passenger transfer scheme based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Ni, Xiang

    2018-05-01

    The optimization research of railway passenger transfer scheme can provide strong support for railway passenger transport system, and its essence is path search. This paper realized the calculation of passenger transfer scheme for high speed railway when giving the time and stations of departure and arrival. The specific method that used were generating a passenger transfer service network of high-speed railway, establishing optimization model and searching by Ant Colony Algorithm. Finally, making analysis on the scheme from LanZhouxi to BeiJingXi which were based on high-speed railway network of China in 2017. The results showed that the transfer network and model had relatively high practical value and operation efficiency.

  19. Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Mesgari, M. S.

    2015-12-01

    Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  20. Colony Fusion in a Parthenogenetic Ant, Pristomyrmex punctatus

    PubMed Central

    Satow, Show; Satoh, Toshiyuki; Hirota, Tadao

    2013-01-01

    In the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae), all young workers lay a small number of eggs parthenogenetically. Some colonies consist of monoclonal individuals that provide high inclusive fitness, according to the kin selection theory. However, in some populations, a majority of the colonies contain multiple lineages. Intracolonial genetic variation of parthenogenetic ants cannot be explained by the multiple mating of single founderesses or by the foundation of a colony by multiple foundresses, which are the usual causes of genetically diverse colonies in social insects. Here, we hypothesized that the fusion of established colonies might facilitate the formation of multiclonal colonies. Colony fusion decreases indirect benefits because of the reduction in intracolonial relatedness. However, when suitable nesting places for overwintering are scarce, colony fusion provides a strategy for the survival of colonies. Here, ants derived from different colonies were allowed to encounter one another in a container with just one nesting place. Initially, high aggression was observed; however, after several days, no aggression was observed and the ants shared the nest. When the fused colonies were allowed to transfer to two alternative nests, ants from different colonies occupied the same nest. This study highlights the importance of limiting the number of nesting places in order to understand the genetic diversity of parthenogenetic ant colonies. PMID:23895053

  1. Item Selection for the Development of Short Forms of Scales Using an Ant Colony Optimization Algorithm

    ERIC Educational Resources Information Center

    Leite, Walter L.; Huang, I-Chan; Marcoulides, George A.

    2008-01-01

    This article presents the use of an ant colony optimization (ACO) algorithm for the development of short forms of scales. An example 22-item short form is developed for the Diabetes-39 scale, a quality-of-life scale for diabetes patients, using a sample of 265 diabetes patients. A simulation study comparing the performance of the ACO algorithm and…

  2. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  3. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2017-12-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  4. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  5. Ant colony optimization for solving university facility layout problem

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Nurul Hafiza; Mohd Radzi, Nor Haizan; Ngadiman, Mohd Salihin

    2013-04-01

    Quadratic Assignment Problems (QAP) is classified as the NP hard problem. It has been used to model a lot of problem in several areas such as operational research, combinatorial data analysis and also parallel and distributed computing, optimization problem such as graph portioning and Travel Salesman Problem (TSP). In the literature, researcher use exact algorithm, heuristics algorithm and metaheuristic approaches to solve QAP problem. QAP is largely applied in facility layout problem (FLP). In this paper we used QAP to model university facility layout problem. There are 8 facilities that need to be assigned to 8 locations. Hence we have modeled a QAP problem with n ≤ 10 and developed an Ant Colony Optimization (ACO) algorithm to solve the university facility layout problem. The objective is to assign n facilities to n locations such that the minimum product of flows and distances is obtained. Flow is the movement from one to another facility, whereas distance is the distance between one locations of a facility to other facilities locations. The objective of the QAP is to obtain minimum total walking (flow) of lecturers from one destination to another (distance).

  6. Cloud computing task scheduling strategy based on differential evolution and ant colony optimization

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; Cai, Yu; Fang, Yiqiu

    2018-05-01

    This paper proposes a task scheduling strategy DEACO based on the combination of Differential Evolution (DE) and Ant Colony Optimization (ACO), aiming at the single problem of optimization objective in cloud computing task scheduling, this paper combines the shortest task completion time, cost and load balancing. DEACO uses the solution of the DE to initialize the initial pheromone of ACO, reduces the time of collecting the pheromone in ACO in the early, and improves the pheromone updating rule through the load factor. The proposed algorithm is simulated on cloudsim, and compared with the min-min and ACO. The experimental results show that DEACO is more superior in terms of time, cost, and load.

  7. Power plant maintenance scheduling using ant colony optimization: an improved formulation

    NASA Astrophysics Data System (ADS)

    Foong, Wai Kuan; Maier, Holger; Simpson, Angus

    2008-04-01

    It is common practice in the hydropower industry to either shorten the maintenance duration or to postpone maintenance tasks in a hydropower system when there is expected unserved energy based on current water storage levels and forecast storage inflows. It is therefore essential that a maintenance scheduling optimizer can incorporate the options of shortening the maintenance duration and/or deferring maintenance tasks in the search for practical maintenance schedules. In this article, an improved ant colony optimization-power plant maintenance scheduling optimization (ACO-PPMSO) formulation that considers such options in the optimization process is introduced. As a result, both the optimum commencement time and the optimum outage duration are determined for each of the maintenance tasks that need to be scheduled. In addition, a local search strategy is presented in this article to boost the robustness of the algorithm. When tested on a five-station hydropower system problem, the improved formulation is shown to be capable of allowing shortening of maintenance duration in the event of expected demand shortfalls. In addition, the new local search strategy is also shown to have significantly improved the optimization ability of the ACO-PPMSO algorithm.

  8. A multilevel ant colony optimization algorithm for classical and isothermic DNA sequencing by hybridization with multiplicity information available.

    PubMed

    Kwarciak, Kamil; Radom, Marcin; Formanowicz, Piotr

    2016-04-01

    The classical sequencing by hybridization takes into account a binary information about sequence composition. A given element from an oligonucleotide library is or is not a part of the target sequence. However, the DNA chip technology has been developed and it enables to receive a partial information about multiplicity of each oligonucleotide the analyzed sequence consist of. Currently, it is not possible to assess the exact data of such type but even partial information should be very useful. Two realistic multiplicity information models are taken into consideration in this paper. The first one, called "one and many" assumes that it is possible to obtain information if a given oligonucleotide occurs in a reconstructed sequence once or more than once. According to the second model, called "one, two and many", one is able to receive from biochemical experiment information if a given oligonucleotide is present in an analyzed sequence once, twice or at least three times. An ant colony optimization algorithm has been implemented to verify the above models and to compare with existing algorithms for sequencing by hybridization which utilize the additional information. The proposed algorithm solves the problem with any kind of hybridization errors. Computational experiment results confirm that using even the partial information about multiplicity leads to increased quality of reconstructed sequences. Moreover, they also show that the more precise model enables to obtain better solutions and the ant colony optimization algorithm outperforms the existing ones. Test data sets and the proposed ant colony optimization algorithm are available on: http://bioserver.cs.put.poznan.pl/download/ACO4mSBH.zip. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Solving NP-Hard Problems with Physarum-Based Ant Colony System.

    PubMed

    Liu, Yuxin; Gao, Chao; Zhang, Zili; Lu, Yuxiao; Chen, Shi; Liang, Mingxin; Tao, Li

    2017-01-01

    NP-hard problems exist in many real world applications. Ant colony optimization (ACO) algorithms can provide approximate solutions for those NP-hard problems, but the performance of ACO algorithms is significantly reduced due to premature convergence and weak robustness, etc. With these observations in mind, this paper proposes a Physarum-based pheromone matrix optimization strategy in ant colony system (ACS) for solving NP-hard problems such as traveling salesman problem (TSP) and 0/1 knapsack problem (0/1 KP). In the Physarum-inspired mathematical model, one of the unique characteristics is that critical tubes can be reserved in the process of network evolution. The optimized updating strategy employs the unique feature and accelerates the positive feedback process in ACS, which contributes to the quick convergence of the optimal solution. Some experiments were conducted using both benchmark and real datasets. The experimental results show that the optimized ACS outperforms other meta-heuristic algorithms in accuracy and robustness for solving TSPs. Meanwhile, the convergence rate and robustness for solving 0/1 KPs are better than those of classical ACS.

  10. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  11. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  12. Enhanced ant colony optimization for inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wong, Lily; Moin, Noor Hasnah

    2015-10-01

    The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.

  13. Reinforcement interval type-2 fuzzy controller design by online rule generation and q-value-aided ant colony optimization.

    PubMed

    Juang, Chia-Feng; Hsu, Chia-Hung

    2009-12-01

    This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.

  14. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    DTIC Science & Technology

    2015-01-01

    programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa

  15. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems

    PubMed Central

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562

  16. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    PubMed

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.

  17. Optimal time--energy allocation and the evolution of colony demography among eusocial insects. [Polistes fuscatus, Vespa orientalis, ants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macevicz, S.C.

    1979-05-09

    This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less

  18. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems

    PubMed Central

    Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.

    2017-01-01

    The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075

  19. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  20. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  1. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  2. Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems.

    PubMed

    Mavrovouniotis, Michalis; Muller, Felipe M; Yang, Shengxiang

    2016-06-13

    For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms.

  3. Improved understanding of the searching behavior of ant colony optimization algorithms applied to the water distribution design problem

    NASA Astrophysics Data System (ADS)

    Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Marchi, A.; Nixon, J. B.

    2012-09-01

    Evolutionary algorithms (EAs) have been applied successfully to many water resource problems, such as system design, management decision formulation, and model calibration. The performance of an EA with respect to a particular problem type is dependent on how effectively its internal operators balance the exploitation/exploration trade-off to iteratively find solutions of an increasing quality. For a given problem, different algorithms are observed to produce a variety of different final performances, but there have been surprisingly few investigations into characterizing how the different internal mechanisms alter the algorithm's searching behavior, in both the objective and decision space, to arrive at this final performance. This paper presents metrics for analyzing the searching behavior of ant colony optimization algorithms, a particular type of EA, for the optimal water distribution system design problem, which is a classical NP-hard problem in civil engineering. Using the proposed metrics, behavior is characterized in terms of three different attributes: (1) the effectiveness of the search in improving its solution quality and entering into optimal or near-optimal regions of the search space, (2) the extent to which the algorithm explores as it converges to solutions, and (3) the searching behavior with respect to the feasible and infeasible regions. A range of case studies is considered, where a number of ant colony optimization variants are applied to a selection of water distribution system optimization problems. The results demonstrate the utility of the proposed metrics to give greater insight into how the internal operators affect each algorithm's searching behavior.

  4. An ant colony optimization heuristic for an integrated production and distribution scheduling problem

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju

    2014-04-01

    Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.

  5. Colony size and brood investment of Myrmica rubra ant colonies in habitats invaded by goldenrods.

    PubMed

    Grześ, I M; Ślipiński, P; Babik, H; Moroń, D; Walter, B; Trigos Peral, G; Maak, I; Witek, M

    2018-01-01

    Ant richness and abundance are negatively affected by the invasion of alien goldenrods ( Solidago sp.). However, little is known about the mechanisms standing behind the impact of the invaders on ant life history, such as colony investments in growth and reproduction. We examined this problem of the investments of Myrmica rubra ant colonies living in different grasslands invaded and non-invaded by goldenrods. Altogether, 47 colonies were analysed; and for each colony, we calculated the number of queens, workers and the production of young workers, gynes, and males. We found that colonies from invaded meadows are smaller in size, but have a similar number of adult queens compared to colonies from non-invaded sites. We also found different brood investments among colonies from invaded and non-invaded meadows-colonies from non-invaded meadows produce more young workers and invest more in growth, whereas colonies from invaded meadows invest more in reproduction through higher gyne production. Male production was at a similar level in colonies from both habitat types. The observed patterns may be explained by the effect of various environmental factors occurring in both grassland types, such as stress in changed habitats, higher competition among gynes in non-invaded grasslands, or finally, by the adaptive colony-level response of ants to stress. The higher production of gynes observed in the invaded grasslands may support dispersal and enhance the probability of establishing a colony in a more favourable location.

  6. Targeted Removal of Ant Colonies in Ecological Experiments, Using Hot Water

    PubMed Central

    Tschinkel, Walter R.; King, Joshua R.

    2007-01-01

    Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants. PMID:20233079

  7. Targeted removal of ant colonies in ecological experiments, using hot water.

    PubMed

    Tschinkel, Walter R; King, Joshua R

    2007-01-01

    Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants.

  8. Research on global path planning based on ant colony optimization for AUV

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jian; Xiong, Wei

    2009-03-01

    Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.

  9. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.

    PubMed

    Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao

    2011-08-01

    The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.

  10. The adaptive significance of phasic colony cycles in army ants.

    PubMed

    Garnier, Simon; Kronauer, Daniel J C

    2017-09-07

    Army ants are top arthropod predators in tropical forests around the world. The colonies of many army ant species undergo stereotypical behavioral and reproductive cycles, alternating between brood care and reproductive phases. In the brood care phase, colonies contain a cohort of larvae that are synchronized in their development and have to be fed. In the reproductive phase larvae are absent and oviposition takes place. Despite these colony cycles being a striking feature of army ant biology, their adaptive significance is unclear. Here we use a modeling approach to show that cyclic reproduction is favored under conditions where per capita foraging costs decrease with the number of larvae in a colony ("High Cost of Entry" scenario), while continuous reproduction is favored under conditions where per capita foraging costs increase with the number of larvae ("Resource Exhaustion" scenario). We argue that the former scenario specifically applies to army ants, because large raiding parties are required to overpower prey colonies. However, once raiding is successful it provides abundant food for a large cohort of larvae. The latter scenario, on the other hand, will apply to non-army ants, because in those species local resource depletion will force workers to forage over larger distances to feed large larval cohorts. Our model provides a quantitative framework for understanding the adaptive value of phasic colony cycles in ants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Goswami, Sayantika; Das, Debanjana; Middey, Anirban

    2014-05-01

    Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5-35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.

  12. Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056

  13. Adapting an ant colony metaphor for multi-robot chemical plume tracing.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments.

  14. Ants regulate colony spatial organization using multiple chemical road-signs.

    PubMed

    Heyman, Yael; Shental, Noam; Brandis, Alexander; Hefetz, Abraham; Feinerman, Ofer

    2017-06-01

    Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical 'road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony.

  15. Software Piracy Detection Model Using Ant Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin

    2017-06-01

    Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.

  16. Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm.

    PubMed

    Schroeders, Ulrich; Wilhelm, Oliver; Olaru, Gabriel

    2016-01-01

    The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function.

  17. Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm

    PubMed Central

    Schroeders, Ulrich; Wilhelm, Oliver; Olaru, Gabriel

    2016-01-01

    The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function. PMID:27893845

  18. Ants regulate colony spatial organization using multiple chemical road-signs

    PubMed Central

    Heyman, Yael; Shental, Noam; Brandis, Alexander; Hefetz, Abraham; Feinerman, Ofer

    2017-01-01

    Communication provides the basis for social life. In ant colonies, the prevalence of local, often chemically mediated, interactions introduces strong links between communication networks and the spatial distribution of ants. It is, however, unknown how ants identify and maintain nest chambers with distinct functions. Here, we combine individual tracking, chemical analysis and machine learning to decipher the chemical signatures present on multiple nest surfaces. We present evidence for several distinct chemical ‘road-signs' that guide the ants' movements within the dark nest. These chemical signatures can be used to classify nest chambers with different functional roles. Using behavioural manipulations, we demonstrate that at least three of these chemical signatures are functionally meaningful and allow ants from different task groups to identify their specific nest destinations, thus facilitating colony coordination and stabilization. The use of multiple chemicals that assist spatiotemporal guidance, segregation and pattern formation is abundant in multi-cellular organisms. Here, we provide a rare example for the use of these principles in the ant colony. PMID:28569746

  19. A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu

    2016-12-01

    This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.

  20. Bait distribution among multiple colonies of Pharaoh ants (hymenoptera: Formicidae).

    PubMed

    Oi, D H; Vail, K M; Williams, D F

    2000-08-01

    Pharaoh ant, Monomorium pharaonis (L.), infestations often consist of several colonies located at different nest sites. To achieve control, it is desirable to suppress or eliminate the populations of a majority of these colonies. We compared the trophallactic distribution and efficacy of two ant baits, with different modes of action, among groups of four colonies of Pharaoh ants. Baits contained either the metabolic-inhibiting active ingredient hydramethylnon or the insect growth regulator (IGR) pyriproxyfen. Within 3 wk, the hydramethylnon bait reduced worker and brood populations by at least 80%, and queen reductions ranged between 73 and 100%, when nests were in proximity (within 132 cm) to the bait source. However, these nest sites were reoccupied by ants from other colonies located further from the bait source. The pyriproxyfen bait was distributed more thoroughly to all nest locations with worker populations gradually declining by 73% at all nest sites after 8 wk. Average queen reductions ranged from 31 to 49% for all nest sites throughout the study. Even though some queens survived, brood reductions were rapid in the pyriproxyfen treatment, with reductions of 95% at all locations by week 3. Unlike the metabolic inhibitor, the IGR did not kill adult worker ants quickly, thus, more surviving worker ants were available to distribute the bait to all colonies located at different nest sites. Thus, from a single bait source, the slow-acting bait toxicant provided gradual, but long-term control, whereas the fast-acting bait toxicant provided rapid, localized control for a shorter duration.

  1. Optimal management of substrates in anaerobic co-digestion: An ant colony algorithm approach.

    PubMed

    Verdaguer, Marta; Molinos-Senante, María; Poch, Manel

    2016-04-01

    Sewage sludge (SWS) is inevitably produced in urban wastewater treatment plants (WWTPs). The treatment of SWS on site at small WWTPs is not economical; therefore, the SWS is typically transported to an alternative SWS treatment center. There is increased interest in the use of anaerobic digestion (AnD) with co-digestion as an SWS treatment alternative. Although the availability of different co-substrates has been ignored in most of the previous studies, it is an essential issue for the optimization of AnD co-digestion. In a pioneering approach, this paper applies an Ant-Colony-Optimization (ACO) algorithm that maximizes the generation of biogas through AnD co-digestion in order to optimize the discharge of organic waste from different waste sources in real-time. An empirical application is developed based on a virtual case study that involves organic waste from urban WWTPs and agrifood activities. The results illustrate the dominate role of toxicity levels in selecting contributions to the AnD input. The methodology and case study proposed in this paper demonstrate the usefulness of the ACO approach in supporting a decision process that contributes to improving the sustainability of organic waste and SWS management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An Ant Colony Optimization Based Feature Selection for Web Page Classification

    PubMed Central

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods. PMID:25136678

  3. An ant colony optimization based feature selection for web page classification.

    PubMed

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  4. Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization

    NASA Astrophysics Data System (ADS)

    Gilani, Seyed-Omid; Sattarvand, Javad

    2016-02-01

    Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade uncertainty causes both deviations from production targets and general financial deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is developed herein to integrate geological uncertainty described through a series of the simulated ore bodies. Two different strategies were developed based on a single predefined probability value (Prob) and multiple probability values (Pro bnt) , respectively in order to improve the initial solutions that created by deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demonstrate the abilities of the stochastic approach to create a single schedule and control the risk of deviating from production targets over time and also increase the project value. A comparison between two strategies and traditional approach illustrates that the multiple probability strategy is able to produce better schedules, however, the single predefined probability is more practical in projects requiring of high flexibility degree.

  5. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    PubMed

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  6. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization.

    PubMed

    Jiang, Ailian; Zheng, Lihong

    2018-03-29

    Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  7. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    PubMed Central

    2018-01-01

    Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336

  8. Marking individual ants for behavioral sampling in a laboratory colony.

    PubMed

    Holbrook, C Tate

    2009-07-01

    Ant societies are tractable and malleable, two features that make them ideal models for probing the organization of complex biological systems. The ability to identify specific individuals while they function as part of a colony permits an integrative analysis of social complexity, including self-organizational processes (i.e., how individual-level properties and social interactions give rise to emergent, colony-level attributes such as division of labor and collective decision making). Effects of genotype, nutrition, and physiology on individual behavior and the organization of work also can be investigated in this manner, through correlative and manipulative approaches. Moreover, aspects of colony demography (e.g., colony size, and age and size distributions of workers) can be altered experimentally to examine colony development and regulatory mechanisms underlying colony homeostasis and resiliency. This protocol describes how to sample the behavior of ants living in a colony under laboratory conditions. Specifically, it outlines how to identify and observe individuals within a colony, an approach that can be used to quantify individual- and colony-level patterns of behavior. When a lower-resolution measure of overall group behavior is desired, individual identities might not be required. Given the diversity of ants and their study, this protocol provides a very general methodology; the details can be modified according to the body size, colony size, and ecology of the focal species, as well as to specific research aims. These basic techniques can also be extended to more advanced experimental designs such as manipulation of colony demography and hormone treatment.

  9. Daughters inherit colonies from mothers in the 'living-fossil' ant Nothomyrmecia macrops

    NASA Astrophysics Data System (ADS)

    Sanetra, Matthias; Crozier, Ross H.

    2002-02-01

    Newly mated queens of monogynous (single queen) ants usually found their colonies independently, without the assistance of workers. In polygynous (multiple queen) species queens are often adopted back into their natal nest and new colonies are established by budding. We report that the Australian 'living-fossil' ant, Nothomyrmecia macrops, is exceptional in that its single queen can be replaced by one of the colony's daughters. This type of colony founding is an interesting alternative reproductive strategy in monogynous ants, which maximizes fitness under kin selection. Successive queen replacement results in a series of reproductives over time (serial polygyny), making these colonies potentially immortal. Workers raise nieces and nephews (relatedness ≤ 0.375) the year after queen replacement. Although N. macrops is 'primitive' in many other respects, colony inheritance is likely to be a derived specialization resulting from ecological constraints on solitary founding.

  10. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  11. Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian

    Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less

  12. Improved Ant Algorithms for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi

    2014-01-01

    Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391

  13. Rationality in collective decision-making by ant colonies.

    PubMed

    Edwards, Susan C; Pratt, Stephen C

    2009-10-22

    Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants' decentralized decision mechanism. A colony's choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals.

  14. Pseudacteon decapitating fly parasitism rates in fire ant colonies around Gainesville, Florida

    USDA-ARS?s Scientific Manuscript database

    In order to assess the impacts of phorid flies on fire ants in the Gainesville area, we collected 3 g of worker ants from 36 colonies. A total of 672 parasitized workers were recovered from the 36 colony samples. Confirmed parasitism rates ranged from 0-5% with an average of about 0.5%. Including c...

  15. Intelligent Method for Diagnosing Structural Faults of Rotating Machinery Using Ant Colony Optimization

    PubMed Central

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called “relative ratio symptom parameters” are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks. PMID:22163833

  16. Intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization.

    PubMed

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks.

  17. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  18. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior

    PubMed Central

    Bockoven, Alison A.; Wilder, Shawn M.; Eubanks, Micky D.

    2015-01-01

    Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior. PMID:26197456

  19. Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach

    NASA Astrophysics Data System (ADS)

    Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar

    2010-10-01

    To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.

  20. Ancient village fire escape path planning based on improved ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Cao, Kang; Hu, QianChuan

    2017-06-01

    The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.

  1. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes

    PubMed Central

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich

    2015-01-01

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649

  2. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  3. Patterns of split sex ratio in ants have multiple evolutionary causes based on different within-colony conflicts

    PubMed Central

    Kümmerli, Rolf; Keller, Laurent

    2009-01-01

    Split sex ratio—a pattern where colonies within a population specialize in either male or queen production—is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen–worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members. PMID:19457886

  4. Refraction law and Fermat principle: a project using the ant colony optimization algorithm for undergraduate students in physics

    NASA Astrophysics Data System (ADS)

    Vuong, Q. L.; Rigaut, C.; Gossuin, Y.

    2018-07-01

    A programming project for undergraduate students in physics is proposed in this work. Its goal is to check the Snell–Descartes law of refraction using the Fermat principle and the ant colony optimization algorithm. The project involves basic mathematics and physics and is adapted to students with basic programming skills. More advanced tools can be used (but are not mandatory) as parallelization or object-oriented programming, which makes the project also suitable for more experienced students. We propose two tests to validate the program. Our algorithm is able to find solutions which are close to the theoretical predictions. Two quantities are defined to study its convergence and the quality of the solutions. It is also shown that the choice of the values of the simulation parameters is important to efficiently obtain precise results.

  5. An Ant Colony Optimization algorithm for solving the fixed destination multi-depot multiple traveling salesman problem with non-random parameters

    NASA Astrophysics Data System (ADS)

    Ramadhani, T.; Hertono, G. F.; Handari, B. D.

    2017-07-01

    The Multiple Traveling Salesman Problem (MTSP) is the extension of the Traveling Salesman Problem (TSP) in which the shortest routes of m salesmen all of which start and finish in a single city (depot) will be determined. If there is more than one depot and salesmen start from and return to the same depot, then the problem is called Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). In this paper, MMTSP will be solved using the Ant Colony Optimization (ACO) algorithm. ACO is a metaheuristic optimization algorithm which is derived from the behavior of ants in finding the shortest route(s) from the anthill to a form of nourishment. In solving the MMTSP, the algorithm is observed with respect to different chosen cities as depots and non-randomly three parameters of MMTSP: m, K, L, those represents the number of salesmen, the fewest cities that must be visited by a salesman, and the most number of cities that can be visited by a salesman, respectively. The implementation is observed with four dataset from TSPLIB. The results show that the different chosen cities as depots and the three parameters of MMTSP, in which m is the most important parameter, affect the solution.

  6. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.

    PubMed

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

    2015-02-22

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Ant Colony Optimization Algorithm for Centralized Dynamic Channel Allocation in Multi-Cell OFDMA Systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Su; Kim, Dong-Hoi

    The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.

  8. A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks.

    PubMed

    Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo

    2010-01-01

    For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  9. Application of ant colony optimization in development of models for prediction of anti-HIV-1 activity of HEPT derivatives.

    PubMed

    Zare-Shahabadi, Vali; Abbasitabar, Fatemeh

    2010-09-01

    Quantitative structure-activity relationship models were derived for 107 analogs of 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio)thymine, a potent inhibitor of the HIV-1 reverse transcriptase. The activities of these compounds were investigated by means of multiple linear regression (MLR) technique. An ant colony optimization algorithm, called Memorized_ACS, was applied for selecting relevant descriptors and detecting outliers. This algorithm uses an external memory based upon knowledge incorporation from previous iterations. At first, the memory is empty, and then it is filled by running several ACS algorithms. In this respect, after each ACS run, the elite ant is stored in the memory and the process is continued to fill the memory. Here, pheromone updating is performed by all elite ants collected in the memory; this results in improvements in both exploration and exploitation behaviors of the ACS algorithm. The memory is then made empty and is filled again by performing several ACS algorithms using updated pheromone trails. This process is repeated for several iterations. At the end, the memory contains several top solutions for the problem. Number of appearance of each descriptor in the external memory is a good criterion for its importance. Finally, prediction is performed by the elitist ant, and interpretation is carried out by considering the importance of each descriptor. The best MLR model has a training error of 0.47 log (1/EC(50)) units (R(2) = 0.90) and a prediction error of 0.76 log (1/EC(50)) units (R(2) = 0.88). Copyright 2010 Wiley Periodicals, Inc.

  10. Rationality in collective decision-making by ant colonies

    PubMed Central

    Edwards, Susan C.; Pratt, Stephen C.

    2009-01-01

    Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants’ decentralized decision mechanism. A colony's choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals. PMID:19625319

  11. Exploration adjustment by ant colonies

    PubMed Central

    2016-01-01

    How do animals in groups organize their work? Division of labour, i.e. the process by which individuals within a group choose which tasks to perform, has been extensively studied in social insects. Variability among individuals within a colony seems to underpin both the decision over which tasks to perform and the amount of effort to invest in a task. Studies have focused mainly on discrete tasks, i.e. tasks with a recognizable end. Here, we study the distribution of effort in nest seeking, in the absence of new nest sites. Hence, this task is open-ended and individuals have to decide when to stop searching, even though the task has not been completed. We show that collective search effort declines when colonies inhabit better homes, as a consequence of a reduction in the number of bouts (exploratory events). Furthermore, we show an increase in bout exploration time and a decrease in bout instantaneous speed for colonies inhabiting better homes. The effect of treatment on bout effort is very small; however, we suggest that the organization of work performed within nest searching is achieved both by a process of self-selection of the most hard-working ants and individual effort adjustment. PMID:26909180

  12. Visual Navigation during Colony Emigration by the Ant Temnothorax rugatulus

    PubMed Central

    Bowens, Sean R.; Glatt, Daniel P.; Pratt, Stephen C.

    2013-01-01

    Many ants rely on both visual cues and self-generated chemical signals for navigation, but their relative importance varies across species and context. We evaluated the roles of both modalities during colony emigration by Temnothorax rugatulus. Colonies were induced to move from an old nest in the center of an arena to a new nest at the arena edge. In the midst of the emigration the arena floor was rotated 60°around the old nest entrance, thus displacing any substrate-bound odor cues while leaving visual cues unchanged. This manipulation had no effect on orientation, suggesting little influence of substrate cues on navigation. When this rotation was accompanied by the blocking of most visual cues, the ants became highly disoriented, suggesting that they did not fall back on substrate cues even when deprived of visual information. Finally, when the substrate was left in place but the visual surround was rotated, the ants' subsequent headings were strongly rotated in the same direction, showing a clear role for visual navigation. Combined with earlier studies, these results suggest that chemical signals deposited by Temnothorax ants serve more for marking of familiar territory than for orientation. The ants instead navigate visually, showing the importance of this modality even for species with small eyes and coarse visual acuity. PMID:23671713

  13. Ant colony optimisation-direct cover: a hybrid ant colony direct cover technique for multi-level synthesis of multiple-valued logic functions

    NASA Astrophysics Data System (ADS)

    Abd-El-Barr, Mostafa

    2010-12-01

    The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.

  14. Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies.

    PubMed

    Loreto, Raquel G; Hughes, David P

    2016-01-01

    Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested.

  15. Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies

    PubMed Central

    Loreto, Raquel G.; Hughes, David P.

    2016-01-01

    Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested. PMID:27529548

  16. Differentiating causality and correlation in allometric scaling: ant colony size drives metabolic hypometry

    PubMed Central

    Ochs, Alison; Fewell, Jennifer H.; Harrison, Jon F.

    2017-01-01

    Metabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation. To overcome this limitation, we experimentally reduced the size of harvester ant colonies (Pogonomyrmex californicus) and quantified the consequent increase in mass-specific metabolic rates. Our results clearly demonstrate a causal relationship between colony size and hypometric changes in metabolic rate that could not be explained by changes in physical density. These findings provide evidence against prominent models arguing that the hypometric scaling of metabolic rate is primarily driven by constraints on resource delivery or surface area/volume ratios, because colonies were provided with excess food and colony size does not affect individual oxygen or nutrient transport. We found that larger colonies had lower median walking speeds and relatively more stationary ants and including walking speed as a variable in the mass-scaling allometry greatly reduced the amount of residual variation in the model, reinforcing the role of behaviour in metabolic allometry. Following the experimental size reduction, however, the proportion of stationary ants increased, demonstrating that variation in locomotory activity cannot solely explain hypometric scaling of metabolic rates in these colonies. Based on prior studies of this species, the increase in metabolic rate in size-reduced colonies could be due to increased anabolic processes associated with brood care and colony growth. PMID:28228514

  17. A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin

    PubMed Central

    Dejean, Alain; Orivel, Jérôme; Azémar, Frédéric; Hérault, Bruno; Corbara, Bruno

    2016-01-01

    In myrmecophilous Lepidoptera, mostly lycaenids and riodinids, caterpillars trick ants into transporting them to the ant nest where they feed on the brood or, in the more derived “cuckoo strategy”, trigger regurgitations (trophallaxis) from the ants and obtain trophic eggs. We show for the first time that the caterpillars of a moth (Eublemma albifascia; Noctuidae; Acontiinae) also use this strategy to obtain regurgitations and trophic eggs from ants (Oecophylla longinoda). Females short-circuit the adoption process by laying eggs directly on the ant nests, and workers carry just-hatched caterpillars inside. Parasitized colonies sheltered 44 to 359 caterpillars, each receiving more trophallaxis and trophic eggs than control queens. The thus-starved queens lose weight, stop laying eggs (which transport the pheromones that induce infertility in the workers) and die. Consequently, the workers lay male-destined eggs before and after the queen’s death, allowing the colony to invest its remaining resources in male production before it vanishes. PMID:27021621

  18. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ecological consequences of colony structure in dynamic ant nest networks.

    PubMed

    Ellis, Samuel; Franks, Daniel W; Robinson, Elva J H

    2017-02-01

    Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant ( Formica lugubris ) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.

  20. Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    PubMed Central

    Blonder, Benjamin; Dornhaus, Anna

    2011-01-01

    Background An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. Methodology/Findings Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. Conclusions/Significance Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales. PMID:21625450

  1. antaRNA: ant colony-based RNA sequence design.

    PubMed

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-10-01

    RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found ,: inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology ,: reliable RNA sequence design becomes a crucial step to generate novel biochemical components. In this article ,: the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Application of ant colony algorithm in path planning of the data center room robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Ma, Jianming; Wang, Ying

    2017-05-01

    According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.

  3. Opportunistic brood theft in the context of colony relocation in an Indian queenless ant.

    PubMed

    Paul, Bishwarup; Paul, Manabi; Annagiri, Sumana

    2016-10-31

    Brood is a very valuable part of an ant colony and behaviours increasing its number with minimum investment is expected to be favoured by natural selection. Brood theft has been well documented in ants belonging to the subfamilies Myrmicinae and Formicinae. In this study we report opportunistic brood theft in the context of nest relocation in Diacamma indicum, belonging to the primitively eusocial subfamily Ponerinae. Pupae was the preferred stolen item both in laboratory conditions and in natural habitat and a small percentage of the members of a colony acting as thieves stole about 12% of the brood of the victim colony. Stolen brood were not consumed but became slaves. We propose a new dimension to the risks of relocation in the form of brood theft by conspecific neighbours and speculate that examination of this phenomenon in other primitively eusocial species will help understand the origin of brood theft in ants.

  4. External immunity in ant societies: sociality and colony size do not predict investment in antimicrobials

    PubMed Central

    Halawani, Omar; Pearson, Bria; Mathews, Stephanie; López-Uribe, Margarita M.; Dunn, Robert R.; Smith, Adrian A.

    2018-01-01

    Social insects live in dense groups with a high probability of disease transmission and have therefore faced strong pressures to develop defences against pathogens. For this reason, social insects have been hypothesized to invest in antimicrobial secretions as a mechanism of external immunity to prevent the spread of disease. However, empirical studies linking the evolution of sociality with increased investment in antimicrobials have been relatively few. Here we quantify the strength of antimicrobial secretions among 20 ant species that cover a broad spectrum of ant diversity and colony sizes. We extracted external compounds from ant workers to test whether they inhibited the growth of the bacterium Staphylococcus epidermidis. Because all ant species are highly social, we predicted that all species would exhibit some antimicrobial activity and that species that form the largest colonies would exhibit the strongest antimicrobial response. Our comparative approach revealed that strong surface antimicrobials are common to particular ant clades, but 40% of species exhibited no antimicrobial activity at all. We also found no correlation between antimicrobial activity and colony size. Rather than relying on antimicrobial secretions as external immunity to control pathogen spread, many ant species have probably developed alternative strategies to defend against disease pressure. PMID:29515850

  5. A framework for using ant colony optimization to schedule environmental flow management alternatives for rivers, wetlands, and floodplains

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Maier, H. R.; Dandy, G. C.

    2012-08-01

    Rivers, wetlands, and floodplains are in need of management as they have been altered from natural conditions and are at risk of vanishing because of river development. One method to mitigate these impacts involves the scheduling of environmental flow management alternatives (EFMA); however, this is a complex task as there are generally a large number of ecological assets (e.g., wetlands) that need to be considered, each with species with competing flow requirements. Hence, this problem evolves into an optimization problem to maximize an ecological benefit within constraints imposed by human needs and the physical layout of the system. This paper presents a novel optimization framework which uses ant colony optimization to enable optimal scheduling of EFMAs, given constraints on the environmental water that is available. This optimization algorithm is selected because, unlike other currently popular algorithms, it is able to account for all aspects of the problem. The approach is validated by comparing it to a heuristic approach, and its utility is demonstrated using a case study based on the Murray River in South Australia to investigate (1) the trade-off between plant recruitment (i.e., promoting germination) and maintenance (i.e., maintaining habitat) flow requirements, (2) the trade-off between flora and fauna flow requirements, and (3) a hydrograph inversion case. The results demonstrate the usefulness and flexibility of the proposed framework as it is able to determine EFMA schedules that provide optimal or near-optimal trade-offs between the competing needs of species under a range of operating conditions and valuable insight for managers.

  6. The modification of hybrid method of ant colony optimization, particle swarm optimization and 3-OPT algorithm in traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Hertono, G. F.; Ubadah; Handari, B. D.

    2018-03-01

    The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.

  7. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    PubMed

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside

  8. Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results.

    PubMed

    Otero, Fernando E B; Freitas, Alex A

    2016-01-01

    Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.

  9. Internest food sharing within wood ant colonies: resource redistribution behavior in a complex system

    PubMed Central

    Robinson, Elva J.H.

    2016-01-01

    Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest “forage” to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy. PMID:27004016

  10. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies.

    PubMed

    Pull, Christopher D; Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark Jf; Cremer, Sylvia

    2018-01-09

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus , the negative consequences of fungal infections ( Metarhizium brunneum ) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.

  11. 3D sensor placement strategy using the full-range pheromone ant colony system

    NASA Astrophysics Data System (ADS)

    Shuo, Feng; Jingqing, Jia

    2016-07-01

    An optimized sensor placement strategy will be extremely beneficial to ensure the safety and cost reduction considerations of structural health monitoring (SHM) systems. The sensors must be placed such that important dynamic information is obtained and the number of sensors is minimized. The practice is to select individual sensor directions by several 1D sensor methods and the triaxial sensors are placed in these directions for monitoring. However, this may lead to non-optimal placement of many triaxial sensors. In this paper, a new method, called FRPACS, is proposed based on the ant colony system (ACS) to solve the optimal placement of triaxial sensors. The triaxial sensors are placed as single units in an optimal fashion. And then the new method is compared with other algorithms using Dalian North Bridge. The computational precision and iteration efficiency of the FRPACS has been greatly improved compared with the original ACS and EFI method.

  12. Opportunistic brood theft in the context of colony relocation in an Indian queenless ant

    PubMed Central

    Paul, Bishwarup; Paul, Manabi; Annagiri, Sumana

    2016-01-01

    Brood is a very valuable part of an ant colony and behaviours increasing its number with minimum investment is expected to be favoured by natural selection. Brood theft has been well documented in ants belonging to the subfamilies Myrmicinae and Formicinae. In this study we report opportunistic brood theft in the context of nest relocation in Diacamma indicum, belonging to the primitively eusocial subfamily Ponerinae. Pupae was the preferred stolen item both in laboratory conditions and in natural habitat and a small percentage of the members of a colony acting as thieves stole about 12% of the brood of the victim colony. Stolen brood were not consumed but became slaves. We propose a new dimension to the risks of relocation in the form of brood theft by conspecific neighbours and speculate that examination of this phenomenon in other primitively eusocial species will help understand the origin of brood theft in ants. PMID:27796350

  13. An element search ant colony technique for solving virtual machine placement problem

    NASA Astrophysics Data System (ADS)

    Srija, J.; Rani John, Rose; Kanaga, Grace Mary, Dr.

    2017-09-01

    The data centres in the cloud environment play a key role in providing infrastructure for ubiquitous computing, pervasive computing, mobile computing etc. This computing technique tries to utilize the available resources in order to provide services. Hence maintaining the resource utilization without wastage of power consumption has become a challenging task for the researchers. In this paper we propose the direct guidance ant colony system for effective mapping of virtual machines to the physical machine with maximal resource utilization and minimal power consumption. The proposed algorithm has been compared with the existing ant colony approach which is involved in solving virtual machine placement problem and thus the proposed algorithm proves to provide better result than the existing technique.

  14. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies

    PubMed Central

    Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark JF

    2018-01-01

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen’s non-contagious incubation period, utilising chemical ‘sickness cues’ emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. PMID:29310753

  15. Long-term efficacy of two cricket and two liver diets for rearing laboratory fire ant colonies (Hymenoptera: Formicidae: Solenopsis Invicta)

    USDA-ARS?s Scientific Manuscript database

    Effective diets are necessary for many kinds of laboratory studies of ants. We conducted a year-long study of imported fire ant colonies reared on either chicken liver, beef liver, banded crickets, or domestic crickets all with a sugar water supplement. Fire ant colonies thrived on diets of sugar ...

  16. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  17. Arboreal ant colonies as 'hot-points' of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates.

    PubMed

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2014-01-01

    Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as 'hot-points' of biodiversity that urgently require special attention as a component of conservation and management programs.

  18. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  19. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  20. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels.

    PubMed

    Helms, Ken R; Vinson, S Bradleigh

    2008-04-01

    Studies have suggested that plant-based nutritional resources are important in promoting high densities of omnivorous and invasive ants, but there have been no direct tests of the effects of these resources on colony productivity. We conducted an experiment designed to determine the relative importance of plants and honeydew-producing insects feeding on plants to the growth of colonies of the invasive ant Solenopsis invicta (Buren). We found that colonies of S. invicta grew substantially when they only had access to unlimited insect prey; however, colonies that also had access to plants colonized by honeydew-producing Hemiptera grew significantly and substantially ( approximately 50%) larger. Our experiment also showed that S. invicta was unable to acquire significant nutritional resources directly from the Hemiptera host plant but acquired them indirectly from honeydew. Honeydew alone is unlikely to be sufficient for colony growth, however, and both carbohydrates abundant in plants and proteins abundant in animals are likely to be necessary for optimal growth. Our experiment provides important insight into the effects of a common tritrophic interaction among an invasive mealybug, Antonina graminis (Maskell), an invasive host grass, Cynodon dactylon L. Pers., and S. invicta in the southeastern United States, suggesting that interactions among these species can be important in promoting extremely high population densities of S. invicta.

  1. A new method for distinguishing colony social forms of the fire ant Solenopsis invicta

    USDA-ARS?s Scientific Manuscript database

    Two distinct forms of colony social organization occur in the fire ant Solenopsis invicta: Colonies of the monogyne social form are headed by a single egg-laying queen, whereas those of the polygyne social form contain multiple egg-laying queens. This major difference in social organization is ass...

  2. Application of Chitosan-Zinc Oxide Nanoparticles for Lead Extraction From Water Samples by Combining Ant Colony Optimization with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Khajeh, M.; Pourkarami, A.; Arefnejad, E.; Bohlooli, M.; Khatibi, A.; Ghaffari-Moghaddam, M.; Zareian-Jahromi, S.

    2017-09-01

    Chitosan-zinc oxide nanoparticles (CZPs) were developed for solid-phase extraction. Combined artificial neural network-ant colony optimization (ANN-ACO) was used for the simultaneous preconcentration and determination of lead (Pb2+) ions in water samples prior to graphite furnace atomic absorption spectrometry (GF AAS). The solution pH, mass of adsorbent CZPs, amount of 1-(2-pyridylazo)-2-naphthol (PAN), which was used as a complexing agent, eluent volume, eluent concentration, and flow rates of sample and eluent were used as input parameters of the ANN model, and the percentage of extracted Pb2+ ions was used as the output variable of the model. A multilayer perception network with a back-propagation learning algorithm was used to fit the experimental data. The optimum conditions were obtained based on the ACO. Under the optimized conditions, the limit of detection for Pb2+ ions was found to be 0.078 μg/L. This procedure was also successfully used to determine the amounts of Pb2+ ions in various natural water samples.

  3. Arboreal Ant Colonies as ‘Hot-Points’ of Cryptic Diversity for Myrmecophiles: The Weaver Ant Camponotus sp. aff. textor and Its Interaction Network with Its Associates

    PubMed Central

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2014-01-01

    Introduction Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. Materials and Methods We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. Results We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Conclusions Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as ‘hot-points’ of biodiversity that urgently require special attention as a component of conservation and management programs. PMID:24941047

  4. Ant colony optimization algorithm for interpretable Bayesian classifiers combination: application to medical predictions.

    PubMed

    Bouktif, Salah; Hanna, Eileen Marie; Zaki, Nazar; Abu Khousa, Eman

    2014-01-01

    Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models' interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions. The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.

  5. Optimization on Paddy Crops in Central Java (with Solver, SVD on Least Square and ACO (Ant Colony Algorithm))

    NASA Astrophysics Data System (ADS)

    Parhusip, H. A.; Trihandaru, S.; Susanto, B.; Prasetyo, S. Y. J.; Agus, Y. H.; Simanjuntak, B. H.

    2017-03-01

    Several algorithms and objective functions on paddy crops have been studied to get optimal paddy crops in Central Java based on the data given from Surakarta and Boyolali. The algorithms are linear solver, least square and Ant Colony Algorithms (ACO) to develop optimization procedures on paddy crops modelled with Modified GSTAR (Generalized Space-Time Autoregressive) and nonlinear models where the nonlinear models are quadratic and power functions. The studied data contain paddy crops from Surakarta and Boyolali determining the best period of planting in the year 1992-2012 for Surakarta where 3 periods for planting are known and the optimal amount of paddy crops in Boyolali in the year 2008-2013. Having these analyses may guide the local agriculture government to give a decision on rice sustainability in its region. The best period for planting in Surakarta is observed, i.e. the best period is in September-December based on the data 1992-2012 by considering the planting area, the cropping area, and the paddy crops are the most important factors to be taken into account. As a result, we can refer the paddy crops in this best period (about 60.4 thousand tons per year) as the optimal results in 1992-2012 where the used objective function is quadratic. According to the research, the optimal paddy crops in Boyolali about 280 thousand tons per year where the studied factors are the amount of rainfalls, the harvested area and the paddy crops in 2008-2013. In this case, linear and power functions are studied to be the objective functions. Compared to all studied algorithms, the linear solver is still recommended to be an optimization tool for a local agriculture government to predict paddy crops in future.

  6. Colony growth of two species of Solenopsis fire ants(Hymenoptera: Formicidae) reared with crickets and beef liver

    USDA-ARS?s Scientific Manuscript database

    Most diets for rearing fire ants and other ants contain insects such as crickets or mealworms. Unfortunately, insect diets are expensive, especially for large rearing operations, and are not always easily available. This study was designed to examine colony growth of Solenopsis fire ants on beef liv...

  7. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  8. Textural defect detect using a revised ant colony clustering algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Chao; Xiao, Li; Wang, Bingwen

    2007-11-01

    We propose a totally novel method based on a revised ant colony clustering algorithm (ACCA) to explore the topic of textural defect detection. In this algorithm, our efforts are mainly made on the definition of local irregularity measurement and the implementation of the revised ACCA. The local irregular measurement defined evaluates the local textural inconsistency of each pixel against their mini-environment. In our revised ACCA, the behaviors of each ant are divided into two steps: release pheromone and act. The quantity of pheromone released is proportional to the irregularity measurement; the actions of the ants to act next are chosen independently of each other in a stochastic way according to some evaluated heuristic knowledge. The independency of ants implies the inherent parallel computation architecture of this algorithm. We apply the proposed method in some typical textural images with defects. From the series of pheromone distribution map (PDM), it can be clearly seen that the pheromone distribution approaches the textual defects gradually. By some post-processing, the final distribution of pheromone can demonstrate the shape and area of the defects well.

  9. An ant colony based algorithm for overlapping community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di

    2015-06-01

    Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.

  10. Influence of toxic bait type and starvation on worker and queen mortality in laboratory colonies of Argentine ant (Hymenoptera: Formicidae).

    PubMed

    Mathieson, Melissa; Toft, Richard; Lester, Philip J

    2012-08-01

    The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.

  11. At-Least Version of the Generalized Minimum Spanning Tree Problem: Optimization Through Ant Colony System and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Janich, Karl W.

    2005-01-01

    The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.

  12. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  13. An ants-eye view of an ant-plant protection mutualism

    PubMed Central

    Lanan, M. C.; Bronstein, J. L.

    2013-01-01

    Ant protection of extrafloral nectar-secreting plants (EFN plants) is a common form of mutualism found in most habitats around the world. However, very few studies have considered these mutualisms from the ant, rather than the plant, perspective. In particular, a whole-colony perspective that takes into account the spatial structure and nest arrangement of the ant colonies that visit these plants has been lacking, obscuring when and how colony-level foraging decisions might affect tending rates on individual plants. Here, we experimentally demonstrate that recruitment of Crematogaster opuntiae (Buren) ant workers to the extrafloral nectar-secreting cactus Ferocactus wislizeni (Englem) is not independent between plants up to 5m apart. Colony territories of C. opuntiae are large, covering areas of up to 5000m2, and workers visit between five and thirty-four extrafloral nectar-secreting barrel cacti within the territories. These ants are highly polydomous, with up to twenty nest entrances dispersed throughout the territory and interconnected by trail networks. Our study demonstrates that worker recruitment is not independent within large polydomous ant colonies, highlighting the importance of considering colonies rather than individual workers as the relevant study unit within ant/plant protection mutualisms PMID:23515612

  14. TACD: a transportable ant colony discrimination model for corporate bankruptcy prediction

    NASA Astrophysics Data System (ADS)

    Lalbakhsh, Pooia; Chen, Yi-Ping Phoebe

    2017-05-01

    This paper presents a transportable ant colony discrimination strategy (TACD) to predict corporate bankruptcy, a topic of vital importance that is attracting increasing interest in the field of economics. The proposed algorithm uses financial ratios to build a binary prediction model for companies with the two statuses of bankrupt and non-bankrupt. The algorithm takes advantage of an improved version of continuous ant colony optimisation (CACO) at the core, which is used to create an accurate, simple and understandable linear model for discrimination. This also enables the algorithm to work with continuous values, leading to more efficient learning and adaption by avoiding data discretisation. We conduct a comprehensive performance evaluation on three real-world data sets under a stratified cross-validation strategy. In three different scenarios, TACD is compared with 11 other bankruptcy prediction strategies. We also discuss the efficiency of the attribute selection methods used in the experiments. In addition to its simplicity and understandability, statistical significance tests prove the efficiency of TACD against the other prediction algorithms in both measures of AUC and accuracy.

  15. Parallelizing Ant Colony Optimization via Area of Expertise Learning

    DTIC Science & Technology

    2007-09-13

    reminding me that when you don’t have anything else to say, a cat on the keyboard can at least get you a few more pages. Adrian A. de Freitas v Table of...Determination of Others’ Expertise (Q-Learning) . . . . . . . . 69 viii Figure Page 4.8. Pheromone Concentrations of Colonies 1, 2, and 3... Pheromone Concentrations of a Single ACS-GRIDWORLD Colony 75 4.14. Comparison of Policies Formed through AOE Learning . . . . . 75 4.15. Combined Pheromone

  16. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou; Xi, Yufei; Cai, Jianchao; Zhang, Henglei

    2015-01-01

    The ant colony optimisation algorithm has successfully been used to invert for surface magnetic data. However, the resolution of the distributions of the recovered physical property for deeply buried magnetic sources is not generally very high because of geophysical ambiguities. We use three approaches to deal with this problem. First, the observed surface magnetic data are taken together with the three-component borehole magnetic anomalies to recover the distributions of the physical properties. This cooperative inversion strategy improves the resolution of the inversion results in the vertical direction. Additionally, as the ant colony tours the discrete nodes, we force it to visit the nodes with physical properties that agree with the drilled lithologies. These lithological constraints reduce the non-uniqueness of the inversion problem. Finally, we also implement a K-means cluster analysis for the distributions of the magnetic cells after each iteration, in order to separate the distributions of magnetisation intensity instead of concentrating the distribution in a single area. We tested our method using synthetic data and found that all tests returned favourable results. In the case study of the Mengku iron-ore deposit in northwest China, the recovered distributions of magnetisation are in good agreement with the locations and shapes of the magnetite orebodies as inferred by drillholes. Uncertainty analysis shows that the ant colony algorithm is robust in the presence of noise and that the proposed approaches significantly improve the quality of the inversion results.

  17. Using ant colony optimization on the quadratic assignment problem to achieve low energy cost in geo-distributed data centers

    NASA Astrophysics Data System (ADS)

    Osei, Richard

    There are many problems associated with operating a data center. Some of these problems include data security, system performance, increasing infrastructure complexity, increasing storage utilization, keeping up with data growth, and increasing energy costs. Energy cost differs by location, and at most locations fluctuates over time. The rising cost of energy makes it harder for data centers to function properly and provide a good quality of service. With reduced energy cost, data centers will have longer lasting servers/equipment, higher availability of resources, better quality of service, a greener environment, and reduced service and software costs for consumers. Some of the ways that data centers have tried to using to reduce energy costs include dynamically switching on and off servers based on the number of users and some predefined conditions, the use of environmental monitoring sensors, and the use of dynamic voltage and frequency scaling (DVFS), which enables processors to run at different combinations of frequencies with voltages to reduce energy cost. This thesis presents another method by which energy cost at data centers could be reduced. This method involves the use of Ant Colony Optimization (ACO) on a Quadratic Assignment Problem (QAP) in assigning user request to servers in geo-distributed data centers. In this paper, an effort to reduce data center energy cost involves the use of front portals, which handle users' requests, were used as ants to find cost effective ways to assign users requests to a server in heterogeneous geo-distributed data centers. The simulation results indicate that the ACO for Optimal Server Activation and Task Placement algorithm reduces energy cost on a small and large number of users' requests in a geo-distributed data center and its performance increases as the input data grows. In a simulation with 3 geo-distributed data centers, and user's resource request ranging from 25,000 to 25,000,000, the ACO algorithm was able

  18. Toxicity Profiles and Colony Effects of Liquid Baits on Tawny Crazy Ants (plus an update on their U.S. distribution)

    USDA-ARS?s Scientific Manuscript database

    Tawny crazy ants, Nylanderia fulva, is an invasive ant that are known to readily forage on the liquid, carbohydrate rich honeydew produced by hemipterans such as aphids and scales. There is interest in developing liquid ant baits that can eliminate tawny crazy ant colonies. Preliminary and anecdot...

  19. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  20. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  1. Swarm Intelligence Optimization and Its Applications

    NASA Astrophysics Data System (ADS)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  2. A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.

    PubMed

    Quan, Wei; Fang, Jiancheng

    2010-01-01

    A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.

  3. Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies

    PubMed Central

    Konrad, Matthias; Vyleta, Meghan L.; Theis, Fabian J.; Stock, Miriam; Tragust, Simon; Klatt, Martina; Drescher, Verena; Marr, Carsten; Ugelvig, Line V.; Cremer, Sylvia

    2012-01-01

    Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than

  4. Colony-level behavioural variation correlates with differences in expression of the foraging gene in red imported fire ants.

    PubMed

    Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D

    2017-11-01

    Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.

  5. Be meek or be bold? A colony-level behavioural syndrome in ants

    PubMed Central

    Bengston, S. E.; Dornhaus, A.

    2014-01-01

    Consistent individual variation in animal behaviour is nearly ubiquitous and has important ecological and evolutionary implications. Additionally, suites of behavioural traits are often correlated, forming behavioural syndromes in both humans and other species. Such syndromes are often described by testing for variation in traits across commonly described dimensions (e.g. aggression and neophobia), independent of whether this variation is ecologically relevant to the focal species. Here, we use a variety of ecologically relevant behavioural traits to test for a colony-level behavioural syndrome in rock ants (Temnothorax rugatulus). Specifically, we combine field and laboratory assays to measure foraging effort, how colonies respond to different types of resources, activity level, response to threat and aggression level. We find evidence for a colony level syndrome that suggests colonies consistently differ in coping style—some are more risk-prone, whereas others are more risk-averse. Additionally, by collecting data across the North American range of this species, we show that environmental variation may affect how different populations maintain consistent variation in colony behaviour. PMID:25100691

  6. Incomplete Homogenization of Chemical Recognition Labels Between Formica sanguinea and Formica rufa Ants (Hymenoptera: Formicidae) Living in a Mixed Colony

    PubMed Central

    Włodarczyk, Tomasz; Szczepaniak, Lech

    2014-01-01

    Abstract Formica sanguinea Latreille (Hymenoptera: Formicidae) is a slave-making species, i.e., it raids colonies of host species and pillages pupae, which are taken to develop into adult workers in a parasite colony. However, it has been unclear if the coexistence of F. sanguinea with slave workers requires uniformity of cuticular hydrocarbons (CHCs), among which those other than n -alkanes are believed to be the principal nestmate recognition cues utilized by ants. In this study, a mixed colony (MC) of F. sanguinea and Formica rufa L. as a slave species was used to test the hypothesis that CHCs are exchanged between the species. Chemical analysis of hexane extracts from ants’ body surfaces provided evidence for interspecific exchange of alkenes and methyl-branched alkanes. This result was confirmed by behavioral tests during which ants exhibited hostility toward conspecific individuals from the MC but not toward ones from homospecific colonies of their own species. However, it seems that species-specific differences in chemical recognition labels were not eliminated completely because ants from the MC were treated differently depending on whether they were con- or allospecific to the individuals whose behavioral reactions were tested. These findings are discussed in the context of mechanisms of colony's odor formation and effective integration of slaves into parasite colony. PMID:25502026

  7. Optimal cue integration in ants.

    PubMed

    Wystrach, Antoine; Mangan, Michael; Webb, Barbara

    2015-10-07

    In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. © 2015 The Author(s).

  8. Distributed nestmate recognition in ants.

    PubMed

    Esponda, Fernando; Gordon, Deborah M

    2015-05-07

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.

  9. Variation in Butterfly Larval Acoustics as a Strategy to Infiltrate and Exploit Host Ant Colony Resources

    PubMed Central

    Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca

    2014-01-01

    About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea “predatory species” directly feed on the ant larvae, while those of “cuckoo species” are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry. PMID:24718496

  10. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources.

    PubMed

    Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca

    2014-01-01

    About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea "predatory species" directly feed on the ant larvae, while those of "cuckoo species" are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.

  11. Sociogenomics of Cooperation and Conflict during Colony Founding in the Fire Ant Solenopsis invicta

    PubMed Central

    Manfredini, Fabio; Riba-Grognuz, Oksana; Wurm, Yannick; Keller, Laurent; Shoemaker, DeWayne; Grozinger, Christina M.

    2013-01-01

    One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on

  12. Sociogenomics of cooperation and conflict during colony foundation in the fire ant Solenopsis invicta

    USDA-ARS?s Scientific Manuscript database

    The genomic state of an individual results from the interplay between its internal condition and the external environment, which may include the social environment. The link between genes and social environment is clearly visible during the process of colony founding in the fire ant Solenopsis invic...

  13. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    PubMed

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  14. Colony-Level Differences in the Scaling Rules Governing Wood Ant Compound Eye Structure.

    PubMed

    Perl, Craig D; Niven, Jeremy E

    2016-04-12

    Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population.

  15. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations

    USDA-ARS?s Scientific Manuscript database

    Tests were conducted to evaluate whether Solenopsis invicta virus 3 (SINV-3) could be delivered in various bait formulations to fire ant colonies and measure the corresponding colony health changes associated with virus infection in Solenopsis invicta. Three bait formulations (10% sugar solution, c...

  16. A queen pheromone induces workers to kill sexual larvae in colonies of the red imported fire ant (Solenopsis invicta)

    NASA Astrophysics Data System (ADS)

    Klobuchar, Emily; Deslippe, Richard

    2002-05-01

    We conducted five bioassays to study how queens control the execution of sexual larvae by workers in colonies of the red imported fire ant, Solenopsis invicta. In each assay, subset colonies were made from many large polygyne colonies, and the 20 sexual larvae they contained were monitored over time. Sexual larvae mostly survived in queenless colonies, but were mostly killed in colonies with a single dealated queen, regardless of whether or not the queen was fertilized. The larvae were also killed when fresh corpses of queens were added to queenless colonies. Whereas acetone extracts of queens did not produce a significant increase in killings, extracts in buffered saline induced workers to execute most sexual larvae, indicating successful extraction of an execution pheromone. We identified the probable storage location of the chemical as the poison sac, and found both fresh (1 day) and old (21 day) extracts of poison sacs to be equally effective in inducing executions. The pheromone is stable at room temperature, perhaps because venom alkaloids also present in the extracts keep the pheromone from degrading. It is apparently either proteinaceous or associated with a proteinaceous molecule, a novel finding, as no queen pheromone of a proteinaceous nature has been previously demonstrated in ants.

  17. A queen pheromone induces workers to kill sexual larvae in colonies of the red imported fire ant (Solenopsis invicta).

    PubMed

    Klobuchar, Emily A; Deslippe, Richard J

    2002-07-01

    We conducted five bioassays to study how queens control the execution of sexual larvae by workers in colonies of the red imported fire ant, Solenopsis invicta. In each assay, subset colonies were made from many large polygyne colonies, and the 20 sexual larvae they contained were monitored over time. Sexual larvae mostly survived in queenless colonies, but were mostly killed in colonies with a single dealated queen, regardless of whether or not the queen was fertilized. The larvae were also killed when fresh corpses of queens were added to queenless colonies. Whereas acetone extracts of queens did not produce a significant increase in killings, extracts in buffered saline induced workers to execute most sexual larvae, indicating successful extraction of an execution pheromone. We identified the probable storage location of the chemical as the poison sac, and found both fresh (1 day) and old (21 day) extracts of poison sacs to be equally effective in inducing executions. The pheromone is stable at room temperature, perhaps because venom alkaloids also present in the extracts keep the pheromone from degrading. It is apparently either proteinaceous or associated with a proteinaceous molecule, a novel finding, as no queen pheromone of a proteinaceous nature has been previously demonstrated in ants.

  18. Ants defend aphids against lethal disease

    PubMed Central

    Nielsen, Charlotte; Agrawal, Anurag A.; Hajek, Ann E.

    2010-01-01

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  19. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  20. Application of cellular automatons and ant algorithms in avionics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.

    2018-03-01

    The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.

  1. The Ants Have It!

    ERIC Educational Resources Information Center

    Daugherty, Belinda

    2001-01-01

    Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)

  2. Ant Lion Optimization algorithm for kidney exchanges.

    PubMed

    Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada

    2018-01-01

    The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

  3. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.

    PubMed

    Pringle, Elizabeth G

    2014-06-22

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.

  4. Seasonal variation and the co-occurence of four pathogens and a group of parasites among monogyne and polygyne fire ant colonies

    USDA-ARS?s Scientific Manuscript database

    A year-long survey of was conducted to determine the seasonality and co-occurrence of four pathogens and a group of parasites in colonies of the red imported fire ant, Solenopsis invicta, in north-central Florida. S. invicta colonies were sampled and examined for the presence of Pseudacteon spp. (P...

  5. Alate susceptibility in ants

    PubMed Central

    Ho, Eddie K H; Frederickson, Megan E

    2014-01-01

    Pathogens are predicted to pose a particular threat to eusocial insects because infections can spread rapidly in colonies with high densities of closely related individuals. In ants, there are two major castes: workers and reproductives. Sterile workers receive no direct benefit from investing in immunity, but can gain indirect fitness benefits if their immunity aids the survival of their fertile siblings. Virgin reproductives (alates), on the other hand, may be able to increase their investment in reproduction, rather than in immunity, because of the protection they receive from workers. Thus, we expect colonies to have highly immune workers, but relatively more susceptible alates. We examined the survival of workers, gynes, and males of nine ant species collected in Peru and Canada when exposed to the entomopathogenic fungus Beauveria bassiana. For the seven species in which treatment with B. bassiana increased ant mortality relative to controls, we found workers were significantly less susceptible compared with both alate sexes. Female and male alates did not differ significantly in their immunocompetence. Our results suggest that, as with other nonreproductive tasks in ant colonies like foraging and nest maintenance, workers have primary responsibility for colony immunity, allowing alates to specialize on reproduction. We highlight the importance of colony-level selection on individual immunity in ants and other eusocial organisms. PMID:25540683

  6. Private information alone can trigger trapping of ant colonies in local feeding optima.

    PubMed

    Czaczkes, Tomer J; Salmane, Anete K; Klampfleuthner, Felicia A M; Heinze, Jürgen

    2016-03-01

    Ant colonies are famous for using trail pheromones to make collective decisions. Trail pheromone systems are characterised by positive feedback, which results in rapid collective decision making. However, in an iconic experiment, ants were shown to become 'trapped' in exploiting a poor food source, if it was discovered earlier. This has conventionally been explained by the established pheromone trail becoming too strong for new trails to compete. However, many social insects have a well-developed memory, and private information often overrules conflicting social information. Thus, route memory could also explain this collective 'trapping' effect. Here, we disentangled the effects of social and private information in two 'trapping' experiments: one in which ants were presented with a good and a poor food source, and one in which ants were presented with a long and a short path to the same food source. We found that private information is sufficient to trigger trapping in selecting the poorer of two food sources, and may be sufficient to cause it altogether. Memories did not trigger trapping in the shortest path experiment, probably because sufficiently detailed memories did not form. The fact that collective decisions can be triggered by private information alone may require other collective patterns previously attributed solely to social information use to be reconsidered. © 2016. Published by The Company of Biologists Ltd.

  7. Usefulness of fire ant genetics in insecticide efficacy trials

    USDA-ARS?s Scientific Manuscript database

    Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...

  8. Discriminatory abilities of facultative slave-making ants and their slaves.

    PubMed

    Włodarczyk, T

    2016-01-01

    Intra-colony odor variability can disturb ants' ability to discriminate against intruders. The evolutionary relevance of this phenomenon can be revealed by studies on colonies of slave-making ants in which the parasite, and not the host, is subject to selection pressures associated with living in a mixed colony. We examined how the European facultative slave-making species Formica sanguinea and its F. fusca slaves perform in discriminating ants from alien colonies. Results of behavioral assays showed that slave-maker ants respond with hostility to conspecific individuals from alien colonies but are relatively tolerant to alien slaves. Furthermore, the behavior of slaves indicated a limited ability to discriminate ants from alien parasitic colonies. The subdivision of colony fragments into mixed and species-separated groups demonstrated that contact with the parasite is necessary for F. fusca slaves to be re-accepted by former nestmates after a period of separation from the stock colony. The results presented in this paper are consistent with the following hypotheses: (1) F. sanguinea ants, as opposed to their slaves, are adapted to discriminate alien individuals in the conditions of odor variability found in a mixed-species colony, (2) the recognition of slaves by F. sanguinea ants involves a dedicated adaptive mechanism that prevents aggression toward them, (3) the odor of slaves is strongly influenced by the parasite with beneficial effect on the colony integrity.

  9. Chemically armed mercenary ants protect fungus-farming societies.

    PubMed

    Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J

    2013-09-24

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.

  10. Chemically armed mercenary ants protect fungus-farming societies

    PubMed Central

    Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.

    2013-01-01

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482

  11. Non-native Ants Are Smaller than Related Native Ants.

    PubMed

    McGlynn, Terrence P

    1999-12-01

    I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.

  12. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction

    PubMed Central

    O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John BO

    2008-01-01

    Background We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024–1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581–590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Results Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6°C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, ε of 0.21) and an RMSE of 45.1°C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3°C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5°C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. Conclusion With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors. PMID:18959785

  13. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction.

    PubMed

    O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John Bo

    2008-10-29

    We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024-1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581-590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6 degrees C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, epsilon of 0.21) and an RMSE of 45.1 degrees C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3 degrees C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5 degrees C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors.

  14. Chaos-order transition in foraging behavior of ants.

    PubMed

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

  15. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

    PubMed Central

    Kumarasabapathy, N.; Manoharan, P. S.

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  16. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study.

    PubMed

    Norman, V C; Pamminger, T; Hughes, W O H

    2017-01-01

    The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants ( Atta colombica ) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.

  17. Detection and Length Estimation of Linear Scratch on Solid Surfaces Using an Angle Constrained Ant Colony Technique

    NASA Astrophysics Data System (ADS)

    Pal, Siddharth; Basak, Aniruddha; Das, Swagatam

    In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.

  18. Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling

    NASA Astrophysics Data System (ADS)

    Basu, M.

    2014-12-01

    Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric system having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two hydrothermal multi-reservoir cascaded hydroelectric test systems. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.

  19. PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm.

    PubMed

    Zaidman, Daniel; Wolfson, Haim J

    2016-08-01

    Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein-protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ([Formula: see text]) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. danielza@post.tau.ac.il; wolfson@tau.ac.il. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Framework for computationally efficient optimal irrigation scheduling using ant colony optimization

    USDA-ARS?s Scientific Manuscript database

    A general optimization framework is introduced with the overall goal of reducing search space size and increasing the computational efficiency of evolutionary algorithm application for optimal irrigation scheduling. The framework achieves this goal by representing the problem in the form of a decisi...

  1. Time optimized path-choice in the termite hunting ant Megaponera analis.

    PubMed

    Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard

    2018-05-10

    Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.

  2. Chaos–order transition in foraging behavior of ants

    PubMed Central

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-01-01

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159

  3. Joint optimization of maintenance, buffers and machines in manufacturing lines

    NASA Astrophysics Data System (ADS)

    Nahas, Nabil; Nourelfath, Mustapha

    2018-01-01

    This article considers a series manufacturing line composed of several machines separated by intermediate buffers of finite capacity. The goal is to find the optimal number of preventive maintenance actions performed on each machine, the optimal selection of machines and the optimal buffer allocation plan that minimize the total system cost, while providing the desired system throughput level. The mean times between failures of all machines are assumed to increase when applying periodic preventive maintenance. To estimate the production line throughput, a decomposition method is used. The decision variables in the formulated optimal design problem are buffer levels, types of machines and times between preventive maintenance actions. Three heuristic approaches are developed to solve the formulated combinatorial optimization problem. The first heuristic consists of a genetic algorithm, the second is based on the nonlinear threshold accepting metaheuristic and the third is an ant colony system. The proposed heuristics are compared and their efficiency is shown through several numerical examples. It is found that the nonlinear threshold accepting algorithm outperforms the genetic algorithm and ant colony system, while the genetic algorithm provides better results than the ant colony system for longer manufacturing lines.

  4. Hybrid real-code ant colony optimisation for constrained mechanical design

    NASA Astrophysics Data System (ADS)

    Pholdee, Nantiwat; Bureerat, Sujin

    2016-01-01

    This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.

  5. Ant groups optimally amplify the effect of transiently informed individuals

    NASA Astrophysics Data System (ADS)

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-07-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.

  6. Ant groups optimally amplify the effect of transiently informed individuals

    PubMed Central

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-01-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613

  7. Bus Stops Location and Bus Route Planning Using Mean Shift Clustering and Ant Colony in West Jakarta

    NASA Astrophysics Data System (ADS)

    Supangat, Kenny; Eko Soelistio, Yustinus

    2017-03-01

    Traffic Jam has been a daily problem for people in Jakarta which is one of the busiest city in Indonesia up until now. Even though the official government has tried to reduce the impact of traffic issues by developing a new public transportation which takes up a lot of resources and time, it failed to diminish the problem. The actual concern to this problem actually lies in how people move between places in Jakarta where they always using their own vehicle like cars, and motorcycles that fill most of the street in Jakarta. Among much other public transportations that roams the street of Jakarta, Buses is believed to be an efficient transportation that can move many people at once. However, the location of the bus stop is now have moved to the middle of the main road, and its too far for the nearby residence to access to it. This paper proposes an optimal location of optimal bus stops in West Jakarta that is experimentally proven to have a maximal distance of 350 m. The optimal location is estimated by means of mean shift clustering method while the optimal routes are calculated using Ant Colony algorithm. The bus stops locations rate of error is 0.07% with overall route area of 32 km. Based on our experiments, we believe our proposed bus stop plan can be an interesting alternative to reduce traffic congestion in West Jakarta.

  8. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    PubMed Central

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-01-01

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

  9. Neuromodulation of Nestmate Recognition Decisions by Pavement Ants.

    PubMed

    Bubak, Andrew N; Yaeger, Jazmine D W; Renner, Kenneth J; Swallow, John G; Greene, Michael J

    2016-01-01

    Ant colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors. Despite the relevance to colony fitness, the mechanisms that drive individual decisions leading to cooperative behavior are not well understood. Here we show how sensory information, both tactile and chemical, and social context-isolation, nestmate interaction, or fighting non-nestmates-affects brain monoamine levels in pavement ants (Tetramorium caespitum). Our results provide evidence that changes in octopamine and serotonin in the brains of individuals are sufficient to alter the decision by pavement ants to be aggressive towards non-nestmate ants whereas increased brain levels of dopamine correlate to physical fighting. We propose a model in which the changes in brain states of many workers collectively lead to the self-organization of societal aggression between neighboring colonies of pavement ants.

  10. The interplay between scent trails and group-mass recruitment systems in ants.

    PubMed

    Planqué, Robert; van den Berg, Jan Bouwe; Franks, Nigel R

    2013-10-01

    Large ant colonies invariably use effective scent trails to guide copious ant numbers to food sources. The success of mass recruitment hinges on the involvement of many colony members to lay powerful trails. However, many ant colonies start off as single queens. How do these same colonies forage efficiently when small, thereby overcoming the hurdles to grow large? In this paper, we study the case of combined group and mass recruitment displayed by some ant species. Using mathematical models, we explore to what extent early group recruitment may aid deployment of scent trails, making such trails available at much smaller colony sizes. We show that a competition between group and mass recruitment may cause oscillatory behaviour mediated by scent trails. This results in a further reduction of colony size to establish trails successfully.

  11. Use of a Colony of Cooperating Agents and MAPLE To Solve the Traveling Salesman Problem.

    ERIC Educational Resources Information Center

    Guerrieri, Bruno

    This paper reviews an approach for finding optimal solutions to the traveling salesman problem, a well-known problem in combinational optimization, and describes implementing the approach using the MAPLE computer algebra system. The method employed in this approach to the problem is similar to the way ant colonies manage to establish shortest…

  12. Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.

    PubMed

    Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E

    2017-12-01

    Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.

  13. Insecticide Transfer Efficiency and Lethal Load in Argentine Ants

    DOE PAGES

    Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.; ...

    2015-07-03

    Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), butmore » dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.« less

  14. Insecticide Transfer Efficiency and Lethal Load in Argentine Ants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.

    Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), butmore » dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.« less

  15. Neuromodulation of Nestmate Recognition Decisions by Pavement Ants

    PubMed Central

    Bubak, Andrew N.; Yaeger, Jazmine D. W.; Renner, Kenneth J.; Swallow, John G.; Greene, Michael J.

    2016-01-01

    Ant colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors. Despite the relevance to colony fitness, the mechanisms that drive individual decisions leading to cooperative behavior are not well understood. Here we show how sensory information, both tactile and chemical, and social context—isolation, nestmate interaction, or fighting non-nestmates—affects brain monoamine levels in pavement ants (Tetramorium caespitum). Our results provide evidence that changes in octopamine and serotonin in the brains of individuals are sufficient to alter the decision by pavement ants to be aggressive towards non-nestmate ants whereas increased brain levels of dopamine correlate to physical fighting. We propose a model in which the changes in brain states of many workers collectively lead to the self-organization of societal aggression between neighboring colonies of pavement ants. PMID:27846261

  16. Improving Emergency Management by Modeling Ant Colonies

    DTIC Science & Technology

    2015-03-01

    LEFT BLANK vii TABLE OF CONTENTS I.  THE INCIDENT COMMAND SYSTEM AND AUTONOMOUS ACTORS ......1  A.  PROBLEM STATEMENT...managerial level tasking.12 The Oklahoma City bombing has generally been viewed as a success for the ICS model; however, there were numerous occurrences...developed. The youngest generation of ant 25 Bert Holldobler and Edward O. Wilson, The Ants

  17. Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations.

    PubMed

    Brown, Charles R; Page, Catherine E; Robison, Grant A; O'Brien, Valerie A; Booth, Warren

    2015-06-01

    The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74-90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance. © 2015 The Society for Vector Ecology.

  18. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat.

    PubMed

    King, Joshua R; Tschinkel, Walter R

    2006-11-01

    1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.

  19. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Stringer, Lloyd D; Suckling, David Maxwell; Baird, David; Vander Meer, Robert K; Christian, Sheree J; Lester, Philip J

    2011-10-01

    Cost-effective detection of invasive ant colonies before establishment in new ranges is imperative for the protection of national borders and reducing their global impact. We examined the sampling efficiency of food-baits and pitfall traps (baited and nonbaited) in detecting isolated red imported fire ant (Solenopsis invicta Buren) nests in multiple environments in Gainesville, FL. Fire ants demonstrated a significantly higher preference for a mixed protein food type (hotdog or ground meat combined with sweet peanut butter) than for the sugar or water baits offered. Foraging distance success was a function of colony size, detection trap used, and surveillance duration. Colony gyne number did not influence detection success. Workers from small nests (0- to 15-cm mound diameter) traveled no >3 m to a food source, whereas large colonies (>30-cm mound diameter) traveled up to 17 m. Baited pitfall traps performed best at detecting incipient ant colonies followed by nonbaited pitfall traps then food baits, whereas food baits performed well when trying to detect large colonies. These results were used to create an interactive model in Microsoft Excel, whereby surveillance managers can alter trap type, density, and duration parameters to estimate the probability of detecting specified or unknown S. invicta colony sizes. This model will support decision makers who need to balance the sampling cost and risk of failure to detect fire ant colonies.

  1. Ant-seed mutualisms: Can red imported fire ants sour the relationship?

    USGS Publications Warehouse

    Zettler, J.A.; Spira, T.P.; Allen, Craig R.

    2001-01-01

    Invasion by the red imported fire ant, Solenopsis invicta, has had negative impacts on individual animal and plant species, but little is known about how S. invicta affects complex mutualistic relationships. In some eastern forests of North America, 30% of herbaceous species have ant-dispersed seeds. We conducted experiments to determine if fire ants are attracted to seeds of these plant species and assessed the amount of scarification or damage that results from handling by fire ants. Fire ants removed nearly 100% of seeds of the ant-dispersed plants Trillium undulatum, T. discolor, T. catesbaei, Viola rotundifolia, and Sanguinaria canadensis. In recovered seeds fed to ant colonies, fire ants scarified 80% of S. canadensis seeds and destroyed 86% of V. rotundifolia seeds. Our study is the first to document that red imported fire ants are attracted to and remove seeds of species adapted for ant dispersal. Moreover, fire ants might damage these seeds and discard them in sites unfavorable for germination and seedling establishment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  2. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    PubMed

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  3. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    PubMed

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  4. Gaseous templates in ant nests.

    PubMed

    Cox, M D; Blanchard, G B

    2000-05-21

    We apply a diffusion model to the atmosphere of ant nests. With particular reference to carbon dioxide (CO2), we explore analytically and numerically the spatial and temporal patterns of brood- or worker-produced gases in nests. The maximum concentration within a typical one-chamber ant nest with approximately 200 ants can reach 12.5 times atmospheric concentration, reaching 95% of equilibrium concentrations within 15 min. Maximum concentration increases with increasing number of ants in the nest (or production rate of the gas), distance between the centre of the nest ants and the nest entrance, entrance length, wall thickness, and with decreasing entrance width, wall permeability and diffusion coefficient. The nest can be divided into three qualitatively distinct regions according to the shape of the gradient: a plateau of high concentration in the back half of the nest; an intermediate region of increasingly steep gradient towards the entrance; and a steep linear gradient in the entrance tunnel. These regions are robust to changes in gas concentrations, but vary with changes in nest architecture. The pattern of diffusing gases contains information about position and orientation relative to gas sources and sinks, and about colony state, including colony size, activity state and aspects of nest architecture. We discuss how this diffusion pattern may act as a "dynamic template", providing local cues which trigger behavioural acts appropriate to colony needs, which in turn may feed back to changes in the gas template. In particular, wall building occurs along lines of similar concentration for a variety of nest geometries; there is surprising convergence between the period of cycles of synchronously active ants and the time taken for CO2 levels to equilibrate; and the qualitatively distinct regions of the "dynamic template" correspond to regions occupied by different groups of ants.

  5. Termites, hemimetabolous diploid white ants?

    PubMed

    Korb, Judith

    2008-09-29

    Ants and termites are the most abundant animals on earth. Their ecological success is attributed to their social life. They live in colonies consisting of few reproducing individuals, while the large majority of colony members (workers/soldiers) forego reproduction at least temporarilly. Despite their apparent resemblance in social organisation, both groups evolved social life independently. Termites are basically social cockroaches, while ants evolved from predatory wasps. In this review, I will concentrate on termites with an ancestral life type, the wood-dwelling termites, to compare them with ants. Their different ancestries provided both groups with different life history pre-adaptations for social evolution. Like their closest relatives, the woodroaches, wood-dwelling termites live inside their food, a piece of wood. Thus, intensive costly food provisioning of their young is not necessary, especially as young instars are rather independent due to their hemimetabolous development. In contrast, ants are progressive food provisioners which have to care intensively for their helpless brood. Corresponding to the precocial - altricial analogy, helping by workers is selected in ants, while new evidence suggests that wood-dwelling termite workers are less engaged in brood care. Rather they seem to stay in the nest because there is generally low selection for dispersal. The nest presents a safe haven with no local resource competition as long as food is abundant (which is generally the case), while founding a new colony is very risky. Despite these differences between ants and termites, their common dwelling life style resulted in convergent evolution, especially winglessness, that probably accounts for the striking similarity between both groups. In ants, all workers are wingless and winglessness in sexuals evolved in several taxa as a derived trait. In wood-dwelling termites, workers are by default wingless as they are immatures. These immatures can develop into

  6. Long-Term Disease Dynamics for a Specialized Parasite of Ant Societies: A Field Study

    PubMed Central

    Loreto, Raquel G.; Elliot, Simon L.; Freitas, Mayara L. R.; Pereira, Thairine M.; Hughes, David P.

    2014-01-01

    Many studies have investigated how social insects behave when a parasite is introduced into their colonies. These studies have been conducted in the laboratory, and we still have a limited understanding of the dynamics of ant-parasite interactions under natural conditions. Here we consider a specialized parasite of ant societies (Ophiocordyceps camponoti-rufipedis infecting Camponotus rufipes) within a rainforest. We first established that the parasite is unable to develop to transmission stage when introduced within the host nest. Secondly, we surveyed all colonies in the studied area and recorded 100% prevalence at the colony level (all colonies were infected). Finally, we conducted a long-term detailed census of parasite pressure, by mapping the position of infected dead ants and foraging trails (future hosts) in the immediate vicinity of the colonies over 20 months. We report new dead infected ants for all the months we conducted the census – at an average of 14.5 cadavers/month/colony. Based on the low infection rate, the absence of colony collapse or complete recovery of the colonies, we suggest that this parasite represents a chronic infection in the ant societies. We also proposed a “terminal host model of transmission” that links the age-related polyethism to the persistence of a parasitic infection. PMID:25133749

  7. Effect of perceived stress on depression of Chinese "Ant Tribe" and the moderating role of dispositional optimism.

    PubMed

    Liu, Bo; Pu, Jun; Hou, Hanpo

    2015-05-08

    This study examines the moderating role of dispositional optimism on the relationship between perceived stress and depression of the Chinese "Ant Tribe." A total of 427 participants from an Ant Tribe community completed the measures of perceived stress, optimism, and depression. The structural equation modeling (SEM) analysis showed that dispositional optimism moderated the association between perceived stress and depression. The Ant Tribe with high perceived stress reported higher scores in depression than those with low perceived stress at low dispositional optimism level. However, the impact of perceived stress on depression was insignificant in the high dispositional optimism group. © The Author(s) 2015.

  8. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.

    PubMed

    Scott, Jarrod J; Budsberg, Kevin J; Suen, Garret; Wixon, Devin L; Balser, Teri C; Currie, Cameron R

    2010-03-29

    Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation

  9. ANTS/PAM: Future Exploration of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.

    2004-05-01

    The Autonomous Nano-Technology Swarm (ANTS) is applied to the Prospecting Asteroid Mission (PAM) concept, as part of a NASA RASC study. The ANTS architecture is inspired by success of social insect colonies, based on the division of labor within the colonies: 1) within their specialties, individual specialists generally outperform general-ists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outper-forms the group of generalists. ANTS as applied to PAM involves a thousand individual specialist `sciencecraft', one subswarm per target, in an environment where detection and tracking of irregular, infrequent targets is a major chal-lenge. Workers, carry and operate eight to nine different scientific instruments, including spectrometers, ranging and radio science devices, imagers. The remaining specialists, Messenger/Rulers, provide communication and coordina-tion. The non-expendable propulsion system is based on autonomously deployable and configurable solar sails, a system suitable to a low gravity environment. The design of the neural basis function requires a minimum of 4 or 5 specialists for collective decision making. Allowing for ten instrument specialist teams and compensating for antici-pated high attrition, we calculate an initial minimum of 100 per subswarm should allow characterization of hundreds of asteroids. The difficulty in observing irregular, rapidly moving, poorly illuminated objects is largely overcome by the ANT sciencecraft capability to optimize conditions for each instrument. Components are composed of carbon nanotubules reversibly deployable from NEMS nodes, allowing 100 times decrease in packaging volume. 1000 smart 10 centimeter, 1 kg cubic boxes create a 1000 kg 1 meter cube.

  10. Prudent Protomognathus and despotic Leptothorax duloticus: Differential costs of ant slavery

    PubMed Central

    Hare, James F.; Alloway, Thomas M.

    2001-01-01

    The concept of ant slavery rests on the untested assumption that slave-making ants impose fitness costs on colonies of the species they raid. We tested that assumption by comparing the summertime seasonal productivity of Leptothorax spp. colonies in field exclosures without slavemakers, with a colony of the obligatory slave-making ant Protomognathus americanus, or with a colony of the obligatory slavemaker Leptothorax duloticus. Leptothorax longispinosus colonies placed in exclosures with P. americanus colonies did not differ significantly in any demographic attribute from colonies in exclosures without slavemakers. By contrast, Leptothorax curvispinosus colonies exposed to L. duloticus experienced significant reductions in dealate queens, workers, and larvae relative to control colonies exclosed without slavemakers. The pronounced difference in the impact of these slavemakers on their host-species populations correlates with differences in the behavior of the slavemakers observed in the laboratory and likely explains why P. americanus is more abundant than L. duloticus in nature. It seems that more advanced social parasites, like anatomical parasites, evolve to minimize their impact on their hosts, and thus can be regarded as “prudent social parasites.” PMID:11572933

  11. Discover for Yourself: An Optimal Control Model in Insect Colonies

    ERIC Educational Resources Information Center

    Winkel, Brian

    2013-01-01

    We describe the enlightening path of self-discovery afforded to the teacher of undergraduate mathematics. This is demonstrated as we find and develop background material on an application of optimal control theory to model the evolutionary strategy of an insect colony to produce the maximum number of queen or reproducer insects in the colony at…

  12. Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems

    PubMed Central

    Mathis, Kaitlyn A.; Philpott, Stacy M.; Ramirez, Santiago R.

    2016-01-01

    Arboreal ants are both highly diverse and ecologically dominant in the tropics. This ecologically important group is particularly useful in ongoing efforts to understand processes that regulate species diversity and coexistence. Our study addresses how polydomy can influence patterns of nest occupation in competing arboreal ants. We examined the spatial structure of nest occupation (nest distance, abundance and density) in three polydomous co-occurring twig-nesting ant species (Pseudomyrmex simplex, P. ejectus and P. PSW-53) by mapping twigs occupied by ants from each species within plots in our study site. We then used two colony structure estimators (intraspecific aggression and cuticular hydrocarbon variation) to determine the relative degree of polydomy for each species. All work was conducted in coffee agroforests in Chiapas, Mexico. Our results revealed that the two species with highest abundance and nest density were also highly polydomous, where both species had either single or multiple non-aggressive colonies occupying nests on a large spatial scale (greater than the hectare level). Our results also indicate that the species with the lowest abundance and density is less polydomous, occupying several overlapping and territorial colonies at the hectare level in which multiple colonies never co-occur on the same host plant. These results contribute evidence that successful coexistence and highly polydomous colony structure may allow ants, through reduced intraspecific aggression, to successfully occupy more nests more densely than ant species that have multiple territorial colonies. Furthermore our study highlights the importance of considering intraspecific interactions when examining community assembly of ants. PMID:27795573

  13. A novel global Harmony Search method based on Ant Colony Optimisation algorithm

    NASA Astrophysics Data System (ADS)

    Fouad, Allouani; Boukhetala, Djamel; Boudjema, Fares; Zenger, Kai; Gao, Xiao-Zhi

    2016-03-01

    The Global-best Harmony Search (GHS) is a stochastic optimisation algorithm recently developed, which hybridises the Harmony Search (HS) method with the concept of swarm intelligence in the particle swarm optimisation (PSO) to enhance its performance. In this article, a new optimisation algorithm called GHSACO is developed by incorporating the GHS with the Ant Colony Optimisation algorithm (ACO). Our method introduces a novel improvisation process, which is different from that of the GHS in the following aspects. (i) A modified harmony memory (HM) representation and conception. (ii) The use of a global random switching mechanism to monitor the choice between the ACO and GHS. (iii) An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The proposed GHSACO algorithm has been applied to various benchmark functions and constrained optimisation problems. Simulation results demonstrate that it can find significantly better solutions when compared with the original HS and some of its variants.

  14. Polydomy in the ant Ectatomma opaciventre

    PubMed Central

    Tofolo, Viviane C.; Giannotti, Edilberto; Neves, Erika F.; Andrade, Luis H. C.; M. Lima, Sandro; Súarez, Yzel R.; Antonialli-Junior, William F.

    2014-01-01

    Abstract Tropical ants commonly exhibit a hyper-dispersed pattern of spatial distribution of nests. In polydomous species, nests may be satellites, that is, secondary structures of the main nest, where the queen is found. In order to evaluate whether the ant Ectatomma opaciventre Roger (Formicidae: Ectatomminae) uses the strategy of building polydomous nests, the spatial distribution pattern of 33 nests in a 1,800 m 2 degraded area located in Rio Claro, SP, Brazil, were investigated using the nearest neighbor method. To complement the results of this investigation, the cuticular chemical profile of eight colonies was analyzed using Fourier transform infrared photoacoustic spectrosco-py (FTIR-PAS). The nests of E. opaciventre presented a hyper-dispersed or regular distribution, which is the most common in ants. The analysis of the cuticular hydrocarbons apparently con-firmed the hypothesis that this species is polydomous, since the chemical profiles of all studied colonies with nests at different sites were very similar to the chemical signature of the single found queen and were also different from those of colonies used as control. PMID:25373168

  15. The Organization of Foraging in the Fire Ant, Solenopsis invicta

    PubMed Central

    Tschinkel, Walter R.

    2011-01-01

    Although natural selection in ants acts most strongly at the colony, or superorganismal level, foraging patterns have rarely been studied at that level, focusing instead on the behavior of individual foragers or groups of foragers. The experiments and observations in this paper reveal in broad strokes how colonies of the fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), allocate their available labor to foraging, how they disperse that force within their territory, and how this force changes with colony size, season and worker age. Territory area is positively related to colony size and the number of foragers, more so during the spring than fall. Changes of colony size and territory area are driven by seasonal variation of sexual and worker production, which in turn drive seasonal variation of worker age-distribution. During spring sexual production, colonies shrink because worker production falls below replacement. This loss is proportional to colony size, causing forager density in the spring to be negatively related to colony and territory size. In the fall, colonies emphasize worker production, bringing colony size back up. However, because smaller colonies curtailed spring worker production less than larger ones, their fall forager populations are proportionally greater, causing them to gain territory at the expense of large colonies. Much variation of territory area remains unexplained and can probably be attributed to pressure from neighboring colonies. Boundaries between territories are characterized by “no ants' zones” mostly devoid of fire ants. The forager population can be divided into a younger group of recruitable workers that wait for scouts to activate them to help retrieve large food finds. About one-third of the recruits wait near openings in the foraging tunnels that underlie the entire territory, while two-thirds wait in the nest. Recruitment to food is initially very rapid and local from the foraging tunnels, while sustained

  16. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  17. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Colony size as a buffer against seasonality: Bergmann's rule in social insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspari, M.; Vargo, E.

    1994-06-01

    In eusocial species, the size of the superorganism is the summed sizes of its component individuals. Bergmann's rule, the cline of decreasing size with decreasing latitude, applies to colony size in ants. Using data from the literature and our own collections, we show that colony sizes of tropical ant species are on average 1/10th the size of temperate species. The patterns holds for 5 of 6 subfamilies and 15 of 16 genera tested. What causes this trend Larger colonies of the fire ant, Solenopsis invicta, are better able to protect the queen (the colony's reproductive tissue) against food shortage, likelymore » by sacrificing workers (it's somatic tissue). Days of queen survival follows the allometry M[sup 0.25]. We propose that the shorter growing seasons in temperate latitudes cull small-colony species through over-wintering starvation.« less

  19. No effect of Zn-pollution on the energy content in the black garden ant.

    PubMed

    Grześ, Irena M; Okrutniak, Mateusz

    2016-05-01

    Social insects may display a response to environmental pollution at the colony level. The key trait of an ant colony is to share energy between castes in order to maintain the existing adult population and to feed the brood. In the present study we calorimetrically measured the energy content per body mass (J/mg) of adults and pupae of workers, males and females of the black garden ant Lasius niger. The ants were sampled from 37 wild colonies originating from 19 sites located along the metal pollution gradient established in a post-mining area in Poland. The cost of metal detoxification seen as a possible reduction in energy content with increasing pollution was found neither for pupae nor adults. However, a considerable part of variance in energy content is explained by belonging to the same colony. These findings stress the importance of colony-specific factors and/or the interaction of these factors with specific site in shaping the response of ants to metal-pollution stress. Colony-related factors may constrain possible selfish decisions of workers over energy allocation in workers and sexual castes.

  20. Trail pheromone disruption of red imported fire ant.

    PubMed

    Suckling, David M; Stringer, Lloyd D; Bunn, Barry; El-Sayed, Ashraf M; Vander Meer, Robert K

    2010-07-01

    The fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is considered one of the most aggressive and invasive species in the world. Toxic bait systems are used widely for control, but they also affect non-target ant species and cannot be used in sensitive ecosystems such as organic farms and national parks. The fire ant uses recruitment pheromones to organize the retrieval of large food resources back to the colony, with Z,E-alpha-farnesene responsible for the orientation of workers along trails. We prepared Z,E-alpha-farnesene, (91% purity) from extracted E,E-alpha-farnesene and demonstrated disruption of worker trail orientation after presentation of an oversupply of this compound from filter paper point sources (30 microg). Trails were established between queen-right colony cells and food sources in plastic tubs. Trail-following behavior was recorded by overhead webcam, and ants were digitized before and after presentation of the treatment, using two software approaches. The linear regression statistic, r(2) was calculated. Ants initially showed high linear trail integrity (r(2) = 0.75). Within seconds of presentation of the Z,E-alpha-farnesene treatment, the trailing ants showed little or no further evidence of trail following behavior in the vicinity of the pheromone source. These results show that trailing fire ants become disorientated in the presence of large amounts of Z,E-alpha-farnesene. Disrupting fire ant recruitment to resources may have a negative effect on colony size or other effects yet to be determined. This phenomenon was demonstrated recently for the Argentine ant, where trails were disrupted for two weeks by using their formulated trail pheromone, Z-9-hexadecenal. Further research is needed to establish the long term effects and control potential for trail disruption in S. invicta.

  1. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  2. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus.

    PubMed

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  3. Extrafloral nectar content alters foraging preferences of a predatory ant

    PubMed Central

    Wilder, Shawn M.; Eubanks, Micky D.

    2010-01-01

    We tested whether the carbohydrate and amino acid content of extrafloral nectar affected prey choice by a predatory ant. Fire ants, Solenopsis invicta, were provided with artificial nectar that varied in the presence of carbohydrates and amino acids and were then provided with two prey items that differed in nutritional content, female and male crickets. Colonies of fire ants provided with carbohydrate supplements consumed less of the female crickets and frequently did not consume the high-lipid ovaries of female crickets. Colonies of fire ants provided with amino acid supplements consumed less of the male crickets. While a number of studies have shown that the presence of extrafloral nectar or honeydew can affect ant foraging activity, these results suggest that the nutritional composition of extrafloral nectar is also important and can affect subsequent prey choice by predatory ants. Our results suggest that, by altering the composition of extrafloral nectar, plants could manipulate the prey preferences of ants foraging on them. PMID:19864270

  4. Termites: a Retinex implementation based on a colony of agents

    NASA Astrophysics Data System (ADS)

    Simone, Gabriele; Audino, Giuseppe; Farup, Ivar; Rizzi, Alessandro

    2012-01-01

    This paper describes a novel implementation of the Retinex algorithm with the exploration of the image done by an ant swarm. In this case the purpose of the ant colony is not the optimization of some constraints but is an alternative way to explore the image content as diffused as possible, with the possibility of tuning the exploration parameters to the image content trying to better approach the Human Visual System behavior. For this reason, we used "termites", instead of ants, to underline the idea of the eager exploration of the image. The paper presents the spatial characteristics of locality and discusses differences in path exploration with other Retinex implementations. Furthermore a psychophysical experiment has been carried out on eight images with 20 observers and results indicate that a termite swarm should investigate a particular region of an image to find the local reference white.

  5. Tricks of the trade: Mechanism of brood theft in an ant.

    PubMed

    Paul, Bishwarup; Annagiri, Sumana

    2018-01-01

    Thievery is ubiquitous in the animal kingdom, social insects not being an exception. Brood is invaluable for the survival of social insect colonies and brood theft is well documented in ants. In many species the stolen brood act as slaves in the thief colony as they take up tasks related to foraging, defence and colony maintenance. Slave-making (dulotic) ants are at an advantage as they gain workforce without investing in rearing immature young, and several slave-making species have been recorded in temperate regions. In the current study we investigate brood theft in a primitively eusocial ponerine ant Diacamma indicum that inhabits the tropics. In the context of colony relocation we asked how thieves steal brood and what victim colonies do to prevent theft. While exposed nests increased colonies' vulnerability, the relocation process itself did not enhance the chances of theft. Various aggressive interactions, in particular immobilization of intruders helped in preventing theft. Thieves that acted quickly, stayed furtive and stole unguarded brood were found to be successful. This comprehensive study of behavioural mechanism of theft reveals that these are the 'tricks' adopted by thieves.

  6. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)

    PubMed Central

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497

  7. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant–plant mutualism

    PubMed Central

    Pringle, Elizabeth G.

    2014-01-01

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant–plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output. PMID:24807259

  8. Effect of land cover, habitat fragmentation and ant colonies on the distribution and abundance of shrews in southern California

    USGS Publications Warehouse

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2001-01-01

    Because effects of habitat fragmentation and anthropogenic disturbance on native animals have been relatively little studied in arid areas and in insectivores, we investigated the roles of different land covers, habitat fragmentation and ant colonies on the distribution and abundance of shrews, Notiosorex crawfordi and Sorex ornatus, in southern California.Notiosorex crawfordi was the numerically dominant species (trap-success rate 0·52) occurring in 21 of the 22 study sites in 85% of the 286 pitfall arrays used in this study.Sorex ornatus was captured in 14 of the sites, in 52% of the arrays with a total trap-success rate of 0·2. Neither of the species was found in one of the sites.The population dynamics of the two shrew species were relatively synchronous during the 4–5-year study; the peak densities usually occurred during the spring. Precipitation had a significant positive effect, and maximum temperature a significant negative effect on the trap-success rate of S. ornatus.Occurrence and abundance of shrews varied significantly between sites and years but the size of the landscape or the study site had no effect on the abundance of shrews. The amount of urban edge had no significant effect on the captures of shrews but increased edge allows invasion of the Argentine ants, which had a highly significant negative impact on the abundance of N. crawfordi.At the trap array level, the percentage of coastal sage scrub flora had a significant positive, and the percentage of other flora had a significant negative effect on the abundance of N. crawfordi. The mean canopy height and the abundance of N. crawfordi had a significant positive effect on the occurrence of S. ornatus.Our study suggests that the loss of native coastal sage scrub flora and increasing presence of Argentine ant colonies may significantly effect the distribution and abundance of N. crawfordi. The very low overall population densities of both shrew species in most study sites make both species

  9. The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine-mediated decision making.

    PubMed

    Hoover, Kevin M; Bubak, Andrew N; Law, Isaac J; Yaeger, Jazmine D W; Renner, Kenneth J; Swallow, John G; Greene, Michael J

    2016-06-01

    Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and aggression. In this article, we develop and explore an agent-based model that conceptualizes how individual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based decision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions.

  10. Acanthopria and Mimopriella parasitoid wasps (Diapriidae) attack Cyphomyrmex fungus-growing ants (Formicidae, Attini)

    NASA Astrophysics Data System (ADS)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K.; Wcislo, William T.

    2006-01-01

    New World diapriine wasps are abundant and diverse, but the biology of most species is unknown. We provide the first description of the biology of diapriine wasps, Acanthopria spp. and Mimopriella sp., which attack the larvae of Cyphomyrmex fungus-growing ants. In Puerto Rico, the koinobiont parasitoids Acanthopria attack Cyphomyrmex minutus, while in Panama at least four morphospecies of Acanthopria and one of Mimopriella attack Cyphomyrmex rimosus. Of the total larvae per colony, 0 100% were parasitized, and 27 70% of the colonies per population were parasitized. Parasitism rate and colony size were negatively correlated for C. rimosus but not for C. minutus. Worker ants grasped at, bit, and in some cases, killed adult wasps that emerged in artificial nests or tried to enter natural nests. Parasitoid secondary sex ratios were female-biased for eclosing wasps, while field collections showed a male-biased sex ratio. Based on their abundance and success in attacking host ants, these minute wasps present excellent opportunities to explore how natural enemies impact ant colony demography and population biology.

  11. Do host species evolve a specific response to slave-making ants?

    PubMed Central

    2012-01-01

    Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non

  12. Genetic evidence for intra- and interspecific slavery in honey ants (genus Myrmecocystus).

    PubMed

    Kronauer, D J C; Gadau, J; Hölldobler, B

    2003-04-22

    The New World honey ant species Myrmecocystus mimicus is well known for its highly stereotyped territorial tournaments, and for the raids on conspecific nests that can lead to intraspecific slavery. Our results from mitochondrial and nuclear markers show that the raided brood emerges in the raiding colony and is subsequently incorporated into the colony's worker force. We also found enslaved conspecifics in a second honey ant species, M. depilis, the sister taxon of M. mimicus, which occurs in sympatry with M. mimicus at the study site. Colonies of this species furthermore contained raided M. mimicus workers. Both species have an effective mating frequency that is not significantly different from 1. This study provides genetic evidence for facultative intra- and interspecific slavery in the genus Myrmecocystus. Slavery in ants has evolved repeatedly and supposedly by different means. We propose that, in honey ants, secondary contact between two closely related species that both exhibit intraspecific slavery gave rise to an early form of facultative interspecific slavery.

  13. Genetic evidence for intra- and interspecific slavery in honey ants (genus Myrmecocystus).

    PubMed Central

    Kronauer, D J C; Gadau, J; Hölldobler, B

    2003-01-01

    The New World honey ant species Myrmecocystus mimicus is well known for its highly stereotyped territorial tournaments, and for the raids on conspecific nests that can lead to intraspecific slavery. Our results from mitochondrial and nuclear markers show that the raided brood emerges in the raiding colony and is subsequently incorporated into the colony's worker force. We also found enslaved conspecifics in a second honey ant species, M. depilis, the sister taxon of M. mimicus, which occurs in sympatry with M. mimicus at the study site. Colonies of this species furthermore contained raided M. mimicus workers. Both species have an effective mating frequency that is not significantly different from 1. This study provides genetic evidence for facultative intra- and interspecific slavery in the genus Myrmecocystus. Slavery in ants has evolved repeatedly and supposedly by different means. We propose that, in honey ants, secondary contact between two closely related species that both exhibit intraspecific slavery gave rise to an early form of facultative interspecific slavery. PMID:12737658

  14. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the

  15. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  16. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  17. Tricks of the trade: Mechanism of brood theft in an ant

    PubMed Central

    Paul, Bishwarup

    2018-01-01

    Thievery is ubiquitous in the animal kingdom, social insects not being an exception. Brood is invaluable for the survival of social insect colonies and brood theft is well documented in ants. In many species the stolen brood act as slaves in the thief colony as they take up tasks related to foraging, defence and colony maintenance. Slave-making (dulotic) ants are at an advantage as they gain workforce without investing in rearing immature young, and several slave-making species have been recorded in temperate regions. In the current study we investigate brood theft in a primitively eusocial ponerine ant Diacamma indicum that inhabits the tropics. In the context of colony relocation we asked how thieves steal brood and what victim colonies do to prevent theft. While exposed nests increased colonies’ vulnerability, the relocation process itself did not enhance the chances of theft. Various aggressive interactions, in particular immobilization of intruders helped in preventing theft. Thieves that acted quickly, stayed furtive and stole unguarded brood were found to be successful. This comprehensive study of behavioural mechanism of theft reveals that these are the ‘tricks’ adopted by thieves. PMID:29489858

  18. The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine-mediated decision making

    PubMed Central

    Hoover, Kevin M.; Bubak, Andrew N.; Law, Isaac J.; Yaeger, Jazmine D. W.; Renner, Kenneth J.; Swallow, John G.; Greene, Michael J.

    2016-01-01

    Abstract Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant’s brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and aggression. In this article, we develop and explore an agent-based model that conceptualizes how individual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based decision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions. PMID:29491915

  19. Spatial optimization of prairie dog colonies for black-footed ferret recovery

    Treesearch

    Michael Bevers; John G. Hof; Daniel W. Uresk; Gregory L. Schenbeck

    1997-01-01

    A discrete-time reaction-diffusion model for black-footed ferret release, population growth, and dispersal is combined with ferret carrying capacity constraints based on prairie dog population management decisions to form a spatial optimization model. Spatial arrangement of active prairie dog colonies within a ferret reintroduction area is optimized over time for...

  20. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour.

    PubMed

    Pull, Christopher D; Cremer, Sylvia

    2017-10-13

    Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.

  1. Founding weaver ant queens (Oecophylla longinoda) increase production and nanitic worker size when adopting non-nestmate pupae.

    PubMed

    Ouagoussounon, Issa; Offenberg, Joachim; Sinzogan, Antonio; Adandonon, Appolinaire; Kossou, Dansou; Vayssières, Jean-François

    2015-01-01

    Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10-fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.

  2. Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony

    PubMed Central

    Schmickl, Thomas; Karsai, Istvan

    2014-01-01

    We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a “common stomach” through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation. PMID:25493558

  3. Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts

    PubMed Central

    Kautz, Stefanie; Ballhorn, Daniel J.; Kroiss, Johannes; Pauls, Steffen U.; Moreau, Corrie S.; Eilmus, Sascha; Strohm, Erhard; Heil, Martin

    2012-01-01

    Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers — regardless of the route to achieve this social structure — enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants. PMID:22662191

  4. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil.

    PubMed

    Diehl, E; Junqueira, L K; Berti-Filho, E

    2005-08-01

    This paper reports on ant and termite species inhabiting the mounds (murundus) found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  5. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden.

    PubMed

    Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer

    2011-11-21

    We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work. Published by Elsevier Ltd.

  6. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  7. Immune defense in leaf-cutting ants: a cross-fostering approach.

    PubMed

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández; Nash, David R; Boomsma, Jacobus J

    2011-06-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Ant-like task allocation and recruitment in cooperative robots

    NASA Astrophysics Data System (ADS)

    Krieger, Michael J. B.; Billeter, Jean-Bernard; Keller, Laurent

    2000-08-01

    One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects.

  9. Host-ant specificity of endangered large blue butterflies (Phengaris spp., Lepidoptera: Lycaenidae) in Japan.

    PubMed

    Ueda, Shouhei; Komatsu, Takashi; Itino, Takao; Arai, Ryusuke; Sakamoto, Hironori

    2016-11-03

    Large blue butterflies, Phengaris (Maculinea), are an important focus of endangered-species conservation in Eurasia. Later-instar Phengaris caterpillars live in Myrmica ant nests and exploit the ant colony's resources, and they are specialized to specific host-ant species. For example, local extinction of P. arion in the U. K. is thought to have been due to the replacement of its host-ant species with a less-suitable congener, as a result of changes in habitat. In Japan, Myrmica kotokui hosts P. teleius and P. arionides caterpillars. We recently showed, however, that the morphological species M. kotokui actually comprises four genetic clades. Therefore, to determine to which group of ants the hosts of these two Japanese Phengaris species belong, we used mitochondrial COI-barcoding of M. kotokui specimens from colonies in the habitats of P. teleius and P. arionides to identify the ant clade actually parasitized by the caterpillars of each species. We found that these two butterfly species parasitize different ant clades within M. kotokui.

  10. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria.

    PubMed

    Andersen, Sandra B; Yek, Sze Huei; Nash, David R; Boomsma, Jacobus J

    2015-02-25

    The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population.

  11. Seasonality in communication and collective decision-making in ants.

    PubMed

    Stroeymeyt, N; Jordan, C; Mayer, G; Hovsepian, S; Giurfa, M; Franks, N R

    2014-04-07

    The ability of animals to adjust their behaviour according to seasonal changes in their ecology is crucial for their fitness. Eusocial insects display strong collective behavioural seasonality, yet the mechanisms underlying such changes are poorly understood. We show that nest preference by emigrating Temnothorax albipennis ant colonies is influenced by a season-specific modulatory pheromone that may help tune decision-making according to seasonal constraints. The modulatory pheromone triggers aversion towards low-quality nests and enhances colony cohesion in summer and autumn, but not after overwintering-in agreement with reports that field colonies split in spring and reunite in summer. Interestingly, we show that the pheromone acts by downgrading the perceived value of marked nests by informed and naive individuals. This contrasts with theories of collective intelligence, stating that accurate collective decision-making requires independent evaluation of options by individuals. The violation of independence highlighted here was accordingly shown to increase error rate during emigrations. However, this is counterbalanced by enhanced cohesion and the transmission of valuable information through the colony. Our results support recent claims that optimal decisions are not necessarily those that maximize accuracy. Other criteria-such as cohesion or reward rate-may be more relevant in animal decision-making.

  12. Dispersal Polymorphisms in Invasive Fire Ants

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types—claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32–38% lower flight muscle ratios, 55–63% higher wing loading, and 32–33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants. PMID:27082115

  13. Dispersal Polymorphisms in Invasive Fire Ants.

    PubMed

    Helms, Jackson A; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types-claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32-38% lower flight muscle ratios, 55-63% higher wing loading, and 32-33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants.

  14. How many gamergates is an ant queen worth?

    NASA Astrophysics Data System (ADS)

    Monnin, Thibaud; Peeters, Christian

    2008-02-01

    Ant reproductives exhibit different morphological adaptations linked to dispersal and fertility. By reviewing the literature on taxa where workers can reproduce sexually (i.e. become gamergates) we show that (1) species with a single gamergate generally have lost the winged queen caste, whereas only half of the species with several gamergates have, and (2) single-gamergate species have smaller colonies than multiple-gamergate species. Comparison with “classical” ants without gamergates, where having one vs having several winged queens are two distinct syndromes, suggests that having one vs having several gamergates are not. Gamergate number does not affect the success of colony fission, but retention of the queen caste permits the option of independent foundation.

  15. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  16. A new fire ant (Hymenoptera: Formicidae) bait base carrier for moist conditions.

    PubMed

    Kafle, Lekhnath; Wu, Wen-Jer; Shih, Cheng-Jen

    2010-10-01

    A new water-resistant fire ant bait (T-bait; cypermethrin 0.128%) consisting of dried distillers grains with solubles (DDGS) as a carrier was developed and evaluated against a standard commercial bait (Advion; indoxacarb 0.045%) under both laboratory and field conditions. When applying the normal T-bait or Advion in the laboratory, 100% of Solenopsis invicta Buren worker ants were killed within 4 days. However, when the T-bait and Advion were wetted, 70.6 and 39.7% of the ants were killed respectively. Under field conditions, dry T-bait and dry Advion had almost the same efficacy against ant colonies. However, when T-bait and Advion came in contact with water, the former's ability to kill S. invicta colonies in the field was only marginally reduced, while Advion lost virtually all of its activity. In addition, DDGS was also shown to be compatible with a number of other insecticides, such as d-allethrin, permethrin and pyrethrin. Based on its properties of remaining attractive to the fire ants when wetted, combined with its ant-killing abilities both in the laboratory and in the field, T-bait is an efficient fire ant bait, especially under moist conditions.

  17. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  18. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  19. Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants.

    PubMed

    Nehring, Volker; Dani, Francesca R; Calamai, Luca; Turillazzi, Stefano; Bohn, Horst; Klass, Klaus-Dieter; d'Ettorre, Patrizia

    2016-08-05

    Cockroaches of the genus Attaphila regularly occur in leaf-cutting ant colonies. The ants farm a fungus that the cockroaches also appear to feed on. Cockroaches disperse between colonies horizontally (via foraging trails) and vertically (attached to queens on their mating flights). We analysed the chemical strategies used by the cockroaches to integrate into colonies of Atta colombica and Acromyrmex octospinosus. Analysing cockroaches from nests of two host species further allowed us to test the hypothesis that nestmate recognition is based on an asymmetric mechanism. Specifically, we test the U-present nestmate recognition model, which assumes that detection of undesirable cues (non-nestmate specific substances) leads to strong rejection of the cue-bearers, while absence of desirable cues (nestmate-specific substances) does not necessarily trigger aggression. We found that nests of Atta and Acromyrmex contained cockroaches of two different and not yet described Attaphila species. The cockroaches share the cuticular chemical substances of their specific host species and copy their host nest's colony-specific cuticular profile. Indeed, the cockroaches are accepted by nestmate but attacked by non-nestmate ant workers. Cockroaches from Acromyrmex colonies bear a lower concentration of cuticular substances and are less likely to be attacked by non-nestmate ants than cockroaches from Atta colonies. Nest-specific recognition of Attaphila cockroaches by host workers in combination with nest-specific cuticular chemical profiles suggest that the cockroaches mimic their host's recognition labels, either by synthesizing nest-specific substances or by substance transfer from ants. Our finding that the cockroach species with lower concentration of cuticular substances receives less aggression by both host species fully supports the U-present nestmate recognition model. Leaf-cutting ant nestmate recognition is thus asymmetric, responding more strongly to differences than to

  20. Profiling and Metabolism of Sterols in the Weaver Ant Genus Oecophylla.

    PubMed

    Vidkjær, Nanna H; Jensen, Karl-Martin V; Gislum, René; Fomsgaard, Inge S

    2016-01-01

    Sterols are essential to insects because they are vital for many biochemical processes, nevertheless insects cannot synthesize sterols but have to acquire them through their diet. Studies of sterols in ants are sparse and here the sterols of the weaver ant genus Oecophylla are identified for the first time. The sterol profile and the dietary sterols provided to a laboratory Oecophylla longinoda colony were analyzed. Most sterols originated from the diet, except one, which was probably formed via dealkylation in the ants and two sterols of fungal origin, which likely originate from hitherto unidentified endosymbionts responsible for supplying these two compounds. The sterol profile of a wild Oecophylla smaragdina colony was also investigated. Remarkable qualitative similarities were established between the two species despite the differences in diet, species, and origin. This may reflect a common sterol need/aversion in the weaver ants. Additionally, each individual caste of both species displayed unique sterol profiles.

  1. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants.

    PubMed

    Buffin, Aurélie; Denis, Damien; Van Simaeys, Gaetan; Goldman, Serge; Deneubourg, Jean-Louis

    2009-06-17

    Food sharing is vital for a large number of species, either solitary or social, and is of particular importance within highly integrated societies, such as in colonial organisms and in social insects. Nevertheless, the mechanisms that govern the distribution of food inside a complex organizational system remain unknown. Using scintigraphy, a method developed for medical imaging, we were able to describe the dynamics of food-flow inside an ant colony. We monitored the sharing process of a radio-labelled sucrose solution inside a nest of Formica fusca. Our results show that, from the very first load that enters the nest, food present within the colony acts as negative feedback to entering food. After one hour of the experiments, 70% of the final harvest has already entered the nest. The total foraged quantity is almost four times smaller than the expected storage capacity. A finer study of the spatial distribution of food shows that although all ants have been fed rapidly (within 30 minutes), a small area representing on average 8% of the radioactive surface holds more than 25% of the stored food. Even in rather homogeneous nests, we observed a strong concentration of food in few workers. Examining the position of these workers inside the nest, we found heavily loaded ants in the centre of the aggregate. The position of the centre of this high-intensity radioactive surface remained stable for the three consecutive hours of the experiments. We demonstrate that the colony simultaneously managed to rapidly feed all workers (200 ants fed within 30 minutes) and build up food stocks to prevent food shortage, something that occurs rather often in changing environments. Though we expected the colony to forage to its maximum capacity, the flow of food entering the colony is finely tuned to the colony's needs. Indeed the food-flow decreases proportionally to the food that has already been harvested, liberating the work-force for other tasks.

  2. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive were studied in a replicated experiment in a Chihuahuan Desert grassland. The results from sampling of ant communities by pit-fall trapping were validated by mapping ant colonies on the experimental plo...

  3. Raiders from the sky: slavemaker founding queens select for aggressive host colonies

    PubMed Central

    Pamminger, Tobias; Modlmeier, Andreas P.; Suette, Stefan; Pennings, Pleuni S.; Foitzik, Susanne

    2012-01-01

    Reciprocal selection pressures in host–parasite systems drive coevolutionary arms races that lead to advanced adaptations in both opponents. In the interactions between social parasites and their hosts, aggression is one of the major behavioural traits under selection. In a field manipulation, we aimed to disentangle the impact of slavemaking ants and nest density on aggression of Temnothorax longispinosus ants. An early slavemaker mating flight provided us with the unique opportunity to study the influence of host aggression and demography on founding decisions and success. We discovered that parasite queens avoided colony foundation in parasitized areas and were able to capture more brood from less aggressive host colonies. Host colony aggression remained consistent over the two-month experiment, but did not respond to our manipulation. However, as one-fifth of all host colonies were successfully invaded by parasite queens, slavemaker nest foundation acts as a strong selection event selecting for high aggression in host colonies. PMID:22809720

  4. Unraveling Trichoderma species in the attine ant environment: description of three new taxa.

    PubMed

    Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre

    2016-05-01

    Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.

  5. Camponotusfloridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia.

    PubMed

    Sinotte, Veronica M; Freedman, Samantha N; Ugelvig, Line V; Seid, Marc A

    2018-06-01

    Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia , but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum , suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.

  6. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive
    were studied in a replicated experiment in a Chihuahuan Desert grassland. The
    results from sampling of ant communities by pit-fall trapping were validated by
    mapping ant colonies on the expe...

  7. Ecology: 'Devil's gardens' bedevilled by ants.

    PubMed

    Frederickson, Megan E; Greene, Michael J; Gordon, Deborah M

    2005-09-22

    'Devil's gardens' are large stands of trees in the Amazonian rainforest that consist almost entirely of a single species, Duroia hirsuta, and, according to local legend, are cultivated by an evil forest spirit. Here we show that the ant Myrmelachista schumanni, which nests in D. hirsuta stems, creates devil's gardens by poisoning all plants except its host plants with formic acid. By killing these other plants, M. schumanni provides its colonies with abundant nest sites--a long-lasting benefit as colonies can live for 800 years.

  8. Genetic diversity promotes homeostasis in insect colonies.

    PubMed

    Oldroyd, Benjamin P; Fewell, Jennifer H

    2007-08-01

    Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.

  9. Optimists or realists? How ants allocate resources in making reproductive investments.

    PubMed

    Enzmann, Brittany L; Nonacs, Peter

    2018-04-24

    Parents often face an investment trade-off between either producing many small or fewer large offspring. When environments vary predictably, the fittest parental solution matches available resources by varying only number of offspring and never optimal individual size. However when mismatches occur often between parental expectations and true resource levels, dynamic models like multifaceted parental investment (MFPI) and parental optimism (PO) both predict offspring size can vary significantly. MFPI is a "realist" strategy: parents assume future environments of average richness. When resources exceed expectations and it is too late to add more offspring, the best-case solution increases investment per individual. Brood size distributions therefore track the degree of mismatch from right-skewed around an optimal size (slight underestimation of resources) to left-skewed around a maximal size (gross underestimation). Conversely, PO is an "optimist" strategy: parents assume maximally good resource futures and match numbers to that situation. Normal or lean years do not affect "core" brood as costs primarily fall on excess "marginal" siblings who die or experience stunted growth (producing left-skewed distributions). Investment patterns supportive of both MFPI and PO models have been observed in nature, but studies that directly manipulate food resources to test predictions are lacking. Ant colonies produce many offspring per reproductive cycle and are amenable to experimental manipulation in ways that can differentiate between MFPI and PO investment strategies. Colonies in a natural population of a harvester ant (Pogonomyrmex salinus) were protein-supplemented over 2 years, and mature sexual offspring were collected annually prior to their nuptial flight. Several results support either MFPI or PO in terms of patterns in offspring size distributions and how protein differentially affected male and female production. Unpredicted by either model, however, is that

  10. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm.

    PubMed

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-12-14

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.

  11. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm

    PubMed Central

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-01-01

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits. PMID:27983633

  12. Coordination Between the Sexes Constrains the Optimization of Reproductive Timing in Honey Bee Colonies.

    PubMed

    Lemanski, Natalie J; Fefferman, Nina H

    2017-06-01

    Honeybees are an excellent model system for examining how trade-offs shape reproductive timing in organisms with seasonal environments. Honeybee colonies reproduce two ways: producing swarms comprising a queen and thousands of workers or producing males (drones). There is an energetic trade-off between producing workers, which contribute to colony growth, and drones, which contribute only to reproduction. The timing of drone production therefore determines both the drones' likelihood of mating and when colonies reach sufficient size to swarm. Using a linear programming model, we ask when a colony should produce drones and swarms to maximize reproductive success. We find the optimal behavior for each colony is to produce all drones prior to swarming, an impossible solution on a population scale because queens and drones would never co-occur. Reproductive timing is therefore not solely determined by energetic trade-offs but by the game theoretic problem of coordinating the production of reproductives among colonies.

  13. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants.

    PubMed

    Maruyama, Munetoshi; Parker, Joseph

    2017-03-20

    Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ant-lepidopteran associations along African forest edges

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno

    2017-02-01

    Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.

  15. Influence of task switching costs on colony homeostasis

    NASA Astrophysics Data System (ADS)

    Jeanson, Raphaël; Lachaud, Jean-Paul

    2015-06-01

    In social insects, division of labour allows colonies to optimise the allocation of workers across all available tasks to satisfy colony requirements. The maintenance of stable conditions within colonies (homeostasis) requires that some individuals move inside the nest to monitor colony needs and execute unattended tasks. We developed a simple theoretical model to explore how worker mobility inside the nest and task switching costs influence the maintenance of stable levels of task-associated stimuli. Our results indicate that worker mobility in large colonies generates important task switching costs and is detrimental to colony homeostasis. Our study suggests that the balance between benefits and costs associated with the mobility of workers patrolling inside the nest depends on colony size. We propose that several species of ants with diverse life-history traits should be appropriate to test the prediction that the proportion of mobile workers should vary during colony ontogeny.

  16. The Antsy Social Network: Determinants of Nest Structure and Arrangement in Asian Weaver Ants.

    PubMed

    Devarajan, Kadambari

    2016-01-01

    Asian weaver ants (Oecophylla smaragdina) are arboreal ants that are known to form mutualistic complexes with their host trees. They are eusocial ants that build elaborate nests in the canopy in tropical areas. A colony comprises of multiple nests, usually on multiple trees, and the boundaries of the colony may be difficult to identify. However, they provide the ideal model for studying group living in invertebrates since there are a definite number of nests for a given substrate, the tree. Here, we briefly examine the structure of the nests and the processes involved in the construction and maintenance of these nests. We have described the spatial arrangement of weaver ant nests on trees in two distinct tropical clusters, a few hundred kilometres apart in India. Measurements were made for 13 trees with a total of 71 nests in the two field sites. We have considered a host of biotic and abiotic factors that may be crucial in determining the location of the nesting site by Asian weaver ants. Our results indicate that tree characteristics and architecture followed by leaf features help determine nest location in Asian weaver ants. While environmental factors may not be as influential to nest arrangement, they seem to be important determinants of nest structure. The parameters that may be considered in establishing the nests could be crucial in picking the evolutionary drivers for colonial living in social organisms.

  17. Modified artificial bee colony algorithm for reactive power optimization

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  18. Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants.

    PubMed

    Bot, A N; Rehner, S A; Boomsma, J J

    2001-10-01

    We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf-cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant-fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Amplified fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, confirming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants. We show that incompatibility between ants and transplanted, genetically different cultivars is indeed due to active killing of the novel cultivar by the ants. This incompatibility disappears when ants are force-fed the novel cultivar for about a week, a result that is consistent with our hypothesis of recognition induced by the resident fungus and eventual replacement of incompatibility compounds during force-feeding.

  19. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  20. Sex ratio and Wolbachia infection in the ant Formica exsecta.

    PubMed

    Keller, L; Liautard, C; Reuter, M; Brown, W D; Sundström, L; Chapuisat, M

    2001-08-01

    Sex allocation data in social Hymenoptera provide some of the best tests of kin selection, parent-offspring conflict and sex ratio theories. However, these studies critically depend on controlling for confounding ecological factors and on identifying all parties that potentially manipulate colony sex ratio. It has been suggested that maternally inherited parasites may influence sex allocation in social Hymenoptera. If the parasites can influence sex allocation, infected colonies are predicted to invest more resources in females than non-infected colonies, because the parasites are transmitted through females but not males. Prime candidates for such sex ratio manipulation are Wolbachia, because these cytoplasmically transmitted bacteria have been shown to affect the sex ratio of host arthropods by cytoplasmic incompatibility, parthenogenesis, male-killing and feminization. In this study, we tested whether Wolbachia infection is associated with colony sex ratio in two populations of the ant Formica exsecta that have been the subject of extensive sex ratio studies. In these populations colonies specialize in the production of one sex or the other. We found that almost all F. exsecta colonies in both populations are infected with Wolbachia. However, in neither population did we find a significant association in the predicted direction between the prevalence of Wolbachia and colony sex ratio. In particular, colonies with a higher proportion of infected workers did not produce more females. Hence, we conclude that Wolbachia does not seem to alter the sex ratio of its hosts as a means to increase transmission rate in these two populations of ants.

  1. Resource redistribution in polydomous ant nest networks: local or global?

    PubMed Central

    Franks, Daniel W.; Robinson, Elva J.H.

    2014-01-01

    An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755

  2. Genetic evidence for landscape effects on dispersal in the army ant Eciton burchellii.

    PubMed

    Soare, Thomas W; Kumar, Anjali; Naish, Kerry A; O'Donnell, Sean

    2014-01-01

    Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male-biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male-biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species. © 2013 John Wiley & Sons Ltd.

  3. Plant defences against ants provide a pathway to social parasitism in butterflies.

    PubMed

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio

    2015-07-22

    Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.

  4. Plant defences against ants provide a pathway to social parasitism in butterflies

    PubMed Central

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M.; Bonelli, Simona; Casacci, Luca P.; Zebelo, Simon A.; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E.; Thomas, Jeremy A.; Balletto, Emilio

    2015-01-01

    Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773

  5. The cost of being queen: investment across Pogonomyrmex harvester ant gynes that differ in degree of claustrality.

    PubMed

    Enzmann, Brittany L; Gibbs, Allen G; Nonacs, Peter

    2014-11-01

    The role of the ant colony largely consists of non-reproductive tasks, such as foraging, tending brood, and defense. However, workers are vitally linked to reproduction through their provisioning of sexual offspring, which are produced annually to mate and initiate new colonies. Gynes (future queens) have size-associated variation in colony founding strategy (claustrality), with each strategy requiring different energetic investments from their natal colony. We compared the per capita production cost required for semi-claustral, facultative, and claustral gynes across four species of Pogonomyrmex harvester ants. We found that the claustral founding strategy is markedly expensive, costing approximately 70% more energy than that of the semi-claustral strategy. Relative to males, claustral gynes also had the largest differential investment and smallest size variation. We applied these investment costs to a model by Brown and Bonhoeffer (2003) that predicts founding strategy based on investment cost and foraging survivorship. The model predicts that non-claustral foundresses must survive the foraging period with a probability of 30-36% in order for a foraging strategy to be selectively favored. These results highlight the importance of incorporating resource investment at the colony level when investigating the evolution of colony founding strategies in ants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Céréghino, Régis; Roux, Olivier; Hérault, Bruno; Rossi, Vivien; Guerrero, Roberto J.; Delabie, Jacques H. C.; Orivel, Jérôme; Boulay, Raphaël

    2010-10-01

    Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia ( Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca- Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees’ fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non- Cecropia tree.

  7. Increased host aggression as an induced defense against slave-making ants

    PubMed Central

    Pennings, Pleuni S.; Foitzik, Susanne

    2011-01-01

    Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it. PMID:22476194

  8. Prey and mound disassembly, manipulation and transport by fire ant collectives

    NASA Astrophysics Data System (ADS)

    Dutta, Bahnisikha; Monaenkova, Daria; Goodisman, Michael A.; Goldman, Daniel

    Fire ants inhabit subterranean nests covered by a hemispherical mound of soil permeated by narrow ( 1 body length diameter) tunnels. Fire ants can use their mound for long-term food storage [Gayahan &Tschinkel, J. Insect Sci.,2008]. Since mound tunnels are narrow, we expect that in addition to prey manipulation, mound reconfiguration could also be an important aspect of the food storage strategy. Ant colonies collected from wild were allowed to build nests in containers filled with clay soil in the laboratory. These colonies were offered diverse prey embedded with lead markers, including mealworms, crickets and shrimp. Ant-prey-soil interactions on the nest surface were recorded using overhead video and subsurface using x-ray imaging. Individual ants involved in prey storage exhibited three distinct behaviors: prey maneuvering, prey dissection and mound reconfiguration. Small prey (e.g. mealworms) were collectively carried intact into the mound through a tunnel, and then disassembled within the mound. Larger prey (e.g. shrimp) were dismantled into small pieces above the surface and carried to mound tunnels. The bodies of hard medium-sized prey (e.g. crickets) were buried after limb removal and then disassembled and moved into tunnels. Soil reconfiguration occurred in all cases.

  9. Facultative slave-making ants Formica sanguinea label their slaves with own recognition cues instead of employing the strategy of chemical mimicry.

    PubMed

    Włodarczyk, Tomasz; Szczepaniak, Lech

    2017-01-01

    Slave-making ant species use the host workforce to ensure normal colony functioning. Slaves are robbed as pupae from their natal nest and after eclosion, assume the parasite colony as their own. A possible factor promoting the successful integration of slaves into a foreign colony is congruence with the slave-makers in terms of cuticular hydrocarbons, which are known to play the role of recognition cues in social insects. Such an adaptation is observed in the obligate slave-making ant species, which are chemically adjusted to their slaves. To date, however, no reports have been available on facultative slave-making species, which represent an earlier stage of the evolution of slavery. Such an example is Formica sanguinea, which exploit F. fusca colonies as their main source of a slave workforce. Our results show that F. sanguinea ants have a distinct cuticular hydrocarbon profile, which contains compounds not present in free-living F. fusca ants from potential target nests. Moreover, enslaved F. fusca ants acquire hydrocarbons from their slave-making nestmates to such an extent that they become chemically differentiated from free-living, conspecific ants. Our study shows that F. sanguinea ants promote their own recognition cues in their slaves, rather than employing the strategy of chemical mimicry. Possible reasons why F. sanguinea is not chemically well adjusted to its main host species are discussed in this paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ant brood function as life preservers during floods.

    PubMed

    Purcell, Jessica; Avril, Amaury; Jaffuel, Geoffrey; Bates, Sarah; Chapuisat, Michel

    2014-01-01

    Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.

  11. Ant Brood Function as Life Preservers during Floods

    PubMed Central

    Purcell, Jessica; Avril, Amaury; Jaffuel, Geoffrey; Bates, Sarah; Chapuisat, Michel

    2014-01-01

    Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating ‘rafts’ to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting. PMID:24586600

  12. Life-history evolution in ants: the case of Cardiocondyla

    PubMed Central

    2017-01-01

    Ants are important components of most terrestrial habitats, and a better knowledge of the diversity of their life histories is essential to understand many aspects of ecosystem functioning. The myrmicine genus Cardiocondyla shows a wide range of colony structures, reproductive behaviours, queen and male lifespans, and habitat use. Reconstructing the evolutionary pathways of individual and social phenotypic traits suggests that the ancestral life history of Cardiocondyla was characterized by the presence of multiple, short-lived queens in small-sized colonies and a male polyphenism with winged dispersers and wingless fighters, which engage in lethal combat over female sexuals within their natal nests. Single queening, queen polyphenism, the loss of winged males and tolerance among wingless males appear to be derived traits that evolved with changes in nesting habits, colony size and the spread from tropical to seasonal environments. The aim of this review is to bring together the information on life-history evolution in Cardiocondyla and to highlight the suitability of this genus for functional genomic studies of adaptation, phenotypic plasticity, senescence, invasiveness and other key life-history traits of ants. PMID:28298341

  13. Dioecy and the evolution of sex ratios in ants

    PubMed Central

    Wiernasz, Diane C.; Cole, Blaine J.

    2009-01-01

    Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness. PMID:19324757

  14. Fitness costs of worker specialization for ant societies

    PubMed Central

    Jongepier, Evelien; Foitzik, Susanne

    2016-01-01

    Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated the social organization of 102 T. longispinosus colonies, based on the behavioural responses of all 3842 workers. We find that strict specialization is disadvantageous for a colony's annual reproduction and growth during slave raids. These fitness costs may favour generalist strategies in dynamic environments, as we also demonstrate that societies exposed to slavemakers in the field show a lower degree of specialization than those originating from slavemaker-free populations. Our findings provide an explanation for the ubiquity of generalists and highlight their importance for the flexibility and functional robustness of entire societies. PMID:26763706

  15. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata

    PubMed Central

    Dyer, Lee A.

    2002-01-01

    While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests. PMID:15455052

  16. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata.

    PubMed

    Dyer, Lee A

    2002-01-01

    While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.

  17. Enslaved ants: not as helpless as they were thought to be.

    PubMed

    Czechowski, W; Godzińska, E J

    Slavery in ants involves robbing of brood of host ant species and rearing captured individuals in the enslaver's nest. Whereas slaves of facultative slave-makers increase the workforce of the colony, in obligate slave-makers presence of slaves is vital for colony survival. Until recently, it was generally believed that enslaved workers act solely for the benefit of their social parasite and are wholly lost for their own colony and population. However, evidence that slaves may act also in favour of their own maternal population by engaging in various forms of the so-called slave rebellions is already quite extensive and may be found in both old and recent myrmecological literature, although, unfortunately, these data are often neglected or overlooked. They may be classified into four categories: (1) acts of physical aggression directed by slaves to slave-makers, (2) attempts of slaves to reproduce within a slave-maker colony, (3) 'sabotage', i.e. activities of slaves leading to weakening of the slave-maker colony and population, and (4) slave emancipation, i.e. partial or complete self-liberation of slaves from slave-maker colonies. In this review, we present and discuss all these diverse (often interrelated) expressions of slave opposition to their enslavers, focussing our discussion on both proximate and evolutionary causation of the discussed phenomena. We also indicate some open questions which remain to be answered by future research.

  18. Worker policing by egg eating in the ponerine ant Pachycondyla inversa.

    PubMed

    D'Ettorre, Patrizia; Heinze, Jürgen; Ratnieks, Francis L W

    2004-07-07

    We investigated worker policing by egg eating in the ponerine ant Pachycondyla inversa, a species with morphologically distinct queens and workers. Colonies were split into one half with the queen and one half without. Workers in queenless colony fragments started laying unfertilized male eggs after three weeks. Worker-laid eggs and queen-laid eggs were introduced into five other queenright colonies with a single queen and three colonies with multiple queens, and their fate was observed for 30 min. Significantly more worker-laid eggs (range of 35-62%, mean of 46%) than queen-laid eggs (range of 5-31%, mean of 15%) were eaten by workers in single-queen colonies, and the same trend was seen in multiple-queen colonies. This seems to be the first well-documented study of ants with a distinct caste polymorphism to show that workers kill worker-laid eggs in preference to queen-laid eggs. Chemical analyses showed that the surfaces of queen-laid and worker-laid eggs have different chemical profiles as a result of different relative proportions of several hydrocarbons. Such differences might provide the information necessary for differential treatment of eggs. One particular alkane, 3,11-dimeC27, was significantly more abundant on the surfaces of queen-laid eggs. This substance is also the most abundant compound on the cuticles of egg layers.

  19. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants.

    PubMed

    Adams, Rachelle M M; Jones, Tappey H; Longino, John T; Weatherford, Robert G; Mueller, Ulrich G

    2015-04-01

    Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.

  20. Effect of Interactions between Harvester Ants on Forager Decisions

    PubMed Central

    Davidson, Jacob D.; Arauco-Aliaga, Roxana P.; Crow, Sam; Gordon, Deborah M.; Goldman, Mark S.

    2017-01-01

    Harvester ant colonies adjust their foraging activity to day-to-day changes in food availability and hour-to-hour changes in environmental conditions. This collective behavior is regulated through interactions, in the form of brief antennal contacts, between outgoing foragers and returning foragers with food. Here we consider how an ant, waiting in the entrance chamber just inside the nest entrance, uses its accumulated experience of interactions to decide whether to leave the nest to forage. Using videos of field observations, we tracked the interactions and foraging decisions of ants in the entrance chamber. Outgoing foragers tended to interact with returning foragers at higher rates than ants that returned to the deeper nest and did not forage. To provide a mechanistic framework for interpreting these results, we develop a decision model in which ants make decisions based upon a noisy accumulation of individual contacts with returning foragers. The model can reproduce core trends and realistic distributions for individual ant interaction statistics, and suggests possible mechanisms by which foraging activity may be regulated at an individual ant level. PMID:28758093

  1. Improved packing of protein side chains with parallel ant colonies.

    PubMed

    Quan, Lijun; Lü, Qiang; Li, Haiou; Xia, Xiaoyan; Wu, Hongjie

    2014-01-01

    The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains

  2. Improved packing of protein side chains with parallel ant colonies

    PubMed Central

    2014-01-01

    Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy

  3. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  4. Ultraviolet radiation as an ant repellent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorvilson, H.G.; Russell, S.A.; Green, B.

    1996-12-31

    In an effort to repel red imported fire ants (RIFA) from electrical devices, such as transformers, ultraviolet (UV) light was tested. Initial tests determined if RIFA`s tolerate a UV-irradiated environment when given a choice between UV-irradiated and non-irradiated. All replications in this test indicated that RIFA`s are intolerant of UV-irradiation and sought to escape it. RIFA`s moved to shaded environments and transported their brood out its well. A second test sought to determine if long-term UV-irradiation of the entire colonies cause increased RIFA mortality. Queenright colonies were exposed to UV irradiation of 254nm constantly for 115 days and colonies hadmore » a higher mortality rate than did a control colony. RIFA`s attempted to escape UV light and had increased rate when exposed to UV (254nm), but a practical application of this technique may be detrimental to insulation on electrical wiring.« less

  5. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  6. The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    PubMed Central

    Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.

    2011-01-01

    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285

  7. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    NASA Astrophysics Data System (ADS)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  8. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  9. A specialist herbivore uses chemical camouflage to overcome the defenses of an ant-plant mutualism.

    PubMed

    Whitehead, Susan R; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M; Posto, Amanda L; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.

  10. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  11. Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.

    PubMed

    Perrichot, Vincent; Wang, Bo; Engel, Michael S

    2016-06-06

    Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Collective defence portfolios of ant hosts shift with social parasite pressure

    PubMed Central

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-01-01

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. PMID:25100690

  13. To drink or grasp? How bullet ants ( Paraponera clavata) differentiate between sugars and proteins in liquids

    NASA Astrophysics Data System (ADS)

    Jandt, Jennifer; Larson, Hannah K.; Tellez, Peter; McGlynn, Terrence P.

    2013-12-01

    Flexibility in behavior can increase the likelihood that a forager may respond optimally in a fluctuating environment. Nevertheless, physiological or neuronal constraints may result in suboptimal responses to stimuli. We observed foraging workers of the giant tropical ant (also referred to as the "bullet ant"), Paraponera clavata, as they reacted to liquid solutions with varying concentrations of sugar and protein. We show that when protein/sucrose concentration is high, many bullet ants will often try to grasp at the droplet, rather than gather it by drinking. Because P. clavata actively hunt for prey, fixed action patterns and rapid responses to protein may be adaptively important, regardless of the medium in which it is presented. We conclude that, in P. clavata, food-handling decisions are made in response to the nutrient content of the food rather than the texture of the food. Further, we suggest that colonies that maintain a mixture of individuals with consistent fixed or flexible behavioral responses to food-handling decisions may be better adapted to fluctuating environmental conditions, and we propose future studies that could address this.

  14. Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution.

    PubMed

    Viljakainen, Lumi; Holmberg, Ida; Abril, Sílvia; Jurvansuu, Jaana

    2018-06-25

    The Argentine ant (Linepithema humile) is a highly invasive pest, yet very little is known about its viruses. We analysed individual RNA-sequencing data from 48 Argentine ant queens to identify and characterisze their viruses. We discovered eight complete RNA virus genomes - all from different virus families - and one putative partial entomopoxvirus genome. Seven of the nine virus sequences were found from ant samples spanning 7 years, suggesting that these viruses may cause long-term infections within the super-colony. Although all nine viruses successfully infect Argentine ants, they have very different characteristics, such as genome organization, prevalence, loads, activation frequencies and rates of evolution. The eight RNA viruses constituted in total 23 different virus combinations which, based on statistical analysis, were non-random, suggesting that virus compatibility is a factor in infections. We also searched for virus sequences from New Zealand and Californian Argentine ant RNA-sequencing data and discovered that many of the viruses are found on different continents, yet some viruses are prevalent only in certain colonies. The viral loads described here most probably present a normal asymptomatic level of infection; nevertheless, detailed knowledge of Argentine ant viruses may enable the design of viral biocontrol methods against this pest.

  15. Social Life in Arid Environments: The Case Study of Cataglyphis Ants.

    PubMed

    Boulay, Raphaël; Aron, Serge; Cerdá, Xim; Doums, Claudie; Graham, Paul; Hefetz, Abraham; Monnin, Thibaud

    2017-01-31

    Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.

  16. Foraging ants trade off further for faster: use of natural bridges and trunk trail permanency in carpenter ants

    NASA Astrophysics Data System (ADS)

    Loreto, Raquel G.; Hart, Adam G.; Pereira, Thairine M.; Freitas, Mayara L. R.; Hughes, David P.; Elliot, Simon L.

    2013-10-01

    Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants ( Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.

  17. Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis

    PubMed Central

    Tschinkel, Walter R.; Seal, Jon N.

    2016-01-01

    Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL). PMID:27391485

  18. Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis.

    PubMed

    Tschinkel, Walter R; Seal, Jon N

    2016-01-01

    Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL).

  19. Interspecific competition between Solenopsis invicta and two native ant species, Pheidole fervens and Monomorium chinense.

    PubMed

    Chen, Yin-Cheng; Kafle, Lekhnath; Shih, Cheng-Jen

    2011-04-01

    This study was designed to understand the effects of the interspecific competition between red imported fire ant, Solenopsis invicta Buren and two native ant species, Pheidole fervens Smith and Monomorium chinense Santschi, by conducting colony interference and individual confrontation tests under laboratory conditions. The colony interference test showed that both native ant species, owing to their numerical advantage, killed the Solenopsis invicta virus-1 (SINV-1)-infected or healthy queens of S. invicta. Significantly less time was required for M. chinense to kill all SINV-1-infected S. invicta compared with the time required to kill the healthy S. invicta. Compared with healthy S. invicta, SINV-1-infected S. invicta spent a longer time eliminating the P. fervens colonies. In confrontation tests, M. chinense killed a significantly higher number of infected S. invicta minors than they did healthy minors, but the number of S. invicta majors (either infected or healthy) killed was substantially less. This study found that the viral infection weakened the competitive ability of S. invicta and made them prone to be eliminated by M. chinense but not by P. fervens.

  20. Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants

    PubMed Central

    Grüter, Christoph; Schürch, Roger; Czaczkes, Tomer J.; Taylor, Keeley; Durance, Thomas; Jones, Sam M.; Ratnieks, Francis L. W.

    2012-01-01

    Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies. PMID:22984518

  1. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants.

    PubMed

    Fernández-Marín, Hermógenes; Nash, David R; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S; d'Ettorre, Patrizia; Wcislo, William T; Boomsma, Jacobus J

    2015-05-22

    Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants

    PubMed Central

    Fernández-Marín, Hermógenes; Nash, David R.; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S.; d'Ettorre, Patrizia; Wcislo, William T.; Boomsma, Jacobus J.

    2015-01-01

    Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. PMID:25925100

  3. Pericarpial nectary-visiting ants do not provide fruit protection against pre-dispersal seed predators regardless of ant species composition and resource availability

    PubMed Central

    Ré Jorge, Leonardo; Benitez-Vieyra, Santiago; Amorim, Felipe W.

    2017-01-01

    Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms. PMID:29211790

  4. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Release and establishment of the little decapitating fly Pseudacteon cultellatus on imported fire ants in Florida

    USDA-ARS?s Scientific Manuscript database

    The little decapitating fly Pseudacteon cultellatus from Argentina was released as a self-sustaining biological control agent against the red imported fire ant, Solenopsis invicta, in Florida to parasitize small fire ant workers associated with multiple-queen colonies. This fly appears to be establi...

  6. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil).

    PubMed

    Reis, Bárbara Monique Dos Santos; Silva, Aline; Alvarez, Martín Roberto; Oliveira, Tássio Brito de; Rodrigues, Andre

    2015-12-01

    Leaf-cutting ants interact with several fungi in addition to the fungal symbiont they cultivate for food. Here, we assessed alien fungal communities in colonies of Atta cephalotes. Fungus garden fragments were sampled from colonies in the Atlantic Rainforest and in a cabruca agrosystem in the state of Bahia (Brazil) in two distinct periods to evaluate whether differences in nest habitat influence the diversity of fungi in the ant colonies. We recovered a total of 403 alien fungi isolates from 628 garden fragments. The prevalent taxa found in these samples were Escovopsis sp. (26 %), Escovopsioides nivea (24 %), and Trichoderma spirale (10.9 %). Fungal diversity was similar between the colonies sampled in both areas suggesting that ants focus on reducing loads of alien fungi in the fungus gardens instead of avoiding specific fungi. However, fungal taxa composition differed between colonies sampled in the two areas and between the sampling periods. These differences are likely explained by the availability of plant substrates available for foraging over habitats and periods. Ordination analysis further supported that sampling period was the main attribute for community structuring but also revealed that additional factors may explain the structuring of fungal communities in colonies of A. cephalotes. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  8. Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees.

    PubMed

    Frederickson, Megan E

    2009-05-01

    The evolutionary stability of mutualism is thought to depend on how well the fitness interests of partners are aligned. Because most ant-myrmecophyte mutualisms are persistent and horizontally transmitted, partners share an interest in growth but not in reproduction. Resources invested in reproduction are unavailable for growth, giving rise to a conflict of interest between partners. I investigated whether this explains why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. Allomerus octoarticulatus nests in the hollow stem domatia of C. nodosa. Workers protect C. nodosa leaves against herbivores but destroy inflorescences. Using C. nodosa trees with Azteca ants, which do not sterilize their hosts, I cut inflorescences off trees to simulate sterilization by A. octoarticulatus. Sterilized C. nodosa grew faster than control trees, providing evidence for a trade-off between growth and reproduction. Allomerus octoarticulatus manipulates this trade-off to its advantage; sterilized trees produce more domatia and can house larger, more fecund colonies.

  9. Rescue of newborn ants by older Cataglyphis cursor adult workers.

    PubMed

    Nowbahari, Elise; Amirault, Céline; Hollis, Karen L

    2016-05-01

    Cataglyphis cursor worker ants are capable of highly sophisticated rescue behaviour in which individuals are able to identify what has trapped a nestmate and to direct their behaviour towards that obstacle. Nonetheless, rescue behaviour is constrained by workers' subcaste: whereas foragers, the oldest workers, are able both to give and to receive the most help, the youngest workers, inactives, neither give nor receive any help whatsoever; nurses give and receive intermediate levels of aid, reflecting their intermediate age. Such differences in rescue behaviour across subcastes suggest that age and experience play a critical role. In this species, as in many others in which a sensitive period for nestmate recognition exists, newly enclosed ants, called callows, are adopted by ants belonging not only to different colonies but also to different species; foreign callows receive nearly the same special care provided to resident newborns. Because callows are younger than inactives, which are incapable of soliciting rescue, we wondered whether entrapped callows would receive such aid. In the present study, we artificially ensnared individual callows from their own colony (homocolonial), from a different colony (heterocolonial), and from a different species (heterospecific), and tested each one with groups of five potential C. cursor rescuers, either all foragers or all nurses. Our results show that all three types of callows are able to elicit rescue behaviour from both foragers and nurses. Nonetheless, nurse rescuers are better able to discriminate between the three types of callow victims than are foragers.

  10. Seasonality Directs Contrasting Food Collection Behavior and Nutrient Regulation Strategies in Ants

    PubMed Central

    Cook, Steven C.; Eubanks, Micky D.; Gold, Roger E.; Behmer, Spencer T.

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant. PMID:21966522

  11. Vitellogenin Underwent Subfunctionalization to Acquire Caste and Behavioral Specific Expression in The Harvester Ant Pogonomyrmex barbatus

    USDA-ARS?s Scientific Manuscript database

    Similarly to others advanced social insects, ants and bees have an age-associated division of labor, whereby young workers normally perform tasks inside the colony and old workers forage outside the nest, but this pattern is more variable in ants. It is unknown whether, notwithstanding their differe...

  12. The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants

    PubMed Central

    Aylward, Frank O.; Currie, Cameron R.; Suen, Garret

    2012-01-01

    Fungus-growing ants gain access to nutrients stored in plant biomass through their association with a mutualistic fungus they grow for food. This 50 million-year-old obligate mutualism likely facilitated some of these species becoming dominant Neotropical herbivores that can achieve immense colony sizes. Recent culture-independent investigations have shed light on the conversion of plant biomass into nutrients within ant fungus gardens, revealing that this process involves both the fungal cultivar and a symbiotic community of bacteria including Enterobacter, Klebsiella, and Pantoea species. Moreover, the genome sequences of the leaf-cutter ants Atta cephalotes and Acromyrmex echinatior have provided key insights into how this symbiosis has shaped the evolution of these ants at a genetic level. Here we summarize the findings of recent research on the microbial community dynamics within fungus-growing ant fungus gardens and discuss their implications for this ancient symbiosis. PMID:26467948

  13. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    PubMed

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    PubMed Central

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200

  15. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    PubMed

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  16. The Role of Symbiont Genetic Distance and Potential Adaptability in Host Preference Towards Pseudonocardia Symbionts in Acromyrmex Leaf-Cutting Ants

    PubMed Central

    Poulsen, Michael; Maynard, Janielle; Roland, Damien L; Currie, Cameron R

    2011-01-01

    Fungus-growing ants display symbiont preference in behavioral assays, both towards the fungus they cultivate for food and Actinobacteria they maintain on their cuticle for antibiotic production against parasites. These Actinobacteria, genus Pseudonocardia Henssen (Pseudonocardiacea: Actinomycetales), help defend the ants' fungal mutualist from specialized parasites. In Acromyrmex Mayr (Hymenoptera: Formicidae) leaf-cutting ants, individual colonies maintain either a single or a few strains of Pseudonocardia, and the symbiont is primarily vertically transmitted between generations by colony-founding queens. A recent report found that Acromyrmex workers are able to differentiate between their native Pseudonocardia strain and non-native strains isolated from sympatric or allopatric Acromyrmex species, and show preference for their native strain. Here we explore worker preference when presented with two non-native strains, elucidating the role of genetic distance on preference between strains and Pseudonocardia origin. Our findings suggest that ants tend to prefer bacteria more closely related to their native bacterium and that genetic similarity is probably more important than whether symbionts are ant-associated or free-living. Preliminary findings suggest that when continued exposure to a novel Pseudonocardia strain occurs, ant symbiont preference is potentially adaptable, with colonies apparently being able to alter symbiont preference over time. These findings are discussed in relation to the role of adaptive recognition, potential ecological flexibility in symbiont preference, and more broadly, in relation to self versus non-self recognition. PMID:22225537

  17. Noise and the statistical mechanics of distributed transport in a colony of interacting agents

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Graewer, Johannes; Ronellenfitsch, Henrik; Mazza, Marco G.

    Inspired by the process of liquid food distribution between individuals in an ant colony, in this work we consider the statistical mechanics of resource dissemination between interacting agents with finite carrying capacity. The agents move inside a confined space (nest), pick up the food at the entrance of the nest and share it with other agents that they encounter. We calculate analytically and via a series of simulations the global food intake rate for the whole colony as well as observables describing how uniformly the food is distributed within the nest. Our model and predictions provide a useful benchmark to assess which strategies can lead to efficient food distribution within the nest and also to what level the observed food uptake rates and efficiency in food distribution are due to stochastic fluctuations or specific food exchange strategies by an actual ant colony.

  18. Heterogeneous activity causes a nonlinear increase in the group energy use of ant workers isolated from queen and brood.

    PubMed

    Ferral, Nolan; Holloway, Kyara; Li, Mingzhong; Yin, Zhaozheng; Hou, Chen

    2018-06-01

    Increasing evidence has shown that the energy use of ant colonies increases sublinearly with colony size so that large colonies consume less per capita energy than small colonies. It has been postulated that social environment (e.g., in the presence of queen and brood) is critical for the sublinear group energetics, and a few studies of ant workers isolated from queens and brood observed linear relationships between group energetics and size. In this paper, we hypothesize that the sublinear energetics arise from the heterogeneity of activity in ant groups, that is, large groups have relatively more inactive members than small groups. We further hypothesize that the energy use of ant worker groups that are allowed to move freely increases more slowly than the group size even if they are isolated from queen and brood. Previous studies only provided indirect evidence for these hypotheses due to technical difficulties. In this study, we applied the automated behavioral monitoring and respirometry simultaneously on isolated worker groups for long time periods, and analyzed the image with the state-of-the-art algorithms. Our results show that when activity was not confined, large groups had lower per capita energy use, a lower percentage of active members, and lower average walking speed than small groups; while locomotion was confined, however, the per capita energy use was a constant regardless of the group size. The quantitative analysis shows a direct link between variation in group energy use and the activity level of ant workers when isolated from queen and brood. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Collective defence portfolios of ant hosts shift with social parasite pressure.

    PubMed

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-09-22

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    PubMed

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  1. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    PubMed

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.

  2. Offspring Size and Reproductive Allocation in Harvester Ants.

    PubMed

    Wiernasz, Diane C; Cole, Blaine J

    2018-01-01

    A fundamental decision that an organism must make is how to allocate resources to offspring, with respect to both size and number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources and tested three hypotheses derived from our model, using data from 3 years of food supplementation bracketed by 6 years without food addition. All major results were predicted by our model: food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness.

  3. How territoriality and host-tree taxa determine the structure of ant mosaics.

    PubMed

    Dejean, Alain; Ryder, Suzanne; Bolton, Barry; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Céréghino, Régis; Orivel, Jérôme; Corbara, Bruno

    2015-06-01

    Very large colonies of territorially dominant arboreal ants (TDAAs), whose territories are distributed in a mosaic pattern in the canopies of many tropical rainforests and tree crop plantations, have a generally positive impact on their host trees. We studied the canopy of an old Gabonese rainforest (ca 4.25 ha sampled, corresponding to 206 "large" trees) at a stage just preceding forest maturity (the Caesalpinioideae dominated; the Burseraceae were abundant). The tree crowns sheltered colonies from 13 TDAAs plus a co-dominant species out of the 25 ant species recorded. By mapping the TDAAs' territories and using a null model co-occurrence analysis, we confirmed the existence of an ant mosaic. Thanks to a large sampling set and the use of the self-organizing map algorithm (SOM), we show that the distribution of the trees influences the structure of the ant mosaic, suggesting that each tree taxon attracts certain TDAA species rather than others. The SOM also improved our knowledge of the TDAAs' ecological niches, showing that these ant species are ecologically distinct from each other based on their relationships with their supporting trees. Therefore, TDAAs should not systematically be placed in the same functional group even when they belong to the same genus. We conclude by reiterating that, in addition to the role played by TDAAs' territorial competition, host trees contribute to structuring ant mosaics through multiple factors, including host-plant selection by TDAAs, the age of the trees, the presence of extrafloral nectaries, and the taxa of the associated hemipterans.

  4. How territoriality and host-tree taxa determine the structure of ant mosaics

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Ryder, Suzanne; Bolton, Barry; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Céréghino, Régis; Orivel, Jérôme; Corbara, Bruno

    2015-06-01

    Very large colonies of territorially dominant arboreal ants (TDAAs), whose territories are distributed in a mosaic pattern in the canopies of many tropical rainforests and tree crop plantations, have a generally positive impact on their host trees. We studied the canopy of an old Gabonese rainforest (ca 4.25 ha sampled, corresponding to 206 "large" trees) at a stage just preceding forest maturity (the Caesalpinioideae dominated; the Burseraceae were abundant). The tree crowns sheltered colonies from 13 TDAAs plus a co-dominant species out of the 25 ant species recorded. By mapping the TDAAs' territories and using a null model co-occurrence analysis, we confirmed the existence of an ant mosaic. Thanks to a large sampling set and the use of the self-organizing map algorithm (SOM), we show that the distribution of the trees influences the structure of the ant mosaic, suggesting that each tree taxon attracts certain TDAA species rather than others. The SOM also improved our knowledge of the TDAAs' ecological niches, showing that these ant species are ecologically distinct from each other based on their relationships with their supporting trees. Therefore, TDAAs should not systematically be placed in the same functional group even when they belong to the same genus. We conclude by reiterating that, in addition to the role played by TDAAs' territorial competition, host trees contribute to structuring ant mosaics through multiple factors, including host-plant selection by TDAAs, the age of the trees, the presence of extrafloral nectaries, and the taxa of the associated hemipterans.

  5. The direct and ecological costs of an ant-plant symbiosis.

    PubMed

    Frederickson, Megan E; Ravenscraft, Alison; Miller, Gabriel A; Arcila Hernández, Lina M; Booth, Gregory; Pierce, Naomi E

    2012-06-01

    How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.

  6. Male fighting and "territoriality" within colonies of the ant Cardiocondyla venustula.

    PubMed

    Frohschammer, Sabine; Heinze, Jürgen

    2009-01-01

    The ant genus Cardiocondyla is characterized by a bizarre male polymorphism with wingless fighter males and winged disperser males. Winged males have been lost convergently in several clades, and in at least one of them, wingless males have evolved mutual tolerance. To better understand the evolutionary pathways of reproductive tactics, we investigated Cardiocondyla venustula, a species, which in a phylogenetic analysis clusters with species with fighting and species with mutually tolerant, wingless males. Wingless males of C. venustula use their strong mandibles to kill freshly eclosed rival males and also engage in short fights with other adult males, but in addition show a novel behavior hitherto not reported from social insect males: they spread out in the natal nest and defend "territories" against other males. Ant males therefore show a much larger variety of reproductive tactics than previously assumed.

  7. Male fighting and ``territoriality'' within colonies of the ant Cardiocondyla venustula

    NASA Astrophysics Data System (ADS)

    Frohschammer, Sabine; Heinze, Jürgen

    2009-01-01

    The ant genus Cardiocondyla is characterized by a bizarre male polymorphism with wingless fighter males and winged disperser males. Winged males have been lost convergently in several clades, and in at least one of them, wingless males have evolved mutual tolerance. To better understand the evolutionary pathways of reproductive tactics, we investigated Cardiocondyla venustula, a species, which in a phylogenetic analysis clusters with species with fighting and species with mutually tolerant, wingless males. Wingless males of C. venustula use their strong mandibles to kill freshly eclosed rival males and also engage in short fights with other adult males, but in addition show a novel behavior hitherto not reported from social insect males: they spread out in the natal nest and defend “territories” against other males. Ant males therefore show a much larger variety of reproductive tactics than previously assumed.

  8. Thelytokous parthenogenesis by queens in the dacetine ant Pyramica membranifera (Hymenoptera: Formicidae).

    PubMed

    Ito, Fuminori; Touyama, Yoshifumi; Gotoh, Ayako; Kitahiro, Shungo; Billen, Johan

    2010-08-01

    Thelytokous parthenogenesis in which diploid females are produced from unfertilized eggs, was recently reported for some ant species. Here, we document thelytokous reproduction by queens in the polygynous species Pyramica membranifera. Queens that emerged in the laboratory were kept with or without workers under laboratory conditions. Independent colony founding was successful for a few queens if prey was provided. All artificial colonies, which started with a newly emerged queen and workers produced new workers and some of the colonies also produced female sexuals. Some of the female sexuals shed their wings in the laboratory and started formation of new polygynous colonies. Workers had no ovaries and thus, were obligatorily sterile.

  9. Thelytokous parthenogenesis by queens in the dacetine ant Pyramica membranifera (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Ito, Fuminori; Touyama, Yoshifumi; Gotoh, Ayako; Kitahiro, Shungo; Billen, Johan

    2010-08-01

    Thelytokous parthenogenesis in which diploid females are produced from unfertilized eggs, was recently reported for some ant species. Here, we document thelytokous reproduction by queens in the polygynous species Pyramica membranifera. Queens that emerged in the laboratory were kept with or without workers under laboratory conditions. Independent colony founding was successful for a few queens if prey was provided. All artificial colonies, which started with a newly emerged queen and workers produced new workers and some of the colonies also produced female sexuals. Some of the female sexuals shed their wings in the laboratory and started formation of new polygynous colonies. Workers had no ovaries and thus, were obligatorily sterile.

  10. Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata?

    USDA-ARS?s Scientific Manuscript database

    Mutualistic interactions between ants and Hemiptera are mediated to large extent by the amount and quality of sugar-rich honeydew produced. Throughout the neotropics, the fire ant Solenopsis geminata (F.) (Hymenoptera: Formicidae) is found in association with colonies of the pineapple mealybug Dysmi...

  11. Genetic polymorphism in leaf-cutting ants is phenotypically plastic.

    PubMed

    Hughes, William O H; Boomsma, Jacobus J

    2007-07-07

    Advanced societies owe their success to an efficient division of labour that, in some social insects, is based on specialized worker phenotypes. The system of caste determination in such species is therefore critical. Here, we examine in a leaf-cutting ant (Acromyrmex echinatior) how a recently discovered genetic influence on caste determination interacts with the social environment. By removing most of one phenotype (large workers; LW) from test colonies, we increased the stimulus for larvae to develop into this caste, while for control colonies we removed a representative sample of all workers so that the stimulus was unchanged. We established the relative tendencies of genotypes to develop into LW by genotyping workers before and after the manipulation. In the control colonies, genotypes were similarly represented in the large worker caste before and after worker removal. In the test colonies, however, this relationship was significantly weaker, demonstrating that the change in environmental stimuli had altered the caste propensity of at least some genotypes. The results indicate that the genetic influence on worker caste determination acts via genotypes differing in their response thresholds to environmental cues and can be conceptualized as a set of overlapping reaction norms. A plastic genetic influence on division of labour has thus evolved convergently in two distantly related polyandrous taxa, the leaf-cutting ants and the honeybees, suggesting that it may be a common, potentially adaptive, property of complex, genetically diverse societies.

  12. Morphological and Chemical Characterization of the Invasive Ants in Hives of Apis mellifera scutellata Lepeletier (Hymenoptera: Apidae).

    PubMed

    Simoes, M R; Giannotti, E; Tofolo, V C; Pizano, M A; Firmino, E L B; Antonialli-Junior, W F; Andrade, L H C; Lima, S M

    2016-02-01

    Apiculture in Brazil is quite profitable and has great potential for expansion because of the favorable climate and abundancy of plant diversity. However, the occurrence of pests, diseases, and parasites hinders the growth and profitability of beekeeping. In the interior of the state of São Paulo, apiaries are attacked by ants, especially the species Camponotus atriceps (Smith) (Hymenoptera: Formicidae), which use the substances produced by Apis mellifera scutellata (Lepeletier) (Hymenoptera: Apidae), like honey, wax, pollen, and offspring as a source of nourishment for the adult and immature ants, and kill or expel the adult bees during the invasion. This study aimed to understand the invasion of C. atriceps in hives of A. m. scutellata. The individuals were classified into castes and subcastes according to morphometric analyses, and their cuticular chemical compounds were identified using Photoacoustic Fourier transform infrared spectroscopy (FTIR-PAS). The morphometric analyses were able to classify the individuals into reproductive castes (queen and gynes), workers (minor and small ants), and the soldier subcaste (medium and major ants). Identification of cuticular hydrocarbons of these individuals revealed that the eight beehives were invaded by only three colonies of C. atriceps; one of the colonies invaded only one beehive, and the other two colonies underwent a process called sociotomy and were responsible for the invasion of the other seven beehives. The lack of preventive measures and the nocturnal behavior of the ants favored the invasion and attack on the bees.

  13. Water stress strengthens mutualism among ants, trees, and scale insects.

    PubMed

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  14. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  15. Cheater genotypes in the parthenogenetic ant Pristomyrmex punctatus

    PubMed Central

    Dobata, Shigeto; Sasaki, Tomonori; Mori, Hideaki; Hasegawa, Eisuke; Shimada, Masakazu; Tsuji, Kazuki

    2008-01-01

    Cooperation is subject to cheating strategies that exploit the benefits of cooperation without paying the fair costs, and it has been a major goal of evolutionary biology to explain the origin and maintenance of cooperation against such cheaters. Here, we report that cheater genotypes indeed coexist in field colonies of a social insect, the parthenogenetic ant Pristomyrmex punctatus. The life history of this species is exceptional, in that there is no reproductive division of labour: all females fulfil both reproduction and cooperative tasks. Previous studies reported sporadic occurrence of larger individuals when compared with their nest-mates. These larger ants lay more eggs and hardly take part in cooperative tasks, resulting in lower fitness of the whole colony. Population genetic analysis showed that at least some of these large-bodied individuals form a genetically distinct lineage, isolated from cooperators by parthenogenesis. A phylogenetic study confirmed that this cheater lineage originated intraspecifically. Coexistence of cheaters and cooperators in this species provides a good model system to investigate the evolution of cooperation in nature. PMID:18854297

  16. SEASONAL AND DIURNAL ACTIVITY PATTERNS IN ANT (HYMENOPTERA: FORMICIDAE) COMMUNITIES IN A VEGETATION TRANSITION REGION OF SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    The densities of active ant colonies were estimated in three habitats: creosotebush shrubland, grassland, and shinnery-oak mesquite dunes. Diurnal foraging patterns were studied at bait boards. Species richness of ant communities in this transitional region (8-12 species) was co...

  17. Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2016-11-01

    One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.

  18. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis.

    PubMed

    Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard

    2017-04-01

    Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis , consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals.

  19. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis

    PubMed Central

    Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard

    2017-01-01

    Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals. PMID:28439543

  20. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  1. Rail Mounted Gantry Crane Scheduling Optimization in Railway Container Terminal Based on Hybrid Handling Mode

    PubMed Central

    Zhu, Xiaoning

    2014-01-01

    Rail mounted gantry crane (RMGC) scheduling is important in reducing makespan of handling operation and improving container handling efficiency. In this paper, we present an RMGC scheduling optimization model, whose objective is to determine an optimization handling sequence in order to minimize RMGC idle load time in handling tasks. An ant colony optimization is proposed to obtain near optimal solutions. Computational experiments on a specific railway container terminal are conducted to illustrate the proposed model and solution algorithm. The results show that the proposed method is effective in reducing the idle load time of RMGC. PMID:25538768

  2. Circadian consequences of social organization in the ant species Camponotus compressus

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Lone, Shahnaz Rahman; Goel, Anubhuthi; Chandrashekaran, M. K.

    The locomotor activity rhythm of different castes of the ant species Camponotus compressus was monitored individually under laboratory light/dark (LD) cycles, and under continuous darkness (DD). The colony of this ant species comprises two sexual castes, the queens and the males, and three worker castes, namely the major, media, and minor workers. The virgin males and virgin queens display rhythmic activity patterns, but the mated queens were arrhythmic while laying eggs, with the rhythmicity resuming soon after egg-laying. Under the LD regime, major workers showed nocturnal patterns, while about 75% of the media workers displayed nocturnal patterns and about 25% showed diurnal patterns. Under the DD regime, most major workers exhibited circadian rhythm of activity with a single steady state, whereas media workers displayed two types of activity patterns, with activity patterns changing after 6-9 days in DD (turn-arounds). The pre-turn-around τ of the ants that showed nocturnal activity patterns during LD entrainment was <24 h after release into DD, which then became >24 h, after 6-9 days. On the other hand, the pre-turn-around τ of those ants that exhibited diurnal patterns during LD entrainment was first >24 h after release into DD, and then became <24 h, after 6-9 days. The activity of the minor workers neither entrained to LD cycles nor showed any sign of free-run in DD. It appears that the circadian clocks of the ant species C. compressus are flexible, and may perhaps depend upon the tasks assigned to them in the colony.

  3. First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite protomognathus americanus.

    PubMed

    Achenbach, Alexandra; Foitzik, Susanne

    2009-04-01

    During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus. Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.

  4. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  5. Bat aggregation mediates the functional structure of ant assemblages.

    PubMed

    Dejean, Alain; Groc, Sarah; Hérault, Bruno; Rodriguez-Pérez, Héctor; Touchard, Axel; Céréghino, Régis; Delabie, Jacques H C; Corbara, Bruno

    2015-10-01

    In the Guianese rainforest, we examined the impact of the presence of guano in and around a bat roosting site (a cave). We used ant communities as an indicator to evaluate this impact because they occupy a central place in the functioning of tropical rainforest ecosystems and they play different roles in the food web as they can be herbivores, generalists, scavengers or predators. The ant species richness around the cave did not differ from a control sample situated 500m away. Yet, the comparison of functional groups resulted in significantly greater numbers of detritivorous fungus-growing and predatory ant colonies around the cave compared to the control, the contrary being true for nectar and honeydew feeders. The role of bats, through their guano, was shown using stable isotope analyses as we noted significantly greater δ(15)N values for the ant species captured in and around the cave compared to controls. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature.

    PubMed Central

    D'Ettorre, P; Mondy, N; Lenoir, A; Errard, C

    2002-01-01

    Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching. PMID:12350253

  7. Ants impact the composition of the aquatic macroinvertebrate communities of a myrmecophytic tank bromeliad.

    PubMed

    Dejean, Alain; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Bonhomme, Camille; Talaga, Stanislas; Pelozuelo, Laurent; Hénaut, Yann; Corbara, Bruno

    2018-03-01

    In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks. Copyright © 2018. Published by Elsevier Masson SAS.

  8. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.

    PubMed

    Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C

    2017-08-10

    Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant–plant interactions

    PubMed Central

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-01-01

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant–plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or 15N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a 15N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants. PMID:22859596

  10. Ants learn to rely on more informative attributes during decision-making.

    PubMed

    Sasaki, Takao; Pratt, Stephen C

    2013-01-01

    Evolutionary theory predicts that animals act to maximize their fitness when choosing among a set of options, such as what to eat or where to live. Making the best choice is challenging when options vary in multiple attributes, and animals have evolved a variety of heuristics to simplify the task. Many of these involve ranking or weighting attributes according to their importance. Because the importance of attributes can vary across time and place, animals might benefit by adjusting weights accordingly. Here, we show that colonies of the ant Temnothorax rugatulus use their experience during nest site selection to increase weights on more informative nest attributes. These ants choose their rock crevice nests on the basis of multiple features. After exposure to an environment where only one attribute differentiated options, colonies increased their reliance on this attribute relative to a second attribute. Although many species show experience-based changes in selectivity based on a single feature, this is the first evidence in animals for adaptive changes in the weighting of multiple attributes. These results show that animal collectives, like individuals, change decision-making strategies according to experience. We discuss how these colony-level changes might emerge from individual behaviour.

  11. Stable isotope enrichment in laboratory ant colonies: effects of colony age, metamorphosis, diet, and fat storage

    USDA-ARS?s Scientific Manuscript database

    Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory-reared colonies of Solenopsis invicta Buren (Formicidae: Solenopsidini) to test the effects of metamorphosis,...

  12. An Assassin among Predators: The Relationship between Plant-Ants, Their Host Myrmecophytes and the Reduviidae Zelus annulosus

    PubMed Central

    Revel, Messika; Dejean, Alain; Céréghino, Régis; Roux, Olivier

    2010-01-01

    Tropical plants frequently live in association with ants that protect their foliage from defoliators. Among them, myrmecophytes have evolved mutualisms with a limited number of plant-ants that they shelter and feed, and, in return, benefit from some protection. Hirtella physophora (Chrysobalanaceae), for example, houses Allomerus decemarticulatus (Myrmicinae) that build gallery-shaped traps to catch large prey. In French Guiana, we frequently observed the assassin bug Zelus annulosus (Reduviidae, Harpactorinae) on the leaves of H. physophora. Here, we studied the distribution of Zelus annulosus among understory plants in the Guianese rainforest and found it only on pubescent plants, including H. Physophora, whether or not it was sheltering an A. decemarticulatus colony, but only rarely on other myrmecophytes. The relationship between Z. annulosus and its host plants is, then, also mutualistic, as the plant trichomes act as an enemy-free space protecting the nymphs from large predatory ants, while the nymphs protect their host-plants from herbivorous insects. Through their relationship with A. decemarticulatus colonies, Z. annulosus individuals are protected from army ants, while furnishing nothing in return. In those cases where H. physophora sheltered both an A. decemarticulatus colony and Z. annulosus nymphs, certain plant individuals repeatedly sheltered nymphs, indicating that female bugs may select not only pubescent plants but also particular H. physophora treelets having characteristics more favourable to the development of their progeny. PMID:20957040

  13. Can communication disruption of red imported fire ants reduce foraging success

    USDA-ARS?s Scientific Manuscript database

    Invasive pest ants often coordinate resource retrieval and colony expansion through the use of recruitment pheromones for information sharing to optimise their foraging; we argue that the potential for disruption of trail pheromone communication deserves investigation as a new and benign ecologicall...

  14. Negative feedback in ants: crowding results in less trail pheromone deposition

    PubMed Central

    Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.

    2013-01-01

    Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196

  15. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings

    NASA Astrophysics Data System (ADS)

    Geiselhardt, Stefanie F.; Peschke, Klaus; Nagel, Peter

    2007-11-01

    Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant-beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.

  16. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants

    NASA Astrophysics Data System (ADS)

    Evison, Sophie Elizabeth Frances; Hughes, William O. H.

    2011-08-01

    Multiple mating by females with different males (polyandry) is difficult to explain in many taxa because it carries significant costs to females, yet benefits are often hard to identify. Polyandry is a derived trait in social insects, the evolutionary origins of which remain unclear. One of several leading hypotheses for its evolution is that it improves division of labour by increasing intra-colonial genetic diversity. Division of labour is a key player in the ecological success of social insects, and in many successful species of ants is based on morphologically distinct castes of workers, each with their own task specialisations. Atta leaf-cutting ants exhibit one of the most extreme and complicated forms of morphologically specialised worker castes and have been reported to be polyandrous but with relatively low mating frequencies (~2.5 on average). Here, we show for the first time that there is a significant genetic influence on worker size in Atta colombica leaf-cutting ants. We also provide the first estimate of the mating frequency of Atta cephalotes (four matings) and, by analysing much higher within-colony sample sizes, find that Atta are more polyandrous than previously thought (approximately six to seven matings). The results show that high polyandry and a genetic influence on worker caste are present in both genera of leaf-cutting ants and add weight to the hypothesis that division of labour is a potential driver of the evolution of polyandry in this clade of ants.

  17. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  18. Dissecting ant recognition systems in the age of genomics.

    PubMed

    Tsutsui, Neil D

    2013-01-01

    Hamilton is probably best known for his seminal work demonstrating the role of kin selection in social evolution. His work made it clear that, for individuals to direct their altruistic behaviours towards appropriate recipients (kin), mechanisms must exist for kin recognition. In the social insects, colonies are typically comprised of kin, and colony recognition cues are used as proxies for kinship cues. Recent years have brought rapid advances in our understanding of the genetic and molecular mechanisms that are used for this process. Here, I review some of the most notable advances, particularly the contributions from recent ant genome sequences and molecular biology.

  19. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna.

    PubMed

    Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2014-06-01

    Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the

  20. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  1. Interactions Increase Forager Availability and Activity in Harvester Ants

    PubMed Central

    Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B.; Gordon, Deborah M.

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724

  2. No sex in fungus-farming ants or their crops.

    PubMed

    Himler, Anna G; Caldera, Eric J; Baer, Boris C; Fernández-Marín, Hermógenes; Mueller, Ulrich G

    2009-07-22

    Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent-offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant-fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.

  3. Various chemical strategies to deceive ants in three Arhopala species (lepidoptera: Lycaenidae) exploiting Macaranga myrmecophytes.

    PubMed

    Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.

  4. Various Chemical Strategies to Deceive Ants in Three Arhopala Species (Lepidoptera: Lycaenidae) Exploiting Macaranga Myrmecophytes

    PubMed Central

    Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675

  5. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    PubMed

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  6. Florida Harvester Ant Nest Architecture, Nest Relocation and Soil Carbon Dioxide Gradients

    PubMed Central

    Tschinkel, Walter R.

    2013-01-01

    Colonies of the Florida harvester ant, Pogonomyrmex badius, excavate species-typical subterranean nests up the 3 m deep with characteristic vertical distribution of chamber area/shape, spacing between levels and vertical arrangement of the ants by age and brood stage. Colonies excavate and occupy a new nest about once a year, and doing so requires that they have information about the depth below ground. Careful excavation and mapping of vacated and new nests revealed that there was no significant difference between the old and new nests in any measure of nest size, shape or arrangement. Colonies essentially built a replicate of the just-vacated nest (although details differed), and they did so in less than a week. The reason for nest relocation is not apparent. Tschinkel noted that the vertical distribution of chamber area, worker age and brood type was strongly correlated to the soil carbon dioxide gradient, and proposed that this gradient serves as a template for nest excavation and vertical distribution. To test this hypothesis, the carbon dioxide gradient of colonies that were just beginning to excavate a new nest was eliminated by boring 6 vent holes around the forming nest, allowing the soil CO2 to diffuse into the atmosphere and eliminating the gradient. Sadly, neither the nest architecture nor the vertical ant distribution of vented nests differed from either unvented control or from their own vacated nest. In a stronger test, workers excavated a new nest under a reversed carbon dioxide gradient (high concentration near the surface, low below). Even under these conditions, the new and old nests did not differ significantly, showing that the soil carbon dioxide gradient does not serve as a template for nest construction or vertical worker distribution. The possible importance of soil CO2 gradients for soil-dwelling animals is discussed. PMID:23555829

  7. Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants.

    PubMed

    Eyer, P A; Leniaud, L; Darras, H; Aron, S

    2013-02-01

    Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single-queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis. © 2012 Blackwell Publishing Ltd.

  8. Thelytokous Parthenogenesis in the Ant Myrmecina nipponica (Hymenoptera: Formicidae).

    PubMed

    Masuko, Keiichi

    2014-09-01

    Myrmecina nipponica Wheeler is a terrestrial ant nesting chiefly in the soil in forest. It is a specialized predator of oribatid mites, but also scavenges on a broad spectrum of other arthropods. In the studied population at Cape Manazuru in central Japan, M. nipponica colonies are typically monogynous, and previous dissections of queens suggested that these individuals were not inseminated, thus suggesting these ants can reproduce via thelytokous parthenogenesis. To test for thelytokous parthenogenesis in M. nipponica the spermathecae of queens (dealate gynes) from worker-containing colonies were histologically examined in detail. All specimens examined (n=5) had no spermatozoa in the spermatheca. In addition, a total of four colony-founding queens were reared in isolation in the laboratory to test whether non-inseminated females were capable of egg laying and to test whether female offspring emerged from this brood. In all of four culture replicates, only new workers were produced from the eggs those queens had laid and male offspring was absent. After the breeding experiment, the queens' spermathecae were histologically examined and no sperm were detected in their spermathecae. These results reveal that M. nipponica queens of the Manazuru population are capable of producing female offspring thelytokously. Sexual reproduction by typical gynes and also by intermorphs has been known from other local populations of M. nipponica; therefore, this species shows geographical polymorphism in sexuality.

  9. An Improved Artificial Bee Colony-Based Approach for Zoning Protected Ecological Areas

    PubMed Central

    Shao, Jing; Yang, Lina; Peng, Ling; Chi, Tianhe; Wang, Xiaomeng

    2015-01-01

    China is facing ecological and environmental challenges as its urban growth rate continues to rise, and zoning protected ecological areas is recognized as an effective response measure. Zoning inherently involves both site attributes and aggregation attributes, and the combination of mathematical models and heuristic algorithms have proven advantageous. In this article, an improved artificial bee colony (IABC)-based approach is proposed for zoning protected ecological areas at a regional scale. Three main improvements were made: the first is the use of multiple strategies to generate the initial bee population of a specific quality and diversity, the second is an exploitation search procedure to generate neighbor solutions combining “replace” and “alter” operations, and the third is a “swap” strategy to enable a local search for the iterative optimal solution. The IABC algorithm was verified using simulated data. Then it was applied to define an optimum scheme of protected ecological areas of Sanya (in the Hainan province of China), and a reasonable solution was obtained. Finally, a comparison experiment with other methods (agent-based land allocation model, ant colony optimization, and density slicing) was conducted and demonstrated that the IABC algorithm was more effective and efficient than the other methods. Through this study, we aimed to provide a scientifically sound, practical approach for zoning procedures. PMID:26394148

  10. Polyacrylamide hydrogels: an effective tool for delivering liquid baits to pest ants (Hymenoptera: Formicidae).

    PubMed

    Buczkowski, Grzegorz; Roper, Elray; Chin, Darren

    2014-04-01

    Ant management in urban and natural areas often relies on toxic baits. Liquid baits are highly attractive to pest ants because they mimic natural food sources such as honeydew and nectar, the principal dietary components of many ants. However, liquid bait use has been limited owing to the lack of bait dispensers that are effective, inexpensive, and easy to service. The current study evaluated the potential of water-storing crystals (polyacrylamide spheres) to effectively deliver liquid thiamethoxam baits to laboratory colonies of Argentine ants, Linepithema humile Mayr. Results of laboratory trials show that bait crystals saturated in 25% sucrose solution containing 0.007% thiamethoxam are highly attractive to Argentine ants and highly effective against all castes and life stages, including workers, queens, and brood. Fresh bait crystals were highly effective and required approximately 2 d to kill all workers and approximately 6 d to achieve complete mortality in queens and brood. Results of bait aging tests show that the crystals lose approximately 70% of moisture in 8 h and the duration of outdoor exposure has a significant effect on moisture loss and subsequently bait acceptance and bait efficacy. A gradual decrease in mortality was observed for all castes and life stages as bait age increased. In general, fresh baits and those aged for < 8 h retained their efficacy and caused substantial mortality. Baits aged longer than 8 h were substantially less attractive and less effective. Horizontal transfer tests examined the transfer of thiamethoxam from live treated donors to live untreated recipients. The results show that donor ants that obtain thiamethoxam by feeding on bait crystals effectively transfer it to untreated recipient ants. The level of secondary mortality depended on the donor:recipient ratio, with approximately 40% recipient worker mortality with the 1:5 ratio and 15% recipient worker mortality with 1:10 or 1:20 ratios. However, no queens died in any

  11. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment

    PubMed Central

    Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166

  12. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment.

    PubMed

    Li, Jianjun; Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.

  13. Task partitioning in a ponerine ant.

    PubMed

    Theraulaz, Guy; Bonabeau, Eric; Sole, Ricard V; Schatz, Bertrand; Deneubourg, Jean-Louis

    2002-04-21

    This paper reports a study of the task partitioning observed in the ponerine ant Ectatomma ruidum, where prey-foraging behaviour can be subdivided into two categories: stinging and transporting. Stingers kill live prey and transporters carry prey corpses back to the nest. Stinging and transporting behaviours are released by certain stimuli through response thresholds; the respective stimuli for stinging and transporting appear to be the number of live prey and the number of prey corpses. A response threshold model, the parameters of which are all measured empirically, reproduces a set of non-trivial colony-level dynamical patterns observed in the experiments. This combination of modelling and empirical work connects explicitly the level of individual behaviour with colony-level patterns of work organization. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  14. Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants.

    PubMed

    De Fine Licht, Henrik H; Boomsma, Jacobus J

    2014-12-04

    Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation

  15. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    PubMed

    Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  16. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants

    PubMed Central

    Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.

    2013-01-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038

  17. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda.

    PubMed

    Witte, Volker; Foitzik, Susanne; Hashim, Rosli; Maschwitz, Ulrich; Schulz, Stefan

    2009-03-01

    Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies.

  18. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and

  19. Effects of predatory ants within and across ecosystems in bromeliad food webs.

    PubMed

    Gonçalves, Ana Z; Srivastava, Diane S; Oliveira, Paulo S; Romero, Gustavo Q

    2017-07-01

    Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda

  20. The effect of water on the ground nesting habits of the giant tropical ant, Paraponera clavata.

    PubMed

    Elahi, Robin

    2005-11-18

    The large predatory ant, Paraponera clavata, exerts measurable top-down effects in wet and moist Neotropical forests, and therefore its distribution has potential ecological implications. To determine how water affects the presence of this important predator, the ground nesting ecology of P. clavata was examined with respect to various habitat characteristics. Four hectares of disturbed Costa Rican lowland rain forest were surveyed for ant colonies to determine nest distribution patterns in wet and dry habitat; significantly more colonies were found in dry habitat. Seventeen of 19 nests built on slopes of > 5 degrees inclination were positioned on the downward side of the tree, possibly using the trunk as a shield against runoff during rain showers. Moisture and pH inside nests were significantly different from adjacent soil. These results suggest that water influences the ground nesting habits of P. clavata, thus ecological differences between comparatively wet and dry portions of tropical forests may arise from the relative abundance of this ant species.

  1. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  2. A new improved artificial bee colony algorithm for ship hull form optimization

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  3. Temporal polyethism, life expectancy, and entropy of workers of the ant Ectatomma vizottoi Almeida, 1987 (Formicidae: Ectatomminae).

    PubMed

    Santana Vieira, Alexsandro; Desidério Fernandes, Wedson; Fernando Antonialli-Junior, William

    2010-05-01

    We investigated the changes in the behavioral repertoire over the course of life and determined the life expectancy and entropy of workers of the ant Ectatomma vizottoi. Newly emerged ants were individually marked with model airplane paint for observation of behaviors and determination of the age and life expectancy. Ants were divided into two groups: young and old workers. The 36 behaviors observed were divided into eight categories. Workers exhibit a clear division of tasks throughout their lives, with young workers performing more tasks inside the colony and old workers, outside, unlike species that have small colonies. This species also exhibits an intermediate life expectancy compared to workers of other species that are also intermediary in size. This supports the hypothesis of a relationship between size and maximum life expectancy, but it also suggests that other factors may also be acting in concert. Entropy value shows a high mortality rate during the first life intervals.

  4. Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae)

    PubMed Central

    Hojo, Masaru K.; Wada-Katsumata, Ayako; Akino, Toshiharu; Yamaguchi, Susumu; Ozaki, Mamiko; Yamaoka, Ryohei

    2008-01-01

    The exploitation of parental care is common in avian and insect ‘cuckoos’ and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N. fusca caterpillars chemically mimic host larvae, or some particular castes of the host ant, so that the caterpillars are accepted and cared for by the host workers. Behaviourally, it was observed that the host workers enthusiastically tended glass dummies coated with the cuticular chemicals of larvae or males and those of N. fusca caterpillars living together. Cuticular chemical analyses revealed that N. fusca caterpillars grown in a host ant nest acquired a colony-specific blend of cuticular hydrocarbons (CHCs). Furthermore, the CHC profiles of the N. fusca caterpillars were particularly close to those of the males rather than those of the host larvae and the others. We suggest that N. fusca caterpillars exploit worker care by matching their cuticular profile to that of the host males, since the males are fed by trophallaxis with workers in their natal nests for approximately ten months. PMID:18842547

  5. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

    PubMed

    Singh, Narinder; Singh, S B

    2017-01-01

    A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

  6. A Y-like social chromosome causes alternative colony organization in fire ants

    USDA-ARS?s Scientific Manuscript database

    Intraspecific variability in social organization is common, yet the underlying causes are rarely known1-3. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organisation is under the control of a single Mendelian genomic element marked by two variants of an odorant b...

  7. What are the Mechanisms Behind a Parasite-Induced Decline in Nestmate Recognition in Ants?

    PubMed

    Beros, Sara; Foitzik, Susanne; Menzel, Florian

    2017-09-01

    Social insects have developed sophisticated recognition skills to defend their nests against intruders. They do this by aggressively discriminating against non-nestmates with deviant cuticular hydrocarbon (CHC) signatures. Studying nestmate recognition can be challenging as individual insects do not only vary in their discriminatory abilities, but also in their motivation to behave aggressively. To disentangle the influence of signaling and behavioral motivation on nestmate recognition, we investigated the ant Temnothorax nylanderi, where the presence of tapeworm-infected nestmates leads to reduced nestmate recognition among uninfected workers. The parasite-induced decline in nestmate recognition could be caused by higher intra-colonial cue diversity as tapeworm-infected workers are known to exhibit a modified hydrocarbon signature. This in turn may broaden the neuronal template of their nestmates, leading to a higher tolerance towards alien conspecifics. To test this hypothesis, we exchanged infected ants between colonies and analyzed their impact on CHC profiles of uninfected workers. We demonstrate that despite frequent grooming, which should promote the transfer of recognition cues, CHC profiles of uninfected workers neither changed in the presence of tapeworm-infected ants, nor did it increase cue diversity among uninfected nestmates within or between colonies. However, CHC profiles were systematically affected by the removal of nestmates and addition of non-nestmates, independently from the ants' infection status. For example, when non-nestmates were present workers expressed more dimethyl alkanes and higher overall CHC quantities, possibly to achieve a better distinction from non-nestmates. Workers showed clear task-specific profiles with tapeworm-infected workers resembling more closely young nurses than older foragers. Our results show that the parasite-induced decline in nestmate recognition is not due to increased recognition cue diversity or altered CHC

  8. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  9. Survey of invasive ants at Hakalau Forest National Wildlife Refuge

    USGS Publications Warehouse

    Peck, Robert W.; Banko, Paul C.

    2011-01-01

    We conducted a survey for invasive ants at Hakalau Forest National Wildlife Refuge, Hawai‘i Island, during 2009–2010 to evaluate potential threats to native arthropod communities and food webs. The focal area of the survey was the upper portion of the Hakalau Unit of the refuge, where native forest was being restored in abandoned cattle pastures. This area, between 1575 and 1940 m elevations, contained much alien kikuyu grass (Pennisetum clandestinum), but koa (Acacia koa) trees and other native species that were planted in the past 20 years were rapidly filling in the pasture. We surveyed for ants at predetermined points along roads, fences, and corridors of planted koa. Sampling methods primarily consisted of hand searching and pitfall traps, but bait cards were used additionally in some instances. Our results indicated that a single species, Cardiocondyla kagutsuchi, was widespread across the upper portion of the refuge. Cardiocondyla kagutsuchi seemed absent, or at least rare, in areas of tall, dense grass. Due to the undulating topography of the area, however, the dense grass cover was interspersed with outcroppings of exposed, gravelly soil. Presumably due to warming by the sun, many of the outcropped habitats supported colonies of C. kagutsuchi. We did not detect ants in the old-growth forest below the abandoned pastures, presumably because microhabitat conditions under the forest canopy were unsuitable. Although ecological impacts of C. kagutsuchi have not been reported, they may be limited by the small size of the ant, the relatively small size of colonies, and the apparent preference of the ant for disturbed areas that are dominated by alien species. Notably, our survey of Keanakolu-Mana Road between the Observatory Road (John A. Burns Way) and the town of Waimea detected a population of Argentine ants (Linepithema humile) approximately 5.1 km north of the Maulua Section of the refuge. We also surveyed for ants on the Kona Forest Unit of the refuge

  10. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.

  11. Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.

    PubMed

    Barden, Phillip; Grimaldi, David A

    2016-02-22

    Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession." Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Water Stress Strengthens Mutualism Among Ants, Trees, and Scale Insects

    PubMed Central

    Pringle, Elizabeth G.; Akçay, Erol; Raab, Ted K.; Dirzo, Rodolfo; Gordon, Deborah M.

    2013-01-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant–plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant–plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism. PMID:24223521

  13. Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior

    NASA Astrophysics Data System (ADS)

    Cremer, Sylvia; D'Ettorre, Patrizia; Drijfhout, Falko P.; Sledge, Matthew F.; Turillazzi, Stefano; Heinze, Jürgen

    2008-11-01

    Winged and wingless males coexist in the ant Cardiocondyla obscurior. Wingless (“ergatoid”) males never leave their maternal colony and fight remorselessly among each other for the access to emerging females. The peaceful winged males disperse after about 10 days, but beforehand also mate in the nest. In the first 5 days of their life, winged males perform a chemical female mimicry that protects them against attack and even makes them sexually attractive to ergatoid males. When older, the chemical profile of winged males no longer matches that of virgin females; nevertheless, they are still tolerated, which so far has been puzzling. Contrasting this general pattern, we have identified a single aberrant colony in which all winged males were attacked and killed by the ergatoid males. A comparative analysis of the morphology and chemical profile of these untypical attacked winged males and the tolerated males from several normal colonies revealed that normal old males are still performing some chemical mimicry to the virgin queens, though less perfect than in their young ages. The anomalous attacked winged males, on the other hand, had a very different odour to the females. Our study thus exemplifies that the analysis of rare malfunctioning can add valuable insight on functioning under normal conditions and allows the conclusion that older winged males from normal colonies of the ant C. obscurior are guarded through an imperfect chemical female mimicry, still close enough to protect against attacks by the wingless fighters yet dissimilar enough not to elicit their sexual interest.

  14. Specialization Does Not Predict Individual Efficiency in an Ant

    PubMed Central

    Dornhaus, Anna

    2008-01-01

    The ecological success of social insects is often attributed to an increase in efficiency achieved through division of labor between workers in a colony. Much research has therefore focused on the mechanism by which a division of labor is implemented, i.e., on how tasks are allocated to workers. However, the important assumption that specialists are indeed more efficient at their work than generalist individuals—the “Jack-of-all-trades is master of none” hypothesis—has rarely been tested. Here, I quantify worker efficiency, measured as work completed per time, in four different tasks in the ant Temnothorax albipennis: honey and protein foraging, collection of nest-building material, and brood transports in a colony emigration. I show that individual efficiency is not predicted by how specialized workers were on the respective task. Worker efficiency is also not consistently predicted by that worker's overall activity or delay to begin the task. Even when only the worker's rank relative to nestmates in the same colony was used, specialization did not predict efficiency in three out of the four tasks, and more specialized workers actually performed worse than others in the fourth task (collection of sand grains). I also show that the above relationships, as well as median individual efficiency, do not change with colony size. My results demonstrate that in an ant species without morphologically differentiated worker castes, workers may nevertheless differ in their ability to perform different tasks. Surprisingly, this variation is not utilized by the colony—worker allocation to tasks is unrelated to their ability to perform them. What, then, are the adaptive benefits of behavioral specialization, and why do workers choose tasks without regard for whether they can perform them well? We are still far from an understanding of the adaptive benefits of division of labor in social insects. PMID:19018663

  15. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    PubMed

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. The ecological role of ants in two Mexican agroecosystems.

    PubMed

    Risch, Stephen J; Carroll, C Ronald

    1982-10-01

    The development of the ant communities and their foraging dynamics were studied in two annual agroecosystems of the Mexican tropical lowlands: a "forest milpa" of corn, beans, and squash made by cutting and buring 40-year-old forest, and a "field milpa" of corn, beans, and squash made by plowing 1-year-old second growth. The ant community was sampled using tuna fish baits 26, 52, 110 and 353 days after planting. Although immediately after planting the same number of ant species occurred in each milpa type, thereafter the ant faunas diverged. The field milpa became completely dominated by the native fire ant, Solenopsis geminata, while the number of ant species in the forest milpa gradually increased over time, reaching eight species 110 days after planting and 14 species by 353 days. Initially S. geminata dominated the ant fauna in the forest milpa (occurring on 90% of the baits), but by 353 days planting it was found on only 26% of the occupied baits. Ant foraging efficiency, as measured by proportion of tuna baits occupied and the removal rates of dead Drosophila fly baits, was much higher (by a factor of 2 to 3) in the field than the forest milpa. This was caused by the extremely high density of S. geminata colonies in the field milpa. The simple Solenopsis-dominated community of the field milpa may be much more effective in biological control than the more diverse community of the forest milpa. Although S. geminata has potential negative impacts in annual agroecosystems (it stings, eats corn seeds, and guards homopterams), its overall impact appears to be beneficial. As forested areas of the lowland wet tropics are increasingly cut and converted to annual agriculture, the primary ant inhabitant of these highly disturbed environments, S. geminata, will necessarily play a much more significant ecological role in agroecosystems.

  17. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon

    2010-02-01

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone.

  18. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  19. Ant-inspired density estimation via random walks

    PubMed Central

    Musco, Cameron; Su, Hsin-Hao

    2017-01-01

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146

  20. Ant-inspired density estimation via random walks.

    PubMed

    Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A

    2017-10-03

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.

  1. Population-Based Ant Colony Optimization for Multivariate Microaggregation

    ERIC Educational Resources Information Center

    Aksut, Ann Ahu

    2013-01-01

    Numerous organizations collect and distribute non-aggregate personal data for a variety of different purposes, including demographic and public health research. In these situations, the data distributor is responsible with the protection of the anonymity and personal information of individuals. Microaggregation is one of the most commonly used…

  2. Adaptable Learning Pathway Generation with Ant Colony Optimization

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2009-01-01

    One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…

  3. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.

    PubMed

    Bologna, Audrey; Detrain, Claire

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.

  4. Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)

    PubMed Central

    Perna, Andrea; Granovskiy, Boris; Garnier, Simon; Nicolis, Stamatios C.; Labédan, Marjorie; Theraulaz, Guy; Fourcassié, Vincent; Sumpter, David J. T.

    2012-01-01

    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed. PMID:22829756

  5. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off.

    PubMed

    Reid, Chris R; Lutz, Matthew J; Powell, Scott; Kao, Albert B; Couzin, Iain D; Garnier, Simon

    2015-12-08

    The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.

  6. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  7. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  8. Ants adjust their pheromone deposition to a changing environment and their probability of making errors

    PubMed Central

    Czaczkes, Tomer J.; Heinze, Jürgen

    2015-01-01

    Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. PMID:26063845

  9. Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme

    2009-01-01

    In studying the ant genus Azteca, a Neotropical group of arboreal species, we aimed to determine the extent to which the ants use predation and/or aggressiveness to protect their host plants from defoliating insects. We compared a territorially dominant, carton-nester, Azteca chartifex, and three plant-ant species. Azteca alfari and Azteca ovaticeps are associated with the myrmecophyte Cecropia (Cecropiaceae) and their colonies shelter in its hollow branches; whereas Azteca bequaerti is associated with Tococa guianensis (Melastomataceae) and its colonies shelter in leaf pouches situated at the base of the laminas. Whereas A. bequaerti workers react to the vibrations transmitted by the lamina when an alien insect lands on a leaf making it unnecessary for them to patrol their plant, the workers of the three other species rather discover prey by contact. The workers of all four species use a predatory behaviour involving spread-eagling alien insects after recruiting nestmates at short range, and, in some cases, at long range. Because A. alfari and A. ovaticeps discard part of the insects they kill, we deduced that the workers’ predatory behaviour and territorial aggressiveness combine in the biotic defence of their host tree.

  10. Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca.

    PubMed

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme

    2009-01-01

    In studying the ant genus Azteca, a Neotropical group of arboreal species, we aimed to determine the extent to which the ants use predation and/or aggressiveness to protect their host plants from defoliating insects. We compared a territorially dominant, carton-nester, Azteca chartifex, and three plant-ant species. Azteca alfari and Azteca ovaticeps are associated with the myrmecophyte Cecropia (Cecropiaceae) and their colonies shelter in its hollow branches; whereas Azteca bequaerti is associated with Tococa guianensis (Melastomataceae) and its colonies shelter in leaf pouches situated at the base of the laminas. Whereas A. bequaerti workers react to the vibrations transmitted by the lamina when an alien insect lands on a leaf making it unnecessary for them to patrol their plant, the workers of the three other species rather discover prey by contact. The workers of all four species use a predatory behaviour involving spread-eagling alien insects after recruiting nestmates at short range, and, in some cases, at long range. Because A. alfari and A. ovaticeps discard part of the insects they kill, we deduced that the workers' predatory behaviour and territorial aggressiveness combine in the biotic defence of their host tree.

  11. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants

    PubMed Central

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161

  12. Sex Attractant Pheromones of Virgin Queens of Sympatric Slave-Making Ant Species in the Genus Polyergus, and their Possible Roles in Reproductive Isolation.

    PubMed

    Greenberg, Les; Johnson, Christine A; Trager, James C; McElfresh, J Steven; Rodstein, Joshua; Millar, Jocelyn G

    2018-06-01

    Species of the ant genus Polyergus are social parasites that steal brood from colonies of their hosts in the closely related genus Formica. Upon emergence as adults in a mixed population, host Formica workers carry out all the normal worker functions within the Polyergus colony, including foraging, feeding, grooming, and rearing brood of the parasitic Polyergus ants. Some unmated Polyergus gynes (queens) run in the raiding columns of their colonies and attract males by releasing a pheromone from their mandibular glands. There are two Polyergus species groups in North America: an eastern P. lucidus group and a western P. breviceps group. One species of each of these groups, P. lucidus Mayr and P. mexicanus Emery, are sympatric in Missouri. In this study, we characterized the sex pheromones of virgin queens of two species of the P. lucidus group (P. lucidus sensu stricto and P. sanwaldi) and one species of the P. breviceps group (P. mexicanus), and compared these with the previously identified sex pheromone of P. topoffi of the P. breviceps group. We then used sex pheromone blends reconstructed from synthesized components of the two groups to test their efficacy at reproductively isolating these species. We found that methyl 6-methylsalicylate is conserved as the major component of the pheromone blends for both Polyergus species groups; however, methyl (R)-3-ethyl-4-methylpentanoate is the species-specific minor component produced by P. lucidus group queens, and (R)-3-ethyl-4-methylpentan-1-ol is the crucial minor component for P. breviceps group queens. The optimal ratio of the major and minor components for P. lucidus group queens was about 100:1 salicylate to ester. In concurrent field trials in Missouri, males of P. lucidus sensu stricto and P. mexicanus (a member of the P. breviceps group) were attracted almost exclusively to their particular blends of sex pheromone components. To our knowledge, this is the first example of a possible sex

  13. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination

    NASA Astrophysics Data System (ADS)

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-07-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange.

  14. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors.

    PubMed

    Keller, Roberto A; Peeters, Christian; Beldade, Patrícia

    2014-01-01

    The concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head-thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants' ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001.

  15. Natural enemies of Atta vollenweideri (Hymenoptera: Formicidae) leaf-cutter ants negatively affected by synthetic pesticides, chlorpyrifos and fipronil.

    PubMed

    Guillade, Andrea C; Folgarait, Patricia J

    2014-02-01

    In southern South America, Ada vollenweideri Forel (Hymenoptera: Formicidae) is a significant pest of several crops and forestry, also considered to reduce the carrying capacity of pastures. The most usual control method used in Latin America is the application of synthetic pesticides, mainly chlorpyrifos and fipronil. However, no studies have assessed the effects of these agrochemicals on natural enemies of ants. We aimed to evaluate the efficiency of these pesticides on leaf-cutter ants' control and to test their effect on phorid fly parasitoids. Chlorpyrifos failed to exert complete control over ant colonies in the field and was gravely detrimental to specific parasitoids, reducing their percentage of parasitism, pupal survivorship, and adult longevity. Fipronil, however, exerted complete control over the treated colonies. Laboratory tests using both pesticides, either on ants from foraging trails or on pupariae, showed that chlorpyrifos and fipronil decreased larval and pupal survivorship, as well as adult longevity of parasitoids, in comparison to controls. In conclusion, these pesticides will likely affect parasitoids with regard to their reproductive capacity, leading to the decreased levels of natural parasitism observed in the field after treatments. We discuss why neither pesticide should be taken into account for integrated pest management programs.

  16. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  17. Identification of an ant queen pheromone regulating worker sterility.

    PubMed

    Holman, Luke; Jørgensen, Charlotte G; Nielsen, John; d'Ettorre, Patrizia

    2010-12-22

    The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal.

  18. Workers' Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi).

    PubMed

    Medeiros, J; Araújo, A

    2014-04-01

    Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers' extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter's disappearance. Colony fission affected workers' extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.

  19. A preliminary study to metaheuristic approach in multilayer radiation shielding optimization

    NASA Astrophysics Data System (ADS)

    Arif Sazali, Muhammad; Rashid, Nahrul Khair Alang Md; Hamzah, Khaidzir

    2018-01-01

    Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.

  20. Lazy workers are necessary for long-term sustainability in insect societies

    PubMed Central

    Hasegawa, Eisuke; Ishii, Yasunori; Tada, Koichiro; Kobayashi, Kazuya; Yoshimura, Jin

    2016-01-01

    Optimality theory predicts the maximization of productivity in social insect colonies, but many inactive workers are found in ant colonies. Indeed, the low short-term productivity of ant colonies is often the consequence of high variation among workers in the threshold to respond to task-related stimuli. Why is such an inefficient strategy among colonies maintained by natural selection? Here, we show that inactive workers are necessary for the long-term sustainability of a colony. Our simulation shows that colonies with variable thresholds persist longer than those with invariable thresholds because inactive workers perform the critical function of replacing active workers when they become fatigued. Evidence of the replacement of active workers by inactive workers has been found in ant colonies. Thus, the presence of inactive workers increases the long-term persistence of the colony at the expense of decreasing short-term productivity. Inactive workers may represent a bet-hedging strategy in response to environmental stochasticity. PMID:26880339

  1. Ants adjust their pheromone deposition to a changing environment and their probability of making errors.

    PubMed

    Czaczkes, Tomer J; Heinze, Jürgen

    2015-07-07

    Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Revolutionizing Remote Exploration with ANTS

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable ind