Sample records for ant community composition

  1. Influences of Species Interactions With Aggressive Ants and Habitat Filtering on Nest Colonization and Community Composition of Arboreal Twig-Nesting Ants.

    PubMed

    Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo

    2018-04-05

    Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.

  2. LIVESTOCK GRAZING EFFECTS ON ANT COMMUNITIES IN THE EASTERN MOJAVE DESERT, USA

    EPA Science Inventory

    The effects of livestock grazing on composition and structure of ant communities were examined in the eastern Mojave Desert, USA for the purpose of evaluating ant communities as potential indicators of rangeland condition. Metrics for ant communities, vegetation, and other groun...

  3. Ants impact the composition of the aquatic macroinvertebrate communities of a myrmecophytic tank bromeliad.

    PubMed

    Dejean, Alain; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Bonhomme, Camille; Talaga, Stanislas; Pelozuelo, Laurent; Hénaut, Yann; Corbara, Bruno

    2018-03-01

    In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Soil disturbance effects on the composition of seed-dispersing ants in roadside environments.

    PubMed

    Palfi, Zsofia; Spooner, Peter G; Robinson, Wayne

    2017-02-01

    Myrmecochory (the dispersal of seeds by ants) is a significant ecological process in sclerophyll woodlands, but habitat disturbance is known to alter the extent and success of this mutualism. We investigated the influence of soil disturbance on the composition of the seed-dispersing ant community. Surveys were conducted in roadside verges where soils are regularly disturbed by road maintenance activities. Using a 'cafeteria' bait station approach, we selected 24 roads of different widths to investigate ant composition and abundance in relation to soil disturbance. We found ant species richness was greater in non-disturbed than disturbed zones, where road verge width significantly influenced results. The composition and abundance of individual seed-dispersing ant species varied between disturbed and non-disturbed zones. Rhytidoponera metallica were more abundant in non-disturbed sites, whereas Melophorus bruneus and Monomorium rothseini were more frequently recorded in disturbed areas. Commonly found Iridomyrmex purpureus was significantly more abundant in disturbed zones in narrow roadsides and vice versa in wide roadsides, and strongly influenced total community composition. Variation in the abundance of commonly recorded Iridomyrmex and Monomorium genera were related more to site conditions (roadside width and habitat) than soil disturbance. The rich composition of seed dispersing ants in roadside environments, and the effects of soil disturbances on these ant communities that we describe, provide a key insight to important seed dispersal vectors occurring in fragmented rural landscapes.

  5. Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia

    PubMed Central

    Berman, Maïa; Andersen, Alan N.; Hély, Christelle; Gaucherel, Cédric

    2013-01-01

    Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities. PMID:23840639

  6. Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates

    PubMed Central

    Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M

    2015-01-01

    The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community. Synthesis and applications. Our results suggest that riparian reserves are comparable to areas of logged forest in terms of ant community composition and ant-mediated scavenging. Hence, in addition to protecting large continuous areas of primary and logged forest, maintaining riparian reserves is a successful strategy for conserving leaf litter ants and their scavenging activities in tropical agricultural landscapes. PMID:25678717

  7. Seasonal dynamics of ant community structure in the Moroccan Argan Forest.

    PubMed

    El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.

  8. Can anthropic fires affect epigaeic and hypogaeic Cerrado ant (Hymenoptera: Formicidae) communities in the same way?

    PubMed

    Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira

    2016-03-01

    Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.

  9. Agricultural matrices affect ground ant assemblage composition inside forest fragments

    PubMed Central

    Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493

  10. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    PubMed

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  11. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants.

    PubMed

    Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette

    2006-08-01

    Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.

  12. Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods

    PubMed Central

    Lubertazzi, David; Tschinkel, Walter R.

    2003-01-01

    Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237

  13. Ant community composition across a gradient of disturbed military landscapes at Fort Benning, Georgia

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2008-01-01

    Military training, soil texture, and ground cover influence ant communities at Fort Benning, a military installation in west-central Georgia. We sampled 81,237 ground-dwelling ants (47 species in 20 genera) with pitfall traps at 40 sites on a continuum from nearly pristine forest to highly disturbed training areas. We also measured 15 environmental variables related to vegetation and soil. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and more compact soils with shallower A-horizons than comparable undisturbed sites. Pheidole bicarinata, Dorymyrmex smithi, and Pogonomyrmex badius dominated the most highly disturbed sites. Competitively submissive myrmicines, such as Aphaenogaster and Crematogaster, and formicines, such as Camponotus and Formica, were abundant in the undisturbed sites. Solenopsis invicta occurred in all but the least disturbed sites. Ant community composition was a useful indicator of disturbance at Fort Benning.

  14. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar.

    PubMed

    Belchior, Ceres; Sendoya, Sebastián F; Del-Claro, Kleber

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation.

  15. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar

    PubMed Central

    Belchior, Ceres; Sendoya, Sebastián F.

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  16. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    PubMed

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

  17. Reduced densities of the invasive wasp, Vespula vulgaris (Hymenoptera: Vespidae), did not alter the invertebrate community composition of Nothofagus forests in New Zealand.

    PubMed

    Duthie, Catherine; Lester, Philip J

    2013-04-01

    Invasive common wasps (Vespula vulgaris L.) are predators of invertebrates in Nothofagus forests of New Zealand. We reduced wasp densities by poisoning in three sites over three y. We predicted an increase in the number of invertebrates and a change in the community composition in sites where wasps were poisoned (wasps removed) relative to nearby sites where wasps were not poisoned (wasps maintained). Wasp densities were significantly reduced by an average of 58.9% by poisoning. Despite this reduction in wasp densities, native bush ants (Prolasius advenus Forel) were the only taxa that was significantly influenced by wasp removal. However, contrary to our predictions there were more ants caught in pitfall traps where wasps were maintained. We believe that the higher abundance of these ants is probably because of the scarcity of honeydew in wasp-maintained sites and compensatory foraging by ants in these areas. Otherwise, our results indicated no significant effects of reduced wasp densities on the total number of invertebrates, or the number of invertebrate families, observed in pitfall or Malaise traps. An analysis of community composition (permutational multivariate analysis of variance) also indicated no significant difference between wasp-removed or wasp-maintained communities. The most parsimonious explanation for our results is that although we significantly reduced wasp numbers, we may not have reduced numbers sufficiently or for a sufficiently long period, to see a change or recovery in the community.

  18. Effects of predatory ants within and across ecosystems in bromeliad food webs.

    PubMed

    Gonçalves, Ana Z; Srivastava, Diane S; Oliveira, Paulo S; Romero, Gustavo Q

    2017-07-01

    Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Effectiveness of Winkler Litter Extraction and Pitfall Traps in Sampling Ant Communities and Functional Groups in a Temperate Forest.

    PubMed

    Mahon, Michael B; Campbell, Kaitlin U; Crist, Thomas O

    2017-06-01

    Selection of proper sampling methods for measuring a community of interest is essential whether the study goals are to conduct a species inventory, environmental monitoring, or a manipulative experiment. Insect diversity studies often employ multiple collection methods at the expense of researcher time and funding. Ants (Formicidae) are widely used in environmental monitoring owing to their sensitivity to ecosystem changes. When sampling ant communities, two passive techniques are recommended in combination: pitfall traps and Winkler litter extraction. These recommendations are often based on studies from highly diverse tropical regions or when a species inventory is the goal. Studies in temperate regions often focus on measuring consistent community response along gradients of disturbance or among management regimes; therefore, multiple sampling methods may be unnecessary. We compared the effectiveness of pitfalls and Winkler litter extraction in an eastern temperate forest for measuring ant species richness, composition, and occurrence of ant functional groups in response to experimental manipulations of two key forest ecosystem drivers, white-tailed deer and an invasive shrub (Amur honeysuckle). We found no significant effect of sampling method on the outcome of the ecological experiment; however, we found differences between the two sampling methods in the resulting ant species richness and functional group occurrence. Litter samples approximated the overall combined species richness and composition, but pitfalls were better at sampling large-bodied (Camponotus) species. We conclude that employing both methods is essential only for species inventories or monitoring ants in the Cold-climate Specialists functional group. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan

    PubMed Central

    Reese, Aspen T; Savage, Amy; Youngsteadt, Elsa; McGuire, Krista L; Koling, Adam; Watkins, Olivia; Frank, Steven D; Dunn, Robert R

    2016-01-01

    The biological diversity and composition of microorganisms influences both human health outcomes and ecological processes; therefore, understanding the factors that influence microbial biodiversity is key to creating healthy, functional landscapes in which to live. In general, biological diversity is predicted to be limited by habitat size, which for green areas is often reduced in cities, and by chronic disturbance (stress). These hypotheses have not previously been tested in microbial systems in direct comparison to macroorganisms. Here we analyzed bacterial, fungal and ant communities in small road medians (average area 0.0008 km2) and larger parks (average area 0.64 km2) across Manhattan (NYC). Bacterial species richness was not significantly different between medians and parks, but community composition was significantly distinct. In contrast, ant communities differed both in composition and richness with fewer ant species in medians than parks. Fungi showed no significant variation in composition or richness but had few shared taxa between habitats or sites. The diversity and composition of microbes appears less sensitive to habitat patchiness or urban stress than those of macroorganisms. Microbes and their associated ecosystem services and functions may be more resilient to the negative effects of urbanization than has been previously appreciated. PMID:26394011

  1. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests

    PubMed Central

    Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  2. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    PubMed

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Ants of three adjacent habitats of a transition region between the cerrado and caatinga biomes: the effects of heterogeneity and variation in canopy cover.

    PubMed

    Neves, F S; Queiroz-Dantas, K S; da Rocha, W D; Delabie, J H C

    2013-06-01

    Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological-evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.

  4. Multiple Ant Species Tending Lac Insect Kerria yunnanensis (Hemiptera: Kerriidae) Provide Asymmetric Protection against Parasitoids

    PubMed Central

    Li, Qiao; Hoffmann, Benjamin D.; Zhang, Wei

    2014-01-01

    This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the first two factors. PMID:24887398

  5. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis.

    PubMed

    Pringle, Elizabeth G; Moreau, Corrie S

    2017-03-15

    Ants have long been renowned for their intimate mutualisms with trophobionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of microbes between interacting macroorganisms, affects the composition and function of symbiotic microbial communities. Here we approached this question by investigating symbiosis within symbiosis. Ant-plant-hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and quantitative PCR to examine community structure of both bacteria and fungi in a Neotropical ant-plant-scale-insect symbiosis. Both phloem-feeding scale insects and honeydew-feeding ants make use of microbial symbionts to subsist on phloem-derived diets of suboptimal nutritional quality. Among the insects examined here, Cephalotes ants and pseudococcid scale insects had the most specialized bacterial symbionts, whereas Azteca ants appeared to consume or associate with more fungi than bacteria, and coccid scale insects were associated with unusually diverse bacterial communities. Despite these differences, we also identified apparent sharing of microbes among the macro-partners. How microbial exchanges affect the consumer-resource interactions that shape the evolution of ant-plant-hemipteran symbioses is an exciting question that awaits further research. © 2017 The Author(s).

  6. The Effects of Restoration Age and Prescribed Burns on Grassland Ant Community Structure.

    PubMed

    Menke, Sean B; Gaulke, Emilee; Hamel, Allison; Vachter, Nicole

    2015-10-01

    North American grassland environments are endangered as a result of degradation and conversion for agriculture and housing. Efforts to manage and restore grasslands have traditionally focused on monitoring plant communities to determine restoration success, but the incorporation of animal communities may provide important benchmarks of ecosystem function and restoration. Ants play many roles in maintaining ecosystem health in temperate grasslands, but relatively little is known about how ant communities respond to restoration. We studied the role that restoration age and prescribed burns have on ant communities in two types of Illinois grasslands, prairies and savannas, and identify indicator species of restoration success. Grassland environments included remnants and restorations that varied in age from newly restored sites, to sites that have been under restoration for >15 yr. We demonstrate that prairie and savanna ant communities are distinct, but respond to restoration in a similar manner. Three distinct prairie ant assemblages were identified based on the age of restoration of a site-sites <3 yr old, sites that have been under restoration >5 yr, and remnant prairies. Four distinct savanna ant assemblages were identified based on the age of restoration of a site-sites <3 yr old, sites 5-15 yr old, sites >15 yr old, and remnant savanna environments. After accounting for restoration age, time since last burn in both prairie and savannas does not explain community composition or species richness. Several ant species in both prairies and savannas have predictable changes in incidence that indicate their suitability for use as indicator species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effects of isolation on ant assemblages depend on microhabitat

    USGS Publications Warehouse

    Chen, Xuan; Adams, Benjamin; Layne, Michael; Swarzenski, Christopher M.; Norris, David O.; Hooper-Bui, Linda

    2017-01-01

    How isolation affects biological communities is a fundamental question in ecology and conservation biology. Local diversity (α) and regional diversity (γ) are consistently lower in insular areas. The pattern of species turnover (β diversity) and the influence of isolation on competitive interactions are less predictable. Differences in communities across microhabitats within an isolated patch could contribute to the variability in patterns related to isolation. Trees form characteristically dense and sparse patches (low vs. high isolation) in floating marshes in coastal Louisiana, and canopy and root areas around these trees could support distinct ant communities. Consequently, trees in floating marshes provide an ideal environment to study the effects of isolation on community assemblages in different microhabitats. We sampled ant communities in 120 trees during the summer of 2016. We found ant α diversity was not different between the canopy and roots, and the magnitude and directional effects of isolation on ants were inconsistent between the canopy and root areas. In the roots of sparse sites, ant diversity (α, β, and γ) was lower, species composition was changed, and the signature of interspecific competition was more prominent compared to dense sites. In the canopy, however, significant differences between dense and sparse sites were only detected in α and γ diversity, and ant species co‐occurrence was not significantly different from a random distribution. The inconsistent responses of ants in canopy and root areas to isolation may be due to the differences of species pool size, environmental harshness, and species interactions between strata. In addition, these findings indicate that communities in distinct microenvironments can respond differentially to habitat isolation. We suggest incorporating organisms from different microhabitats into future research to better understand the influence of isolation on the assembly of biological communities.

  8. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.

    PubMed

    Scott, Jarrod J; Budsberg, Kevin J; Suen, Garret; Wixon, Devin L; Balser, Teri C; Currie, Cameron R

    2010-03-29

    Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation gradient created by ant behavior, specifically their fungiculture and waste management.

  9. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  10. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.

    PubMed

    Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S

    2016-06-01

    In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).

  11. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  12. Effectiveness of vegetation-based biodiversity offset metrics as surrogates for ants.

    PubMed

    Hanford, Jayne K; Crowther, Mathew S; Hochuli, Dieter F

    2017-02-01

    Biodiversity offset schemes are globally popular policy tools for balancing the competing demands of conservation and development. Trading currencies for losses and gains in biodiversity value at development and credit sites are usually based on several vegetation attributes combined to yield a simple score (multimetric), but the score is rarely validated prior to implementation. Inaccurate biodiversity trading currencies are likely to accelerate global biodiversity loss through unrepresentative trades of losses and gains. We tested a model vegetation multimetric (i.e., vegetation structural and compositional attributes) typical of offset trading currencies to determine whether it represented measurable components of compositional and functional biodiversity. Study sites were located in remnant patches of a critically endangered ecological community in western Sydney, Australia, an area representative of global conflicts between conservation and expanding urban development. We sampled ant fauna composition with pitfall traps and enumerated removal by ants of native plant seeds from artificial seed containers (seed depots). Ants are an excellent model taxon because they are strongly associated with habitat complexity, respond rapidly to environmental change, and are functionally important at many trophic levels. The vegetation multimetric did not predict differences in ant community composition or seed removal, despite underlying assumptions that biodiversity trading currencies used in offset schemes represent all components of a site's biodiversity value. This suggests that vegetation multimetrics are inadequate surrogates for total biodiversity value. These findings highlight the urgent need to refine existing offsetting multimetrics to ensure they meet underlying assumptions of surrogacy. Despite the best intentions, offset schemes will never achieve their goal of no net loss of biodiversity values if trades are based on metrics unrepresentative of total biodiversity. © 2016 Society for Conservation Biology.

  13. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison.

    PubMed

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.

  14. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison

    PubMed Central

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species. PMID:28334021

  15. Drove roads: Keystone structures that promote ant diversity in Mediterranean forest landscapes

    NASA Astrophysics Data System (ADS)

    Azcárate, Francisco M.; Seoane, Javier; Castro, Sara; Peco, Begoña

    2013-05-01

    Drove roads are the traditional corridors used by pastoralists for seasonal movements of livestock (transhumance). They cover a considerable land area in Mediterranean countries and, although they are an obvious source of landscape diversity, their influence on the diversity and composition of animal assemblages has not been documented. Ant communities were studied on four active drove roads, two in forests (submediterranean and conifer) and two in open environments (croplands and rangelands). They were compared with the respective matrix communities and their contribution to local species richness was evaluated. The effects were heavily dependent on the open or closed nature of the matrix. In forest environments, drove roads increased ant species richness at the local scale, acting as clear keystone structures. Their species richness and functional diversity were highest on the fine scale, species composition was different, and a slight edge effect in the matrix was detected. In contrast, drove roads had little or even a negative effect in open environment locations. We conclude that drove roads have a high conservation value for ants in Mediterranean forest environments, in addition to their importance as reservoirs of plant biodiversity and generators of ecological goods and services.

  16. Toxicity and utilization of chemical weapons: does toxicity and venom utilization contribute to the formation of species communities?

    PubMed

    Westermann, Fabian L; McPherson, Iain S; Jones, Tappey H; Milicich, Lesley; Lester, Philip J

    2015-08-01

    Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.

  17. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods

    PubMed Central

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones. PMID:26226140

  18. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods.

    PubMed

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones.

  19. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    PubMed

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  20. Influence of the hypogaeic army ant Dorylus (Dichthadia) laevigatus on tropical arthropod communities.

    PubMed

    Berghoff, Stefanie M; Maschwitz, Ulrich; Linsenmair, K Eduard

    2003-03-01

    The majority of army ant species forage hypogaeically. Due to the difficulties in observing these ants, their potential influence on hypogaeic and epigaeic arthropod communities has not yet been investigated. As the first hypogaeically foraging army ant studied in detail, we attracted Dorylus laevigatus to areas monitored for their arthropod diversity. Here, for the first time, the same sites were sampled before and after an army ant raid. Furthermore, interactions between D. laevigatus and the five most common ground-nesting ant species were noted and their life-history traits compared, allowing first inferences on possible mechanisms of their coexistence. The occurrence of D. laevigatus within a study plot had no evident effect on the number of arthropod taxa or individuals collected with epigaeic and hypogaeic pitfall traps. Likewise, juvenile arthropods, which are less mobile and thus are potentially easier prey for D. laevigatus, showed no differences in their collected numbers before and after the army ant had visited a plot. However, significantly fewer ant species were collected with hypogaeic traps after D. laevigatus had been within the study plots, indicating a possible predation of D. laevigatus especially on two Pseudolasius and one Pheidole species. The five most common ground-foraging ant species demonstrated their ability to avoid, kill, and even prey on the army ant. The reaction of Lophomyrmex bedoti towards D. laevigatus indicated the former to be a potential prey species, while Pachycondyla sp. 2 showed signs of "enemy specification." Odontoponera diversus and O. transversa actively preyed on D. laevigatus, while Pheidologeton affinis fought with D. laevigatus over resources. All ant species could co-occur with D. laevigatus at palm oil baits. Adding to the differences detected in previous studies between D. laevigatus and epigaeically foraging army ant species, the occurrence of this hypogaeic army ant seems to have less devastating effects on arthropod community compositions than those of epigaeically mass raiding species.

  1. Disentangling the diversity of arboreal ant communities in tropical forest trees.

    PubMed

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  2. Disentangling the Diversity of Arboreal Ant Communities in Tropical Forest Trees

    PubMed Central

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities. PMID:25714831

  3. Ant diversity in Brazilian tropical dry forests across multiple vegetation domains

    NASA Astrophysics Data System (ADS)

    Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico

    2017-03-01

    Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.

  4. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists.

    PubMed

    von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C

    2018-01-01

    Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.

  5. Ants of the national park of American Samoa

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.

    2015-01-01

    American Samoa makes up the eastern end of the Samoan Archipelago. On the islands of Tutuila, Taʽū and Ofu, the National Park of American Samoa (NPSA) protects about 4,000 ha of coastal, mid-slope and ridge-top forest. While the ant fauna of the Samoan Archipelago is considered relatively well documented, much of NPSA has never been surveyed for ants, leaving the fauna and its distribution poorly known. To address this shortfall, we systematically surveyed ants within the Tutuila and Taʽū units of NPSA using standard methods (hand collecting, litter sifting, and baits) at 39 sites within six vegetation types ranging from 8 to 945 m elevation. Forty-four ant species were identified, 19 of which are exotic to the Samoan Archipelago. Two notoriously aggressive species, Anoplolepis gracilipes and Pheidole megacephala were detected at two and seven sites, respectively. Both of these species largely excluded all other ants from bait, although their impact on ant community composition is unclear. A suite of habitat variables measured at each site was assessed to explain park-wide ant distributions. Of eight variables evaluated, only elevation was associated with ant community structure, as the ratio of native to exotic ant species increased significantly with elevation on Tutuila. Our survey documented two species not previously reported from American Samoa. Strumigenys eggersi, detected at 12 sites, appears to be a new immigrant to the Pacific Basin. A species of Pheidole was collected that likely represents an undescribed species. Solenopsis geminata, an aggressive species first reported on Tutuila in 2002, was not detected during our survey.

  6. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    DOE PAGES

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; ...

    2016-03-21

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using materialmore » from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within general containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. Lastly, a representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.« less

  7. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    PubMed Central

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  8. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using materialmore » from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within general containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. Lastly, a representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.« less

  9. Spatial-temporal dynamics of neotropical velvet ant (Hymenoptera: Mutillidae) communities along a forest-savanna gradient.

    PubMed

    Alvarenga, Júlio Miguel; Vieira, Cecília Rodrigues; Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi

    2017-01-01

    Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services.

  10. Spatial-temporal dynamics of neotropical velvet ant (Hymenoptera: Mutillidae) communities along a forest-savanna gradient

    PubMed Central

    Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi

    2017-01-01

    Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services. PMID:29077763

  11. Spider diversity in coffee agroecosystems: the influence of agricultural intensification and aggressive ants.

    PubMed

    Marín, Linda; Perfecto, Ivette

    2013-04-01

    Spiders are a very diverse group of invertebrate predators found in agroecosystems and natural systems. However, spider distribution, abundance, and eventually their ecological function in ecosystems can be influenced by abiotic and biotic factors such as agricultural intensification and dominant ants. Here we explore the influence of both agricultural intensification and the dominant arboreal ant Azteca instabilis on the spider community in coffee agroecosystems in southern Mexico. To measure the influence of the arboreal ant Azteca instabilis (F. Smith) on the spider community inhabiting the coffee layer of coffee agroecosystems, spiders were collected from coffee plants that were and were not patrolled by the ant in sites differing in agricultural intensification. For 2008, generalized linear mixed models showed that spider diversity was affected positively by agricultural intensification but not by the ant. However, results suggested that some spider species were associated with A. instabilis. Therefore, in 2009 we concentrated our research on the effect of A. instabilis on spider diversity and composition. For 2009, generalized linear mixed models show that spider richness and abundance per plant were significantly higher in the presence of A. instabilis. In addition, analyses of visual counts of insects and sticky traps data show that more resources were present in plants patrolled by the ant. The positive effect of A. instabilis on spiders seems to be caused by at least two mechanisms: high abundance of insects and protection against predators.

  12. Comparison Between Ground Ant (Hymenoptera: Formicidae) Communities Foraging in the Straw Mulch of Sugarcane Crops and in the Leaf Litter of Neighboring Forests.

    PubMed

    Silva, N S; Saad, L P; Souza-Campana, D R; Bueno, O C; Morini, M S C

    2017-02-01

    In many sugarcane plantations in Brazil, the straw is left on the soil after harvesting, and vinasse, a by-product of the production of sugar and ethanol, is used for fertigation. Our goal was to compare ant community composition and species richness in the straw mulch of sugarcane crops with the leaf litter of neighboring forests. We tested the hypothesis that ant communities in the straw mulch of vinasse-irrigated sugarcane crops and in the forest leaf litter were similar, because the combination of straw mulching and vinasse irrigation has a positive effect on soil fauna. Straw mulch and leaf litter were collected from 21 sites and placed in Berlese funnels. In total, 61 species were found in the forest leaf litter, whereas 34 and 28 species were found in the straw mulch of sugarcane fields with and without vinasse, respectively. Ant communities differed between forest and crop fields, but the species in the sugarcane straw mulch were a subset of the species found in the forest leaf litter. Although vinasse is rich in organic matter, it did not increase ant diversity. Seven feeding and/or foraging types were identified and, among the different types, surface-foraging omnivorous ants were the most prevalent in all habitats. Vinasse-irrigated sugarcane straw mulch had more predatory species than mulch from vinasse-free fields, but fewer than forest leaf litter. However, this positive effect of vinasse irrigation should be carefully evaluated because vinasse has negative effects on the environment. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach

    PubMed Central

    Gontang, Erin A.; Aylward, Frank O.; Carlos, Camila; Glavina del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A.; Tringe, Susannah G.; Currie, Cameron R.; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach’s food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans. PMID:28545131

  14. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gontang, Erin A.; Aylward, Frank O.; Carlos, Camila

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant speciesmore » Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.« less

  15. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach

    DOE PAGES

    Gontang, Erin A.; Aylward, Frank O.; Carlos, Camila; ...

    2017-05-18

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant speciesmore » Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.« less

  16. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    PubMed

    Gontang, Erin A; Aylward, Frank O; Carlos, Camila; Glavina Del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A; Tringe, Susannah G; Currie, Cameron R; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  17. Monitoring the Diversity of Hunting Ants (Hymenoptera: Formicidae) on a Fragmented and Restored Andean Landscape.

    PubMed

    Herrera-Rangel, J; Jiménez-Carmona, E; Armbrecht, I

    2015-10-01

    Hunting ants are predators of organisms belonging to different trophic levels. Their presence, abundance, and diversity may reflect the diversity of other ants and contribute to evaluate habitat conditions. Between 2003 and 2005 the restoration of seven corridors in an Andean rural landscape of Colombia was performed. The restoration took place in lands that were formerly either forestry plantations or pasturelands. To evaluate restoration progress, hunting ants were intensely sampled for 7 yr, using sifted leaf litter and mini-Winkler, and pitfall traps in 21 plots classified into five vegetation types: forests, riparian forests, two types of restored corridors, and pasturelands. The ant communities were faithful to their habitat over time, and the main differences in ant composition, abundance, and richness were due to differences among land use types. The forests and riparian forests support 45% of the species in the landscape while the restored corridors contain between 8.3-25%. The change from forest to pasturelands represents a loss of 80% of the species. Ant composition in restored corridors was significantly different than in forests but restored corridors of soil of forestry plantations retained 16.7% more species than restored corridors from pasturelands. Ubiquitous hunting ants, Hypoponera opacior (Forel) and Gnamptogenys ca andina were usually associated with pastures and dominate restored corridors. Other cryptic, small, and specialized hunting ants are not present in the restored corridors. Results suggest that the history of land use is important for the biodiversity of hunting ants but also that corridors have not yet effectively contributed toward conservation goals. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil).

    PubMed

    Reis, Bárbara Monique Dos Santos; Silva, Aline; Alvarez, Martín Roberto; Oliveira, Tássio Brito de; Rodrigues, Andre

    2015-12-01

    Leaf-cutting ants interact with several fungi in addition to the fungal symbiont they cultivate for food. Here, we assessed alien fungal communities in colonies of Atta cephalotes. Fungus garden fragments were sampled from colonies in the Atlantic Rainforest and in a cabruca agrosystem in the state of Bahia (Brazil) in two distinct periods to evaluate whether differences in nest habitat influence the diversity of fungi in the ant colonies. We recovered a total of 403 alien fungi isolates from 628 garden fragments. The prevalent taxa found in these samples were Escovopsis sp. (26 %), Escovopsioides nivea (24 %), and Trichoderma spirale (10.9 %). Fungal diversity was similar between the colonies sampled in both areas suggesting that ants focus on reducing loads of alien fungi in the fungus gardens instead of avoiding specific fungi. However, fungal taxa composition differed between colonies sampled in the two areas and between the sampling periods. These differences are likely explained by the availability of plant substrates available for foraging over habitats and periods. Ordination analysis further supported that sampling period was the main attribute for community structuring but also revealed that additional factors may explain the structuring of fungal communities in colonies of A. cephalotes. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Social Insects Dominate Eastern US Temperate Hardwood Forest Macroinvertebrate Communities in Warmer Regions

    PubMed Central

    King, Joshua R.; Warren, Robert J.; Bradford, Mark A.

    2013-01-01

    Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079

  20. Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant.

    PubMed

    de Vega, Clara; Herrera, Carlos M

    2013-04-01

    Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.

  1. The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants

    PubMed Central

    Woodcock, Paul; Edwards, David P.; Fayle, Tom M.; Newton, Rob J.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2011-01-01

    South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority. PMID:22006966

  2. Predicting future coexistence in a North American ant community

    PubMed Central

    Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J

    2014-01-01

    Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378

  3. An ant colony based algorithm for overlapping community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di

    2015-06-01

    Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.

  4. Short-term effects of fire on Sky Island ant communities

    Treesearch

    Elliot B. Wilkinson; Edward G. Lebrun; Mary Lou Spencer; Caroline Whitby; Chris Kleine

    2005-01-01

    Few studies investigating effects of fire on ant communities have been conducted worldwide, and none in the biologically diverse and fire prone region of the Sky Islands. Ant genera richness and total abundance are significantly higher in burned areas. Ant community structure changes between unburned and burned sites, implying that disturbance may influence the role of...

  5. Ant distribution in relation to ground water in north Florida pine flatwoods.

    PubMed

    Tschinkel, Walter R; Murdock, Tyler; King, Joshua R; Kwapich, Christina

    2012-01-01

    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known.

  6. Impacts of Intensive Logging on the Trophic Organisation of Ant Communities in a Biodiversity Hotspot

    PubMed Central

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance. PMID:23593302

  7. Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot.

    PubMed

    Woodcock, Paul; Edwards, David P; Newton, Rob J; Vun Khen, Chey; Bottrell, Simon H; Hamer, Keith C

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance.

  8. Pericarpial nectary-visiting ants do not provide fruit protection against pre-dispersal seed predators regardless of ant species composition and resource availability

    PubMed Central

    Ré Jorge, Leonardo; Benitez-Vieyra, Santiago; Amorim, Felipe W.

    2017-01-01

    Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms. PMID:29211790

  9. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  10. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems

    PubMed Central

    Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann

    2014-01-01

    Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield. PMID:24307667

  11. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive were studied in a replicated experiment in a Chihuahuan Desert grassland. The results from sampling of ant communities by pit-fall trapping were validated by mapping ant colonies on the experimental plo...

  12. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  13. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata

    PubMed Central

    Dyer, Lee A.

    2002-01-01

    While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests. PMID:15455052

  14. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata.

    PubMed

    Dyer, Lee A

    2002-01-01

    While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.

  15. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive
    were studied in a replicated experiment in a Chihuahuan Desert grassland. The
    results from sampling of ant communities by pit-fall trapping were validated by
    mapping ant colonies on the expe...

  16. Mutualism between co-introduced species facilitates invasion and alters plant community structure

    PubMed Central

    Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.

    2015-01-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  17. The invasive ant, Solenopsis invicta, reduces herpetofauna richness and abundance

    USGS Publications Warehouse

    Allen, Craig R.; Birge, Hannah E.; Slater, J.; Wiggers, E.

    2017-01-01

    Amphibians and reptiles are declining globally. One potential cause of this decline includes impacts resulting from co-occurrence with non-native red imported fire ant, Solenopsis invicta. Although a growing body of anecdotal and observational evidence from laboratory experiments supports this hypothesis, there remains a lack of field scale manipulations testing the effect of fire ants on reptile and amphibian communities. We addressed this gap by measuring reptile and amphibian (“herpetofauna”) community response to successful fire ant reductions over the course of 2 years following hydramethylnon application to five 100–200 ha plots in southeastern coastal South Carolina. By assessing changes in relative abundance and species richness of herpetofauna in response to fire ant reductions, we were able to assess whether some species were particularly vulnerable to fire ant presence, and whether this sensitivity manifested at the community level. We found that herpetofauna abundance and species richness responded positively to fire ant reductions. Our results document that even moderate populations of red imported fire ants decrease both the abundance and diversity of herpetofauna. Given global herpetofauna population declines and continued spread of fire ants, there is urgency to understand the impacts of fire ants beyond anecdotal and singles species studies. Our results provides the first community level investigation addressing these dynamics, by manipulating fire ant abundance to reveal a response in herpetofauna species abundance and richness.

  18. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    PubMed

    Canedo-Júnior, Ernesto Oliveira; Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  19. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    PubMed Central

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  20. On the biogeography of salt limitation: A study of ant communities

    PubMed Central

    Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert

    2008-01-01

    Sodium is an essential nutrient whose deposition in rainfall decreases with distance inland. The herbivores and microbial decomposers that feed on sodium-poor vegetation should be particularly constrained along gradients of decreasing sodium. We studied the use of sucrose and NaCl baits in 17 New World ant communities located 4–2757 km inland. Sodium use was higher in genera and subfamilies characterized as omnivores/herbivores compared with those classified as carnivores and was lower in communities embedded in forest litter than in those embedded in abundant vegetation. Sodium use was increased in ant communities further inland, as was preference for the baits with the highest sodium concentration. Sucrose use, a measure of ant activity, peaked in communities 10–100 km inland. We suggest that the geography of ant activity is shaped by sodium toxicity near the shore and by sodium deficit farther inland. Given the importance of ants in terrestrial ecosystems, changing patterns of rainfall with global change may ramify through inland food webs. PMID:19004798

  1. Predatory birds and ants partition caterpillar prey by body size and diet breadth.

    PubMed

    Singer, Michael S; Clark, Robert E; Lichter-Marck, Issac H; Johnson, Emily R; Mooney, Kailen A

    2017-10-01

    The effects of predator assemblages on herbivores are predicted to depend critically on predator-predator interactions and the extent to which predators partition prey resources. The role of prey heterogeneity in generating such multiple predator effects has received limited attention. Vertebrate and arthropod insectivores constitute two co-dominant predatory taxa in many ecosystems, and the emergent properties of their joint effects on insect herbivores inform theory on multiple predator effects as well as biological control of insect herbivores. Here we use a large-scale factorial manipulation to assess the extent to which birds and ants engage in antagonistic predator-predator interactions and the consequences of heterogeneity in herbivore body size and diet breadth (i.e. the diversity of host plants used) for prey partitioning. We excluded birds and reduced ant density (by 60%) in the canopies of eight northeastern USA deciduous tree species during two consecutive years and measured the community composition and traits of lepidopteran larvae (caterpillars). Birds did not affect ant density, implying limited intraguild predation between these taxa in this system. Birds preyed selectively upon large-bodied caterpillars (reducing mean caterpillar length by 12%) and ants preyed selectively upon small-bodied caterpillars (increasing mean caterpillar length by 6%). Birds and ants also partitioned caterpillar prey by diet breadth. Birds reduced the frequency dietary generalist caterpillars by 24%, while ants had no effect. In contrast, ants reduced the frequency of dietary specialists by 20%, while birds had no effect, but these effects were non-additive; under bird exclusion, ants had no detectable effect, while in the presence of birds, they reduced the frequency of specialists by 40%. As a likely result of prey partitioning by body size and diet breadth, the combined effects of birds and ants on total caterpillar density were additive, with birds and ants reducing caterpillar density by 44% and 20% respectively. These results show evidence for the role of prey heterogeneity in driving functional complementarity among predators and enhanced top-down control. Heterogeneity in herbivore body size and diet breadth, as well as other prey traits, may represent key predictors of the strength of top-down control from predator communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  2. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health.

    PubMed

    Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests.

  3. Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants.

    PubMed

    Rodrigues, Andre; Cable, Rachel N; Mueller, Ulrich G; Bacci, Maurício; Pagnocca, Fernando C

    2009-10-01

    We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.

  4. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a “back-seat driver” role and affects pest management strategies. As demonstrated by T. sessile, this article concludes native species can become back-seat drivers of biodiversity loss and potentially thrive as “metro-invasive” species. PMID:25551819

  5. ANT COMMUNITIES AND LIVESTOCK GRAZING IN THE GREAT BASIN, USA

    EPA Science Inventory

    The objectives of this study were to determine if metrics for ant species assemblages can be used as indicators of rangeland condition, and to determine the influence of vegetation and ground cover variables, factors often influenced by livestock grazing, on ant communities. The ...

  6. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  7. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and diverse tropical omnivore communities.

  8. Necrophilous Insect Dynamics at Small Vertebrate Carrion in a Temperate Eucalypt Woodland.

    PubMed

    Barton, Philip S; Evans, Maldwyn J; Pechal, Jennifer L; Benbow, M Eric

    2017-07-01

    Insects associated with carrion are critical to the decomposition process and nutrient cycling in ecosystems. Yet the communities of insects associated with carrion vary between locations, and detailed case studies are necessary for identifying differences and similarities among contrasting habitats. In this study, we examined temporal changes in the crawling insect community collected from rabbit carcasses placed in contrasting grassland and tree habitats in southeastern Australia. We collected 18,400 adult insects, including 22 species of fly, 57 species of beetle, and 37 species of ant. We found significant effects of habitat type and time, but not their interaction, on the composition of the entire insect community. Several ant species showed early and rapid colonization and highest abundances during early stages of decay, including Iridomyrmex purpureus (Smith, 1858) under trees, and Iridomyrmex rufoniger (Lowne, 1865) and Rhytidoponera metallica (Smith, 1858) in grassland. We found that most fly species showed highest abundance during active decay, but Chrysomya varipes (Macquart 1851) was more abundant under trees than in grassland during this time. Beetles peaked during active or advanced decay stages, with Saprinus and Omorgus the most abundant genera. Our study demonstrates that strong replication of contrasting environmental treatments can reveal new information on habitat preferences of important carrion insect species. The numerical dominance of ants early in decomposition has implications for insect community structure via potential competitive interactions with flies, and should be more rigorously examined in future carrion studies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effects of urban development on ant communities: implications for ecosystem services and management

    Treesearch

    M.P. Sanford; Patricia N. Manley; Dennis D. Murphy

    2009-01-01

    Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient...

  10. SEASONAL AND DIURNAL ACTIVITY PATTERNS IN ANT (HYMENOPTERA: FORMICIDAE) COMMUNITIES IN A VEGETATION TRANSITION REGION OF SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    The densities of active ant colonies were estimated in three habitats: creosotebush shrubland, grassland, and shinnery-oak mesquite dunes. Diurnal foraging patterns were studied at bait boards. Species richness of ant communities in this transitional region (8-12 species) was co...

  11. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wike, L; Doug Martin, D; Michael Paller, M

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here.more » This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.« less

  12. Red imported fire ant impacts on upland arthropods in Southern Mississippi

    USGS Publications Warehouse

    Epperson, D.M.; Allen, Craig R.

    2010-01-01

    Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.

  13. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants

    PubMed Central

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation. PMID:29152414

  14. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants.

    PubMed

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain; Carval, Dominique

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation.

  15. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  16. Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment.

    PubMed

    Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme

    2017-01-01

    The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.

  17. Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands

    PubMed Central

    Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.

    2016-01-01

    Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919

  18. Extrafloral nectar content alters foraging preferences of a predatory ant

    PubMed Central

    Wilder, Shawn M.; Eubanks, Micky D.

    2010-01-01

    We tested whether the carbohydrate and amino acid content of extrafloral nectar affected prey choice by a predatory ant. Fire ants, Solenopsis invicta, were provided with artificial nectar that varied in the presence of carbohydrates and amino acids and were then provided with two prey items that differed in nutritional content, female and male crickets. Colonies of fire ants provided with carbohydrate supplements consumed less of the female crickets and frequently did not consume the high-lipid ovaries of female crickets. Colonies of fire ants provided with amino acid supplements consumed less of the male crickets. While a number of studies have shown that the presence of extrafloral nectar or honeydew can affect ant foraging activity, these results suggest that the nutritional composition of extrafloral nectar is also important and can affect subsequent prey choice by predatory ants. Our results suggest that, by altering the composition of extrafloral nectar, plants could manipulate the prey preferences of ants foraging on them. PMID:19864270

  19. Effects of temporally persistent ant nests of soil protozoan communities and the abundance of morphological types of amoeba

    USDA-ARS?s Scientific Manuscript database

    We compared soil protozoan communities near ant nests with soil protozoans in reference soils 5m from the edge of any mounds. We sampled three species of Chihuahuan Desert ants that construct nests that persist for more than a decade: a seed harvester, Pogonomymex rugosus, a liquid feeding honey-po...

  20. How Ants Drop Out: Ant Abundance on Tropical Mountains

    PubMed Central

    Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  1. How ants drop out: ant abundance on tropical mountains.

    PubMed

    Longino, John T; Branstetter, Michael G; Colwell, Robert K

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops.

  2. Tallgrass prairie ants: their species composition, ecological roles, and response to management

    USDA-ARS?s Scientific Manuscript database

    Ants are highly influential organisms in terrestrial ecosystems, including the tallgrass prairie, one of the most endangered ecosystems in North America. Through their tunneling, ants affect soil properties and resource availability for animals and plants. Ants also have important ecological roles a...

  3. Ant-plant-herbivore interactions in the neotropical cerrado savanna.

    PubMed

    Oliveira, Paulo S; Freitas, André V L

    2004-12-01

    The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant-plant-herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant-plant-butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant-plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.

  4. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality

    PubMed Central

    Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen

    2013-01-01

    Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946

  5. COMPARISON OF ANOVA AND KRIGING IN DETECTING ANT RESPONSES TO ENVIRONMENTAL STRESSORS

    EPA Science Inventory

    In an ecosystems, ants effect ecosystem functions such as water infiltration, soil nutrient distribution and composition of the soil seed bank. Ants have also been used as indicators of ecosystems health. In a study, we hypothesized that some ant species would respond to changes ...

  6. Effects of harvesting treatments on the ant community in a Mississippi River bottomland hardwood forest in west-central Mississippi

    Treesearch

    Lynne C. Thompson; David M. General; Brian Roy Lockhart

    2010-01-01

    We assessed effects that harvesting treatments had on the ant community in a Mississippi River bottomland hardwood forest in west-central MS. Ants were collected on Pittman Island using pitfall traps from July to November in 1996, 1997, and 2000. The forest received three replicated harvesting treatments in 1995, including: 1) uncut controls (check), 2) selection...

  7. Competition can lead to unexpected patterns in tropical ant communities

    NASA Astrophysics Data System (ADS)

    Ellwood, M. D. Farnon; Blüthgen, Nico; Fayle, Tom M.; Foster, William A.; Menzel, Florian

    2016-08-01

    Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird's nest ferns (Asplenium nidus) in Borneo's lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation-the classical hallmark of competition-we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities.

  8. The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants

    PubMed Central

    Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles

    2013-01-01

    Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants. PMID:23902334

  9. The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants.

    PubMed

    Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles

    2013-01-01

    Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants.

  10. Effects of Formica ants on soil fauna-results from a short-term exclusion and a long-term natural experiment.

    PubMed

    Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve

    2003-02-01

    Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.

  11. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna.

    PubMed

    Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2014-06-01

    Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the interactions between fire and herbivory in savanna ecosystems.

  12. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0

    PubMed Central

    Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-01-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  13. Further foraging for pristine nonmare rocks - Correlations between geochemistry and longitude

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Wasson, J. T.

    1980-01-01

    The most recent results from a project to find and describe pristine (that is, compositionally endogenous) nonmare rocks are reported. Sixteen nonmare samples are characterized petrographically and by composition, among them numerous key trace elements (siderophiles, incompatibles). Current knowledge about nonmare lunar rocks is surveyed, with emphasis placed on correlations between geochemistry and longitude. Several systematic differences between western ANT (that is, nonKREEPy, nonmare) rocks and the much more thoroughly studied eastern ANT rocks are noted. It is noted that western ANT rocks, whether pristine or nonpristine, tend to have higher Eu/Sm than their eastern counterparts. Pristine western ANT rocks, however, tend to have lower Sc/Sm and Ti/Sm than pristine eastern ANT rocks.

  14. The luminescent properties of polyethylene films with admixtures of luminophores based on europium compounds

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.

    2008-11-01

    Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.

  15. The ecological role of ants in two Mexican agroecosystems.

    PubMed

    Risch, Stephen J; Carroll, C Ronald

    1982-10-01

    The development of the ant communities and their foraging dynamics were studied in two annual agroecosystems of the Mexican tropical lowlands: a "forest milpa" of corn, beans, and squash made by cutting and buring 40-year-old forest, and a "field milpa" of corn, beans, and squash made by plowing 1-year-old second growth. The ant community was sampled using tuna fish baits 26, 52, 110 and 353 days after planting. Although immediately after planting the same number of ant species occurred in each milpa type, thereafter the ant faunas diverged. The field milpa became completely dominated by the native fire ant, Solenopsis geminata, while the number of ant species in the forest milpa gradually increased over time, reaching eight species 110 days after planting and 14 species by 353 days. Initially S. geminata dominated the ant fauna in the forest milpa (occurring on 90% of the baits), but by 353 days planting it was found on only 26% of the occupied baits. Ant foraging efficiency, as measured by proportion of tuna baits occupied and the removal rates of dead Drosophila fly baits, was much higher (by a factor of 2 to 3) in the field than the forest milpa. This was caused by the extremely high density of S. geminata colonies in the field milpa. The simple Solenopsis-dominated community of the field milpa may be much more effective in biological control than the more diverse community of the forest milpa. Although S. geminata has potential negative impacts in annual agroecosystems (it stings, eats corn seeds, and guards homopterams), its overall impact appears to be beneficial. As forested areas of the lowland wet tropics are increasingly cut and converted to annual agriculture, the primary ant inhabitant of these highly disturbed environments, S. geminata, will necessarily play a much more significant ecological role in agroecosystems.

  16. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  17. Corridors and some ecological and evolutionary consequences of connectivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John L

    2004-07-01

    Abstract - By connecting disjunct patches, corridors may offset the effects of fragmentation by promoting gene flow and population persistence. However, the ultimate effect of corridors on a focal species may hinge upon two considerations: how corridors may affect ecological interactions that impinge upon that species, and how corridors might affect the fixation of novel alleles that ultimately determine fitness and persistence. Using an experimental landscape, I show that corridor-mediated changes in patch shape change seed predation in connected and unconnected patches, and shift the behavior, abundance, and distribution of seed predators. Rodent seed predators removed more seeds in connectedmore » patches, arthropod seed predators removed more seeds in rectangular patches, and avian seed predation did not differ due to patch type. Rodent foraging was greater in the interior of connected patches because changes in patch shape influenced risk perceived by rodents while foraging. Ant communities were also affected by changes in patch shape caused by corridors, rather than corridor effects per se. The distribution and abundance of ants differed among edge-rich areas (corridors and wings), edges, and the patch interior. In rectangular patches, fire ants (Solenopsis spp.) had negative impacts on other ant species. By changing the activity of rodents, and the composition of ant communities, corridors may have important impacts on seeds. Bird-dispersed seeds may benefit from increased dispersal among connected patches, but connected patches also have greater predation risk. Using a simulation model, I demonstrate that gene flow between a stable population and a population that experiences local extinction or a reduction in size (e.g. due to natural or anthropogenic disturbance) can dramatically affect fixation of alleles in the stable population. Alone or in concert, frequent disturbance, high rates of movement, and low habitat quality make it more likely that connectivity-mediated fixation will promote fixation of harmful alleles and reduce fixation of beneficial alleles.« less

  18. Niches and coexistence of ant communities in Puerto Rico

    Treesearch

    J.A. Torres

    1984-01-01

    I studied ant coexistence in adjacent areas of upland tropical forest, grassland, and agricultural land in San Lorenzo, Puerto Rico. Data on food utilization, daily activity, nesting sites, microhabitat utilization and interspecific aggression were collected. Ants' tolerance to 45 degree C was determined in the laboratory. Agricultural and grassland ants eat grain...

  19. Metamorphism of brecciated ANT rocks - Anorthositic troctolite 72559 and norite 78527. [Anorthositic-Noritic-Troctolitic

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Warner, R. D.; Keil, K.; Taylor, G. J.

    1978-01-01

    Rake samples 72559 and 78527 are annealed rocks of ANT-suite mineralogy and bulk composition. The rocks were presumably derived from ancient lunar highland ANT rocks of cumulate origin. Sample 72559 is polymict and its precursors were anorthositic-troctolitic in composition. Sample 78527 is monomict and of noritic derivation. The precursors were brecciated due to impact processes; 72559 shows evidence of some impact melting. The samples were thermally metamorphosed forming rocks with granoblastic matrix textures. Coexisting matrix pyroxenes indicate equilibration temperatures of 950-1000 C for both rocks. Accessory opaque oxide minerals in the rocks show rather wide compositional variations. These probably primarily reflect compositional ranges inherited from the precursor/s with little integranular equilibration among them during metamorphism.

  20. The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants

    PubMed Central

    Aylward, Frank O.; Currie, Cameron R.; Suen, Garret

    2012-01-01

    Fungus-growing ants gain access to nutrients stored in plant biomass through their association with a mutualistic fungus they grow for food. This 50 million-year-old obligate mutualism likely facilitated some of these species becoming dominant Neotropical herbivores that can achieve immense colony sizes. Recent culture-independent investigations have shed light on the conversion of plant biomass into nutrients within ant fungus gardens, revealing that this process involves both the fungal cultivar and a symbiotic community of bacteria including Enterobacter, Klebsiella, and Pantoea species. Moreover, the genome sequences of the leaf-cutter ants Atta cephalotes and Acromyrmex echinatior have provided key insights into how this symbiosis has shaped the evolution of these ants at a genetic level. Here we summarize the findings of recent research on the microbial community dynamics within fungus-growing ant fungus gardens and discuss their implications for this ancient symbiosis. PMID:26467948

  1. The GÉANT network: addressing current and future needs of the HEP community

    NASA Astrophysics Data System (ADS)

    Capone, Vincenzo; Usman, Mian

    2015-12-01

    The GÉANT infrastructure is the backbone that serves the scientific communities in Europe for their data movement needs and their access to international research and education networks. Using the extensive fibre footprint and infrastructure in Europe the GÉANT network delivers a portfolio of services aimed to best fit the specific needs of the users, including Authentication and Authorization Infrastructure, end-to-end performance monitoring, advanced network services (dynamic circuits, L2-L3VPN, MD-VPN). This talk will outline the factors that help the GÉANT network to respond to the needs of the High Energy Physics community, both in Europe and worldwide. The Pan-European network provides the connectivity between 40 European national research and education networks. In addition, GÉANT also connects the European NRENs to the R&E networks in other world region and has reach to over 110 NREN worldwide, making GÉANT the best connected Research and Education network, with its multiple intercontinental links to different continents e.g. North and South America, Africa and Asia-Pacific. The High Energy Physics computational needs have always had (and will keep having) a leading role among the scientific user groups of the GÉANT network: the LHCONE overlay network has been built, in collaboration with the other big world REN, specifically to address the peculiar needs of the LHC data movement. Recently, as a result of a series of coordinated efforts, the LHCONE network has been expanded to the Asia-Pacific area, and is going to include some of the main regional R&E network in the area. The LHC community is not the only one that is actively using a distributed computing model (hence the need for a high-performance network); new communities are arising, as BELLE II. GÉANT is deeply involved also with the BELLE II Experiment, to provide full support to their distributed computing model, along with a perfSONAR-based network monitoring system. GÉANT has also coordinated the setup of the network infrastructure to perform the BELLE II Trans-Atlantic Data Challenge, and has been active on helping the BELLE II community to sort out their end-to-end performance issues. In this talk we will provide information about the current GÉANT network architecture and of the international connectivity, along with the upcoming upgrades and the planned and foreseeable improvements. We will also describe the implementation of the solutions provided to support the LHC and BELLE II experiments.

  2. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants.

    PubMed

    Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.

  3. Dominance-diversity relationships in ant communities differ with invasion.

    PubMed

    Arnan, Xavier; Andersen, Alan N; Gibb, Heloise; Parr, Catherine L; Sanders, Nathan J; Dunn, Robert R; Angulo, Elena; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Castracani, Cristina; Cerdá, Xim; Toro, Israel Del; Delsinne, Thibaut; Donoso, David A; Elten, Emilie K; Fayle, Tom M; Fitzpatrick, Matthew C; Gómez, Crisanto; Grasso, Donato A; Grossman, Blair F; Guénard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin D; Janda, Milan; Jenkins, Clinton N; Klimes, Petr; Lach, Lori; Laeger, Thomas; Leponce, Maurice; Lucky, Andrea; Majer, Jonathan; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Paknia, Omid; Pfeiffer, Martin; Philpott, Stacy M; Souza, Jorge L P; Tista, Melanie; Vasconcelos, Heraldo L; Retana, Javier

    2018-05-30

    The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities. © 2018 John Wiley & Sons Ltd.

  4. Extrafloral nectar fuels ant life in deserts

    PubMed Central

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant–plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. PMID:25381258

  5. Extrafloral nectar fuels ant life in deserts.

    PubMed

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-11-07

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant-plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.

  7. Why are there more arboreal ant species in primary than in secondary tropical forests?

    PubMed

    Klimes, Petr; Idigel, Cliffson; Rimandai, Maling; Fayle, Tom M; Janda, Milan; Weiblen, George D; Novotny, Vojtech

    2012-09-01

    1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  8. Diversity and distribution of ant communities in Puerto Rico

    Treesearch

    J.A. Torres

    1984-01-01

    I studied ants in upland tropical forest, grassland and agricultural land in San Lorenzo, Puerto Rico, to uncover factors responsible for the distribution and number of species in these communities. Observations, laboratory studies and field experiments were used. Microclimate influenced the distributions of Pheidole fallax, Solenopsis geminata and Monomorium ebeninum...

  9. Impacts of the Invasive European Red Ant (Myrmica rubra (L.): Hymenoptera; Formicidae) on a Myrmecochorous System in the Northeastern United States.

    PubMed

    Gammans, Nicola; Drummond, Frank; Groden, Eleanor

    2018-05-16

    We investigated the impact of an invasive ant species from Europe, Myrmica rubra (L.), on a myrmecochorous system (seeds dispersed by ants) in its invaded range in North America. We assessed: 1) how M. rubra process the myrmecochorous diapsores (seeds and elaiosome as a single dispersal unit transported by ants) in comparison with native ants; 2) its preference for common native and invasive diaspore species relative to native ants; 3) how far they disperse diaspores in the field; and 4) the diaspore removal rate by invertebrates and vertebrates in infested areas compared to noninvaded sites. Field experiments demonstrated higher diaspore removal rates over a 10-min and 24-h period by M. rubra compared to native ants. M. rubra's diaspore dispersal distance was 40% greater compared to native ants. In two of three laboratory studies and one field study, there was no significant difference between the seed species which M. rubra and native ants selected. Our data suggest no long-term deleterious effects of M. rubra's invasion on diaspore dispersal in the Maine plant community that is comprised of both native and invasive species. This implies that M. rubra benefits from the myrmechorous plant species' diaspores by increasing their dispersal range away from the parent plant and potentially reducing seed predation. However, it is not known whether the fact that the native ant fauna and M. rubra are attracted to the same plant species' diaspores creates a high level of competition between the ants with deleterious effects on the native ant community.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degradingmore » potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.« less

  11. A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.

    PubMed

    Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu

    2014-09-01

    A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    PubMed

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.

  13. Ant predation on herbivores through a multitrophic lens: how effects of ants on plant herbivore defense and natural enemies vary along temperature gradients.

    PubMed

    Rodríguez-Castañeda, G; Brehm, G; Fiedler, K; Dyer, L A

    2016-04-01

    Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  15. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  16. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylward, Frank O.; Burnum, Kristin E.; Scott, Jarrod J.

    2012-09-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant Neotropical herbivores cultivate symbiotic fungus gardens on massive quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers in mature Atta colonies. Here we use metagenomic, and metaproteomic techniques to characterize the bacterial diversity and overall physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence andmore » three 16S pyrotag libraries reveals that, in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter, and Escherichia. We show that these bacterial communities possess genes commonly associated with lignocellulose degradation, and likely participate in the processing of plant biomass. Additionally, we demonstrate that bacteria in these environments encode a diverse suite of biosynthetic pathways, and that they may enrich the nitrogen-poor forage of the ants with B-vitamins, amino acids, and proteins. These results are consistent with the hypothesis that fungus gardens are highly-specialized fungus-bacteria communities that efficiently convert plant material into usable energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities to the ecology and evolution of herbivorous metazoans.« less

  17. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens.

    PubMed

    Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R

    2012-09-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus-bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.

  18. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

    PubMed Central

    Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R

    2012-01-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans. PMID:22378535

  19. Invasive Fire Ants Reduce Reproductive Success and Alter the Reproductive Strategies of a Native Vertebrate Insectivore

    PubMed Central

    Ligon, Russell A.; Siefferman, Lynn; Hill, Geoffrey E.

    2011-01-01

    Background Introduced organisms can alter ecosystems by disrupting natural ecological relationships. For example, red imported fire ants (Solenopsis invicta) have disrupted native arthropod communities throughout much of their introduced range. By competing for many of the same food resources as insectivorous vertebrates, fire ants also have the potential to disrupt vertebrate communities. Methodology/Principal Findings To explore the effects of fire ants on a native insectivorous vertebrate, we compared the reproductive success and strategies of eastern bluebirds (Sialia sialis) inhabiting territories with different abundances of fire ants. We also created experimental dyads of adjacent territories comprised of one territory with artificially reduced fire ant abundance (treated) and one territory that was unmanipulated (control). We found that more bluebird young fledged from treated territories than from adjacent control territories. Fire ant abundance also explained significant variation in two measures of reproductive success across the study population: number of fledglings and hatching success of second clutches. Furthermore, the likelihood of bluebird parents re-nesting in the same territory was negatively influenced by the abundance of foraging fire ants, and parents nesting in territories with experimentally reduced abundances of fire ants produced male-biased broods relative to pairs in adjacent control territories. Conclusions/Significance Introduced fire ants altered both the reproductive success (number of fledglings, hatching success) and strategies (decision to renest, offspring sex-ratio) of eastern bluebirds. These results illustrate the negative effects that invasive species can have on native biota, including species from taxonomically distant groups. PMID:21799904

  20. Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models

    PubMed Central

    Mueller, Ulrich G.; Ishak, Heather; Lee, Jung C.; Sen, Ruchira; Gutell, Robin R.

    2010-01-01

    We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species. PMID:20333466

  1. Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models.

    PubMed

    Mueller, Ulrich G; Ishak, Heather; Lee, Jung C; Sen, Ruchira; Gutell, Robin R

    2010-08-01

    We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant-associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species.

  2. The effects of fire on ant trophic assemblage and sex allocation

    PubMed Central

    Caut, Stephane; Jowers, Michael J; Arnan, Xavier; Pearce-Duvet, Jessica; Rodrigo, Anselm; Cerda, Xim; Boulay, Raphaël R

    2014-01-01

    Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground-dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire-induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire-resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein-rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment. Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the dramatically reduced production of females on burned zones compared to unburned zones 1 year postfire may result in considerably reduced recruitment of new colonies in the mid to long term, which could yield genetic bottlenecks and founder effects. Our study paves the way for future functional analyses of fire-induced modifications in ant populations and communities. PMID:24455159

  3. Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants

    PubMed Central

    Fayle, Tom M; Eggleton, Paul; Manica, Andrea; Yusah, Kalsum M; Foster, William A

    2015-01-01

    Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants. PMID:25622647

  4. Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives

    PubMed Central

    Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.

    2014-01-01

    The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535

  5. Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Bruce, David C.; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens. PMID:23469353

  6. Environmental and habitat drivers of relative abundance for a suite of azteca-attacking Pseudacteon phorid flies.

    PubMed

    Reese, Katlynd M; Philpott, Stacy M

    2012-10-01

    Phoridae (Diptera) have widespread impacts on insect communities by limiting host ant behavior. However, phorid-ant interactions may vary with habitat or environmental conditions. Three Pseudacteon species parasitize Azteca instabilis Fr. Smith, a common ant in coffee agroecosystems, and limit A. instabilis foraging, indirectly benefiting other insects. However, little is known about how phorid abundance, behavior, and effects change with environmental conditions. In shaded coffee systems, coffee (Coffea arabica L.) grows under a range of shade conditions and management changes affect species interactions. For example, Pseudacteon spp. more strongly limit A. instabilis foraging in low-shade coffee habitats. We sampled relative abundance of three phorid species around A. instabilis nests in three coffee habitats varying in shade management during dry and wet seasons. We measured canopy cover, tree richness, tree density, leaf litter depth, and number of nearby trees with A. instabilis to determine whether these habitat factors correlate with phorid abundance. P. laciniosus Brown was the most abundant phorid in both seasons. Phorid relative abundance did not differ by habitat, but did differ by season. P. laciniosus accounted for a higher proportion of phorids in the wet season (91.4%) than in the dry season (78.9%), and P. planidorsalis Brown accounted for a larger percent in the dry season (21.1%) than in the wet season (7.3%). Phorid composition did not differ with habitat type, and none of the measured environmental variables correlated with changes in phorid composition. Thus, phorids in coffee agroecosystems respond to large seasonal differences, but not differences between coffee habitats.

  7. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David S.

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  8. Energy gradients and the geographic distribution of local ant diversity.

    PubMed

    Kaspari, Michael; Ward, Philip S; Yuan, May

    2004-08-01

    Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.

  9. [Response of the ant community to attributes of fragments and vegetation in a northeastern Atlantic Rain Forest area, Brazil].

    PubMed

    Gomes, Juliana P; Iannuzzi, Luciana; Leal, Inara R

    2010-01-01

    The objective of this study was to determine the effects of forest fragmentation on ant richness in a landscape of Atlantic Forest in Northeast Brazil. More specifically, the ant richness was related to the attributes of fragments (area and distance from the fragment central point to the edge), landscape (forest cover surrounding the fragments), and tree community (plant density, richness, and percentage of shade tolerant species). The surveys were carried out in 19 fragments located in Alagoas State from October 2007 to March 2008. Samples were collected through a 300 m transect established in the center of each fragment, where 30 1-m² leaf litter samples were collected at 10 m intervals. A total of 146 ant species was collected, which belonged to 42 genera, 24 tribes and nine subfamilies. The attributes of fragments and landscape did not influence ant richness. On the other hand, tree density explained ca. 23% of ant richness. In relation to functional groups, both density and richness of trees explained the richness of general myrmicines (the whole model explained ca. 42% of the variation in this group) and percentage of shade tolerant trees explained the richness of specialist predator ants (30% for the whole model). These results indicate that ant fauna is more influenced by vegetation integrity than by fragment size, distance to edge or forest cover surrounding fragments.

  10. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  11. Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists.

    PubMed

    Savage, Amy M; Rudgers, Jennifer A

    2013-06-01

    In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.

  12. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community.

    PubMed

    Bujan, Jelena; Yanoviak, Stephen P; Kaspari, Michael

    2016-09-01

    Desiccation resistance, the ability of an organism to reduce water loss, is an essential trait in arid habitats. Drought frequency in tropical regions is predicted to increase with climate change, and small ectotherms are often under a strong desiccation risk. We tested hypotheses regarding the underexplored desiccation potential of tropical insects. We measured desiccation resistance in 82 ant species from a Panama rainforest by recording the time ants can survive desiccation stress. Species' desiccation resistance ranged from 0.7 h to 97.9 h. We tested the desiccation adaptation hypothesis, which predicts higher desiccation resistance in habitats with higher vapor pressure deficit (VPD) - the drying power of the air. In a Panama rainforest, canopy microclimates averaged a VPD of 0.43 kPa, compared to a VPD of 0.05 kPa in the understory. Canopy ants averaged desiccation resistances 2.8 times higher than the understory ants. We tested a number of mechanisms to account for desiccation resistance. Smaller insects should desiccate faster given their higher surface area to volume ratio. Desiccation resistance increased with ant mass, and canopy ants averaged 16% heavier than the understory ants. A second way to increase desiccation resistance is to carry more water. Water content was on average 2.5% higher in canopy ants, but total water content was not a good predictor of ant desiccation resistance or critical thermal maximum (CT max), a measure of an ant's thermal tolerance. In canopy ants, desiccation resistance and CT max were inversely related, suggesting a tradeoff, while the two were positively correlated in understory ants. This is the first community level test of desiccation adaptation hypothesis in tropical insects. Tropical forests do contain desiccation-resistant species, and while we cannot predict those simply based on their body size, high levels of desiccation resistance are always associated with the tropical canopy.

  13. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.

    PubMed

    Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T

    2010-12-01

    In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. © 2010 Entomological Society of America

  14. Ecological consequences of interactions between ants and honeydew-producing insects

    PubMed Central

    Styrsky, John D; Eubanks, Micky D

    2006-01-01

    Interactions between ants and honeydew-producing hemipteran insects are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. Ant–hemipteran interactions have potentially broad ecological effects, because the presence of honeydew-producing hemipterans dramatically alters the abundance and predatory behaviour of ants on plants. We review several studies that investigate the consequences of ant–hemipteran interactions as ‘keystone interactions’ on arthropod communities and their host plants. Ant–hemipteran interactions have mostly negative effects on the local abundance and species richness of several guilds of herbivores and predators. In contrast, out of the 30 studies that document the effects of ant–hemipteran interactions on plants, the majority (73%) shows that plants actually benefit indirectly from these interactions. In these studies, increased predation or harassment of other, more damaging, herbivores by hemipteran-tending ants resulted in decreased plant damage and/or increased plant growth and reproduction. The ecological consequences of mutualistic interactions between honeydew-producing hemipterans and invasive ants relative to native ants have rarely been studied, but they may be of particular importance owing to the greater abundance, aggressiveness and extreme omnivory of invasive ants. We argue that ant–hemipteran interactions are largely overlooked and underappreciated interspecific interactions that have strong and pervasive effects on the communities in which they are embedded. PMID:17148245

  15. Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network.

    PubMed

    Wang, Bo; Lu, Min; Cook, James M; Yang, Da-Rong; Dunn, Derek W; Wang, Rui-Wu

    2018-01-30

    Different types of mutualisms may interact, co-evolve and form complex networks of interdependences, but how species interact in networks of a mutualistic community and maintain its stability remains unclear. In a mutualistic network between treehoppers-weaver ants and fig-pollinating wasps, we found that the cuticular hydrocarbons of the treehoppers are more similar to the surface chemical profiles of fig inflorescence branches (FIB) than the cuticular hydrocarbons of the fig wasps. Behavioral assays showed that the cuticular hydrocarbons from both treehoppers and FIBs reduce the propensity of weaver ants to attack treehoppers even in the absence of honeydew rewards, suggesting that chemical camouflage helps enforce the mutualism between weaver ants and treehoppers. High levels of weaver ant and treehopper abundances help maintain the dominance of pollinating fig wasps in the fig wasp community and also increase fig seed production, as a result of discriminative predation and disturbance by weaver ants of ovipositing non-pollinating fig wasps (NPFWs). Ants therefore help preserve this fig-pollinating wasp mutualism from over exploitation by NPFWs. Our results imply that in this mutualistic network chemical camouflage plays a decisive role in regulating the behavior of a key species and indirectly shaping the architecture of complex arthropod-plant interactions.

  16. Long-term record of Argentine ant invasions reveals enduring ecological impacts.

    PubMed

    Menke, Sean B; Ward, Philip S; Holway, David A

    2018-05-01

    The ecological effects of species introductions can change in magnitude over time, but an understanding of how and why they do so remains incompletely understood. Clarifying this issue requires consideration of how temporal variation in invader traits affects invasion impacts (e.g., through differential effects on the diversity and composition of native species assemblages). We examine the temporal dynamics of Argentine ant invasions in northern California by resurveying 202 sites first sampled 30-40 yr ago. To test how invasion impacts change over time, we estimated native ant richness and species composition at 20 riparian woodland sites that span a 30-yr invasion chronosequence. We then use these data to test how variation in two invader traits (aggression and relative abundance) is related to time since invasion and invasion impact. Native ant assemblages along the chronosequence exhibited reduced native ant richness and altered species composition (compared to uninvaded control sites), but the magnitude of these impacts was independent of time since invasion. These results are corroborated by additional temporal comparisons of native ant assemblages at riparian sites sampled 20-30 yr ago. Our findings together illustrate that the impacts of invasions can persist undiminished over at least a 30-yr time frame and remain evident at regional scales. Although neither invader trait varied with time since invasion, native ant richness declined as the relative abundance of the Argentine ant increased. This latter result supports the hypothesis that factors reducing invader abundance at particular sites can decrease invasion impacts, but also that such changes may be due to site-specific factors (e.g., abiotic conditions) that affect invader abundance rather than time since invasion per se. Future studies should attempt to differentiate factors that are intrinsic to the process of invasion (e.g., changes in invader populations) from long-term environmental changes (e.g., climate change) that represent extrinsic influences on the dynamics of invasion. © 2018 by the Ecological Society of America.

  17. Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park

    USGS Publications Warehouse

    Lessard, J.-P.; Dunn, R.R.; Parker, C.R.; Sanders, N.J.

    2007-01-01

    We report on a systematic survey of the ant fauna occurring in hardwood forests in the Great Smoky Mountains National Park. At 22-mixed hardwood sites, we collected leaf-litter ant species using Winkler samplers. At eight of those sites, we also collected ants using pitfall and Malaise traps. In total, we collected 53 ant species. As shown in other studies, ant species richness tended to decline with increasing elevation. Leaf-litter ant assemblages were also highly nested. Several common species were both locally abundant and had broad distributions, while many other species were rarely detected. Winkler samplers, pitfall traps, and Malaise traps yielded samples that differed in composition, but not richness, from one another. Taken together, our work begins to illuminate the factors that govern the diversity, distribution, abundance, and perhaps rarity of ants of forested ecosystems in the Great Smoky Mountains National Park.

  18. Tritrophic effects of birds and ants on a canopy food web, tree growth, and phytochemistry

    Treesearch

    Kailen A. Mooney

    2007-01-01

    Insectivorous birds and ants co-occur in most terrestrial communities, and theory predicts that emergent properties (i.e., nonadditive effects) can determine their combined influence on arthropods and plants. In a three-year factorial experiment, I investigated whether the effects of birds on pine and its arthropods differed based on the presence of ants that were...

  19. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    PubMed

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.

  20. Assessing the Impact of Deforestation of the Atlantic Rainforest on Ant-Fruit Interactions: A Field Experiment Using Synthetic Fruits

    PubMed Central

    Bieber, Ana Gabriela D.; Silva, Paulo S. D.; Sendoya, Sebastián F.; Oliveira, Paulo S.

    2014-01-01

    Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic ‘seed’ covered by a lipid-rich ‘pulp’), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes. PMID:24587341

  1. Assessing the impact of deforestation of the Atlantic rainforest on ant-fruit interactions: a field experiment using synthetic fruits.

    PubMed

    Bieber, Ana Gabriela D; Silva, Paulo S D; Sendoya, Sebastián F; Oliveira, Paulo S

    2014-01-01

    Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.

  2. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    PubMed Central

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  3. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging

    PubMed Central

    2017-01-01

    Extrafloral nectar is the main food source offered by plants to predatory ants in most land environments. Although many studies have demonstrated the importance of extrafloral nectaries (EFNs) to plant defense against herbivores, the influence of EFNs secretory activity pattern on predatory ants remains yet not fully understood. Here, we verified the relation between the extrafloral nectar production of a plant community in Cerrado in different times of the day, and its attractiveness to ants. The extrafloral nectaries (EFNs) of seven plant species showed higher productivity overnight. Ant abundance was higher in times of large extrafloral nectar production, however, there was no positive relation between ant richness on plants and EFNs productivity. There was temporal resource partitioning among ant species, and it indicates strong resource competition. The nectar productivity varied among plant species and time of the day, and it influenced the visitation patterns of ants. Therefore, EFNs are a key ant-plant interaction driver in the studied system. PMID:28046069

  4. The effects of forest conversion to oil palm on ground-foraging ant communities depend on beta diversity and sampling grain.

    PubMed

    Wang, Wendy Y; Foster, William A

    2015-08-01

    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.

  5. Composite collective decision-making

    PubMed Central

    Czaczkes, Tomer J.; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen

    2015-01-01

    Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. PMID:26019155

  6. Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists

    PubMed Central

    Savage, Amy M.; Rudgers, Jennifer A.

    2013-01-01

    Background and Aims In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Methods Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. Key Results The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. Conclusions It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions. PMID:23609021

  7. Habitat disturbance and the diversity and abundance of ants (Formicidae) in the Southeastern Fall-Line Sandhills

    USGS Publications Warehouse

    Graham, J.H.; Hughie, H.H.; Jones, S.; Wrinn, K.; Krzysik, A.J.; Duda, J.J.; Freeman, D. Carl; Emlen, J.M.; Zak, J.C.; Kovacic, D.A.; Chamberlin-Graham, C.; Balbach, H.

    2004-01-01

    We examined habitat disturbance, species richness, equitability, and abundance of ants in the Fall-Line Sandhills, at Fort Benning, Georgia. We collected ants with pitfall traps, sweep nets, and by searching tree trunks. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We collected 48 species of ants, in 23 genera (141,468 individuals), over four years of sampling. Highly disturbed areas had fewer species, and greater numbers of ants than did moderately or lightly disturbed areas. The ant communities in disturbed areas were also less equitable, and were dominated by Dorymyrmex smithi.

  8. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    PubMed

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Consequences of prescribed fire and grazing on grassland ant communities.

    PubMed

    Underwood, Emma C; Christian, Caroline E

    2009-04-01

    Prescribed fire and livestock grazing are used for the management and restoration of native grasslands the world over; however, the effects of these management techniques on ant communities are unclear. We examined the response of ants to these disturbances in grasslands in northern California. Twenty-four 30 by 30 m plots were established across two sites that received one of four treatments: grazing, fire, grazing and fire, or no treatment. Ants were censused using 240 pitfall traps with one preburn and two postburn samples (14 d and 1 yr after burning). We analyzed ant abundance using broadly defined groups based on feeding habit and/or habitat use and detected no grazing effect but a significant fire effect that differed by group. Immediate postfire sampling showed an increase in cryptic species (particularly Brachymyrmex depilis). One year after the fire, no response was detected for cryptic species, but burned plots had greater abundance of seed harvesters. Analysis of vegetation showed burned plots had significantly greater forb cover, which might have provided greater food resources, and also lower biomass, which might have facilitated foraging. Understanding the effects of these management tools on ant abundance complements our understanding of their effect on vegetation and assists conservation practitioners effectively manage grassland ecosystems both in California and beyond.

  10. Effects of large-scale wildfire on ground foraging ants (Hymenoptera: Formicidae) in southern California

    USGS Publications Warehouse

    Matsuda, Tritia; Turschak, Greta; Brehme, Cheryl; Rochester, Carlton; Mitrovich, Milan; Fisher, Robert

    2011-01-01

    We investigated the effect of broad-scale wildfire on ground foraging ants within southern California. In October and November of 2003, two wildfires burned large portions of the wildlands within San Diego County. Between January 2005 and September 2006, we surveyed 63 plots across four sites to measure the effect of the fires on the ant assemblages present in four vegetation types: 1) coastal sage scrub, 2) chaparral, 3) grassland, and 4) woodland riparian. Thirty-six of the 63 plots were sampled before the fires between March 2001 and June 2003. Mixed model regression analyses, accounting for the burn history of each plot and our pre- and postfire sampling efforts, revealed that fire had a negative effect on ant species diversity. Multivariate analyses showed that ant community structure varied significantly among the four vegetation types, and only the ant assemblage associated with coastal sage scrub exhibited a significant difference between burned and unburned samples. The most notable change detected at the individual species level involved Messor andrei (Mayr), which increased from <1% of prefire coastal sage scrub ant samples to 32.1% in burned plots postfire. We theorize that M. andrei responded to the increase of bare ground and postfire seed production, leading to an increase in the detection rate for this species. Collectively, our results suggest that wildfires can have short-term impacts on the diversity and community structure of ground foraging ants in coastal sage scrub. We discuss these findings in relation to management implications and directions for future research.

  11. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    PubMed

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance

    PubMed Central

    Moreira, Xoaquín; Mooney, Kailen A.; Zas, Rafael; Sampedro, Luis

    2012-01-01

    While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance. PMID:22951745

  13. Current and potential ant impacts in the Pacific region

    USGS Publications Warehouse

    Loope, Lloyd L.; Krushelnycky, Paul D.

    2007-01-01

    Worldwide, ants are a powerful ecological force, and they appear to be dominant components of animal communities of many tropical and temperate ecosystems in terms of biomass and numbers of individuals (Bluthgen et al. 2000). For example, ants comprise up to 94% of arthropod individuals in fogging samples taken from diverse lowland tropical rainforest canopies, and 86% of the biomass (Davidson et al. 2003). The majority of these ant species and individuals obtain carbohydrates either from extrafloral nectaries or from sap-feeding Hemiptera that pass carbohydrate-rich “honeydew” to attending ants while concentrating nitrogen (N) from N-poor plant sap (Davidson et al. 2003). Honeydew and nectar represent key resources for arboreal ant species, although most ant species are at least partly carnivorous or scavengers (Bluthgen et al. 2004). In contrast to most of the terrestrial world, the biotas of many Pacific islands evolved without ants. Whereas endemic ant species are found in New Zealand (ca. 10 spp.), Tonga (ca. 10 spp.), and Samoa (ca. 12 spp.), other islands of Polynesia and parts of Micronesia likely lack native ants (Wilson and Taylor 1967, Wetterer 2002, Wetterer and Vargo 2003). About 20 Indo-Australian and western Pacific ant species range to the east and north of Samoa, but it is unclear how many of these were transported there by humans at some time (Wilson and Taylor 1967). Most of the remainder of the ant species currently found on Pacific islands are widespread species that fall in the category of “tramp species,” dispersed by recent human commerce and generally closely tied to human activity and urban areas (Wilson and Taylor 1967, McGlynn 1999). In Pacific island situations, some of these tramp ant species are able to thrive beyond areas of human activity. Relatively few ant species have been successful invaders of native communities on continents, and these include most of the species that pose the greatest problems for Pacific islands. They generally have multiple queens per colony, are unicolonial (lacking internest aggression), quickly recruit to food items, thrive in a variety of habitats including disturbed areas, and can be highly aggressive to other ant species (McGlynn 1999). Hawaii’s arthropod fauna evolved in the absence of ants and has been observed by many biologists to be highly vulnerable to displacement by non-native ants. Pacific island biotas have also very likely suffered greatly from displacement by ants. However, in contrast to Hawaii, virtually nothing has been published on effects of non-native ants on native arthropod fauna elsewhere on Pacific islands, with the exception of the Galapagos archipelago, which may have at least four species of endemic ants (Lubin 1984, Nishida and Evenhuis 2000) and New Caledonia (Jourdan et al. 2001, Le Breton et al. 2005). In addition, many ant species in the Pacific have long been a nuisance for humans, and significant agricultural impacts have occurred from ants tending hemipteran insects of crop plants.

  14. The diversity of ant communities (Hymenoptera: Formicidae) and their connections with other arthropods from three temperate forests of Central Mexico.

    PubMed

    Guzmán-Mendoza, Rafael; Castaño-Meneses, Gabriela; Nuñez-Palenius, Hector Gordon

    2016-06-01

    Ants have been considered useful for bioindication because of their ecological characteristics. Nonetheless, among the characteristics of a bioindicator group, there must be a consistent and replicable response to disturbance. In this sense, divergent reactions have been found, even between taxons narrowly related. The objective of this work was to compare the diversity of the ant communities in three different temperate forests with different levels of disturbance, and to correlate their abundance and diversity of species, with that found in other arthropod communities of the same forests. The work was carried out in three municipalities in the North of the State of Mexico, where three types of different forests were identified by their degree of disturbance. These types include: 1) primary forest (PF), with typical species of a conserved forest; 2) mixed forest (MF), with species of a conserved forest and a reforestation effort; and 3) reforested forest (RF), with species used in reforestation efforts and indicative of disturbance. In each sample, an area of 2 500 m2 was selected. Each area had 16 pitfalls apiece and they were placed 10 m away from each other. Samples were collected twice; one from February through March 2009 (dry season) and another from August through September 2010 (rainy season), which produced a total of 192 traps. Obtained specimens were identified at the most taxonomically specific level. All data captured was transformed to √n + 0.5 and diversity index levels of Shannon and Simpson were calculated, as well as richness of species for ants, beetles, grasshoppers, true bugs, and spiders. The values of richness, diversity, and abundance were correlated with the Pearson coefficient, and to evaluate possible causal relationships between these, a path analysis was performed. Results suggested an important influence of the site over ant communities, and values of richness, abundance and diversity were correlated with the communities of spiders, beetles, grasshoppers and true bugs, but not for all the sites studied. Responses to environmental changes are not only on the numeric proportions of abundance, richness and diversity, but also in the indirect and casual ecological interactions. Finally, the data seems to indicate that the responses of the ants to the environmental changes are not necessarily reflected on other organisms’ communities, so the ants’ role as bioindicators can be limited.

  15. Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.

    PubMed

    Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P

    2017-10-01

    Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Use of the Mounds of Lasius flavus in Teaching Some Principles of Ecological Investigation

    ERIC Educational Resources Information Center

    King, T. J.; Woodell, S. R. J.

    1975-01-01

    Outlines the ecology of Lasius flavus ant hill, describes sampling techniques for the determination of the species composition of the surrounding vegetation, presents a table of typical results from an ant-hill practical, and lists suggestions for further experiments. (GS)

  17. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna.

    PubMed

    Palmer, Todd M; Stanton, Maureen L; Young, Truman P; Goheen, Jacob R; Pringle, Robert M; Karban, Richard

    2008-01-11

    Mutualisms are key components of biodiversity and ecosystem function, yet the forces maintaining them are poorly understood. We investigated the effects of removing large mammals on an ant-Acacia mutualism in an African savanna. Ten years of large-herbivore exclusion reduced the nectar and housing provided by plants to ants, increasing antagonistic behavior by a mutualistic ant associate and shifting competitive dominance within the plant-ant community from this nectar-dependent mutualist to an antagonistic species that does not depend on plant rewards. Trees occupied by this antagonist suffered increased attack by stem-boring beetles, grew more slowly, and experienced doubled mortality relative to trees occupied by the mutualistic ant. These results show that large mammals maintain cooperation within a widespread symbiosis and suggest complex cascading effects of megafaunal extinction.

  18. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    PubMed

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Composite collective decision-making.

    PubMed

    Czaczkes, Tomer J; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen

    2015-06-22

    Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.

    1977-01-01

    Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.

  1. Stable isotopes reveal links between human food inputs and urban ant diets.

    PubMed

    Penick, Clint A; Savage, Amy M; Dunn, Robert R

    2015-05-07

    The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes. We found that some-but not all-ant species living in Manhattan's most urbanized habitats had δ(13)C signatures associated with processed human foods. In particular, pavement ants (Tetramorium sp. E) had increased levels of δ(13)C similar to δ(13)C levels in human fast foods. The magnitude of this effect was positively correlated with urbanization. By contrast, we detected no differences in δ(15)N, suggesting Tetramorium feeds at the same trophic level despite shifting to human foods. This pattern persisted across the broader ant community; species in traffic islands used human resources more than park species. Our results demonstrate that the degree urban ants exploit human resources changes across the city and among species, and this variation could play a key role in community structure and ecosystem processes where human and animal food webs intersect. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing.

    PubMed

    Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C

    2016-09-01

    The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.

  3. Changes in composition of cuticular biochemicals of the facultatively polygynous ant Petalomyrmex phylax during range expansion in Cameroon with respect to social, spatial and genetic variation.

    PubMed

    Dalecky, Ambroise; Renucci, Marielle; Tirard, Alain; Debout, Gabriel; Roux, Maurice; Kjellberg, Finn; Provost, Erick

    2007-09-01

    In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used to infer population history and to provide null expectations under the neutrality hypothesis. Genetic data suggest a recent southward range expansion of this ant species. Furthermore, there is a decline southward in the numbers of queens present in mature colonies. Here, we contrast the pattern of biochemical variation against genetic, social and spatial parameters. We thus provide the first estimates of the relative contribution of neutral and selective processes on variation of ant cuticular profile. Populations in migration-drift disequilibrium showed reduction of within-population variation for genetic markers as well as for cuticular profiles. In these populations, the cuticular profile became biased towards a limited number of high molecular weight molecules. Within- and among-population biochemical variation was explained by both genetic and social variation and by the spatial distribution of populations. We therefore propose that during range expansion of P. phylax, the composition of epicuticular compounds has been affected by a combination of neutral processes - genetic drift and spatially limited dispersal - and spatially varying selection, social organization and environmental effects.

  4. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  5. Ant diversity as a direct and indirect driver of pselaphine rove beetle (Coleoptera: Staphylinidae) functional diversity in tropical rainforests, Sabah, Malaysian Borneo.

    PubMed

    Psomas, Elizabeth; Holdsworth, Sholto; Eggleton, Paul

    2018-04-20

    Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants. © 2018 Wiley Periodicals, Inc.

  6. The combined effects of exogenous and endogenous variability on the spatial distribution of ant communities in a forested ecosystem (Hymenoptera: Formicidae).

    PubMed

    Yitbarek, Senay; Vandermeer, John H; Allen, David

    2011-10-01

    Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.

  7. Efficacy of UV-Pit-light traps for discerning micro-habitat-specific beetle and ant species related with different oil palm age stands and tropical annual seasons for accurate ecology and diversity interpretations

    NASA Astrophysics Data System (ADS)

    Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.

    2015-09-01

    A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.

  8. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment.

    PubMed

    Arvier, Matthieu; Lagoutte, Laëtitia; Johnson, Gyasi; Dumas, Jean-François; Sion, Benoit; Grizard, Genevieve; Malthièry, Yves; Simard, Gilles; Ritz, Patrick

    2007-11-01

    The composition of the mitochondrial inner membrane and uncoupling protein [such as adenine nucleotide translocator (ANT)] contents are the main factors involved in the energy-wasting proton leak. This leak is increased by glucocorticoid treatment under nonphosphorylating conditions. The aim of this study was to investigate mechanisms involved in glucocorticoid-induced proton leak and to evaluate the consequences in more physiological conditions (between states 4 and 3). Isolated liver mitochondria, obtained from dexamethasone-treated rats (1.5 mg.kg(-1).day(-1)), were studied by polarography, Western blotting, and high-performance thin-layer chromatography. We confirmed that dexamethasone treatment in rats induces a proton leak in state 4 that is associated with an increased ANT content, although without any change in membrane surface or lipid composition. Between states 4 and 3, dexamethasone stimulates ATP synthesis by increasing both the mitochondrial ANT and F1-F0 ATP synthase content. In conclusion, dexamethasone increases mitochondrial capacity to generate ATP by modifying ANT and ATP synthase. The side effect is an increased leak in nonphosphorylating conditions.

  9. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  10. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants

    PubMed Central

    Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.

    2013-01-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038

  11. High Survival of Lasius niger during Summer Flooding in a European Grassland

    PubMed Central

    Hertzog, Lionel R.; Ebeling, Anne; Meyer, Sebastian T.; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Wagg, Cameron; Weisser, Wolfgang W.

    2016-01-01

    Climate change is projected to increase the frequency of extreme events, such as flooding and droughts, which are anticipated to have negative effects on the biodiversity of primary producers and consequently the associated consumer communities. Here we assessed the effects of an extreme early summer flooding event in 2013 on ant colonies along an experimental gradient of plant species richness in a temperate grassland. We tested the effects of flood duration, plant species richness, plant cover, soil temperature, and soil porosity on ant occurrence and abundance. We found that the ant community was dominated by Lasius niger, whose presence and abundance after the flood was not significantly affected by any of the tested variables, including plant species richness. We found the same level of occupation by L. niger at the field site after the flood (surveyed in 2013) as before the flood (surveyed in 2006). Thus, there were no negative effects of the flood on the presence of L. niger in the plots. We can exclude recolonisation as a possible explanation of ant presence in the field site due to the short time period between the end of the flood and survey as well as to the absence of a spatial pattern in the occupancy data. Thus, the omnipresence of this dominant ant species 1 month after the flood indicates that the colonies were able to survive a 3-week summer flood. The observed ant species proved to be flood resistant despite experiencing such extreme climatic events very rarely. PMID:27851761

  12. High Survival of Lasius niger during Summer Flooding in a European Grassland.

    PubMed

    Hertzog, Lionel R; Ebeling, Anne; Meyer, Sebastian T; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Wagg, Cameron; Weisser, Wolfgang W

    2016-01-01

    Climate change is projected to increase the frequency of extreme events, such as flooding and droughts, which are anticipated to have negative effects on the biodiversity of primary producers and consequently the associated consumer communities. Here we assessed the effects of an extreme early summer flooding event in 2013 on ant colonies along an experimental gradient of plant species richness in a temperate grassland. We tested the effects of flood duration, plant species richness, plant cover, soil temperature, and soil porosity on ant occurrence and abundance. We found that the ant community was dominated by Lasius niger, whose presence and abundance after the flood was not significantly affected by any of the tested variables, including plant species richness. We found the same level of occupation by L. niger at the field site after the flood (surveyed in 2013) as before the flood (surveyed in 2006). Thus, there were no negative effects of the flood on the presence of L. niger in the plots. We can exclude recolonisation as a possible explanation of ant presence in the field site due to the short time period between the end of the flood and survey as well as to the absence of a spatial pattern in the occupancy data. Thus, the omnipresence of this dominant ant species 1 month after the flood indicates that the colonies were able to survive a 3-week summer flood. The observed ant species proved to be flood resistant despite experiencing such extreme climatic events very rarely.

  13. Effect of perceived stress on depression of Chinese "Ant Tribe" and the moderating role of dispositional optimism.

    PubMed

    Liu, Bo; Pu, Jun; Hou, Hanpo

    2015-05-08

    This study examines the moderating role of dispositional optimism on the relationship between perceived stress and depression of the Chinese "Ant Tribe." A total of 427 participants from an Ant Tribe community completed the measures of perceived stress, optimism, and depression. The structural equation modeling (SEM) analysis showed that dispositional optimism moderated the association between perceived stress and depression. The Ant Tribe with high perceived stress reported higher scores in depression than those with low perceived stress at low dispositional optimism level. However, the impact of perceived stress on depression was insignificant in the high dispositional optimism group. © The Author(s) 2015.

  14. Willingness to pay for rapid diagnostic tests for the diagnosis and treatment of malaria in southeast Nigeria: ex post and ex ante

    PubMed Central

    2010-01-01

    Background The introduction of rapid diagnostic tests (RDTs) has improved the diagnosis and treatment of malaria. However, any successful control of malaria will depend on socio-economic factors that influence its management in the community. Willingness to pay (WTP) is important because consumer responses to prices will influence utilization of services and revenues collected. Also the consumer's attitude can influence monetary valuation with respect to different conditions ex post and ex ante. Methods WTP for RDT for Malaria was assessed by the contingent valuation method using a bidding game approach in rural and urban communities in southeast Nigeria. The ex post WTP was assessed at the health centers on 618 patients immediately following diagnosis of malaria with RDT and the ex ante WTP was assessed by household interviews on 1020 householders with a prior history of malaria. Results For the ex ante WTP, 51% of the respondents in urban and 24.7% in rural areas were willing to pay for RDT. The mean WTP (235.49 naira) in urban is higher than WTP (182.05 Naira) in rural areas. For the ex post WTP, 89 and 90.7% of the respondents in urban and rural areas respectively were WTP. The mean WTP (372.30 naira) in urban is also higher than (296.28 naira) in rural areas. For the ex post scenario, the lower two Social Economic Status (SES) quartiles were more willing to pay and the mean WTP is higher than the higher two SES while in the ex ante scenario, the higher two SES quartiles were more WTP and with a higher WTP than the lower two SES quartile. Ex ante and ex post WTP were directly dependent on costs. Conclusion The ex post WTP is higher than the ex ante WTP and both are greater than the current cost of RDTs. Urban dwellers were more willing to pay than the rural dwellers. The mean WTP should be considered when designing suitable financial strategies for making RDTs available to communities. PMID:20148118

  15. Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)

    USGS Publications Warehouse

    Zettler, J.A.; Taylor, M.D.; Allen, Craig R.; Spira, T.P.

    2004-01-01

    Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.

  16. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the ‘productivity-based thinning hypothesis’ for generalist species. These results also stress the importance of considering the role of functional groups in studies of community structure. PMID:26176853

  17. Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga.

    PubMed

    Leal, Laura Carolina; Lima Neto, Mário Correia; de Oliveira, Antônio Fernando Morais; Andersen, Alan N; Leal, Inara R

    2014-02-01

    Recent evidence suggests that the traditional view of myrmecochory as a highly diffuse interaction between diaspores and a wide range of ant species attracted to their elaiosomes may not be correct. The effectiveness of dispersal varies markedly among ant species, and combined with differential attractiveness of diaspores due to elaiosome size and composition, this raises the potential for myrmecochorous plants to target ant species that offer the highest quality dispersal services. We ask the question: Do particular physical and chemical traits of elaiosomes result in disproportionate removal of Euphorbiaceae diaspores by high-quality disperser ants in Caatinga vegetation of north-eastern Brazil? We offered seeds of five euphorb species that varied in morphological and chemical traits of elaiosomes to seed-dispersing ants. High-quality seed-disperser ants (species of Dinoponera, Ectatomma and Camponotus) were identified as those that rapidly collected and transported diaspores to their nests, often over substantial distances, whereas low-quality disperser ants (primarily species of Pheidole and Solenopsis) typically fed on elaiosomes in situ, and only ever transported diaspores very short distances. Low-quality disperser ants were equally attracted to the elaiosomes of all study species. However, high-quality dispersers showed a strong preference for diaspores with the highest elaiosome mass (and especially proportional mass). As far as we are aware, this is the first study to identify a mechanism of diaspore selection by high-quality ant dispersers based on elaiosome traits under field conditions. Our findings suggest that myrmecochorous plants can preferentially target high-quality seed-disperser ants through the evolution of particular elaiosome traits.

  18. Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship

    PubMed Central

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750

  19. Seed harvesting by a generalist consumer is context-dependent: Interactive effects across multiple spatial scales

    USGS Publications Warehouse

    Ostoja, Steven M.; Schupp, Eugene W.; Klinger, Rob

    2013-01-01

    Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource–consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non-native cheatgrass-dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass-dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate-scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed-seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at multiple scales. Associational effects provide a useful theoretical basis for better understanding harvester ant foraging decisions. These results demonstrate the importance of ecological context for seed removal, which has implications for seed pools, plant populations and communities.

  20. Variation in ant populations with elevation, tree cover, and fire in a pinyon-juniper-dominated watershed

    Treesearch

    Eugenie M. MontBlanc; Jeanne C. Chambers; Peter E. Brussard

    2007-01-01

    Climate change and fire suppression have facilitated expansion of pinyon-juniper woodlands into sagebrush- steppe ecosystems of the Great Basin, USA, resulting in a loss of biological diversity. To assess the effects of using prescribed fire in restoration efforts, ant abundance, species richness, and composition were examined pre- and post-burn along the elevation and...

  1. Arboreal ant colonies as 'hot-points' of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates.

    PubMed

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2014-01-01

    Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as 'hot-points' of biodiversity that urgently require special attention as a component of conservation and management programs.

  2. Consuming fire ants reduces northern bobwhite survival and weight gain

    USGS Publications Warehouse

    Myers, P.E.; Allen, Craig R.; Birge, Hannah E.

    2014-01-01

    Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.

  3. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations.

    PubMed

    Denmead, Lisa H; Darras, Kevin; Clough, Yann; Diaz, Patrick; Grass, Ingo; Hoffmann, Munir P; Nurdiansyah, Fuad; Fardiansah, Rico; Tscharntke, Teja

    2017-07-01

    One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators. © 2017 by the Ecological Society of America.

  4. Indirect effects of tending ants on holm oak volatiles and acorn quality

    PubMed Central

    Llusia, Joan; Peñuelas, Josep

    2011-01-01

    The indirect effect of ants on plants through their mutualism with honeydew-producing insects has been extensively investigated. Honeydew-producing insects that are tended by ants impose a cost on plant fitness and health by reducing seed production and/or plant growth. This cost is associated with sap intake and virus transmissions but may be overcompesated by tending ants if they deter or prey on hebivorous insects. The balance between cost and benefits depends on the tending ant species. In this study we report other indirect effects on plants of the mutualism between aphids and ants. We have found that two Lasius ant species, one native and the other invasive, may change the composition of volatile organic compounds (VOCs) of the holm oak (Quercus ilex) blend when they tend the aphid Lachnus roboris. The aphid regulation of its feeding and honeydew production according to the ant demands was proposed as a plausible mechanism that triggers changes in VOCs. Additionally, we now report here that aphid feeding, which is located most of the time on acorns cap or petiole, significantly increased the relative content of linolenic acid in acorns from holm oak colonized by the invasive ant. This acid is involved in the response of plants to insect herbivory as a precursor or jasmonic acid. No effect was found on acorn production, germination or seedlings quality. These results suggest that tending-ants may trigger the physiological response of holm oaks involved in plant resistance toward aphid herbivory and this response is ant species-dependent. PMID:21494087

  5. Temperature limits trail following behaviour through pheromone decay in ants

    NASA Astrophysics Data System (ADS)

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.

  6. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  7. The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens

    PubMed Central

    Harholt, Jesper; Willats, William G. T.; Boomsma, Jacobus J.

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants. PMID:21423735

  8. Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae)

    NASA Astrophysics Data System (ADS)

    Djiéto-Lordon, Champlain; Dejean, Alain; Gibernau, Marc; Hossaert-McKey, Martine; McKey, Doyle

    2004-10-01

    Barteria nigritana is a myrmecophyte tree of Lower Guinea coastal vegetation. Unlike the more specialised B. fistulosa, which harbours a single host-specific mutualistic ant, B. nigritana is associated with several opportunistic ants. Such symbiotic, yet opportunistic, ant-plant associations have been little studied. On 113 clumps of B. nigritana, we censused ant associates and herbivores and compared herbivory on plants occupied by different ants. In addition to these correlative data, protection conferred by different ant species was compared by herbivore-placement experiments. Identity of ant associate changed predictably over plant ontogeny. Pheidole megacephala was restricted to very small plants; saplings were occupied by either Oecophylla longinoda or Crematogaster sp., and the latter species was the sole occupant of larger trees. Damage by caterpillars of the nymphalid butterfly Acraea zetes accounted for much of the herbivory to leaves. Ant species differed in the protection provided to hosts. While P. megacephala provided no significant protection, plants occupied by O. longinoda and Crematogaster sp. suffered less damage than did unoccupied plants or those occupied by P. megacephala. Furthermore, O. longinoda provided more effective protection than did Crematogaster sp. Herbivore-placement experiments confirmed these results. Workers of O. longinoda killed or removed all larval instars of A. zetes. Crematogaster preyed on only the two first larval instars, and P. megacephala preyed mainly on eggs, only rarely attacking the two first larval instars. Opportunistic ants provided significant protection to this relatively unspecialised myrmecophyte. The usual associate of mature trees was not the species that provided most protection.

  9. The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests

    Treesearch

    Anita C. Risch; Martin F. Jurgensen; Martin Schutz; Deborah S. Page-Dumroese

    2005-01-01

    Little information is available regarding red wood ant (RWA; Formica rufa group) impacts on soil carbon (C) and nitrogen (N) cycling in forest ecosystems. We found that RWA mound density (number per ha) was linked to forest tree species composition, slope aspect, and canopy closure. The size of RWA mounds was positively correlated with successional...

  10. Petrology of 60035 - Evolution of a polymict ANT breccia

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Keil, K.

    1980-01-01

    Extensive analysis of the lunar rock sample 60035 with optical microscopy and electron microprobe methods show it to be a polymict ANT breccia partly coated with glass, containing abundant clasts which have troctolitic/noritic anorthosite compositions. At least two episodes of crushing and mixing were involved in the petrogenesis of 60035, and annealing and mineral equilibration have not been extensive since the formation of the breccia.

  11. Dataset on the abundance of ants and Cosmopolites sordidus damage in plantain fields with intercropped plants.

    PubMed

    Dassou, Anicet Gbèblonoudo; Carval, Dominique; Dépigny, Sylvain; Fansi, Gabriel; Tixier, Philippe

    2016-12-01

    The data presented in this article are related to the research article entitled "Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping" (A.G. Dassou, D. Carval, S. Dépigny, G.H Fansi, P. Tixier, 2015) [1]. This article describes how associated crops maize (Zea mays), cocoyam (Xanthosoma sagittifolium) and bottle gourd (Lagenaria siceraria) intercropped in the plantain fields in Cameroun modify ant community structure and damages of banana weevil Cosmopolites sordidus. The field data set is made publicly available to enable critical or extended analyzes.

  12. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.

  13. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695

  14. Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest.

    PubMed

    Câmara, Talita; Leal, Inara R; Blüthgen, Nico; Oliveira, Fernanda M P; Queiroz, Rubens T de; Arnan, Xavier

    2018-03-05

    Anthropogenic disturbance and climate change might negatively affect the ecosystem services provided by mutualistic networks. However, the effects of such forces remain poorly characterized. They may be especially important in dry forests, which (1) experience chronic anthropogenic disturbances (CADs) as human populations exploit forest resources, and (2) are predicted to face a 22% decline in rainfall under climate change. In this study, we investigated the separate and combined effects of CADs and rainfall levels on the specialization of mutualistic networks in the Caatinga, a seasonally dry tropical forest typical of north-eastern Brazil. More specifically, we examined interactions between plants bearing extrafloral nectaries (EFNs) and ants. We analysed whether differences in network specialization could arise from environmentally mediated variation in the species composition, namely via the replacement of specialist by generalist species. We characterized these ant-plant networks in 15 plots (20 × 20 m) that varied in CAD intensity and mean annual rainfall. We quantified CAD intensity by calculating three indices related to the main sources of disturbance in the Caatinga: livestock grazing (LG), wood extraction (WE) and miscellaneous resource use (MU). We determined the degree of ant-plant network specialization using four metrics: generality, vulnerability, interaction evenness and H 2 '. Our results indicate that CADs differentially influenced network specialization: we observed positive, negative, and neutral responses along LG, MU and WE gradients, respectively. The pattern was most pronounced with LG. Rainfall also shaped network specialization, markedly increasing it. While LG and rainfall were associated with changes in network species composition, this trend was not related to the degree of species specialization. This result suggests that shifts in network specialization might be related to changes in species behaviour, not species composition. Our study highlights the vulnerability of such dry forest ant-plant networks to climate change. Moreover, dry forests experience highly heterogeneous anthropogenic disturbances, creating a geographic mosaic of selective forces that may shape the co-evolution of interactions between ants and EFN-bearing plants. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  15. The relationship between nematode infections and ontogeny and diet of the lizard Tropidurus torquatus (Wied, 1820) (Squamata: Tropiduridae) from the Atlantic Rainforest in south-eastern Brazil.

    PubMed

    Pereira, F B; Gomides, S C; Sousa, B M; de Souza Lima, S; Luque, J L

    2013-09-01

    The aim of the present study was to investigate the relationship between nematode infection and the ontogeny and diet of the lizard Tropidurus torquatus from a rocky outcrop in the state of Minas Gerais, south-eastern Brazil. Eighty-nine of 110 lizards examined (81.9%) harboured nematodes. Two nematode species were identified, namely, Physaloptera lutzi in the stomach and Parapharyngodon bainae in the intestine, with prevalence values of 67.3 and 60.0%, respectively. The lizard diet was composed mainly of ants, other hymenopterans, beetles and flowers of the species Centrosema coriaceum (Fabaceae). Host body size was positively correlated with nematode abundance, with adults more heavily parasitized than juveniles. The consumption of C. coriaceum had a negative effect on the abundance of both nematode species, suggesting that this plant may possess anthelmintic properties. The probability of a higher worm burden in adult hosts is likely linked with a longer exposure time to infective stages. Beetles, ants and hymenopterans appear to be the main intermediate hosts for P. lutzi. In general, ontogeny and diet composition determine the structure of the helminth community in this species of lizard.

  16. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae).

    PubMed

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-04-21

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite.

  17. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae)

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-01-01

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite. PMID:27110765

  18. [Effects of environmental factors on the ant fauna of restinga community in Rio de Janeiro, Brazil].

    PubMed

    Vargas, André B; Mayhé-Nunes, Antônio J; Queiroz, Jarbas M; Souza, Guilherme O; Ramos, Elaine F

    2007-01-01

    The effects of environmental factors on the richness, diversity and abundance of ants were studied in the Restinga da Marambaia, south coast of Rio de Janeiro State, Brazil. The samples were taken using pitfall traps in August/2004 (winter) and March/2005 (summer) in three different vegetation types: (1) herbaceous ridge palmoid (homogeneous habitat); (2) shrub dune thicket and (3) ridge forest (heterogeneous habitats). At each habitat a range of environmental attributes was recorded: soil temperature and humidity, percentage of soil covering by litter and litter depth. Ninety-two ant species belonging to 36 genera and eight subfamilies were recorded. Density of ant species and abundance varied significantly between habitats and seasons; ant diversity varied only between habitats. Homogeneous habitat had lower ant species density, abundance and diversity than heterogeneous habitats. The two first variables were positively correlated with litter depth and both were higher in summer than in winter samples. There were more species of Ponerinae and Ectatomminae in heterogeneous than in the homogeneous habitat, whereas the Formicinae species were more abundant in the later.

  19. Stage-dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem.

    PubMed

    Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2014-08-01

    Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage-dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis - which is A. orbigera main prey in the area - only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage-specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.

  20. Stage-dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem

    PubMed Central

    Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2014-01-01

    Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage-dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis – which is A. orbigera main prey in the area – only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage-specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern. PMID:25473473

  1. Material Enactments of Identities and Learning in Everyday Community Practices: Implications for Pedagogy

    ERIC Educational Resources Information Center

    Aberton, Helen

    2012-01-01

    In recent years there has been an upsurge of interest in applying actor-network theory (ANT) to educational research and analysis. This article presents an account of how an ANT analysis of socio-material practices with a focus on objects can bring informal learning and identity formation to view. It is based on a doctoral study of the everyday…

  2. Hydrated mucilage reduces post-dispersal seed removal of a sand desert shrub by ants in a semiarid ecosystem.

    PubMed

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Gao, Ruiru; Yang, Fan; Wei, Lingling; Li, Leilei; He, Hongju; Huang, Zhenying

    2013-12-01

    Post-dispersal seed removal by animals can lead to extensive seed loss and thus is an important factor in structuring plant communities. However, we know much less about post-dispersal seed predation than about other forms of herbivory. Mucilage plays many ecological roles in adaptation of plants to diverse environments; nevertheless, until now the role of mucilage in ant-mediated seed movement remains largely hypothetical. We studied the role of mucilage in seed removal of Artemisia sphaerocephala by ants in Mu Us Sandland in Inner Mongolia, China. Messor aciculatus was the most active seed predator of Artemisia sphaerocephala. Time to first ant collecting (T 1st) of wet intact seeds was longest and significantly different from that for dry intact seeds, wet demucilaged seeds, and dry demucilaged seeds; number of seeds removed to ant nests was lowest for wet intact seeds. After they were collected by ants, 5 % of wet intact seeds were dropped during transport. Our results indicate that seed mucilage of Artemisia sphaerocephala may play a significant role in post-dispersal seed removal by (1) making seeds less attractive to ants, thus resulting in a delay of collection time; (2) forming a strong bond to soil particles, making it difficult for ants to remove seeds; and (3) making seeds more likely to be dropped during transport, thereby allowing them to escape from predation even after collection by ants. This study demonstrates the importance of mucilage in reducing seed removal by ants and thus in anchoring seeds of desert plants in the vicinity of mother plants.

  3. An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation.

    PubMed

    Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C

    2015-06-01

    Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.

  4. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants.

    PubMed

    García-Martínez, Miguel Á; Valenzuela-González, Jorge E; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela

    2017-01-01

    Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments.

  5. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants

    PubMed Central

    Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela

    2017-01-01

    Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments. PMID:28234948

  6. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    PubMed

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Arboreal Ant Colonies as ‘Hot-Points’ of Cryptic Diversity for Myrmecophiles: The Weaver Ant Camponotus sp. aff. textor and Its Interaction Network with Its Associates

    PubMed Central

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2014-01-01

    Introduction Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. Materials and Methods We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. Results We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Conclusions Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as ‘hot-points’ of biodiversity that urgently require special attention as a component of conservation and management programs. PMID:24941047

  8. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where introduced species will occur and how their range limits may shift as a result of climate change. ?? 2007 by the Ecological Society of America.

  9. The Influence of Host Plant Extrafloral Nectaries on Multitrophic Interactions: An Experimental Investigation

    PubMed Central

    Koptur, Suzanne; Jones, Ian M.; Peña, Jorge E.

    2015-01-01

    A field experiment was conducted with outplantings of the native perennial shrub Senna mexicana var. chapmanii in a semi-natural area adjacent to native pine rockland habitat in southern Florida. The presence of ants and the availability of extrafloral nectar were manipulated in a stratified random design. Insect communities were monitored and recorded over a period of six months with a view to addressing three main questions. Do ants provide biotic defense against key herbivores on S. chapmanii? Is the presence of ants on S. chapmanii mediated by EFN? Finally, are there ecological costs associated with the presence of ants on S. chapmanii, such as a reduction in alternative predator or parasitoid numbers? Herbivores on S. chapmanii included immature stages of three pierid butterflies, and adult weevils. Eight species of ants were associated with the plants, and other predators included spiders, ladybugs, wasps, and hemipterans. Parasitic, haemolymph-sucking midges (Ceratopogonidae) and parasitoid flies were also associated with the caterpillar herbivores, and possibly the extrafloral nectaries of the plants. The presence of ants did not appear to influence oviposition by butterflies, as numbers of lepidopterans of all developmental stages did not differ among treatments. Significantly more late instar caterpillars, however, were observed on plants with ants excluded, indicating that ants remove small caterpillars from plants. Substantially more alternative predators (spiders, ladybugs, and wasps) were observed on plants with ants excluded. Rates of parasitization did not differ among the treatments, but there were substantially fewer caterpillars succumbing to virus among those collected from control plants. We provide a rare look at facultative ant-plant mutualisms in the context of the many other interactions with which they overlap. We conclude that ants provide some biotic defense against herbivores on S. chapmanii, and plants benefit overall from the presence of ants, despite negative impacts on non-ant predators. PMID:26394401

  10. Bat aggregation mediates the functional structure of ant assemblages.

    PubMed

    Dejean, Alain; Groc, Sarah; Hérault, Bruno; Rodriguez-Pérez, Héctor; Touchard, Axel; Céréghino, Régis; Delabie, Jacques H C; Corbara, Bruno

    2015-10-01

    In the Guianese rainforest, we examined the impact of the presence of guano in and around a bat roosting site (a cave). We used ant communities as an indicator to evaluate this impact because they occupy a central place in the functioning of tropical rainforest ecosystems and they play different roles in the food web as they can be herbivores, generalists, scavengers or predators. The ant species richness around the cave did not differ from a control sample situated 500m away. Yet, the comparison of functional groups resulted in significantly greater numbers of detritivorous fungus-growing and predatory ant colonies around the cave compared to the control, the contrary being true for nectar and honeydew feeders. The role of bats, through their guano, was shown using stable isotope analyses as we noted significantly greater δ(15)N values for the ant species captured in and around the cave compared to controls. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey.

    PubMed

    Pekár, Stano; Šedo, Onřej; Líznarová, Eva; Korenko, Stanislav; Zdráhal, Zdeněk

    2014-07-01

    It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.

  12. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey

    NASA Astrophysics Data System (ADS)

    Pekár, Stano; Šedo, Onřej; Líznarová, Eva; Korenko, Stanislav; Zdráhal, Zdeněk

    2014-07-01

    It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.

  13. Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential

    PubMed Central

    Zhukova, Mariya; Hansen, Lars H.; Sørensen, Søren J.; Schiøtt, Morten

    2015-01-01

    Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves. PMID:26048932

  14. Why are some mitochondria more powerful than others: insights from comparisons of muscle mitochondria from three terrestrial vertebrates.

    PubMed

    Guderley, Helga; Turner, Nigel; Else, Paul L; Hulbert, A J

    2005-10-01

    We studied the molecular composition of muscle mitochondria to evaluate whether the contents of cytochromes or adenine nucleotide translocase (ANT) or phospholipid acyl compositions reflect differences in mitochondrial oxidative capacities. We isolated mitochondria from three vertebrates of similar size and preferred temperature, the rat (Rattus norvegicus), the cane toad (Bufo marinus) and the bearded dragon lizard (Pogona vitticeps). Mitochondrial oxidative capacities were higher in rats and cane toads than in bearded dragon, whether rates were expressed relative to protein, cytochromes or ANT. Inter-specific differences were least pronounced when rates were expressed relative to cytochrome A, a component of cytochrome C oxidase (CCO), or ANT. In mitochondria from rat and cane toad, cytochrome A was more abundant than C followed by B and then C(1), while in bearded dragon mitochondria, the cytochromes were present in roughly equal levels. Analysis of correlations between mitochondrial oxidative capacities and macromolecular components revealed that cytochrome A explained at least half of the intra- and inter-specific variability in substrate oxidation rates. ANT levels were an excellent correlate of state 3 rates while phospholipid contents were correlated with state 4 rates. As the % poly-unsaturation and the % 20:4n-6 in mitochondrial phospholipids were equivalent in toads and rats, and exceeded the levels in lizards, they may contribute to the inter-specific differences in oxidative capacities. We suggest that the numbers of CCO and ANT together with the poly-unsaturation of phospholipids explain the higher oxidative capacities in muscle mitochondria from rats and cane toads.

  15. The life of a dead ant: the expression of an adaptive extended phenotype.

    PubMed

    Andersen, Sandra B; Gerritsma, Sylvia; Yusah, Kalsum M; Mayntz, David; Hywel-Jones, Nigel L; Billen, Johan; Boomsma, Jacobus J; Hughes, David P

    2009-09-01

    Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings approximately 25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.

  16. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    PubMed

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  17. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  18. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  19. Ant-mediated seed dispersal in a warmed world

    PubMed Central

    Patterson, Courtney M.; Rodriguez-Cabal, Mariano A.; Ribbons, Relena R.; Dunn, Robert R.; Sanders, Nathan J.

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863

  20. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city.

    PubMed

    Lagucki, Edward; Burdine, Justin D; McCluney, Kevin E

    2017-01-01

    Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change.

  1. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city

    PubMed Central

    Lagucki, Edward

    2017-01-01

    Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change. PMID:28890848

  2. Strong influence of regional species pools on continent-wide structuring of local communities.

    PubMed

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  3. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders

    PubMed Central

    Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno

    2018-01-01

    Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553

  4. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders.

    PubMed

    Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno

    2018-01-01

    Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.

  5. The impact of wood ants (Formica rufa) on the distribution and abundance of ground beetles (Coleoptera: Carabidae) in a Scots pine plantation.

    PubMed

    Hawes, C; Stewart, A; Evans, H

    2002-05-01

    The importance of wood ants (Formica rufa) in determining the community structure (defined as the relative abundance of component species) and small-scale distribution of carabids was examined in a mature Scots pine stand in the New Forest, southern England. Carabids and wood ants were sampled by pitfall trapping throughout the forest stand from March to September 1998. The abundance of individual carabid species were modelled using vegetation type (grass or bracken), litter depth and wood ant density as independent explanatory variables. Models were fitted using a maximum-likelihood method (GLIM v.3.77; Baker 1985) with the assumption of a Poisson distribution, using a log-link function. Areas of high wood ant density were characterised by low abundance and species richness of carabids and high percentage dominance by the most commonly sampled species, Abax parallelepipedus. The extent and type of vegetation cover was found to influence the distribution and abundance of certain carabid species but only in areas where the density of wood ants was low. Large-bodied species occurred more frequently in bracken-dominated patches where the litter layer was deeper and the density of potential prey items was higher. Wood ant density was found to be the most important determinant of carabid species abundance in the study site.

  6. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    PubMed

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota. Copyright © 2014 Aylward et al.

  7. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; ...

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  8. Arthropod recolonization in the restoration of a semideciduous forest in southeastern Brazil.

    PubMed

    Pais, Mara P; Varanda, Elenice M

    2010-01-01

    The use of arthropods for monitoring habitat changes has grown widely in the last decades. In Brazil, however, most of the studies in restored areas have involved only vegetation changes. The present study aimed at investigating recolonization patterns of epigeic arthropods in recently restored sites of semideciduous forests in southeastern Brazil. We compared the community structure of adjoining sites 5, 17, 29 and 36 months old with that at a nearby forest remnant (reference site). We also determined the most abundant species and looked for ecological indicator species of each site age. Arthropods were sampled using pitfall traps, and their assemblages were described and compared with multi- and univariate statistical methods. Species abundance and richness equivalent to the reference site were reached at five months after planting, however species composition was very distinctive not only in relation to the reference site, but also among restored sites. Some of the main species found in this restoration stage are common in agroecosystems or cerrado vegetation. Nevertheless, there was a clear trend of arthropod fauna in restored sites moving toward the fauna in the forest remnant over time. Our results also highlighted ants and termites because of their abundance and ants because of their high value as ecological indicators of restoration age.

  9. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  10. The Ground-Dwelling Arthropod Community of Península Valdés in Patagonia, Argentina

    PubMed Central

    Cheli, Germán H.; Corley, J. C.; Bruzzone, O.; del Brío, M.; Martínez, F.; Román, N. Martínez; Ríos, I.

    2010-01-01

    This is the first study based on a planned and intensive sampling effort that describes the community composition and structure of the ground-dwelling arthropod assemblage of Península Valdés (Patagonia). It was carried out using pitfall traps, opened for two weeks during the summers of 2005, 2006 and 2007. A total of 28, 111 individuals were caught. Ants (Hymenoptera: Formicidae) dominated this community, followed by beetles (Coleoptera) and spiders (Araneae). The most abundant species were Pheidole bergi Mayr (Hymenoptera: Formicidae) and Blapstinus punctulatus Solier (Coleoptera: Tenebrionidae). Two new species were very recently described as new based on specimens collected during this study: Valdesiana curiosa Carpintero, Dellapé & Cheli (Hemiptera, Miridae) and Anomaloptera patagonica Dellapé & Cheli (Hemiptera, Oxycarenidae). The order Coleoptera was the most diverse taxa. The distribution of abundance data was best described by the logarithmic series model both at the family and species levels, suggesting that ecological relationships in this community could be controlled by a few factors. The community was dominated by predators from a trophic perspective. This suggests that predation acts as an important factor driving the distribution and abundances of surface-dwelling arthropods in this habitat and as such serves as a key element in understanding desert, above-ground community structure. These findings may also be useful for management and conservation purposes in arid Patagonia. PMID:20572783

  11. The ground-dwelling arthropod community of Península Valdés in Patagonia, Argentina.

    PubMed

    Cheli, Germán H; Corley, J C; Bruzzone, O; Brío, M Del; Martínez, F; Román, N Martínez; Ríos, I

    2010-01-01

    This is the first study based on a planned and intensive sampling effort that describes the community composition and structure of the ground-dwelling arthropod assemblage of Península Valdés (Patagonia). It was carried out using pitfall traps, opened for two weeks during the summers of 2005, 2006 and 2007. A total of 28,111 individuals were caught. Ants(Hymenoptera: Formicidae) dominated this community, followed by beetles (Coleoptera) and spiders (Araneae). The most abundant species were Pheidole bergi Mayr (Hymenoptera:Formicidae) and Blapstinus punctulatus Solier (Coleoptera: Tenebrionidae). Two new species were very recently described as new based on specimens collected during this study: Valdesianacuriosa Carpintero, Dellapé & Cheli (Hemiptera, Miridae) and Anomaloptera patagonica Dellapé& Cheli (Hemiptera, Oxycarenidae). The order Coleoptera was the most diverse taxa. The distribution of abundance data was best described by the logarithmic series model both at the family and species levels, suggesting that ecological relationships in this community could be controlled by a few factors. The community was dominated by predators from a trophic perspective. This suggests that predation acts as an important factor driving the distribution and abundances of surface-dwelling arthropods in this habitat and as such serves as a key element in understanding desert, above-ground community structure. These findings may also be useful for management and conservation purposes in arid Patagonia.

  12. Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia.

    PubMed

    Johansson, Therese; Gibb, Heloise

    2012-01-01

    Forest management alters species behaviours, distributions and interactions. To evaluate forestry effects on ant foraging performance, we compared the quality and quantity of honeydew harvested by ants among clear-cuts, middle-aged and mature spruce-dominated stands in boreal forests in Sweden. Honeydew quality was examined using honeydew collected by squeezing the gasters of laden Formica aquilonia workers. We used fifteen laden individuals at each study site (four replicates of each stand age) and analysed honeydew chemical composition with gas chromatography-mass spectroscopy. To compare the quantity of honeydew collected by individual ants, we collected and weighed five ants moving up and five ants moving down each of ten trees at the twelve sites (totally 1200 ants). The concentration of trehalose in honeydew was lower in clear-cuts compared with middle aged and mature stands, and similar trends were shown for sucrose, raffinose and melezitose, indicating poorer honeydew quality on clear cuts. Concentrations of the amino acid serine were higher on clear-cuts. The same trend occurred for glutamine, suggesting that increased N-uptake by the trees after clear cutting is reflected in the honeydew of aphids. Ants in mature stands had larger heads and carried proportionally more honeydew and may therefore be more efficient foragers. Human alternation of habitats through clear-cutting thus affects food quality and worker condition in F. aquilonia. This is the first study to show that honeydew quality is affected by anthropogenic disturbances, likely contributing to the reduction in size and abundance of F. aquilonia workers and mounds after clear cutting.

  13. Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands.

    PubMed

    McNatty, Alice; Abbott, Kirsti L; Lester, Philip J

    2009-05-01

    Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to delta(15) N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in delta(15) N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation.

  14. Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems

    PubMed Central

    Mathis, Kaitlyn A.; Philpott, Stacy M.; Ramirez, Santiago R.

    2016-01-01

    Arboreal ants are both highly diverse and ecologically dominant in the tropics. This ecologically important group is particularly useful in ongoing efforts to understand processes that regulate species diversity and coexistence. Our study addresses how polydomy can influence patterns of nest occupation in competing arboreal ants. We examined the spatial structure of nest occupation (nest distance, abundance and density) in three polydomous co-occurring twig-nesting ant species (Pseudomyrmex simplex, P. ejectus and P. PSW-53) by mapping twigs occupied by ants from each species within plots in our study site. We then used two colony structure estimators (intraspecific aggression and cuticular hydrocarbon variation) to determine the relative degree of polydomy for each species. All work was conducted in coffee agroforests in Chiapas, Mexico. Our results revealed that the two species with highest abundance and nest density were also highly polydomous, where both species had either single or multiple non-aggressive colonies occupying nests on a large spatial scale (greater than the hectare level). Our results also indicate that the species with the lowest abundance and density is less polydomous, occupying several overlapping and territorial colonies at the hectare level in which multiple colonies never co-occur on the same host plant. These results contribute evidence that successful coexistence and highly polydomous colony structure may allow ants, through reduced intraspecific aggression, to successfully occupy more nests more densely than ant species that have multiple territorial colonies. Furthermore our study highlights the importance of considering intraspecific interactions when examining community assembly of ants. PMID:27795573

  15. Convergence in Multispecies Interactions.

    PubMed

    Bittleston, Leonora S; Pierce, Naomi E; Ellison, Aaron M; Pringle, Anne

    2016-04-01

    The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent interactions in a comparative context is likely to facilitate prediction of the ecological roles of organisms (including microbes) in multispecies interactions and selective pressures acting in poorly understood or newly discovered multispecies systems. We illustrate the concept of convergent interactions with examples: vertebrates and their gut bacteria; ectomycorrhizae; insect-fungal-bacterial interactions; pitcher-plant food webs; and ants and ant-plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Survey of invasive ants at Hakalau Forest National Wildlife Refuge

    USGS Publications Warehouse

    Peck, Robert W.; Banko, Paul C.

    2011-01-01

    We conducted a survey for invasive ants at Hakalau Forest National Wildlife Refuge, Hawai‘i Island, during 2009–2010 to evaluate potential threats to native arthropod communities and food webs. The focal area of the survey was the upper portion of the Hakalau Unit of the refuge, where native forest was being restored in abandoned cattle pastures. This area, between 1575 and 1940 m elevations, contained much alien kikuyu grass (Pennisetum clandestinum), but koa (Acacia koa) trees and other native species that were planted in the past 20 years were rapidly filling in the pasture. We surveyed for ants at predetermined points along roads, fences, and corridors of planted koa. Sampling methods primarily consisted of hand searching and pitfall traps, but bait cards were used additionally in some instances. Our results indicated that a single species, Cardiocondyla kagutsuchi, was widespread across the upper portion of the refuge. Cardiocondyla kagutsuchi seemed absent, or at least rare, in areas of tall, dense grass. Due to the undulating topography of the area, however, the dense grass cover was interspersed with outcroppings of exposed, gravelly soil. Presumably due to warming by the sun, many of the outcropped habitats supported colonies of C. kagutsuchi. We did not detect ants in the old-growth forest below the abandoned pastures, presumably because microhabitat conditions under the forest canopy were unsuitable. Although ecological impacts of C. kagutsuchi have not been reported, they may be limited by the small size of the ant, the relatively small size of colonies, and the apparent preference of the ant for disturbed areas that are dominated by alien species. Notably, our survey of Keanakolu-Mana Road between the Observatory Road (John A. Burns Way) and the town of Waimea detected a population of Argentine ants (Linepithema humile) approximately 5.1 km north of the Maulua Section of the refuge. We also surveyed for ants on the Kona Forest Unit of the refuge. This small survey focused on approximately 14 km of roads located below about 1600 m elevation. We found two species, Solenopsis papuana and Nylanderia bourbonica. Solenopsis papuana was more widespread, being found along the southern, northern, and western boundaries, while N. bourbonica was detected only at 790 m elevation on the southern boundary. Of the two species, S. papuana seemed more likely to affect native arthropod communities due to its tendency to form relatively large, aggressive colonies and its ability to inhabit intact mesic and wet forests below 1100 m elevation. In contrast, the restriction of N. bourbonica to disturbed habitats indicated a reduced threat to native arthropod communities. Our results on the Kona Forest Unit corroborated those of a study conducted during 1999–2000, although the earlier study was more intensive over time and yielded small numbers of two additional species, Cardiocondyla wroughtonii and Tetramorium bicarinatum, both of which were detected below 792 m elevation along the southern boundary.

  17. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  18. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    PubMed

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Occurrence of killer yeasts in leaf-cutting ant nests.

    PubMed

    Carreiro, S C; Pagnocca, F C; Bacci, M; Bueno, O C; Hebling, M J A; Middelhoven, W J

    2002-01-01

    Killer activity was screened in 99 yeast strains isolated from the nests of the leaf-cutting ant Atta sexdens against 6 standard sensitive strains, as well as against each other. Among this yeast community killer activity was widespread since 77 strains (78%) were able to kill or inhibit the growth of at least one standard strain or nest strain. Toxin production was observed in representatives of all the studied genera including Aureobasidium, Rhodotorula, Tremella and Trichosporon, whose killer activity has not yet been described.

  20. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Kersken, Daniel; Göcke, Christian; Brandt, Angelika; Lejzerowicz, Franck; Schwabe, Enrico; Anna Seefeldt, Meike; Veit-Köhler, Gritta; Janussen, Dorte

    2014-10-01

    Due to their high abundance and large body size sponges have a central position in Antarctic zoobenthos, where they form the most extensive sponge grounds of the world. Though research on Antarctic benthos communities is quite established, research on sponge-associated infauna communities is scarce. We analyzed associated infauna of fifteen individuals of the sponge species Mycale (Oxymycale) acerata Kirkpatrick, 1907 (Demospongiae: Mycalina), Rossella antarctica Carter, 1872 and R. racovitzae Topsent, 1901 (both Hexactinellida: Lyssacinosida). Samples were collected from the deep Ekström Shelf at 602 m in the South-Eastern Weddell Sea, Antarctica, during the ANT XXIV-2 (SYSTCO I) expedition of RV Polarstern. The number of species, α- and β-diversity and the significantly different species composition of infauna communities related to sponge species were calculated, the latter via cluster analysis. The sponge-associated infauna consisted of five phyla: Foraminifera, Nematoda, Polychaeta, Mollusca and Arthropoda. In total 11,463 infaunal specimens were extracted and we found at least 76 associated species. Highest values of α-diversity were calculated for a sample of R. antarctica with a Shannon-Index of 1.84 and Simpson-Index of 0.72 respectively. Our results of the cluster-analysis show significant differences between infauna communities and a unique species composition for single sponge species. Polychaetes of the genus Syllis Lamarck, 1818 were numerous in M. acerata and genera like Pionosyllis Malmgren, 1867 and Cirratulus Lamarck, 1801 were numerous in R. antarctica. Individuals of the amphipod species Seba cf. dubia Schellenberg, 1926 were often found in R. antarctica and R. racovitzae while Colomastix fissilingua Schellenberg, 1926 was frequent in samples of M. acerata. Molluscs were present in M. acerata and R. antarctica but absent in R. racovitzae.

  1. A new type of ant-decapitation in the Phoridae (Insecta: Diptera)

    PubMed Central

    Kung, Giar-Ann; Porras, Wendy

    2015-01-01

    Abstract The genus Dohrniphora is a hyperdiverse group of phorid flies, a family whose species are commonly characterized as generalized scavengers. The lifestyle of most species of Dohrniphora is unknown, although one cosmopolitan, synanthropic species, D. cornuta (Bigot) fits the general scavenger mold. Here we show that flies of the D. longirostrata species group exhibit highly specific “headhunting” behavior in which injured Odontomachus ants are decapitated, the heads dragged away, and females either feed on their contents or lay an egg nearby. Since most females studied lacked eggs in their ovaries, we conclude that this bizarrely specialized feeding is necessary to provide nutrients for reproduction in these flies. Our study provides further evidence that injured ants are a common, stable resource in tropical ecosystems that support a wide array of phorid flies. Such narrowly constrained lifestyles, as exemplified by exclusively feeding on and breeding in the head contents of certain ponerine worker ants, could allow the co-existence of a huge community of saprophagous flies. PMID:25709534

  2. At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango

    PubMed Central

    Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas

    2017-01-01

    Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561

  3. Ground Dwelling Ants as Surrogates for Establishing Conservation Priorities in the Australian Wet Tropics

    PubMed Central

    Yek, Sze Huei; Willliams, Stephen E; Burwell, Chris J.; Robson, Simon K.A.; Crozier, Ross H.

    2009-01-01

    This study aims to identify a set of areas with high biodiversity value over a small spatial scale within the Australian Wet Tropics. We identified sites of high biodiversity value across an altitudinal gradient of ground dwelling ant communities using three measures of biodiversity. The three measures considered were estimated species richness, complementarity between sites and evolutionary history. The latter measure was derived using the systematic nomenclature of the ants to infer a surrogate phylogeny. The goal of conservation assessments could then be achieved by choosing the most diverse site combinations. This approach was found to be valuable for identifying the most diverse site combinations across an altitudinal gradient that could ensure the preservation of terrestrial ground dwelling invertebrates in the Australian Wet Tropics. PMID:19613441

  4. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators

    PubMed Central

    Reverté, Sara; Retana, Javier; Gómez, José M.; Bosch, Jordi

    2016-01-01

    Background and aims Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. Methods We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant–pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. Key Results We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. Conclusions The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant–pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant–pollinator associations. PMID:27325897

  5. Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability.

    PubMed

    Nowrouzi, Somayeh; Andersen, Alan N; Macfadyen, Sarina; Staunton, Kyran M; VanDerWal, Jeremy; Robson, Simon K A

    2016-01-01

    The threat of anthropogenic climate change has seen a renewed focus on understanding contemporary patterns of species distribution. This is especially the case for the biota of tropical mountains, because tropical species often have particularly narrow elevational ranges and there are high levels of short-range endemism. Here we describe geographic patterns of ant diversity and distribution in the World Heritage-listed rainforests of the Australian Wet Tropics (AWT), revealing seasonal moisture stability to be an important environmental correlate of elevational patterns of species composition. We sampled ants in leaf litter, on the litter surface and on tree trunks at 26 sites from six subregions spanning five degrees of latitude and elevation ranges from 100-1,300 m. A total of 296 species from 63 genera were recorded. Species richness showed a slight peak at mid elevations, and did not vary significantly with latitude. Species composition varied substantially between subregions, and many species have highly localised distributions. There was very marked species turnover with elevation, with a particularly striking compositional disjunction between 600 m and 800 m at each subregion. This disjunction coincides with a strong environmental threshold of seasonal stability in moisture associated with cloud 'stripping'. Our study therefore provides further support for climatic stability as a potential mechanism underlying patterns of diversity. The average height of orographic cloud layers is predicted to rise under global warming, and associated shifts in seasonal moisture stability may exacerbate biotic change caused by rising temperature alone.

  6. Characterization of actinobacteria associated with three ant-plant mutualisms.

    PubMed

    Hanshew, Alissa S; McDonald, Bradon R; Díaz Díaz, Carol; Djiéto-Lordon, Champlain; Blatrix, Rumsaïs; Currie, Cameron R

    2015-01-01

    Ant-plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant-plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant-plant-fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant-plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant-plant-fungi niches.

  7. Response to Heethoff, Norton, and Raspotnig: Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog and Erratum.

    PubMed

    McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A

    2016-08-01

    Our recent publication titled "Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog" aimed to describe how variation in diet contributes to population differences in toxin profiles of poison frogs. Some poison frogs (Family Dendrobatidae) sequester alkaloid toxins from their arthropod diet, which is composed mainly of ants and mites. Our publication demonstrated that arthropods from the stomach contents of three different frog populations were diverse in both chemistry and species composition. To make progress towards understanding this trophic relationship, our main goal was to identify alkaloids that are found in either ants or mites. With the remaining samples that were not used for chemical analysis, we attempted to identify the arthropods using DNA barcoding of cytochrome oxidase 1 (CO1). The critique of Heethoff, Norton, and Raspotnig refers to the genetic analysis of a small number of mites. Here, we respond to the general argument of the critique as well as other minor issues detailed by Heethoff, Norton, and Raspotnig.

  8. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  9. Plant defences against ants provide a pathway to social parasitism in butterflies.

    PubMed

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio

    2015-07-22

    Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.

  10. Plant defences against ants provide a pathway to social parasitism in butterflies

    PubMed Central

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M.; Bonelli, Simona; Casacci, Luca P.; Zebelo, Simon A.; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E.; Thomas, Jeremy A.; Balletto, Emilio

    2015-01-01

    Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773

  11. Community Sampling and Integrative Taxonomy Reveal New Species and Host Specificity in the Army Ant-Associated Beetle Genus Tetradonia (Coleoptera, Staphylinidae, Aleocharinae).

    PubMed

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-01-01

    Army ant colonies host a diverse community of arthropod symbionts. Among the best-studied symbiont communities are those of Neotropical army ants of the genus Eciton. It is clear, however, that even in these comparatively well studied systems, a large proportion of symbiont biodiversity remains unknown. Even more striking is our lack of knowledge regarding the nature and specificity of these host-symbiont interactions. Here we surveyed the diversity and host specificity of rove beetles of the genus Tetradonia Wasmann, 1894 (Staphylinidae: Aleocharinae). Systematic community sampling of 58 colonies of the six local Eciton species at La Selva Biological Station, Costa Rica, combined with an integrative taxonomic approach, allowed us to uncover species diversity, host specificity, and co-occurrence patterns of symbionts in unprecedented detail. We used an integrative taxonomic approach combining morphological and genetic analyses, to delineate species boundaries. Mitochondrial DNA barcodes were analyzed for 362 Tetradonia specimens, and additional nuclear markers for a subset of 88 specimens. All analyses supported the presence of five Tetradonia species, including two species new to science. Host specificity is highly variable across species, ranging from generalists such as T. laticeps, which parasitizes all six local Eciton species, to specialists such as T. lizonae, which primarily parasitizes a single species, E. hamatum. Here we provide a dichotomous key along with diagnostic molecular characters for identification of Tetradonia species at La Selva Biological Station. By reliably assessing biodiversity and providing tools for species identification, we hope to set the baseline for future studies of the ecological and evolutionary dynamics in these species-rich host-symbiont networks.

  12. Community Sampling and Integrative Taxonomy Reveal New Species and Host Specificity in the Army Ant-Associated Beetle Genus Tetradonia (Coleoptera, Staphylinidae, Aleocharinae)

    PubMed Central

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J. C.

    2016-01-01

    Army ant colonies host a diverse community of arthropod symbionts. Among the best-studied symbiont communities are those of Neotropical army ants of the genus Eciton. It is clear, however, that even in these comparatively well studied systems, a large proportion of symbiont biodiversity remains unknown. Even more striking is our lack of knowledge regarding the nature and specificity of these host-symbiont interactions. Here we surveyed the diversity and host specificity of rove beetles of the genus Tetradonia Wasmann, 1894 (Staphylinidae: Aleocharinae). Systematic community sampling of 58 colonies of the six local Eciton species at La Selva Biological Station, Costa Rica, combined with an integrative taxonomic approach, allowed us to uncover species diversity, host specificity, and co-occurrence patterns of symbionts in unprecedented detail. We used an integrative taxonomic approach combining morphological and genetic analyses, to delineate species boundaries. Mitochondrial DNA barcodes were analyzed for 362 Tetradonia specimens, and additional nuclear markers for a subset of 88 specimens. All analyses supported the presence of five Tetradonia species, including two species new to science. Host specificity is highly variable across species, ranging from generalists such as T. laticeps, which parasitizes all six local Eciton species, to specialists such as T. lizonae, which primarily parasitizes a single species, E. hamatum. Here we provide a dichotomous key along with diagnostic molecular characters for identification of Tetradonia species at La Selva Biological Station. By reliably assessing biodiversity and providing tools for species identification, we hope to set the baseline for future studies of the ecological and evolutionary dynamics in these species-rich host-symbiont networks. PMID:27829037

  13. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation.

    PubMed

    Jílková, Veronika; Picek, Tomáš; Šestauberová, Martina; Krištůfek, Václav; Cajthaml, Tomáš; Frouz, Jan

    2016-10-01

    We compared methane (CH4) and carbon dioxide (CO2) fluxes in samples collected from the aboveground parts of wood ant nests and in the organic and mineral layer of the surrounding forest floor. Gas fluxes were measured during a laboratory incubation, and microbial properties (abundance of fungi, bacteria and methanotrophic bacteria) and nutrient contents (total and available carbon and nitrogen) were also determined. Both CO2 and CH4 were produced from ant nest samples, indicating that the aboveground parts of wood ant nests act as sources of both gases; in comparison, the forest floor produced about four times less CO2 and consumed rather than produced CH4 Fluxes of CH4 and CO2 were positively correlated with contents of available carbon and nitrogen. The methanotrophic community was represented by type II methanotrophic bacteria, but their abundance did not explain CH4 flux. Fungal abundance was greater in ant nest samples than in forest floor samples, but bacterial abundance was similar in both kinds of samples, suggesting that the organic materials in the nests may have been too recalcitrant for bacteria to decompose. The results indicate that the aboveground parts of wood ant nests are hot spots of CO2 and CH4 production in the forest floor. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. In Situ Surveying of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C.

    2004-03-01

    Saturn Autonomous Ring Array (SARA) mission concept is an application for the Autonomous Nano-Technology Swarm (ANTS) architecture that would perform in situ observations of compositional and dynamic properties of ring particles, a challenge unachievable by previous mission designs.

  15. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies

    PubMed Central

    Barbero, Francesca

    2016-01-01

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed. PMID:27886144

  16. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies.

    PubMed

    Barbero, Francesca

    2016-11-24

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.

  17. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    PubMed

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with degree of soil disturbance. There were moderately divergent responses to disturbance between functional feeding groups. Disturbance was most strongly correlated with compositional differences of herbivores within beetles and nematodes and humus feeders within termites. Our results suggest that consideration of the impact of different forms of disturbance on species and functional composition, rather than on net numbers of species, is important when assessing the impacts of disturbance on biodiversity. © 2016 Society for Conservation Biology.

  18. Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability

    PubMed Central

    Nowrouzi, Somayeh; Andersen, Alan N.; Macfadyen, Sarina; Staunton, Kyran M.; VanDerWal, Jeremy; Robson, Simon K. A.

    2016-01-01

    The threat of anthropogenic climate change has seen a renewed focus on understanding contemporary patterns of species distribution. This is especially the case for the biota of tropical mountains, because tropical species often have particularly narrow elevational ranges and there are high levels of short-range endemism. Here we describe geographic patterns of ant diversity and distribution in the World Heritage-listed rainforests of the Australian Wet Tropics (AWT), revealing seasonal moisture stability to be an important environmental correlate of elevational patterns of species composition. We sampled ants in leaf litter, on the litter surface and on tree trunks at 26 sites from six subregions spanning five degrees of latitude and elevation ranges from 100–1,300 m. A total of 296 species from 63 genera were recorded. Species richness showed a slight peak at mid elevations, and did not vary significantly with latitude. Species composition varied substantially between subregions, and many species have highly localised distributions. There was very marked species turnover with elevation, with a particularly striking compositional disjunction between 600 m and 800 m at each subregion. This disjunction coincides with a strong environmental threshold of seasonal stability in moisture associated with cloud ‘stripping’. Our study therefore provides further support for climatic stability as a potential mechanism underlying patterns of diversity. The average height of orographic cloud layers is predicted to rise under global warming, and associated shifts in seasonal moisture stability may exacerbate biotic change caused by rising temperature alone. PMID:27073848

  19. Transfer of radionuclides and dose assessment to ants and anthills in a Swedish forest ecosystem.

    PubMed

    Rosén, K; Lenoir, L; Stark, K; Vinichuk, M; Sundell-Bergman, S

    2018-05-15

    In forest ecosystems soil organisms are important for immobilization, translocation and recycling of radionuclides. Still, there is a lack of studies on the role of insects such as ants in the turnover of radionuclides and how radioactivity affects an ant community. In this study seven anthills were sampled in an area that was heavily contaminated after the fallout from the Chernobyl accident. Samples of ant and anthill materials were taken from different depths of the anthills as well as from the surrounding soil and the activity concentrations of 137 Cs were determined. In addition, a radiation dose assessment was performed for ants and anthills using the ERICA tool. The deposition of 137 Cs in 1986 in the study area was calculated back to be on average 110,500 Bq m -2 . The averaged data for all the seven locations investigated indicate that the level of 137 Cs activity concentrations in the anthill's material increased with depth of the anthill being highest at the depth 50-65 cm. The concentration in the upper layers (0-2 cm) and of the ants showed significant correlations with the deposition upon multivariate analysis. The concentration ratio (CR) defined as the ratio between the mass activity for 137 Cs density in ants (Bq kg -1 d.w.) and mass activity density in soil (Bq kg -1 d.w.) was determined to be in the range of 0.04-0.14. Also, the transfer factor (TF) defined as the ratio between the mass activity for 137 Cs density in ant (Bq kg -1 d.w.) and to the unit area activity density (in Bq m -2 d.w.) was determined for 137 Cs to be 0.0015 m 2 kg -1 d.w. The assessed radiation doses were found to be a 4.9 μGy h -1 which is below international reference levels for non-human biota. Copyright © 2018. Published by Elsevier Ltd.

  20. The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts.

    PubMed

    Tinker, Kara A; Ottesen, Elizabeth A

    2016-11-15

    The omnivorous cockroach Periplaneta americana hosts a diverse hindgut microbiota encompassing hundreds of microbial species. In this study, we used 16S rRNA gene sequencing to examine the effect of diet on the composition of the P. americana hindgut microbial community. Results show that the hindgut microbiota of P. americana exhibit a highly stable core microbial community with low variance in compositions between individuals and minimal community change in response to dietary shifts. This core hindgut microbiome is shared between laboratory-hosted and wild-caught individuals, although wild-caught specimens exhibited a higher diversity of low-abundance microbes that were lost following extended cultivation under laboratory conditions. This taxonomic stability strongly contrasts with observations of the gut microbiota of mammals, which have been shown to be highly responsive to dietary change. A comparison of P. americana hindgut samples with human fecal samples indicated that the cockroach hindgut community exhibited higher alpha diversity but a substantially lower beta diversity than the human gut microbiome. This suggests that cockroaches have evolved unique mechanisms for establishing and maintaining a diverse and stable core microbiome. The gut microbiome plays an important role in the overall health of its host. A healthy gut microbiota typically assists with defense against pathogens and the digestion and absorption of nutrients from food, while dysbiosis of the gut microbiota has been associated with reduced health. In this study, we examined the composition and stability of the gut microbiota from the omnivorous cockroach Periplaneta americana. We found that P. americana hosts a diverse core gut microbiome that remains stable after drastic long-term changes in diet. While other insects, notably ant and bee species, have evolved mechanisms for maintaining a stable association with specific gut microbiota, these insects typically host low-diversity gut microbiomes and consume specialized diets. In contrast, P. americana hosts a gut microbiota that is highly species rich and consumes a diverse solid diet, suggesting that cockroaches have evolved unique mechanisms for developing and maintaining a stable gut microbiota. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. AsterAnts: A Concept for Large-Scale Meteoroid Return and Processing using the International Space Station

    NASA Technical Reports Server (NTRS)

    Globus, Al; Biegel, Bryan A.; Traugott, Steve

    2004-01-01

    AsterAnts is a concept calling for a fleet of solar sail powered spacecraft to retrieve large numbers of small (1/2-1 meter diameter) Near Earth Objects (NEOs) for orbital processing. AsterAnts could use the International Space Station (ISS) for NEO processing, solar sail construction, and to test NEO capture hardware. Solar sails constructed on orbit are expected to have substantially better performance than their ground built counterparts [Wright 1992]. Furthermore, solar sails may be used to hold geosynchronous communication satellites out-of-plane [Forward 1981] increasing the total number of slots by at least a factor of three. potentially generating $2 billion worth of orbital real estate over North America alone. NEOs are believed to contain large quantities of water, carbon, other life-support materials and metals. Thus. with proper processing, NEO materials could in principle be used to resupply the ISS, produce rocket propellant, manufacture tools, and build additional ISS working space. Unlike proposals requiring massive facilities, such as lunar bases, before returning any extraterrestrial larger than a typical inter-planetary mission. Furthermore, AsterAnts could be scaled up to deliver large amounts of material by building many copies of the same spacecraft, thereby achieving manufacturing economies of scale. Because AsterAnts would capture NEOs whole, NEO composition details, which are generally poorly characterized, are relatively unimportant and no complex extraction equipment is necessary. In combination with a materials processing facility at the ISS, AsterAnts might inaugurate an era of large-scale orbital construction using extraterrestrial materials.

  2. Checklist of the ants (Hymenoptera, Formicidae) of the Solomon Islands and a new survey of Makira Island

    PubMed Central

    Sarnat, Eli M.; Blanchard, Benjamin; Guénard, Benoit; John Fasi;  Evan P. Economo

    2013-01-01

    Abstract The intent of this paper is to facilitate future research of the Solomon Islands ant fauna by providing the first comprehensively researched species inventory in over 75 years. The species list presented here includes the names of all ant species recorded from the islands that are available in the literature together with specimen records from several museum collections and new records from our 2008 Makira field expedition. All the names of described species presented are valid in accordance with the most recent Formicidae classification. In total, the checklist is composed of 237 species and subspecies (including 30 morphospecies) in 59 genera representing nine subfamilies. We report that the recent field expedition added 67 new species records to Makira and 28 new species records to the Solomon Islands. Our research recovered species occurrence records for 32 individual islands and five island groups. The five islands with the highest number of recorded species are: Makira (142 spp.), Guadalcanal (107 spp.), Malaita (70 spp.), Santa Isabel (68 spp.), and Rennell (66 spp.). Based on our results, we discuss the taxonomic composition of the archipelago’s ant fauna, which islands are most in need of additional sampling, and the importance of establishing biodiversity baselines before environmental threats such as the invasive ant Wasmannia auropunctata cause irrevocable harm to the native biodiversity. PMID:23653494

  3. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.

    PubMed

    Reverté, Sara; Retana, Javier; Gómez, José M; Bosch, Jordi

    2016-08-01

    Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Distribution of invasive ants and methods for their control in Hawai'i Volcanoes National Park

    USGS Publications Warehouse

    Peck, Robert W.; Banko, Paul C.; Snook, Kirsten; Euaparadorn, Melody

    2013-01-01

    The first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites, upper boundaries of big-headed ants coincided with lower boundaries of Argentine ants. Significantly, Wasmannia auropunctata (little fire ant) was not detected during our surveys. Formicidal baits tested for controlling Argentine ants included XstinguishTM (containing fipronil at 0.01%), Maxforce® (hydramethylnon 1.0%), and Australian Distance® (pyriproxyfen 0.5%). Each bait was distributed evenly over four 2500 m2 replicate plots. Applications were repeated approximately four weeks after the initial treatment. Plots were subdivided into 25 subplots and ants monitored within each subplot using paper cards containing tuna bait at approximately one week intervals for about 14 weeks. All treatments reduced ant numbers, but none eradicated ants on any of the plots. XstinguishTM produced a strong and lasting effect, depressing ant abundance below 1% of control plot levels within the first week and for about eight weeks afterward. Maxforce® was slower to attain maximum effectiveness, reducing ants to 8% of control levels after one week and 3% after six weeks. Australian Distance® was least effective, decreasing ant abundance to 19% of control levels after one week with numbers subsequently rebounding to 40% of controls at four weeks and 72% at 10 weeks. In measurements of the proportion of bait cards at which ants were detected, XstinguishTM clearly out-performed Maxforce®, reaching a minimum detection rate of 3% of bait cards at one week compared to a low of 19% for Maxforce® two weeks following the second treatment. Although ant abundances were dramatically reduced on XstinguishTM plots, it is not currently registered for use in the USA. Our results suggest that ant abundance can be greatly reduced using registered baits, but further research is needed before even small-scale eradication of Argentine ants can be achieved.  Formicidal baits tested to control big-headed ants included Amdro® (hydramethylnon 0.75%), XstinguishTM (fipronil 0.01%), Extinguish® Plus (a blend of hydramethylnon 0.365% and S- methoprene 0.25%), and Australian Distance® Plus (hydramethylnon 0.365% and pyriproxyfen 0.25%). Application methods were the same as used for Argentine ants, with baits being applied on two occasions (approximately four weeks apart) on four 2500 m2 replicate plots. All four baits reduced populations to below 2% of control plot levels within one week of treatment. Amdro® was particularly effective as no ants were detected on two of the four Amdro® plots immediately following treatment. Suppression was long-lived in three of the treatments; Amdro®, Australian Distance® Plus, and Extinguish® Plus all maintained ant abundances at levels less than 1% of control plots over 12 weeks of study. In contrast, ant abundances in XstinguishTM plots rose to 7% of control plots after four weeks and 20% after 10 weeks. Our results corroborate other recent studies indicating that small populations of big-headed ants can be controlled in natural areas using products registered in the USA. 

  5. Ex post and ex ante willingness to pay (WTP) for the ICT Malaria Pf/Pv test kit in Myanmar.

    PubMed

    Cho-Min-Naing; Lertmaharit, S; Kamol-Ratanakul, P; Saul, A J

    2000-03-01

    Willingness to pay (WTP) for the ICT Malaria Pf/Pv test kit was assessed by the contingent valuation method using a bidding game approach in two villages in Myanmar. Kankone (KK) village has a rural health center (RHC) and Yae-Aye-Sann (YAS) is serviced by community health worker (CHW). The objectives were to assess WTP for the ICT Malaria Pf/Pv test kit and to determine factors affecting the WTP. In both villages WTP was assessed in two different conditions, ex post and ex ante. The ex post WTP was assessed at an RHC in the KK village and at the residence of a CHW in the YAS village on patients immediately following diagnosis of malaria. The ex ante WTP was assessed by household interviews in both villages on people with a prior history of malaria. Ordinary least squares (OLS) multiple regression analysis was used to analyze factors affecting WTP. The WTP was higher in ex post conditions than ex ante in both villages. WTP was significantly positively associated with the average monthly income of the respondents and severity of illness in both ex post and ex ante conditions (p < 0.001). Distance between the residence of the respondents and the health center was significantly positively associated (p < 0.05) in the ex ante condition in a household survey of YAS village. Traveling time to RHC had a negative relationship with WTP (p < 0.05) in the ex post condition in the RHC survey in KK village.

  6. Discovery-dominance trade-off among widespread invasive ant species.

    PubMed

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-07-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.

  7. A global database of ant species abundances

    USGS Publications Warehouse

    Gibb, Heloise; Dunn, Rob R.; Sanders, Nathan J.; Grossman, Blair F.; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N.; Angulo, Elena; Armbrecht, Ingre; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Bruhl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Ellison, Aaron M.; Enriquez, Martha L.; Fayle, Tom M.; Feener Jr., Donald H.; Fisher, Brian L.; Fisher, Robert N.; Fitpatrick, Matthew C.; Gomez, Cristanto; Gotelli, Nicholas J.; Gove, Aaron; Grasso, Donato A.; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H.; Majer, Jonathan; McGlynn, Terrence P.; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; Resasco, Julian; Retana, Javier; Silva, Rogerio R.; Sorger, Magdalena D.; Souza, Jorge; Suarez, Andrew V.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Weiser, Michael D.; Yates, Michelle; Parr, Catherine L.

    2017-01-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51,388 ant abundance and occurrence records of more than 2693 species and 7953 morphospecies from local assemblages collected at 4212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type and degree of disturbance. The aim of compiling this dataset was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardised methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing dataset.

  8. Arthropods of Rose Atoll with special reference to ants and Pulvinaria Urbicola Scales (Hempitera Coccidae) on Pisonia Grandis trees

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Pendleton, Frank; Schmaedick, Mark; Ernsberger, Kelsie

    2014-01-01

    Rose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.

  9. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Morales-Linares, Jonas; García-Franco, José G.; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E.; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia

    2016-12-01

    Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.

  10. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico.

    PubMed

    Morales-Linares, Jonas; García-Franco, José G; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia

    2016-12-01

    Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.

  11. Sugary secretions of wasp galls: a want-to-be extrafloral nectar?

    PubMed

    Aranda-Rickert, Adriana; Rothen, Carolina; Diez, Patricia; González, Ana María; Marazzi, Brigitte

    2017-11-10

    The most widespread form of protective mutualisms is represented by plants bearing extrafloral nectaries (EFNs) that attract ants and other arthropods for indirect defence. Another, but less common, form of sugary secretion for indirect defence occurs in galls induced by cynipid wasps. Until now, such galls have been reported only for cynipid wasps that infest oak trees in the northern hemisphere. This study provides the first evidence of galls that exude sugary secretions in the southern hemisphere and asks whether they can be considered as analogues of plants' EFNs. The ecology and anatomy of galls and the chemical composition of the secretion were investigated in north-western Argentina, in natural populations of the host trees Prosopis chilensis and P. flexuosa . To examine whether ants protect the galls from natural enemies, ant exclusion experiments were conducted in the field. The galls produce large amounts of sucrose-rich, nectar-like secretions. No typical nectary and sub-nectary parenchymatic tissues or secretory trichomes can be observed; instead there is a dense vascularization with phloem elements reaching the gall periphery. At least six species of ants, but also vespid wasps, Diptera and Coleoptera, consumed the gall secretions. The ant exclusion experiment showed that when ants tended galls, no differences were found in the rate of successful emergence of gall wasps or in the rate of parasitism and inquiline infestation compared with ant-excluded galls. The gall sugary secretion is not analogous to extrafloral nectar because no nectar-producing structure is associated with it, but is functionally equivalent to arthropod honeydew because it provides indirect defence to the plant parasite. As in other facultative mutualisms mediated by sugary secretions, the gall secretion triggers a complex multispecies interaction, in which the outcome of individual pair-wise interactions depends on the ecological context in which they take place. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Evaluation of functional degeneration of the amazon-ant Polyergus rufescens Latr. under an influence of socially parasitic way of life.

    PubMed

    Dobrzańska, J

    1978-01-01

    In certain, infrequently occurring, favorable circumstances the ants P. rufescens can display patterns of behavior which seem to be disappearing as a result of their parasitic way of life: the ability to food themselves, independently though ineffectively, elements of the offspring-protection behavior, transporting of nestmates, escape reaction. Similar events reinforce the infrequently used, latent reflexes, preventing their complete extinction. It is supposed that the characteristic in conventional parasitism disappearance of certain elements of behavior is inhibited by a social way of life. It may also be true of other, non-insect communities.

  13. Impacts of elevated temperature on ant species, communities and ecological roles at two temperate forests in Eastern North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Robert

    2014-04-01

    Over the course of five years we have established a long-term array of warming chambers at Duke and Harvard Forest that simulate future conditions with regard to temperature. In these chambers, we have studied, ants, other animal taxa, fungi, bacteria and plants and their responses to the treatments. We have coupled these studies with lab experiments, large-scale observations, and models to contextualize our results. Finally, we have developed integrative models of the future distribution of species and their consequences as a result of warming in eastern North America and more generally.

  14. Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog.

    PubMed

    McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A

    2016-06-01

    Poison frogs sequester chemical defenses from arthropod prey, although the details of how arthropod diversity contributes to variation in poison frog toxins remains unclear. We characterized skin alkaloid profiles in the Little Devil poison frog, Oophaga sylvatica (Dendrobatidae), across three populations in northwestern Ecuador. Using gas chromatography/mass spectrometry, we identified histrionicotoxins, 3,5- and 5,8-disubstituted indolizidines, decahydroquinolines, and lehmizidines as the primary alkaloid toxins in these O. sylvatica populations. Frog skin alkaloid composition varied along a geographical gradient following population distribution in a principal component analysis. We also characterized diversity in arthropods isolated from frog stomach contents and confirmed that O. sylvatica specialize on ants and mites. To test the hypothesis that poison frog toxin variability reflects species and chemical diversity in arthropod prey, we (1) used sequencing of cytochrome oxidase 1 to identify individual prey specimens, and (2) used liquid chromatography/mass spectrometry to chemically profile consumed ants and mites. We identified 45 ants and 9 mites in frog stomachs, including several undescribed species. We also showed that chemical profiles of consumed ants and mites cluster by frog population, suggesting different frog populations have access to chemically distinct prey. Finally, by comparing chemical profiles of frog skin and isolated prey items, we traced the arthropod source of four poison frog alkaloids, including 3,5- and 5,8-disubstituted indolizidines and a lehmizidine alkaloid. Together, the data show that toxin variability in O. sylvatica reflects chemical diversity in arthropod prey.

  15. The extent of cultural variation between adjacent chimpanzee (Pan troglodytes verus) communities; a microecological approach.

    PubMed

    Luncz, Lydia V; Boesch, Christophe

    2015-01-01

    Chimpanzees show cultural differences among populations across Africa but also between neighboring communities. The extent of these differences among neighbors, however, remains largely unknown. Comparing three neighboring chimpanzee community in the Taï National Park, Côte d'Ivoire, we found 27 putative cultural traits, including tool use, foraging, social interaction, communication and hunting behavior, exceeding by far previously known diversity. As foraging behavior is predominantly influenced by the environment, we further compared in detail ecological circumstances underlying insectivore feeding behavior to analyze whether foraging differences on Dorylus ants and Thoracotermes termites seen between neighboring chimpanzee communities were caused by environmental factors. Differences in the prey characteristics of Dorylus ants (aggression level, running speed, and nest structure) that could influence the behavior of chimpanzees were excluded, suggesting that the observed group-specific variation is not ecologically driven. Only one community preyed on Thoracotermes termites despite a similar abundance of termite mounds in all three territories, supporting the idea that this difference is also not shaped by the environment. Therefore, our study suggests that transmission of cultural knowledge plays a role in determining insectivory prey behavior. This behavioral plasticity, independent of ecological conditions, can lead to large numbers of cultural diversification between neighboring chimpanzee communities. These findings not only deepen our understanding of the cultural abilities of chimpanzees in the wild but also open up possible future comparisons of the origin of cultural diversification among humans and chimpanzees. © 2014 Wiley Periodicals, Inc.

  16. Ants as a measure of effectiveness of habitat conservation planning in southern California

    USGS Publications Warehouse

    Mitrovich, Milan J.; Matsuda, Tritia; Pease, Krista H.; Fisher, Robert N.

    2010-01-01

    In the United States multispecies habitat conservation plans were meant to be the solution to conflicts between economic development and protection of biological diversity. Although now widely applied, questions exist concerning the scientific credibility of the conservation planning process and effectiveness of the plans. We used ants to assess performance of one of the first regional conservation plans developed in the United States, the Orange County Central-Coastal Natural Community Conservation Plan (NCCP), in meeting its broader conservation objectives of biodiversity and ecosystem-level protection. We collected pitfall data on ants for over 3 years on 172 sites established across a network of conservation lands in coastal southern California. Although recovered native ant diversity for the study area was high, site-occupancy models indicated the invasive and ecologically disruptive Argentine ant ( Linepithema humile) was present at 29% of sites, and sites located within 200 m of urban and agricultural areas were more likely to have been invaded. Within invaded sites, native ants were largely displaced, and their median species richness declined by more than 60% compared with uninvaded sites. At the time of planning, 24% of the 15,133-ha reserve system established by Orange County NCCP fell within 200 m of an urban or agricultural edge. With complete build out of lands surrounding the reserve, the proportion of the reserve system vulnerable to invasion will grow to 44%. Our data indicate that simply protecting designated areas from development is not enough. If habitat conservation plans are to fulfill their conservation promise of ecosystem-level protection, a more-integrated and systematic approach to the process of habitat conservation planning is needed.

  17. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants.

    PubMed

    Maruyama, Munetoshi; Parker, Joseph

    2017-03-20

    Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A global database of ant species abundances.

    PubMed

    Gibb, Heloise; Dunn, Rob R; Sanders, Nathan J; Grossman, Blair F; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Brühl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A; Ellison, Aaron M; Enriquez, Martha L; Fayle, Tom M; Feener, Donald H; Fisher, Brian L; Fisher, Robert N; Fitzpatrick, Matthew C; Gómez, Crisanto; Gotelli, Nicholas J; Gove, Aaron; Grasso, Donato A; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H; Majer, Jonathan; McGlynn, Terrence P; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M; Resasco, Julian; Retana, Javier; Silva, Rogerio R; Sorger, Magdalena D; Souza, Jorge; Suarez, Andrew; Tista, Melanie; Vasconcelos, Heraldo L; Vonshak, Merav; Weiser, Michael D; Yates, Michelle; Parr, Catherine L

    2017-03-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set. © 2016 by the Ecological Society of America.

  19. Do host species evolve a specific response to slave-making ants?

    PubMed Central

    2012-01-01

    Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non-parasite intruders. Conclusions We used two different analyses of our behavioral data (standardized with the chemical distance between colonies or not) to test our hypothesis. Standardized data show behavioral differences which could indicate qualitative and specific parasite recognition. We finally stress the importance of considering the whole set of potentially interacting species to understand the coevolution between social parasites and their hosts. PMID:23276325

  20. Voltages induced by lightning strokes and ground-faults on a coaxial telecom circuit enclosed inside a composite earthwire. Part II: lightning induced voltages ant composite earthwire tehnical design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzanel, P.; Kouteynikoff, P.

    1985-02-01

    This Part II presents theorical and experimental work about interference generated by lightning strokes in a telecommunication coaxial circuit enclosed inside a composite earthwire for overhead transmission lines. Sinusoidal steady state and surge measurements of the composite earthwire susceptibility to interference (transfer impedance) have been carried out. Induced voltages have been calculated using an original double sampling FFT method whose validity has been checked by measurements on a test line. Finally, it is shown how the cable design can be improved and maximum induced voltage values are given.

  1. Extrafloral nectar secretion from wounds of Solanum dulcamara.

    PubMed

    Lortzing, Tobias; Calf, Onno W; Böhlke, Marlene; Schwachtje, Jens; Kopka, Joachim; Geuß, Daniel; Kosanke, Susanne; van Dam, Nicole M; Steppuhn, Anke

    2016-04-25

    Plants usually close wounds rapidly to prevent infections and the loss of valuable resources such as assimilates(1). However, herbivore-inflicted wounds on the bittersweet nightshade Solanum dulcamara appear not to close completely and produce sugary wound secretions visible as droplets. Many plants across the plant kingdom secrete sugary nectar from extrafloral nectaries(2) to attract natural enemies of herbivores for indirect defence(3,4). As ants forage on wound edges of S. dulcamara in the field, we hypothesized that wound secretions are a form of extrafloral nectar (EFN). We show that, unlike EFN from known nectaries, wound secretions are neither associated with any specific structure nor restricted to certain locations. However, similar to EFN, they are jasmonate-inducible and the plant controls their chemical composition. Wound secretions are attractive for ants, and application of wound secretion mimics increases ant attraction and reduces herbivory on S. dulcamara plants in a natural population. In greenhouse experiments, we reveal that ants can defend S. dulcamara from two of its native herbivores, slugs and flea beetle larvae. Since nectar is defined by its ecological function as a sugary secretion involved in interactions with animals(5), such 'plant bleeding' could be a primitive mode of nectar secretion exemplifying an evolutionary origin of structured extrafloral nectaries.

  2. Draft genome of the red harvester ant Pogonomyrmex barbatus.

    PubMed

    Smith, Chris R; Smith, Christopher D; Robertson, Hugh M; Helmkampf, Martin; Zimin, Aleksey; Yandell, Mark; Holt, Carson; Hu, Hao; Abouheif, Ehab; Benton, Richard; Cash, Elizabeth; Croset, Vincent; Currie, Cameron R; Elhaik, Eran; Elsik, Christine G; Favé, Marie-Julie; Fernandes, Vilaiwan; Gibson, Joshua D; Graur, Dan; Gronenberg, Wulfila; Grubbs, Kirk J; Hagen, Darren E; Viniegra, Ana Sofia Ibarraran; Johnson, Brian R; Johnson, Reed M; Khila, Abderrahman; Kim, Jay W; Mathis, Kaitlyn A; Munoz-Torres, Monica C; Murphy, Marguerite C; Mustard, Julie A; Nakamura, Rin; Niehuis, Oliver; Nigam, Surabhi; Overson, Rick P; Placek, Jennifer E; Rajakumar, Rajendhran; Reese, Justin T; Suen, Garret; Tao, Shu; Torres, Candice W; Tsutsui, Neil D; Viljakainen, Lumi; Wolschin, Florian; Gadau, Jürgen

    2011-04-05

    We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.

  3. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait

    PubMed Central

    Blaimer, Bonnie B.; Schmitt, Thomas

    2017-01-01

    Cuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures. Molecule length constrained CHC composition: long-chain profiles contained fewer linear alkanes, but more hydrocarbons with disruptive features in the molecule. This is probably owing to selection on the physiology to build a semi-fluid cuticular layer, which is necessary for waterproofing and communication. CHC composition also depended on the precipitation in the ants' habitats. Species from wet climates had more alkenes and fewer dimethyl alkanes than those from drier habitats, which can be explained by different waterproofing capacities of these compounds. By contrast, temperature did not affect CHC composition. Mutualistically associated (parabiotic) species possessed profiles highly distinct from non-associated species. Our study is, to our knowledge, the first to show systematic impacts of physiological, climatic and biotic factors on quantitative CHC composition across a global, multi-species dataset. We demonstrate how they jointly shape CHC profiles, and advance our understanding of the evolution of this complex functional trait in insects. PMID:28298343

  4. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators

    PubMed Central

    Pekár, Stano; Petráková, Lenka; Bulbert, Matthew W; Whiting, Martin J; Herberstein, Marie E

    2017-01-01

    Mimicry complexes typically consist of multiple species that deter predators using similar anti-predatory signals. Mimics in these complexes are assumed to vary in their level of defence from highly defended through to moderately defended, or not defended at all. Here, we report a new multi-order mimicry complex that includes at least 140 different putative mimics from four arthropod orders including ants, wasps, bugs, tree hoppers and spiders. All members of this mimicry complex are characterised by a conspicuous golden body and an ant Gestalt, but vary substantially in their defensive traits. However, they were similarly effective at deterring predators - even mildly defended mimics were rarely eaten by a community of invertebrate and vertebrate predators both in the wild and during staged trials. We propose that despite the predominance of less defended mimics the three predatory guilds avoid the mimics because of the additive influence of the various defensive traits. DOI: http://dx.doi.org/10.7554/eLife.22089.001 PMID:28170317

  5. Anatomy, Ultrastructure and Chemical Composition of Food Bodies of Hovenia dulcis (Rhamnaceae)

    PubMed Central

    Buono, Rafael Andrade; de Oliveira, Alaíde Braga; Paiva, Elder Antonio Sousa

    2008-01-01

    Background and Aims Food bodies (FBs) are structures that promote mutualism between plants and ants, which help protect them against herbivores. The present study aims to describe the anatomical organization, ultrastructure and chemical composition of the FBs in Hovenia dulcis, which represent the first structures of this type described in Rhamnaceae. Methods Leaves in various stages of development were collected and fixed for examination under light, transmission and scanning electron microscopy. Samples of FBs were subjected to chemical analysis using thin-layer chromatography and nuclear magnetic resonance of 1H and 13C. Key Results The FBs vary from globose to conical and are restricted to the abaxial leaf surface, having a mixed origin, including epidermis and parenchyma. The FB epidermis is uniseriate, slightly pilose and has a thin cuticle. The epidermal cells are vacuolated and pigments or food reserves are absent. The parenchyma cells of immature FBs have dense cytoplasm showing mitochondria, endoplasmic reticulum and plastids. Mature FB cells store oils, which are free in the cytosol and occupy a large portion of the cell lumen. In these cells the plastids accumulate starch. Conclusions The lipids present in FBs are glycerin esters characteristic of plant energy reserves. Ants were observed collecting these FBs, which allows us to infer that these structures mediate plant–ant interactions and can help protect the young plants against herbivores, as these structures are prevalent at this developmental stage. PMID:18413656

  6. Faunalpedturbation effects on soil microarthropods in the Negev Desert

    USDA-ARS?s Scientific Manuscript database

    Soil microarthropod communities in seed-harvester ant-nest (Messor spp.) soils and pits excavated by porcupines (Hystrix indica) were examined on a hill-slope catena in the Negev Desert to test the hypothesis that animal-produced soil disturbances increase abundance and diversity of soil biota. Ther...

  7. Seeing through Transparency in Education Reform: Illuminating the "Local"

    ERIC Educational Resources Information Center

    Koyama, Jill; Kania, Brian

    2016-01-01

    Utilizing "assemblage," a notion associated with Actor-Network Theory (ANT), we explore what discourses of transparency can, and cannot, accomplish in a network of education reform that includes schools, government agencies, and community organizations. Drawing on data collected between July 2011 and March 2013 in an…

  8. (Re/Dis)assembling Learning Practices Online with Fluid Objects and Spaces

    ERIC Educational Resources Information Center

    Thompson, Terrie Lynn

    2012-01-01

    Actor network theory (ANT) is used to explore how work-learning is enacted in informal online communities and illustrates how researchers might use sociomaterial approaches to uncover complexities, uncertainties, and specificities of work-learning practices. Participants in this study were self-employed workers. The relational and material aspects…

  9. Practicing Technology Implementation: The Case of an Enterprise System

    ERIC Educational Resources Information Center

    Awazu, Yukika

    2013-01-01

    Drawing on four theories of practice--Communities of Practice (CoP), Bourdieu's theory of practice, Pickering's mangle of practice, and Actor Network Theory (ANT), the study provides an in-depth understanding about technology implementation practice. Analysis of an Enterprise System implementation project in a software manufacturing…

  10. Secondary succession of arthropods and plants in the Arizona Sonoran Desert in response to transmission line construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.; Beley, J.R.; Ditsworth, T.M.

    1983-03-01

    At a site about 16 km south of Black Canyon City, Arizona, density of arthropods on an undisturbed plot after an access road was built for powerline construction was much greater than on a disturbed plot. Mites, springtails, leafhoppers, scale insects, ants and thrips were signficantly reduced on the disturbed area. Our results indicate that restoration of numbers of arthropods on the disturbed area is dependent on the total plant cover on the plot, apparently regardless of the composition of the plant species involved. It is obvious in this area that the plant communities will remain dissimilar, with the pioneeringmore » herbaceous plants on the disturbed plot dominating. Cosntruction of a powerline apparently has had little impact on the structure of the arthropod community on the disturbed area, as proportions of three trophic categories of arthropods have not been radically altered. The results of this study, when compared to other studies in the Sonoran Desert and in desert grasslands disturbed by powerline construction, indicate that lengthy secondary succession does occur in the Sonoran Desert. Early arthropod invaders were found to be mainly herbivores, with few parasites or predators, and an equilibrium was eventually reached between colonizers and space requirements.« less

  11. Evolution of long centromeres in fire ants.

    PubMed

    Huang, Yu-Ching; Lee, Chih-Chi; Kao, Chia-Yi; Chang, Ni-Chen; Lin, Chung-Chi; Shoemaker, DeWayne; Wang, John

    2016-09-15

    Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.

  12. Descartes Mountains and Cayley Plains - Composition and provenance

    NASA Technical Reports Server (NTRS)

    Drake, M. J.; Taylor, G. J.; Goles, G. G.

    1974-01-01

    Trace element compositions of petrographically characterized 2-4 mm lithic fragments from Apollo 16 soil samples are used to calculate initial REE concentrations in liquids in equilibrium with lunar anorthosites and to discuss the provenance of the Cayley Formation. Lithic fragments may be subdivided into four groups: (1) ANT rocks, (2) K- and SiO2-rich mesostasis-bearing rocks, (3) poikiloblastic rocks, and (4) (spinel) troctolites. Model liquids in equilibrium with essentially monominerallic anorthosites have initial REE concentrations 5-8 times those of chondrites. The REE contents of K- and SiO2-rich mesostasis-bearing rocks and poikiloblastic rocks are dominated by the mesostasis phases. ANT rocks appear to be more abundant in the Descartes Mountains, while poikiloblastic rocks appear to be more abundant in the Cayley Plains. Poikiloblastic rocks have intermediate to high LIL-element concentrations yet the low gamma-ray activity of Mare Orientale implies low LIL-element concentrations. Consequently, it is unlikely that the Cayley Formation is Orientale ejecta. A local origin as ejecta from smaller impacts is a more plausible model for the deposition of the Cayley Formation.

  13. Developing Software for NASA Missions in the New Millennia

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is working on new mission concepts for exploration of the solar system. The concepts for these missions include swarms of hundreds of cooperating intelligent spacecraft which will be able to work in teams and gather more data than current single spacecraft missions. These spacecraft will not only have to operate independently for long periods of time on their own and in teams, but will also need to have autonomic properties of self healing, self configuring, self optimizing and self protecting for them to survive in the harsh space environment. Software for these types of missions has never been developed before and represents some of the challenges of software development in the new millennia. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm missions NASA is considering. The ANTS mission will use a swarm of one thousand pico-spacecraft that weigh less than five pounds. Using an insect colony analog, ANTS will explore the asteroid belt and catalog the mass, density, morphology, and chemical composition of the asteroids. Due to the size of the spacecraft, each will only carry a single miniaturized science instrument which will require them to cooperate in searching for asteroids that are of scientific interest. This article also discusses the ANTS mission, the properties the spacecraft will need and how that will effect future software development.

  14. Community Noise Exposure Resulting from Aircraft Operations: Technical Review

    DTIC Science & Technology

    1974-11-01

    REPORT DOCUMENTATION PAGE I. REPORT NÜSTER AMRL-TR-73-106 2. OOVT ACCESSION NO 4. TITLE («a* SuHttl,) COMMUNITY NOISE EXPOSURE RESULTING FROM...INSTRUCTIONS BEFORE COMPLETING FORM 1. REClPlfcNT’i CATALOG NUMBER rr.t/j i S. TVP|tOF REPORT * PERIOO COVERED final report • PERFORMING ORC... REPORT NUMBER 2581 I. CONTRACT OR OR ANT NUMBERf«) F-33615-73-C-4160 10. PROGRAM ELEMENT, PROJECT, TASK AREA * WORK UNIT NUMBERS 62202F

  15. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups

    PubMed Central

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species’ preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to habitat preferences or morphology may allow insights into likely long-term changes. PMID:26891049

  16. Targeted research to improve invasive species management: yellow crazy ant Anoplolepis gracilipes in Samoa.

    PubMed

    Hoffmann, Benjamin D; Auina, Saronna; Stanley, Margaret C

    2014-01-01

    Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu'utele island, Samoa. First, we assessed the ant's impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine assessment benchmarks to achieve eradication.

  17. Revolutionizing Remote Exploration with ANTS

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  18. Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae).

    PubMed

    Pekár, Stano; Michalko, Radek; Korenko, Stanislav; Sedo, Ondřej; Líznarová, Eva; Sentenská, Lenka; Zdráhal, Zbyněk

    2013-02-01

    Several hypotheses have been put forward to explain the evolution of prey specificity (stenophagy). Yet little light has so far been shed on the process of evolution of stenophagy in carnivorous predators. We performed a detailed analysis of a variety of trophic adaptations in one species. Our aim was to determine whether a specific form of stenophagy, myrmecophagy, has evolved from euryphagy via parallel changes in several traits from pre-existing characters. For that purpose, we studied the trophic niche and morphological, behavioural, venomic and physiological adaptations in a euryphagous spider, Selamia reticulata. It is a species that is branching off earlier in phylogeny than stenophagous ant-eating spiders of the genus Zodarion (both Zodariidae). The natural diet was wide and included ants. Laboratory feeding trials revealed versatile prey capture strategies that are effective on ants and other prey types. The performance of spiders on two different diets - ants only and mixed insects - failed to reveal differences in most fitness components (survival and developmental rate). However, the weight increase was significantly higher in spiders on the mixed diet. As a result, females on a mixed diet had higher fecundity and oviposited earlier. No differences were found in incubation period, hatching success or spiderling size. S. reticulata possesses a more diverse venom composition than Zodarion. Its venom is more effective for the immobilisation of beetle larvae than of ants. Comparative analysis of morphological traits related to myrmecophagy in the family Zodariidae revealed that their apomorphic states appeared gradually along the phylogeny to derived prey-specialised genera. Our results suggest that myrmecophagy has evolved gradually from the ancestral euryphagous strategy by integrating a series of trophic traits. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Contrasting species and functional beta diversity in montane ant assemblages.

    PubMed

    Bishop, Tom R; Robertson, Mark P; van Rensburg, Berndt J; Parr, Catherine L

    2015-09-01

    Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional-trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Maloti-Drakensberg Mountains, southern Africa. We sampled ant assemblages along an extensive elevational gradient (900-3000 m a.s.l.) twice yearly for 7 years, and collected functional-trait information related to the species' dietary and habitat-structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible factors that control ant existence across elevation. We conclude that diet and habitat preferences have little role in structuring ant assemblages in montane environments and that some other factor must be driving the non-random patterns of species turnover. This finding also highlights the importance of distinguishing between different kinds of beta diversity.

  20. The biodiversity cost of carbon sequestration in tropical savanna.

    PubMed

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  1. Warfighting and Logistic Support of Joint Forces from the Joint Sea Base

    DTIC Science & Technology

    2007-01-01

    Intel- ligence Community. For more information on RAND’s Acquisition and Technology Policy Center, contact the Director, Philip Antón. He can be reached...This is similar to ships such as the 225-meter MV American Cor- morant , a float-on/float-off heavy lift semisubmersible vessel, and the pumping

  2. Systemic therapy and attachment narratives: Attachment Narrative Therapy.

    PubMed

    Dallos, Rudi; Vetere, Arlene

    2014-10-01

    This article outlines an integration of attachment theory with narrative theory and systemic theory and practice: Attachment Narrative Therapy (ANT). This integration offers a more powerful explanatory formulation of the development and maintenance of human distress in relationships, families and communities, and gives direction to psychotherapeutic intervention. © The Author(s) 2014.

  3. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes.

    PubMed

    Sanders, Jon G; Powell, Scott; Kronauer, Daniel J C; Vasconcelos, Heraldo L; Frederickson, Megan E; Pierce, Naomi E

    2014-03-01

    Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities. © 2014 John Wiley & Sons Ltd.

  4. Construct measurement quality improves predictive accuracy in violence risk assessment: an illustration using the personality assessment inventory.

    PubMed

    Hendry, Melissa C; Douglas, Kevin S; Winter, Elizabeth A; Edens, John F

    2013-01-01

    Much of the risk assessment literature has focused on the predictive validity of risk assessment tools. However, these tools often comprise a list of risk factors that are themselves complex constructs, and focusing on the quality of measurement of individual risk factors may improve the predictive validity of the tools. The present study illustrates this concern using the Antisocial Features and Aggression scales of the Personality Assessment Inventory (Morey, 1991). In a sample of 1,545 prison inmates and offenders undergoing treatment for substance abuse (85% male), we evaluated (a) the factorial validity of the ANT and AGG scales, (b) the utility of original ANT and AGG scales and newly derived ANT and AGG scales for predicting antisocial outcomes (recidivism and institutional infractions), and (c) whether items with a stronger relationship to the underlying constructs (higher factor loadings) were in turn more strongly related to antisocial outcomes. Confirmatory factor analyses (CFAs) indicated that ANT and AGG items were not structured optimally in these data in terms of correspondence to the subscale structure identified in the PAI manual. Exploratory factor analyses were conducted on a random split-half of the sample to derive optimized alternative factor structures, and cross-validated in the second split-half using CFA. Four-factor models emerged for both the ANT and AGG scales, and, as predicted, the size of item factor loadings was associated with the strength with which items were associated with institutional infractions and community recidivism. This suggests that the quality by which a construct is measured is associated with its predictive strength. Implications for risk assessment are discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    NASA Astrophysics Data System (ADS)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  6. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wike, L

    2005-06-01

    Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the meansmore » for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the relative health of the ecosystem. The IBI, though originally for Midwestern streams, has been successfully adapted to other ecoregions and taxa (macroinvertebrates, Lombard and Goldstein, 2004) and has become an important tool for scientists and regulatory agencies alike in determining health of stream ecosystems. The IBI is a specific type of a larger group of methods and procedures referred to as Rapid Bioassessment (RBA). These protocols have the advantage of directly measuring the organisms affected by system perturbations, thus providing an integrated evaluation of system health because the organisms themselves integrate all aspects of their environment and its condition. In addition to the IBI, the RBA concept has also been applied to seep wetlands (Paller et al. 2005) and terrestrial systems (O'Connell et al. 1998, Kremen et al. 1993, Rodriguez et al. 1998, Rosenberg et al. 1986). Terrestrial RBA methods have lagged somewhat behind those for aquatic systems because terrestrial systems are less distinctly defined and seem to have a less universal distribution of an all-inclusive taxon, such as fish in the IBI, upon which to base an RBA. In the last decade, primarily in Australia, extensive development of an RBA using ant communities has shown great promise. Ants have the same advantage for terrestrial RBAs that fish do for aquatic systems in that they are an essential and ubiquitous component of virtually all terrestrial ecosystems. They occupy a broad range of niches, functional groups, and trophic levels and they possess one very important characteristic that makes them ideal for RBA because, similar to the fishes, there is a wide range of tolerance to conditions within the larger taxa. Within ant communities there are certain groups, genera, or species that may be very robust and abundant under even the harshest impacts. There are also taxa that are very sensitive to disturbance and change and their presence or absence is also indicative of the local conditions. Also, as with the aquatic RBAs using macroinvertebrates, ants have a wide variety of functional foraging or feeding groups, by whose abundance or scarcity an evaluation of the system health may be made. Much of the ground work has been done for useful ant RBAs, but it has primarily been in Australia, Europe, the US desert Southwest, and South America. However, the work already done will transport well to other ecoregions and as has been done with the IBI, it could be adapted with an appropriate investment of time and resources. It would be necessary to establish taxonomic expertise, allocate the local ant fauna to functional groups, and evaluation and modification of metrics and characteristics used to develop indices in the existing methods. Successful adaptation and application of an ant RBA would provide a cost effective, useful, and robust tool for evaluating the health of terrestrial ecosystems anywhere in the region.« less

  7. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda.

    PubMed

    Respicio-Kingry, Laurel B; Yockey, Brook M; Acayo, Sarah; Kaggwa, John; Apangu, Titus; Kugeler, Kiersten J; Eisen, Rebecca J; Griffith, Kevin S; Mead, Paul S; Schriefer, Martin E; Petersen, Jeannine M

    2016-02-01

    Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. During January 2004-December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.

  8. Fibre Concrete 2017

    NASA Astrophysics Data System (ADS)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  9. ANTS/SARA: Future Observation of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C. Y.; Mumma, M. J.

    2004-05-01

    The Saturn Autonomous Ring Array (SARA) mission concept applies the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm developed for exploration of high surface area and/or multi-body targets. ANTS architecture involves large numbers of tiny, highly autonomous, yet socially interactive, craft, in a small number of specialist classes. SARA will acquire in situ observations in the high gravity environment of Saturn's rings. The high potential for collision represents an insurmountable challenge for previous mission designs. Each ANTS nanocraft weighs approximately a kilogram, and thus requires gossamer structures for all subsystems. Individual specialists include Workers, the vast majority, that acquire scientific measurements, as well as Messenger/Rulers that provide communication and coordination. The high density distribution of particles combines with the high intensity gravity and magnetic field environment to produce dynamic plasmas. Plasma, particle, wave, and field detectors will take measurements from the edge of the ring plane to observe the result of particle interactions. Imagers and spectrome-ters would measure variations composition and dust/gas ratio among particles using a strategy for serial rendezvous with individual particles. The numbers and distances of these particles, as well as anticipated high attrition rate, re-quire hundreds of spacecraft to characterize thousands of particles and ring features over the course of the mission. The bimodal propulsion system would include a large solar sail carrier for transporting the swarm the long distance in low gravity between deployment site and the target, and a nuclear system for each craft for maneuvering in the high gravity regime of Saturn's rings.

  10. Assessing the efficacy of corn-based bait containing antimycin-a to control common carp populations using laboratory and pond experiments

    USGS Publications Warehouse

    Poole, Joshua R.; Sauey, Blake W.; Amberg, Jon J.; Bajer, Przemyslaw G.

    2018-01-01

    Strategic use of oral toxicants could allow for practical and sustainable control schemes for the invasive common carp (Cyprinus carpio, or ‘carp’) if a toxicant selectively targeted carp and not native species. In this study, we incorporated antimycin-a (ANT-A), a known fish toxicant, into a corn-based bait and conducted a series of experiments to determine its toxicity, leaching rate, and species-specificity. Our results showed that ANT-A was lethal to carp at doses ≥ 4 mg/kg and that the amount of ANT-A that leached out of the bait in 72 h was not lethal to carp or bluegill (Lepomis macrochirus). Species-specificity trials were conducted in 227 L tanks, in which carp were stocked with three native species representing families that occur sympatrically with carp in our study region: the fathead minnow (Pimephales promelas), yellow perch (Perca flavescens) and bluegill. These trials showed high mortality of carp (46%) and fathead minnows (76%) but no significant mortality of perch or bluegill. Finally, a pond study, which used the same species composition except for fathead minnows, resulted in 37% morality among adult carp and no mortality among perch or bluegill. Our results suggest that corn-based bait that contains ANT-A could be used to selectively control carp in ecosystems dominated by percids or centrarchids, such as lakes across the Great Plains ecoregion of North America, where carp are especially problematic.

  11. The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    PubMed Central

    Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702

  12. Are local filters blind to provenance? Ant seed predation suppresses exotic plants more than natives

    Treesearch

    Dean E. Pearson; Nadia S. Icasatti; Jose L. Hierro; Benjamin J. Bird

    2014-01-01

    The question of whether species' origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species' traits interact with community filters, a process presumably blind to species' origins. Yet, exotic plant introductions commonly result in monospecific...

  13. Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai.

    PubMed

    Basavaiah, N; Mohite, R D; Singare, P U; Reddy, A V R; Singhal, R K; Blaha, U

    2017-05-15

    A study on vertical distribution of magnetic susceptibility, carcinogenic and endocrine disrupting PAHs was performed in the reclaimed mudflat sediments adjacent to the Thane Creek of Mumbai. The 5-rings PAHs and ΣC-PAHs were more dominant at 120cm depth contributing 52.23% and 60.19% respectively to ∑PAHs. The average ratio values of LMW/HMW PAHs (0.58); Fla/(Fla+Pyr) (0.50); Ant/(Ant+Phe) (0.50); BaA/(Chry+BaA) (0.48); BaP/BghiP (2.06), Phe/Ant (1.03) and BaA/Chr (0.93) indicate that the PAH contamination might have raised due to inefficient combustion and pyrogenic emissions during the open burning of solid waste in the vicinity. This was further supported by the anthropogenic ferri(o)magnetic loading over the last 100years influencing the Creek sediments. The PAHs toxicity estimation was performed by calculating the toxic equivalent quantity (TEQ) value of 8.62ng TEQ/g which was below the safe level (600ng TEQ/g) suggested by the Canadian risk-based soil criterion for protection of human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest.

    PubMed

    Arnan, Xavier; Arcoverde, Gabriela B; Pie, Marcio R; Ribeiro-Neto, José D; Leal, Inara R

    2018-08-01

    Anthropogenic disturbance and climate change are major threats to biodiversity. The Brazilian Caatinga is the world's largest and most diverse type of seasonally dry tropical forest. It is also one of the most threatened, but remains poorly studied. Here, we analyzed the individual and combined effects of anthropogenic disturbance (three types: livestock grazing, wood extraction, and miscellaneous use of forest resources) and increasing aridity on taxonomic, phylogenetic and functional ant diversity in the Caatinga. We found no aridity and disturbance effects on taxonomic diversity. In spite of this, functional diversity, and to a lesser extent phylogenetic diversity, decreased with increased levels of disturbance and aridity. These effects depended on disturbance type: livestock grazing and miscellaneous resource use, but not wood extraction, deterministically filtered both components of diversity. Interestingly, disturbance and aridity interacted to shape biodiversity responses. While aridity sometimes intensified the negative effects of disturbance, the greatest declines in biodiversity were in the wettest areas. Our results imply that anthropogenic disturbance and aridity interact in complex ways to endanger biodiversity in seasonally dry tropical forests. Given global climate change, neotropical semi-arid areas are habitats of concern, and our findings suggest Caatinga conservation policies must prioritize protection of the wettest areas, where biodiversity loss stands to be the greatest. Given the major ecological relevance of ants, declines in both ant phylogenetic and functional diversity might have downstream effects on ecosystem processes, insect populations, and plant populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Different pitcher shapes and trapping syndromes explain resource partitioning in Nepenthes species.

    PubMed

    Gaume, Laurence; Bazile, Vincent; Huguin, Maïlis; Bonhomme, Vincent

    2016-03-01

    Nepenthes pitcher plants display interspecific diversity in pitcher form and diets. This species-rich genus might be a conspicuous candidate for an adaptive radiation. However, the pitcher traits of different species have never been quantified in a comparative study, nor have their possible adaptations to the resources they exploit been tested. In this study, we compare the pitcher features and prey composition of the seven Nepenthes taxa that grow in the heath forest of Brunei (Borneo) and investigate whether these species display different trapping syndromes that target different prey. The Nepenthes species are shown to display species-specific combinations of pitcher shapes, volumes, rewards, attraction and capture traits, and different degrees of ontogenetic pitcher dimorphism. The prey spectra also differ among plant species and between ontogenetic morphotypes in their combinations of ants, flying insects, termites, and noninsect guilds. According to a discriminant analysis, the Nepenthes species collected at the same site differ significantly in prey abundance and composition at the level of order, showing niche segregation but with varying degrees of niche overlap according to pairwise species comparisons. Weakly carnivorous species are first characterized by an absence of attractive traits. Generalist carnivorous species have a sweet odor, a wide pitcher aperture, and an acidic pitcher fluid. Guild specializations are explained by different combinations of morpho-functional traits. Ant captures increase with extrafloral nectar, fluid acidity, and slippery waxy walls. Termite captures increase with narrowness of pitchers, presence of a rim of edible trichomes, and symbiotic association with ants. The abundance of flying insects is primarily correlated with pitcher conicity, pitcher aperture diameter, and odor presence. Such species-specific syndromes favoring resource partitioning may result from local character displacement by competition and/or previous adaptations to geographically distinct environments.

  16. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae).

    PubMed

    Biedermann, Peter H W; Klepzig, Kier D; Taborsky, Michael; Six, Diana L

    2013-03-01

    Insect fungus gardens consist of a community of interacting microorganisms that can have either beneficial or detrimental effects to the farmers. In contrast to fungus-farming ants and termites, the fungal communities of ambrosia beetles and the effects of particular fungal species on the farmers are largely unknown. Here, we used a laboratory rearing technique for studying the filamentous fungal garden community of the ambrosia beetle, Xyleborinus saxesenii, which cultivates fungi in tunnels excavated within dead trees. Raffaelea sulfurea and Fusicolla acetilerea were transmitted in spore-carrying organs by gallery founding females and established first in new gardens. Raffaelea sulfurea had positive effects on egg-laying and larval numbers. Over time, four other fungal species emerged in the gardens. Prevalence of one of them, Paecilomyces variotii, correlated negatively with larval numbers and can be harmful to adults by forming biofilms on their bodies. It also comprised the main portion of garden material removed from galleries by adults. Our data suggest that two mutualistic, several commensalistic and one to two pathogenic filamentous fungi are associated with X. saxesenii. Fungal diversity in gardens of ambrosia beetles appears to be much lower than that in gardens of fungus-culturing ants, which seems to result from essential differences in substrates and behaviours. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Labrador Massif Anorthosites: Chasing the Liquids and Their Sources

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2004-05-01

    1. Plagioclase Gets the Liquid. Plagioclase (PL) contains all 10 of the major elements of igneous rocks, five as majors and five (Ti, Fe, Mn, Mg, P) as traces. Precise bulk analyses of PL megacrysts (MCRs) by XRF give useful values for all these elements by integrating the exsolved mafic phases. In 5 intrusions of the Nain anorthosite-norite-troctolite suite (ANT), DARK low-K PL (with more mafic inclusions) is associated with olivine, and PALE high-K PL with hypersthene. On Nukasusutok I. a trapped liquid of olivine gabbronorite composition is caught among big PLs, near a block of almost pure anorthosite (AN). On a whim, we divide the composition of the AN block by that of the trapped liquid and after adjustment get 2 sets of EFFECTIVE partition coefficients, one for mafic (cotectic) L and one for felsic L. Using MCR compositions from the 5 intrusions, ALL the derived liquid compositions from the DARK, OL region are OL-norm and all but 2 from the PALE, HY region are Q-norm. The OL-norm liquids plot with the experimental 5-kb cotectic OL,PL melts of the Kiglapait intrusion. The MCRs reveal an olivine-normative parent even when taken from noritic upper layers inherited from troctolite fractionation. This uncanny result needs far more study. Seek the trapped liquids! 2. Classify Anorthosites, DARK to PALE: by silica activity before Fe-Ti oxide precipitation: (mela) troctolite, gabbro, gabbronorite, norite, quartz norite. Associated Fe-Ti oxide minerals: titanomagnetite, Ti-Mt+ilmenite, magnetite+ilmenite, ilmenite, hemoilmenite. 3. Linear Partitioning of PL/L yields robust estimates of XAn in parent liquids by the relation XAb(L)=XAb(S)/D, where D=KD*XAn(S)+XAb(S) and at 5kb, KD=0.524 (N=8) from experiments giving An(S)=68 to 28. Harp Lake data from Fram & Longhi (1992 AmMin 605) show a strong effect of P on KD, from 0.4 at 1 atm to >1.0 at 15 kb. If you know the liquid composition you can estimate P, but more likely vice versa. The P calibration of KD needs much more study. But do natural PLs crystallize at equilibrium? 4. Source Regions. The hottest, troctolitic magmas bracketing the Nain ANTs from Voisey's Bay (1333 Ma) to Kiglapait (1306 Ma) are Al-Fe mantle melts probably beginning to form in the garnet field and separating from a depleted lithospheric source near 10 kb, near the spinel-PL boundary. Melts in equilibrium with Al-Opx+Cpx+PL+Sp+Gt at high pressure crystallize OL+PL when decompressed. If ponded near the base of the crust and allowed to shed mafics, they can become felsic and transported as crystal mush diapirs to the site of emplacement. Longer deep-crustal residence favors noritic ANTs. If the melting environment was extensional (think failed Central North American Rift) the Ps of generation are not at the base of the (thinned) crust but well within the mantle; melting is aided by decompression and diapiric advection of hot source rocks into the corroded, attenuating lithosphere. 5. Deeper Roots. The LIP length scale of ANTs in NE No. America is comparable to that of the Cameroon line; the geographic jumpiness of age distribution, when scaled, is also similar. We should be thinking hotspots. Anorthositic magmatism recurs on a vast time scale at Laramie (~400 Ma interval) and Nain (~800 Ma interval) and maybe elsewhere. This bizarre discovery demands a reason for recurrence. Deep mantle plumes are back in vogue and have been imaged. The biggest superplumes are fixed in position and have generated Al-Fe source rocks in the middle to deep lithosphere at Premier. We should wonder where our favorite ANT terranes were in the past, relative to the biggest hotspots: we need paleogeography with precision.

  18. Effects of experimental seaweed deposition on lizard and ant predation in an island food web.

    PubMed

    Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W

    2011-01-28

    The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.

  19. Ant- and Ant-Colony-Inspired ALife Visual Art.

    PubMed

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  20. Spatial grain and the causes of regional diversity gradients in ants.

    PubMed

    Kaspari, Michael; Yuan, May; Alonso, Leeanne

    2003-03-01

    Gradients of species richness (S; the number of species of a given taxon in a given area and time) are ubiquitous. A key goal in ecology is to understand whether and how the many processes that generate these gradients act at different spatial scales. Here we evaluate six hypotheses for diversity gradients with 49 New World ant communities, from tundra to rain forest. We contrast their performance at three spatial grains from S(plot), the average number of ant species nesting in a m2 plot, through Fisher's alpha, an index that treats our 30 1-m2 plots as subsamples of a locality's diversity. At the smallest grain, S(plot), was tightly correlated (r2 = 0.99) with colony abundance in a fashion indistinguishable from the packing of randomly selected individuals into a fixed space. As spatial grain increased, the coaction of two factors linked to high net rates of diversification--warm temperatures and large areas of uniform climate--accounted for 75% of the variation in Fisher's alpha. However, the mechanisms underlying these correlations (i.e., precisely how temperature and area shape the balance of speciation to extinction) remain elusive.

  1. The biodiversity cost of carbon sequestration in tropical savanna

    PubMed Central

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha−1 year−1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation. PMID:28875172

  2. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    PubMed

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  3. Persistence of pollination mutualisms in the presence of ants.

    PubMed

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  4. Cryptic indirect effects of exurban edges on a woodland community

    Treesearch

    R. J. Warren; S. M. Pearson; S. Henry; K. Rossouw; J. P. Love; M. J. Olejniczak; Katherine Elliott; M. A. Bradford

    2015-01-01

    Exurban development (e.g., second homes) in woodlands spreads urban land use impacts beyond suburbs, but because exurban developments often retain many components of original ecosystem structure—such as a forest canopy rather than open lawn—their ecological impacts may be underestimated. Changes in seed-dispersing ant behavior prompted by exurban land use,...

  5. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  6. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus.

    PubMed

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  7. Fumigant Activity of Sweet Orange Essential Oil Fractions Against Red Imported Fire Ants (Hymenoptera: Formicidae).

    PubMed

    Hu, Wei; Zhang, Ning; Chen, Hongli; Zhong, Balian; Yang, Aixue; Kuang, Fan; Ouyang, Zhigang; Chun, Jiong

    2017-08-01

    Sweet orange oil fractions were prepared by molecular distillation of cold-pressed orange oil from sample A (Citrus sinensis (L.) 'Hamlin' from America) and sample B (Citrus sinensis Osbeck 'Newhall' from China) respectively, and their fumigant activities against medium workers of red imported fire ants (Solenopsis invicta Buren) were investigated. The volatile composition of the orange oil fractions was identified and quantified using GC-MS. Fractions from sample A (A1, A2, and A3) contained 23, 37, and 48 chemical constituents, and fractions from sample B (B1, B2, and B3) contained 18, 29, and 26 chemical constituents, respectively. Monoterpenes were the most abundant components, accounting for 73.56% to 94.86% of total orange oil fractions, among which D-limonene (65.28-80.18%), β-pinene (1.71-5.58%), 3-carene (0.41-4.01%), β-phellandrene (0.58-2.10%), and linalool (0.31-2.20%) were major constituents. Fumigant bioassay indicated that all orange oil fractions exerted good fumigant toxicity against workers of fire ants at 3, 5, 10, and 20 mg/centrifuge tubes, and B1 had the strongest insecticidal potential, followed by A1, B2, A2, B3, and A3. The fractions composed of more high volatile molecules (A1 and B1) showed greater fumigant effects than others. Compounds linalool and D-limonene, which were the constituents of the orange oil, exhibited excellent fumigant toxicity against red imported fire ant workers. Linalool killed red imported fire ant workers completely at 5, 10, and 20 mg/tube after 8 h of treatment, and D-limonene induced >86% mortality at 8 h of exposure. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Structure, chemical composition and putative function of the postpharyngeal gland of the emerald cockroach wasp, Ampulex compressa (Hymenoptera, Ampulicidae).

    PubMed

    Herzner, Gudrun; Ruther, Joachim; Goller, Stephan; Schulz, Stefan; Goettler, Wolfgang; Strohm, Erhard

    2011-02-01

    The postpharyngeal gland (PPG) plays a major role in the social integration of ant colonies. It had been thought to be restricted to ants but was recently also described for a solitary wasp, the European beewolf (Philanthus triangulum). This finding posed the question whether the gland has evolved independently in the two taxa or has been inherited from a common ancestor and is hence homologous. The latter alternative would be supported if a PPG was found in more basal taxa. Therefore, we examined a species at the base of the Apoidea, the solitary ampulicid wasp Ampulex compressa, for the existence of a PPG. Both sexes of this species possess a cephalic gland that branches off the posterior part of the pharynx, is lined by a cuticular intima and surrounded by a monolayered epithelium with the epithelial cells bearing long hairs. Most of these morphological characteristics conform to those of the PPG of ants and beewolves. Chemical analysis of the gland content revealed that it contains mainly hydrocarbons and that there is a congruence of the pattern of hydrocarbons in the gland, on the cuticle, and in the hemolymph, as has also been reported for both ants and beewolves. Based on these morphological and chemical results we propose that the newly described cephalic gland is a PPG and discuss its possible function in A. compressa. The present study supports the view of a homologous origin of the PPG in the aculeate Hymenoptera. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Results of the first field visit to Antipayutinsky gas-emission crater (AntGEC) on Gydan Peninsula, Russia in 2016

    NASA Astrophysics Data System (ADS)

    Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Aref'ev, Stanislav

    2017-04-01

    Deep craters in the North of West Siberia are specific objects in permafrost zone first observed in 2014 and later detected on satellite images to form in 2013. Their origin is under discussion yet. Authors hypothesize their formation from gas accumulation and later sudden emission. Scientific community was informed of Antipayutinskiy gas-emission crater (AntGEC) soon after first Yamal crater was found in 2014. Despite this knowledge, a real opportunity to visit AntGEC with true coordinates and logistic support appeared only in 2016 field campaign. Our field study of AntGEC included a description of the surrounding area and visible geological section, GPS-survey of GEC settings and related surface disturbances, measuring the depth of seasonal thaw, the internal lake bathymetry and water sampling from internal lake and other "knocked out" ponds. We also looked for traces of the initial mound preceding the GEC formation. We collected the willow branches for tree-ring dating of the events preceding the "eruption" using a specially developed technique, tested on willows, collected from Yamal gas-emission crater (GEC-1). Based on measurements of the depth, bathymetric map of AntGEC was compiled. The maximum measured depth at the crater center was 3.6 meters. Depth distribution was uniform in plan. The estimated volume of lake water was 1642.6 m3. Water samples were taken at different depths. The water temperature at the time of measurement was 8.8˚ C near the surface and 7.8˚ C at a depth of 3 meters. Preliminary dendrochronological analysis of AntGEC willow from the ejected block with turf showed the age of about 90 years. Annual growth rate of willow on AntGEC location was low (˜0.1 mm) in 1918-1947. An elevated growth rate (0.45 mm) is registered in 1948. This increase is chronologically correlated with previously defined increase of willow growth rate on first Yamal crater location. A significant difference between Gydan AntGEC and 3 known Yamal GEC is observed. While Yamal GECs are located on gentle concave slopes, overgrown with a more or less dense willow thickets, predominantly in loamy soils, the AntGEC is located almost on the watershed, although near the drainage hollow, in mostly sandy deposits, one of the walls exposes a hilltop sandy section, with windblown sandy depressions. Shrubs even in the bottom of the hollow form separate groups. Only tabular ground ice close to the surface unites Yamal and Gydan GECs. With these new data we need to adjust our understanding of landscape indicators of terrains potentially dangerous in relation to the GEC formation so far based on Yamal GEC study. This research is supported by Russian Science Foundation Grant 16-17-10203.

  10. Ant-lepidopteran associations along African forest edges

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno

    2017-02-01

    Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.

  11. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics

    PubMed Central

    Chomicki, Guillaume; Ward, Philip S.; Renner, Susanne S.

    2015-01-01

    Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems. PMID:26582029

  12. Various chemical strategies to deceive ants in three Arhopala species (lepidoptera: Lycaenidae) exploiting Macaranga myrmecophytes.

    PubMed

    Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.

  13. Various Chemical Strategies to Deceive Ants in Three Arhopala Species (Lepidoptera: Lycaenidae) Exploiting Macaranga Myrmecophytes

    PubMed Central

    Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675

  14. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels.

    PubMed

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2016-12-01

    This study investigated the effects of early antibiotic administration (EAA) on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Eighteen litters (total 180) of piglets on day (d) 7 were fed either a commercial creep feed or commercial creep feed + antibiotic (Olaquindox, Oxytetracycline Calcium and Kitasamycin) until d 42. On d 42, pigs within each group were further randomly fed a normal crude protein (CP) diet (20% and 18% CP from d 42 to d 77 and d 77 to d 120, respectively) or a low-CP diet (16% and 14% CP from d 42 to d 77 and d 77 to d 120, respectively), generating 4 groups, control-low CP (Con-LP), control-normal CP (Con-NP), antibiotic-low CP (Ant-LP) and antibiotic-normal CP (Ant-NP), respectively. On d 77 and d 120, 5 pigs per group were slaughtered and cecal materials were collected for bacterial analysis. With cecal bacteria, principle component analysis (PCA) of the denaturing gradient gel electrophoresis (DGGE) profile showed two distinct groups of samples from low-CP diet and samples from normal-CP diet. Real-time PCR showed that EAA did not have significant effect on major bacterial groups, only showed significant interactions (P < 0.05) with CP level for Lactobacillus counts on d 77 and Clostridium cluster XIVa counts on d 120 with higher values in the Con-NP group compared to the Ant-NP groups. Low-CP diet increased (P < 0.05) short-chain fatty acids (SCFA) producing bacteria counts (Bacteroidetes on d 77 and d 120; Clostridium cluster IV and Clostridium cluster XIVa on d 77), but decreased (P < 0.05) Escherichia coli counts on d 77 and d 120. For metabolites, EAA increased (P < 0.05) protein fermentation products (p-cresol, indole and skatole on d 77; ammonia, putrescine and spermidine on d 120), and showed significant interactions (P < 0.05) with CP level for p-cresol and skatole concentrations on d 77 and putrescine and spermidine concentrations on d 120 with higher values in the Ant-LP group compared to the Con-LP groups. Low-CP diet increased (P < 0.05) SCFA concentration (propionate and butyrate) on d 77, but reduced (P < 0.05) the protein fermentation products (ammonia, phenol and indole on d 77; branched chain fatty acid (BCFA), ammonia, tyramine, cadaverine and indole on d 120). These results indicate that EAA had less effect on bacterial communities, but increased bacterial fermentation of protein in the cecum under low-CP diet. Low-CP diet altered bacterial communities with an increase in the counts of SCFA-producing bacteria and a decrease in the counts of Escherichia coli, and markedly reduced the protein fermentation products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  16. Ant-seed mutualisms: Can red imported fire ants sour the relationship?

    USGS Publications Warehouse

    Zettler, J.A.; Spira, T.P.; Allen, Craig R.

    2001-01-01

    Invasion by the red imported fire ant, Solenopsis invicta, has had negative impacts on individual animal and plant species, but little is known about how S. invicta affects complex mutualistic relationships. In some eastern forests of North America, 30% of herbaceous species have ant-dispersed seeds. We conducted experiments to determine if fire ants are attracted to seeds of these plant species and assessed the amount of scarification or damage that results from handling by fire ants. Fire ants removed nearly 100% of seeds of the ant-dispersed plants Trillium undulatum, T. discolor, T. catesbaei, Viola rotundifolia, and Sanguinaria canadensis. In recovered seeds fed to ant colonies, fire ants scarified 80% of S. canadensis seeds and destroyed 86% of V. rotundifolia seeds. Our study is the first to document that red imported fire ants are attracted to and remove seeds of species adapted for ant dispersal. Moreover, fire ants might damage these seeds and discard them in sites unfavorable for germination and seedling establishment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    PubMed Central

    2009-01-01

    Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides), taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains. PMID:19930701

  18. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.

    PubMed

    Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber

    2014-11-01

    Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny.

  19. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    PubMed

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  20. The Ants Have It!

    ERIC Educational Resources Information Center

    Daugherty, Belinda

    2001-01-01

    Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)

  1. Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens

    PubMed Central

    Valles, Steven M.; Oi, David H.; Yu, Fahong; Tan, Xin-Xing; Buss, Eileen A.

    2012-01-01

    Background Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. Methodology and Principal Findings Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. Conclusions Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest. PMID:22384082

  2. The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree.

    PubMed

    de la Fuente, Marie Ann S; Marquis, Robert J

    1999-02-01

    One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack.

  3. Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.

    PubMed

    Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E

    2017-12-01

    Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.

  4. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  5. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  6. Conflict resolution in an ant-plant interaction: Acacia constricta traits reduce ant costs to reproduction.

    PubMed

    Nicklen, E Fleur; Wagner, Diane

    2006-05-01

    Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.

  7. Material Matters for Learning in Virtual Networks: A Case Study of a Professional Learning Programme Hosted in a Google+ Online Community

    ERIC Educational Resources Information Center

    Ackland, Aileen; Swinney, Ann

    2015-01-01

    In this paper, we draw on Actor-Network Theories (ANT) to explore how material components functioned to create gateways and barriers to a virtual learning network in the context of a professional development module in higher education. Students were practitioners engaged in family learning in different professional roles and contexts. The data…

  8. The Honey Ant Readers: An Innovative and Bold Approach to Engaging Rural Indigenous Students in Print Literacy through Accessible, Culturally and Linguistically Appropriate Resources

    ERIC Educational Resources Information Center

    James, Margaret

    2014-01-01

    On entering school, rural Australian children from Indigenous backgrounds are thrown into an unfamiliar environment, linguistically and culturally, which sets them up for failure. The author, working closely with elders and community in Alice Springs, has drawn on her considerable experience in both Indigenous education and TESOL to address this…

  9. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development

    PubMed Central

    Krizek, Beth A.

    2015-01-01

    AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884

  10. Quantifying Ant Activity Using Vibration Measurements

    PubMed Central

    Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C. S.; Evans, Theodore A.

    2014-01-01

    Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult. PMID:24658467

  11. The interactions of ants with their biotic environment.

    PubMed

    Chomicki, Guillaume; Renner, Susanne S

    2017-03-15

    This s pecial feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this s pecial feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. © 2017 The Author(s).

  12. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions.

    PubMed

    Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico

    2017-09-01

    Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.

  13. The interactions of ants with their biotic environment

    PubMed Central

    Renner, Susanne S.

    2017-01-01

    This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352

  14. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  15. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.

  16. Evidence that insect herbivores are deterred by ant pheromones.

    PubMed Central

    Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit

    2004-01-01

    It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596

  17. Effect of mating stage on water balance, cuticular hydrocarbons and metabolism in the desert harvester ant, Pogonomyrmex barbatus.

    PubMed

    Johnson, Robert A; Gibbs, Allen G

    2004-10-01

    Water-loss rates increase after mating in queens of the harvester ant Pogonomyrmex barbatus (Formicidae: Myrmicinae), then increase again after the mated queens excavate an incipient nest. We determined the mechanistic basis for these increased water-loss rates by examining cuticular permeability, respiratory water loss, metabolic rates, and cuticular hydrocarbons for queens at three stages in the mating sequence: unmated alate queens, newly mated dealate queens, and mated queens excavated from their incipient nest. Both total water loss and cuticular transpiration increased significantly following mating, with cuticular transpiration accounting for 97% of the increased water loss. In contrast, metabolic rate and respiratory water loss were unaffected by mating stage. The total quantity of cuticular hydrocarbons did not vary by mating stage. However, relative amounts of four of the most abundant cuticular hydrocarbons did vary by mating stage, as did quantities of n-alkanes and methylalkanes. The general pattern was that percent composition of n-alkanes decreased through the mating sequence, while percent composition of methylalkanes increased over the same sequence. We discuss three mechanisms that might cause these post-mating increases in cuticular permeability. Our data support the hypothesis that part of this increase results from soil particles abrading the cuticle during the process of nest excavation.

  18. Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants.

    PubMed

    Chamberlain, Scott A; Holland, J Nathaniel

    2008-05-01

    Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.

  19. Usefulness of fire ant genetics in insecticide efficacy trials

    USDA-ARS?s Scientific Manuscript database

    Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...

  20. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants.

    PubMed

    Mathis, Kaitlyn A; Tsutsui, Neil D

    2016-08-17

    Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant-myrmecophile interactions beyond just their pairwise context. © 2016 The Author(s).

  1. The AINTEGUMENTA genes, MdANT1 and MdANT2, are associated with the regulation of cell production during fruit growth in apple (Malus × domestica Borkh.)

    PubMed Central

    2012-01-01

    Background Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2–repeat containing transcription factor, regulates cell production during fruit growth in apple. Results Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, ‘Gala’ and ‘Golden Delicious Smoothee’ (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to ‘Gala’, the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Conclusions Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple. PMID:22731507

  2. The AINTEGUMENTA genes, MdANT1 and MdANT2, are associated with the regulation of cell production during fruit growth in apple (Malus × domestica Borkh.).

    PubMed

    Dash, Madhumita; Malladi, Anish

    2012-06-25

    Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2-repeat containing transcription factor, regulates cell production during fruit growth in apple. Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, 'Gala' and 'Golden Delicious Smoothee' (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to 'Gala', the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple.

  3. Leaf-cutting ants: an unexpected microenvironment holding human opportunistic black fungi.

    PubMed

    Duarte, A P M; Attili-Angelis, D; Baron, N C; Forti, L C; Pagnocca, F C

    2014-09-01

    Fungus-growing ants of the genus Atta are known for their leaf-cutting habit, a lifestyle they have maintained since their 50-million-year-old co-evolution with a mutualistic fungus, cultivated as food. Recent studies have highlighted that, in addition to the mutualistic fungus, nests of ants harbor a great diversity of microbial communities. Such microorganisms include the dematiaceous fungi, which are characterized by their melanized cell walls. In order to contribute to the knowledge of fungal ecology, as well as opportunistic strains that may be dispersed by these social insects, we isolated and identified fungi carried by gynes of Atta capiguara and Atta laevigata, collected from colonies located in Fazenda Santana, Botucatu (São Paulo, Brazil). The isolation was carried out using the oil flotation technique, which is suitable for the growth of black fungi. Inoculated plates were incubated at 25 and 35 °C until black cultures were visible (20-45 days). Isolates were identified based on microscopic and molecular characteristics. Some isolated genera were: Cladophialophora, Cladosporium, Exophiala, Ochroconis, Phaeococcomyces, Phialophora and Penidiella. Hyaline species were also found. The results obtained from this work showed that leaf-cutting gynes may contribute to the dispersal of opportunistic dematiaceous fungi. It is suggested that more attention should be paid to this still unexplored subject.

  4. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants

    PubMed Central

    2016-01-01

    Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant–myrmecophile interactions beyond just their pairwise context. PMID:27512148

  5. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  6. A multilevel ant colony optimization algorithm for classical and isothermic DNA sequencing by hybridization with multiplicity information available.

    PubMed

    Kwarciak, Kamil; Radom, Marcin; Formanowicz, Piotr

    2016-04-01

    The classical sequencing by hybridization takes into account a binary information about sequence composition. A given element from an oligonucleotide library is or is not a part of the target sequence. However, the DNA chip technology has been developed and it enables to receive a partial information about multiplicity of each oligonucleotide the analyzed sequence consist of. Currently, it is not possible to assess the exact data of such type but even partial information should be very useful. Two realistic multiplicity information models are taken into consideration in this paper. The first one, called "one and many" assumes that it is possible to obtain information if a given oligonucleotide occurs in a reconstructed sequence once or more than once. According to the second model, called "one, two and many", one is able to receive from biochemical experiment information if a given oligonucleotide is present in an analyzed sequence once, twice or at least three times. An ant colony optimization algorithm has been implemented to verify the above models and to compare with existing algorithms for sequencing by hybridization which utilize the additional information. The proposed algorithm solves the problem with any kind of hybridization errors. Computational experiment results confirm that using even the partial information about multiplicity leads to increased quality of reconstructed sequences. Moreover, they also show that the more precise model enables to obtain better solutions and the ant colony optimization algorithm outperforms the existing ones. Test data sets and the proposed ant colony optimization algorithm are available on: http://bioserver.cs.put.poznan.pl/download/ACO4mSBH.zip. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens1[W][OA

    PubMed Central

    González-Teuber, Marcia; Pozo, María J.; Muck, Alexander; Svatos, Ales; Adame-Álvarez, Rosa M.; Heil, Martin

    2010-01-01

    Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii × Nicotiana sanderae) contains “nectarins,” proteins producing reactive oxygen species such as hydrogen peroxide. By contrast, pathogenesis-related (PR) proteins were detected in Acacia extrafloral nectar (EFN), which is secreted in the context of defensive ant-plant mutualisms. We investigated whether these PR proteins protect EFN from phytopathogens. Five sympatric species (Acacia cornigera, A. hindsii, A. collinsii, A. farnesiana, and Prosopis juliflora) were compared that differ in their ant-plant mutualism. EFN of myrmecophytes, which are obligate ant-plants that secrete EFN constitutively to nourish specialized ant inhabitants, significantly inhibited the growth of four out of six tested phytopathogenic microorganisms. By contrast, EFN of nonmyrmecophytes, which is secreted only transiently in response to herbivory, did not exhibit a detectable inhibitory activity. Combining two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with nanoflow liquid chromatography-tandem mass spectrometry analysis confirmed that PR proteins represented over 90% of all proteins in myrmecophyte EFN. The inhibition of microbial growth was exerted by the protein fraction, but not the small metabolites of this EFN, and disappeared when nectar was heated. In-gel assays demonstrated the activity of acidic and basic chitinases in all EFNs, whereas glucanases were detected only in EFN of myrmecophytes. Our results demonstrate that PR proteins causally underlie the protection of Acacia EFN from microorganisms and that acidic and basic glucanases likely represent the most important prerequisite in this defensive function. PMID:20023149

  8. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat.

    PubMed

    King, Joshua R; Tschinkel, Walter R

    2006-11-01

    1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.

  9. Behavioural and chemical evidence for multiple colonisation of the Argentine ant, Linepithema humile, in the Western Cape, South Africa

    PubMed Central

    2011-01-01

    Background The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully established in nearly all continents across the globe. Argentine ants are characterised by a social structure known as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is particularly pronounced in introduced populations and results in the formation of large and spatially expansive supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa. We use behavioural (aggression tests) and chemical (CHC) approaches to investigate the population structure of Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions. Results Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates. This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two supercolonies. Conclusions The presence of these two distinct supercolonies is suggestive of at least two independent introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study, with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings are of interest because recent studies show that Argentine ants from South Africa are different from those identified in other introduced ranges and therefore provide an opportunity to further understand factors that determine the distributional and spread patterns of Argentine ant supercolonies. PMID:21288369

  10. Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.

    PubMed

    Perrichot, Vincent; Wang, Bo; Engel, Michael S

    2016-06-06

    Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Impact of Regionally Distinct Agroecosystem Communities on the Potential for Autonomous Control of the Coffee Leaf Rust.

    PubMed

    Hajian-Forooshani, Zachary; Rivera Salinas, Iris Saraeny; Jiménez-Soto, Estelí; Perfecto, Ivette; Vandermeer, John

    2016-12-01

    Recent theoretical work suggests that two ineffective control agents can provide effective biological control when coupled together. We explore the implications of this work with the system of coffee leaf rust (CLR), caused by the fungal agent Hemileiae vastatrix, and two of its natural enemies, a fungal pathogen (Lecanicillium lecanii) and a spore predator (Mycodiplosis hemileiae). Here we report on comparative surveys of the CLR and its two natural enemies in Mexico, where the CLR has been at epidemic status since 2012, and Puerto Rico, where the CLR is present but has not reached epidemic densities. We found that the densities of the two control agents per CLR lesion is higher in Puerto Rico than in Mexico, and we hypothesize that their joint presence at higher densities is contributing to the suppression of the CLR in Puerto Rico but not in Mexico. Furthermore, we found that the presence of Azteca sericeasur, a keystone ant species that occurs in Mexico but not Puerto Rico, significantly reduces the prevalence of M. hemileiae on coffee plants. Our work provides data that allows us to hypothesize that the joint presence of these two control agents may potentially provide control of the CLR and also highlights the importance of regionally specific communities within agroecosystems, and how variation in community composition may lead to varying outcomes for biological control. Additionally, this is the first report of the presence of a potentially important biological control agent, M. hemileiae, in Latin America and the Caribbean. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Saugus River and Tributaries, Lynn Malden, Revere and Saugus, Massachusetts. Flood Damage Reduction. Volume 8. Appendix K. Environmental

    DTIC Science & Technology

    1989-06-01

    K10 Summary of Soil Analyses for the Salt Marsh Transects K32 KI1 Plant Community Composition Data Along Compartment K33 B Transect K12 Plant...Community Composition Data Along Compartment K33 I Transect K13 Plant Community Composition Data Along Compartment K33 K1 Transect K14 Plant Community... Composition Data Along Compartment K34 K3 Transect K15 Plant Community Composition Data Along Compartment K34 L2 Transect K16 Plant Community Composition

  13. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  14. Influence of toxic bait type and starvation on worker and queen mortality in laboratory colonies of Argentine ant (Hymenoptera: Formicidae).

    PubMed

    Mathieson, Melissa; Toft, Richard; Lester, Philip J

    2012-08-01

    The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.

  15. Differential Recruitment of Camponotus femoratus (Fabricius) Ants in Response to Ant Garden Herbivory.

    PubMed

    Vicente, R E; Dáttilo, W; Izzo, T J

    2014-12-01

    Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants' capability in discerning plants' chemical compounds (innate attraction) or by ants' learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant's learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.

  16. Taxometric Analysis of the Antisocial Features Scale of the Personality Assessment Inventory in Federal Prison Inmates

    ERIC Educational Resources Information Center

    Walters, Glenn D.; Diamond, Pamela M.; Magaletta, Philip R.; Geyer, Matthew D.; Duncan, Scott A.

    2007-01-01

    The Antisocial Features (ANT) scale of the Personality Assessment Inventory (PAI) was subjected to taxometric analysis in a group of 2,135 federal prison inmates. Scores on the three ANT subscales--Antisocial Behaviors (ANT-A), Egocentricity (ANT-E), and Stimulus Seeking (ANT-S)--served as indicators in this study and were evaluated using the…

  17. The Curious Case of the Camelthorn: Competition, Coexistence, and Nest-Site Limitation in a Multispecies Mutualism.

    PubMed

    Campbell, Heather; Fellowes, Mark D E; Cook, James M

    2015-12-01

    Myrmecophyte plants house ants within domatia in exchange for protection against herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: (i) domatia nest sites are a limiting resource and (ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilizing multispecies systems to further our understanding of mutualism biology.

  18. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.

    PubMed

    Pringle, Elizabeth G

    2014-06-22

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.

  19. Body Composition and Physical Performance: Applications for the Military Services

    DTIC Science & Technology

    1992-08-01

    bin omial ins ol sinrg ant hropometric mneasureme nts tor predict irig lean mass in young womnen. M. S. thesis . Incarnate Word College, San Antonioi...t ifit for military serv ice because theN wxere overxxeight (Wel- ; aml and Behunke. 1942). [his, convenient e ’:ample illustrates thle possibi Ii...Development of a hinomnial involving anthropomnetric nmeasuremients for predicting lean niass in young \\%omen. M.S. thesis . Incarnate Word College

  20. Durability and Damage Tolerance of Bismaleimide Composites. Volume 1. Technical Report

    DTIC Science & Technology

    1988-06-01

    Test Setup Figure 1-14, Failed Loaded Holo Static Spoifton 106 mru FaJIus Stma. FuMr Materal Spwima anT VPIU h Kok Fo Faflurep t PldN Stromsym EVIM hm...Environrnental Chamber tot ETW TesI $ 1 36 12.5 x lOft.Ibs x 7ft-lbsI- __ 8.5 14ft-bs Figure 146. Outer Mold Une Impact Locations and Eery -Levela 5.3.5

  1. Chemically armed mercenary ants protect fungus-farming societies.

    PubMed

    Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J

    2013-09-24

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.

  2. Predaceous ants, beach replenishment, and nest placement by sea turtles.

    PubMed

    Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie

    2007-10-01

    Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.

  3. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants

    PubMed Central

    Russell, Jacob A.; Moreau, Corrie S.; Goldman-Huertas, Benjamin; Fujiwara, Mikiko; Lohman, David J.; Pierce, Naomi E.

    2009-01-01

    Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with “herbivores” feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous “turtle ants” from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution. PMID:19948964

  4. Roadside Survey of Ants on Oahu, Hawaii

    PubMed Central

    Tong, Reina L.; Grace, J. Kenneth; Krushelnycky, Paul D.

    2018-01-01

    Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a timed hand-collection of ants was made at 44 sites in a systematic, roadside survey throughout Oahu. Ants were identified and species distribution in relation to elevation, precipitation and soil type was analyzed. To assess possible convenience sampling bias, 15 additional sites were sampled further from roads to compare with the samples near roads. Twenty-four species of ants were found and mapped; Pheidole megacephala (F.), Ochetellus glaber (Mayr), and Technomyrmex difficilis Forel were the most frequently encountered ants. For six ant species, a logistic regression was performed with elevation, average annual precipitation, and soil order as explanatory variables. O. glaber was found in areas with lower precipitation around Oahu. Paratrechina longicornis (Latrielle) and Tetramorium simillimum (Smith, F.) were found more often in lower elevations and in areas with the Mollisol soil order. Elevation, precipitation, and soil type were not significant sources of variation for P. megacephala, Plagiolepis alluaudi Emery, and T. difficilis. P. megacephala was associated with fewer mean numbers of ants where it occurred. Ant assemblages near and far from roads did not significantly differ. Many species of ants remain established on Oahu, and recent invaders are spreading throughout the island. Mapping ant distributions contributes to continued documentation and understanding of these pests. PMID:29439503

  5. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    PubMed

    Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L

    2012-01-01

    The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  6. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  7. Microbial secondary metabolites and their impacts on insect symbioses.

    PubMed

    Klassen, Jonathan L

    2014-10-01

    All insects host communities of microbes that interact both with the insect and each other. Secondary metabolites are understood to mediate many of these interactions, although examples having robust genetic, chemical and/or ecological evidence are relatively rare. Here, I review secondary metabolites mediating community interactions in the beewolf, entomopathogenic nematode and fungus-growing ant symbioses, using the logic of Koch's postulates to emphasize well-validated symbiotic functions mediated by these metabolites. I especially highlight how these interaction networks are structured by both ecological and evolutionary processes, and how selection acting on secondary metabolite production can be multidimensional. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nectar Theft and Floral Ant-Repellence: A Link between Nectar Volume and Ant-Repellent Traits?

    PubMed Central

    Ballantyne, Gavin; Willmer, Pat

    2012-01-01

    As flower visitors, ants rarely benefit a plant. They are poor pollinators, and can also disrupt pollination by deterring other flower visitors, or by stealing nectar. Some plant species therefore possess floral ant-repelling traits. But why do particular species have such traits when others do not? In a dry forest in Costa Rica, of 49 plant species around a third were ant-repellent at very close proximity to a common generalist ant species, usually via repellent pollen. Repellence was positively correlated with the presence of large nectar volumes. Repellent traits affected ant species differently, some influencing the behaviour of just a few species and others producing more generalised ant-repellence. Our results suggest that ant-repellent floral traits may often not be pleiotropic, but instead could have been selected for as a defence against ant thieves in plant species that invest in large volumes of nectar. This conclusion highlights to the importance of research into the cost of nectar production in future studies into ant-flower interactions. PMID:22952793

  9. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage.

    PubMed

    Franco, André L C; Bartz, Marie L C; Cherubin, Maurício R; Baretta, Dilmar; Cerri, Carlos E P; Feigl, Brigitte J; Wall, Diana H; Davies, Christian A; Cerri, Carlos C

    2016-09-01

    Land use changes (LUC) from pasture to sugarcane (Saccharum spp.) crop are expected to add 6.4Mha of new sugarcane land by 2021 in the Brazilian Cerrado and Atlantic Forest biomes. We assessed the effects of these LUC on the abundance and community structure of animals that inhabit soils belowground through a field survey using chronosequences of land uses comprising native vegetation, pasture, and sugarcane along a 1000-km-long transect across these two major tropical biomes in Brazil. Macrofauna community composition differed among land uses. While most groups were associated with samples taken in native vegetation, high abundance of termites and earthworms appeared associated with pasture soils. Linear mixed effects analysis showed that LUC affected total abundance (X(2)(1)=6.79, p=0.03) and taxa richness (X(2)(1)=6.08, p=0.04) of soil macrofauna. Abundance increased from 411±70individualsm(-2) in native vegetation to 1111±202individualsm(-2) in pasture, but decreased sharply to 106±24individualsm(-2) in sugarcane soils. Diversity decreased 24% from native vegetation to pasture, and 39% from pasture to sugarcane. Thus, a reduction of ~90% in soil macrofauna abundance, besides a loss of ~40% in the diversity of macrofauna groups, can be expected when sugarcane crops replace pasture in Brazilian tropical soils. In general, higher abundances of major macrofauna groups (ants, coleopterans, earthworms, and termites) were associated with higher acidity and low contents of macronutrients and organic matter in soil. This study draws attention for a significant biodiversity loss belowground due to tropical LUC in sugarcane expansion areas. Given that many groups of soil macrofauna are recognized as key mediators of ecosystem processes such as soil aggregation, nutrients cycling and soil carbon storage, our results warrant further efforts to understand the impacts of altering belowground biodiversity and composition on soil functioning and agriculture performance across LUC in the tropics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Syagrus romanzoffiana (Arecaceae) seed utilization by ants in a secondary forest in South Brazil].

    PubMed

    Silva, Fernanda R; Begnini, Romualdo M; Klier, Vinícius A; Scherer, Karla Z; Lopes, Benedito C; Castellani, Tânia T

    2009-01-01

    Ants can nest in a wide variety of substracts. This paper shows Syagrus romanzoffiana seed utilization by ants in an Atlantic secondary forest. We report 29 seeds occupied by small-bodied ants, with 27 of them showing at least two ant development stages. Although a large number of seeds were sampled, a low level of ant occupation was observed.

  11. Ant aggression and evolutionary stability in plant-ant and plant-pollinator mutualistic interactions.

    PubMed

    Oña, L; Lachmann, M

    2011-03-01

    Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  12. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  13. Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax.

    PubMed

    Baines, Christopher P; Molkentin, Jeffery D

    2009-06-01

    Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.

  14. The effects of ant nests on soil fertility and plant performance: a meta-analysis.

    PubMed

    Farji-Brener, Alejandro G; Werenkraut, Victoria

    2017-07-01

    Ants are recognized as one of the major sources of soil disturbance world-wide. However, this view is largely based on isolated studies and qualitative reviews. Here, for the first time, we quantitatively determined whether ant nests affect soil fertility and plant performance, and identified the possible sources of variation of these effects. Using Bayesian mixed-models meta-analysis, we tested the hypotheses that ant effects on soil fertility and plant performance depend on the substrate sampled, ant feeding type, latitude, habitat and the plant response variable measured. Ant nests showed higher nutrient and cation content than adjacent non-nest soil samples, but similar pH. Nutrient content was higher in ant refuse materials than in nest soils. The fertilizer effect of ant nests was also higher in dry habitats than in grasslands or savannas. Cation content was higher in nests of plant-feeding ants than in nests of omnivorous species, and lower in nests from agro-ecosystems than in nests from any other habitat. Plants showed higher green/root biomass and fitness on ant nests soils than in adjacent, non-nest sites; but plant density and diversity were unaffected by the presence of ant nests. Root growth was particularly higher in refuse materials than in ant nest soils, in leaf-cutting ant nests and in deserts habitats. Our results confirm the major role of ant nests in influencing soil fertility and vegetation patterns and provide information about the factors that mediate these effects. First, ant nests improve soil fertility mainly through the accumulation of refuse materials. Thus, different refuse dump locations (external or in underground nest chambers) could benefit different vegetation life-forms. Second, ant nests could increase plant diversity at larger spatial scales only if the identity of favoured plants changes along environmental gradients (i.e. enhancing β-diversity). Third, ant species that feed on plants play a relevant role fertilizing soils, which may balance their known influence as primary consumers. Fourth, the effects of ant nests as fertility islands are larger in arid lands, possibly because fertility is intrinsically lower in these habitats. Overall, this study provide novel and quantitative evidence confirming that ant nests are key soil modifiers, emphasizing their role as ecological engineers. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. The Ants Go Marching Millions by Millions: Invasive Ant Research

    USDA-ARS?s Scientific Manuscript database

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  16. The ants go marching millions by millions: invasive ant research

    USDA-ARS?s Scientific Manuscript database

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  17. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  18. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors thanmore » in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.« less

  19. Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2016-11-01

    One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.

  20. Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants.

    PubMed

    Ruiz-González, Mario X; Malé, Pierre-Jean G; Leroy, Céline; Dejean, Alain; Gryta, Hervé; Jargeat, Patricia; Quilichini, Angélique; Orivel, Jérôme

    2011-06-23

    Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.

  1. A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales).

    PubMed

    Vasse, Marie; Voglmayr, Hermann; Mayer, Veronika; Gueidan, Cécile; Nepel, Maximilian; Moreno, Leandro; de Hoog, Sybren; Selosse, Marc-André; McKey, Doyle; Blatrix, Rumsaïs

    2017-03-15

    The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales. © 2017 The Author(s).

  2. Multitasking in a plant-ant interaction: how does Acacia myrtifolia manage both ants and pollinators?

    PubMed

    Martínez-Bauer, Angélica E; Martínez, Gerardo Cerón; Murphy, Daniel J; Burd, Martin

    2015-06-01

    Plant associations with protective ants are widespread among angiosperms, but carry the risk that ants will deter pollinators as well as herbivores. Such conflict, and adaptations to ameliorate or prevent the conflict, have been documented in African and neotropical acacias. Ant-acacia associations occur in Australia, but little is known of their ecology. Moreover, recent phylogenetic evidence indicates that Australian acacias are only distantly related to African and American acacias, providing an intercontinental natural experiment in the management of ant-pollinator conflict. We examined four populations of Acacia myrtifolia over a 400-km environmental gradient in southeastern Australia using ant and pollinator exclusion as well as direct observation of ants and pollinators to assess the potential for ant-pollinator conflict to affect seed set. Native bees were the only group of floral visitors whose visitation rates were a significant predictor of fruiting success, although beetles and wasps may play an important role as "insurance" pollinators. We found no increase in pollinator visitation or fruiting success following ant exclusion, even with large sample sizes and effective exclusion. Because ants are facultative visitors to A. myrtifolia plants, their presence may be insufficient to interfere greatly with floral visitors. It is also likely that the morphological location of extrafloral nectaries tends to draw ants away from reproductive parts, although we commonly observed ants on inflorescences, so the spatial separation is not strict. A. myrtifolia appears to maintain a generalized mutualism over a wide geographic range without the need for elaborate adaptations to resolve ant-pollinator conflict.

  3. Ants have a negative rather than a positive effect on extrafloral nectaried Crotalaria pallida performance

    NASA Astrophysics Data System (ADS)

    Pereira, Marcela Fernandes; Trigo, José Roberto

    2013-08-01

    Crotalaria pallida (Fabaceae) is a pantropical plant with extrafloral nectaries (EFNs) near the reproductive structures. EFN-visiting ants attack and remove arctiid moth Utetheisa ornatrix larvae, the main pre-dispersal seed predator, but the impact of ants on C. pallida fitness is unknown. To assess this impact, we controlled ant presence on plants and evaluated the reproductive output of C. pallida with and without ants. Predatory wasps also visit EFNs, prey upon U. ornatrix larvae, and may be driven out by ants during EFN feeding. Does this agonistic interaction affect the multitrophic interaction outcome? We found it difficult to evaluate the effect of both visitors because cages excluding wasps affect plant growth and do not allow U. ornatrix oviposition. Therefore, we verified whether ant presence inhibited wasp EFN visitation and predicted that (1) if ants confer a benefit for C. pallida, any negative effect of ants on wasps would be negligible for the plant because ants would be the best guardians, and (2) if ants are poor guardians, they would negatively affect wasps and negatively impact the fitness of C. pallida. Surprisingly, we found that the number of seeds/pods significantly increased, ca. 4.7 times, after ant removal. Additionally, we unexpectedly verified that controls showed a higher percentage of herbivore bored pods than ant-excluded plants. We found that wasps spent less time visiting EFNs patrolled by ants (ca. 299 s less). These results support our second prediction and suggest that the outcome of multitrophic interactions may vary with natural enemy actors.

  4. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.

  5. Chemically armed mercenary ants protect fungus-farming societies

    PubMed Central

    Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.

    2013-01-01

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482

  6. How might you compare mitochondria from different tissues and different species?

    PubMed

    Hulbert, A J; Turner, Nigel; Hinde, Jack; Else, Paul; Guderley, Helga

    2006-02-01

    Mitochondria were isolated from the liver, kidney and mixed hindlimb skeletal muscle of three vertebrate species; the laboratory rat Rattus norvegicus, the bearded dragon lizard Pogona vitticeps, and the cane toad Bufo marinus. These vertebrate species are approximately the same body mass and have similar body temperatures. The content of cytochromes B, C, C1, and A were measured in these isolated mitochondria by oxidised-reduced difference spectra. Adenine nucleotide translocase (ANT) was measured by titration of mitochondrial respiration with carboxyactractyloside and the protein and phospholipid content of isolated mitochondria were also measured. Fatty acid composition of mitochondrial phospholipids was measured. Mitochondrial respiration was measured at 37 degrees C under states III and IV conditions as well as during oligomycin inhibition. Species differed in the ratios of different mitochondrial cytochromes. Muscle mitochondria differed from kidney and liver mitochondria by having a higher ANT content relative to cytochrome content. Respiration rates were compared relative to a number of denominators and found to be most variable when expressed relative to mitochondrial protein content and least variable when expressed relative to mitochondrial cytochrome A and ANT content. The turnover of cytochromes was calculated and found to vary between 1 and 94 electrons s(-1). The molecular activity of mitochondrial cytochromes was found to be significantly positively correlated with the relative polyunsaturation of mitochondrial membrane lipids.

  7. Musings on the management of Nylanderia fulva Crazy Ants

    USDA-ARS?s Scientific Manuscript database

    Nylanderia fulva is an invasive crazy ant that can inundate landscapes and structures. This invasive ant has been called the Caribbean crazy ant in Florida and the Rasberry [sic] crazy ant in Texas. The species was thought to be Nylanderia pubens or Nylanderia near pubens, in Florida and Texas, resp...

  8. Yellow jackets may be an underestimated component of an ant-seed mutualism

    USGS Publications Warehouse

    Bale, M.T.; Zettler, J.A.; Robinson, B.A.; Spira, T.P.; Allen, Craig R.

    2003-01-01

    Yellow jackets (Hymenoptera: Vespidae) are attracted to the typically ant-dispersed seeds of trilliums and will take seeds from ants in the genus Aphaenogaster. To determine if yellow jacket, Vespula maculifrons (Buysson), presence interferes with seed foraging by ants, we presented seeds of Trillium discolor Wray to three species (A. texana carolinensis Wheeler, Formica schaufussi Mayr, and Solenopsis invicta Buren) of seed-carrying ants in areas where vespids were present or excluded. We found that interspecific aggression between yellow jackets and ants is species specific. Vespid presence decreased average foraging time and increased foraging efficiency of two of the three ant species studied, a situation that might reflect competition for a limited food source. We also found that yellow jackets removed more seeds than ants, suggestive that vespids are important, albeit underestimated, components of ant-seed mutualisms.

  9. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants

    PubMed Central

    Yek, Sze Huei; Nash, David R.; Jensen, Annette B.; Boomsma, Jacobus J.

    2012-01-01

    Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced. PMID:22915672

  10. Distributed nestmate recognition in ants.

    PubMed

    Esponda, Fernando; Gordon, Deborah M

    2015-05-07

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.

  11. Navigation in wood ants Formica japonica: context dependent use of landmarks.

    PubMed

    Fukushi, Tsukasa; Wehner, Rüdiger

    2004-09-01

    Wood ants Formica japonica can steer their outbound (foraging) and inbound (homing) courses without using celestial compass information, by relying exclusively on landmark cues. This is shown by training ants to run back and forth between the nest and an artificial feeder, and later displacing the trained ants either from the nest (when starting their foraging runs: outbound full-vector ants) or from the feeder (when starting their home runs: inbound full-vector ants) to various nearby release sites. In addition, ants that have already completed their foraging and homing runs are displaced after arrival either at the feeder (outbound zero-vector ants) or at the nest (inbound zero-vector ants), respectively, to the very same release sites. Upon release, the full-vector ants steer their straight courses by referring to panoramic landmark cues, while the zero-vector ants presented with the very same visual scenery immediately search for local landmark cues defining their final goal. Hence, it depends on the context, in this case on the state of the forager's round-trip cycle, what visual cues are picked out from a given set of landmarks and used for navigation.

  12. Foraging Distance of the Argentine Ant in California Vineyards.

    PubMed

    Hogg, Brian N; Nelson, Erik H; Hagler, James R; Daane, Kent M

    2018-04-02

    Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), form mutualisms with hemipteran pests in crop systems. In vineyards, they feed on honeydew produced by mealybugs and soft scales, which they tend and protect from natural enemies. Few options for controlling Argentine ants are available; one of the more effective approaches is to use liquid baits containing a low dose of an insecticide. Knowledge of ant foraging patterns is required to estimate how many bait stations to deploy per unit area. To measure how far ants move liquid bait in vineyards, we placed bait stations containing sugar water and a protein marker in plots for 6 d, and then collected ants along transects extending away from bait stations. The ants moved an average of 16.08 m and 12.21 m from bait stations in the first and second years of the study, respectively. Marked ants were found up to 63 m from bait stations; however, proportions of marked ants decreased exponentially as distance from the bait station increased. Results indicate that Argentine ants generally forage at distances <36 m in California vineyards, thus suggesting that insecticide bait stations must be deployed at intervals of 36 m or less to control ants. We found no effect of insecticide on distances that ants moved the liquid bait, but this may have been because bait station densities were too low to affect the high numbers of Argentine ants that were present at the study sites.

  13. New radiocarbon dating and demographic insights into San Juan ante Portam Latinam, a possible Late Neolithic war grave in North-Central Iberia.

    PubMed

    Fernández-Crespo, Teresa; Schulting, Rick J; Ordoño, Javier; Duering, Andreas; Etxeberria, Francisco; Herrasti, Lourdes; Armendariz, Ángel; Vegas, José I; Bronk Ramsey, Christopher

    2018-03-15

    San Juan ante Portam Latinam is one of a small number of European Neolithic sites meeting many of the archaeological criteria expected for a mass grave, and furthermore presents evidence for violent conflict. This study aims to differentiate between what is potentially a single episode of deposition, versus deposition over some centuries, or, alternatively, that resulting from a combination of catastrophic and attritional mortality. The criteria developed are intended to have wider applicability to other such proposed events. Ten new AMS 14 C determinations on human bone from the site, together with previously available dates, are analyzed through Bayesian modeling to refine the site's chronology. This is used together with the population's demographic profile as the basis for agent-based demographic modeling. The new radiocarbon results, while improving the site's chronology, fail to resolve the question whether the burial represents a single event, or deposition over decades or centuries-primarily because the dates fall within the late fourth millennium BC plateau in the calibration curve. The demographic modeling indicates that the population's age and sex distribution fits neither a single catastrophic event nor a fully attritional mortality profile, but instead may partake of elements of both. It is proposed that San Juan ante Portam Latinam was used as burial place for the mainly adolescent and adult male dead of a particular or multiple violent engagements (e.g., battles), while previously or subsequently seeing use for attritional burial by other members of one or more surrounding communities dead over the course of a few generations. The overall bias towards males, particularly to the extent that many may represent conflict mortality, has implications for the structure of the surviving community, the members of which may have experienced increased vulnerability in the face of neighboring aggressors. © 2018 Wiley Periodicals, Inc.

  14. A Survey of Formal Methods for Intelligent Swarms

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Hinchey, Mike; Rouff, Chrustopher A.

    2004-01-01

    Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are being proposed for future space exploration missions. Such missions provide greater flexibility and offer the possibility of gathering more science data than traditional single spacecraft missions. The emergent properties of swarms make these missions powerful, but simultaneously far more difficult to design, and to assure that the proper behaviors will emerge. These missions are also considerably more complex than previous types of missions, and NASA, like other organizations, has little experience in developing or in verifying and validating these types of missions. A significant challenge when verifying and validating swarms of intelligent interacting agents is how to determine that the possible exponential interactions and emergent behaviors are producing the desired results. Assuring correct behavior and interactions of swarms will be critical to mission success. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft that will fly from Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be composed of specialized workers for asteroid exploration. Exploration would consist of cataloguing the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. To perform this task, ANTS would carry miniaturized instruments, such as imagers, spectrometers, and detectors. Since ANTS and other similar missions are going to consist of autonomous spacecraft that may be out of contact with the earth for extended periods of time, and have low bandwidths due to weight constraints, it will be difficult to observe improper behavior and to correct any errors after launch. Providing V&V (verification and validation) for this type of mission is new to NASA, and represents the cutting edge in system correctness, and requires higher levels of assurance than other (traditional) missions that use a single or small number of spacecraft that are deterministic in nature and have near continuous communication access. One of the highest possible levels of assurance comes from the application of formal methods. Formal methods are mathematics-based tools and techniques for specifying and verifying (software and hardware) systems. They are particularly useful for specifying complex parallel systems, such as exemplified by the ANTS mission, where the entire system is difficult for a single person to fully understand, a problem that is multiplied with multiple developers. Once written, a formal specification can be used to prove properties of a system (e.g., the underlying system will go from one state to another or not into a specific state) and check for particular types of errors (e.g., race or livelock conditions). A formal specification can also be used as input to a model checker for further validation. This report gives the results of a survey of formal methods techniques for verification and validation of space missions that use swarm technology. Multiple formal methods were evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of spacecraft using the ANTS mission as an example system. This report is the first result of the project to determine formal approaches that are promising for formally specifying swarm-based systems. From this survey, the most promising approaches were selected and are discussed relative to their possible application to the ANTS mission. Future work will include the application of an integrated approach, based on the selected approaches identified in this report, to the formal specification of the ANTS mission.

  15. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  16. A specialist herbivore uses chemical camouflage to overcome the defenses of an ant-plant mutualism.

    PubMed

    Whitehead, Susan R; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M; Posto, Amanda L; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.

  17. Ant species confer different partner benefits on two neotropical myrmecophytes.

    PubMed

    Frederickson, Megan E

    2005-04-01

    The dynamics of mutualistic interactions involving more than a single pair of species depend on the relative costs and benefits of interaction among alternative partners. The neotropical myrmecophytes Cordia nodosa and Duroia hirsuta associate with several species of obligately symbiotic ants. I compared the ant partners of Cordia and Duroia with respect to two benefits known to be important in ant-myrmecophyte interactions: protection against herbivores provided by ants, and protection against encroaching vegetation provided by ants. Azteca spp., Myrmelachista schumanni, and Allomerus octoarticulatus demerarae ants all provide the leaves of Cordia and Duroia some protection against herbivores. However, Azteca and Allomerus provide more protection than does Myrmelachista to the leaves of their host plants. Although Allomerus protects the leaves of its hosts, plants occupied by Allomerus suffer more attacks by herbivores to their stems than do plants occupied by other ants. Relative to Azteca or Allomerus, Myrmelachista ants provide better protection against encroaching vegetation, increasing canopy openness over their host plants. These differences in benefits among the ant partners of Cordia and Duroia are reflected in the effect of each ant species on host plant size, growth rate, and reproduction. The results of this study show how mutualistic ant partners can differ with respect to both the magnitude and type of benefits they provide to the same species of myrmecophytic host.

  18. Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior

    PubMed Central

    Chung, Yuan-Kai

    2017-01-01

    The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation. PMID:28355235

  19. Honey Ants.

    ERIC Educational Resources Information Center

    Conway, John R.

    1984-01-01

    Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)

  20. Imported fire ants in the southeast

    Treesearch

    David F. Williams

    1998-01-01

    Two species of imported fire ants were introduced into the U.S. at Mobile, Alabama. The black imported fire ant, Solenopsis richteri Forel, was introduced around the early 1900's while the red imported fire ant, Solenopsis invicta Buren entered in the late 1930' or early 1940's. The red imported fire ant is the most...

  1. Why are there few seedlings beneath the myrmecophyte Triplaris americana?

    NASA Astrophysics Data System (ADS)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.

    2007-07-01

    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  2. Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae): Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators

    PubMed Central

    Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto

    2015-01-01

    Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397

  3. Effects of Invasive European Fire Ants (Myrmica rubra) on Herring Gull (Larus argentatus) Reproduction

    PubMed Central

    DeFisher, Luke E.; Bonter, David N.

    2013-01-01

    Various invasive ant species have negatively affected reproductive success in birds by disrupting nest site selection, incubation patterns, food supply, and by direct predation on nestlings. Impacts can be particularly severe when non-native ants colonize seabird nesting islands where thousands of birds may nest in high densities on the ground or in burrows or crevices. Here we report on the first documented effects of Myrmica rubra, the European fire ant, on the reproduction of birds in its non-native range. We documented herring gulls (Larus argentatus) on Appledore Island, Maine, engaging in more erratic incubation behaviors at nests infested by the ants. Newly-hatched chicks in some nests were swarmed by ants, leading to rapid chick death. Due to high overall rates of chick mortality, survival probabilities did not vary between nests with and without ant activity, however chick growth rates were slower at nests with ants than at ant-free nests. Ant infestation likely leads to longer-term fitness consequences because slower growth rates early in life may ultimately lead to lower post-fledging survival probabilities. PMID:23691168

  4. Invited review the coiled coil silk of bees, ants, and hornets.

    PubMed

    Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T

    2012-06-01

    In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.

  5. Concentration, composition and sources of PAHs in the coastal sediments of the exclusive economic zone (EEZ) of Qatar, Arabian Gulf.

    PubMed

    Soliman, Y S; Al Ansari, E M S; Wade, T L

    2014-08-30

    Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Phylogenomics and Divergence Dating of Fungus-Farming Ants (Hymenoptera: Formicidae) of the Genera Sericomyrmex and Apterostigma.

    PubMed

    Ješovnik, Ana; González, Vanessa L; Schultz, Ted R

    2016-01-01

    Fungus-farming ("attine") ants are model systems for studies of symbiosis, coevolution, and advanced eusociality. A New World clade of nearly 300 species in 15 genera, all attine ants cultivate fungal symbionts for food. In order to better understand the evolution of ant agriculture, we sequenced, assembled, and analyzed transcriptomes of four different attine ant species in two genera: three species in the higher-attine genus Sericomyrmex and a single lower-attine ant species, Apterostigma megacephala, representing the first genomic data for either genus. These data were combined with published genomes of nine other ant species and the honey bee Apis mellifera for phylogenomic and divergence-dating analyses. The resulting phylogeny confirms relationships inferred in previous studies of fungus-farming ants. Divergence-dating analyses recovered slightly older dates than most prior analyses, estimating that attine ants originated 53.6-66.7 million of years ago, and recovered a very long branch subtending a very recent, rapid radiation of the genus Sericomyrmex. This result is further confirmed by a separate analysis of the three Sericomyrmex species, which reveals that 92.71% of orthologs have 99% - 100% pairwise-identical nucleotide sequences. We searched the transcriptomes for genes of interest, most importantly argininosuccinate synthase and argininosuccinate lyase, which are functional in other ants but which are known to have been lost in seven previously studied attine ant species. Loss of the ability to produce the amino acid arginine has been hypothesized to contribute to the obligate dependence of attine ants upon their cultivated fungi, but the point in fungus-farming ant evolution at which these losses occurred has remained unknown. We did not find these genes in any of the sequenced transcriptomes. Although expected for Sericomyrmex species, the absence of arginine anabolic genes in the lower-attine ant Apterostigma megacephala strongly suggests that the loss coincided with the origin of attine ants.

  7. How Load-Carrying Ants Avoid Falling Over: Mechanical Stability during Foraging in Atta vollenweideri Grass-Cutting Ants

    PubMed Central

    Moll, Karin; Roces, Flavio; Federle, Walter

    2013-01-01

    Background Foraging workers of grass-cutting ants (Atta vollenweideri) regularly carry grass fragments larger than their own body. Fragment length has been shown to influence the ants’ running speed and thereby the colony’s food intake rate. We investigated whether and how grass-cutting ants maintain stability when carrying fragments of two different lengths but identical mass. Principal Findings Ants carried all fragments in an upright, backwards-tilted position, but held long fragments more vertically than short ones. All carrying ants used an alternating tripod gait, where mechanical stability was increased by overlapping stance phases of consecutive steps. The overlap was greatest for ants carrying long fragments, resulting in more legs contacting the ground simultaneously. For all ants, the projection of the total centre of mass (ant and fragment) was often outside the supporting tripod, i.e. the three feet that would be in stance for a non-overlapping tripod gait. Stability was only achieved through additional legs in ground contact. Tripod stability (quantified as the minimum distance of the centre of mass to the edge of the supporting tripod) was significantly smaller for ants with long fragments. Here, tripod stability was lowest at the beginning of each step, when the center of mass was near the posterior margin of the supporting tripod. By contrast, tripod stability was lowest at the end of each step for ants carrying short fragments. Consistently, ants with long fragments mainly fell backwards, whereas ants carrying short fragments mainly fell forwards or to the side. Assuming that transporting ants adjust neither the fragment angle nor the gait, they would be less stable and more likely to fall over. Conclusions In grass-cutting ants, the need to maintain static stability when carrying long grass fragments has led to multiple kinematic adjustments at the expense of a reduced material transport rate. PMID:23300994

  8. Local and Landscape Drivers of Ant Parasitism in a Coffee Landscape.

    PubMed

    De la Mora, Aldo; Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul; Philpott, Stacy M

    2015-08-01

    Parasitism of ants that nest in rotting wood by eucharitid wasps was studied in order to examine whether habitat and season influence ant parasitism, vegetation complexity and agrochemical use correlate with ant parasitism, and whether specific local and landscape features of agricultural landscapes correlate with changes in ant parasitism. In a coffee landscape, 30 coffee and 10 forest sites were selected in which local management (e.g., vegetation, agrochemical use) and landscape features (e.g., distance to forest, percent of rustic coffee nearby) were characterized. Rotten logs were sampled and ant cocoons were collected from logs and cocoons were monitored for parasitoid emergence. Sixteen ant morphospecies in three ant subfamilies (Ectatomminae, Ponerinae, and Formicinae) were found. Seven ant species parasitized by two genera of Eucharitidae parasitoids (Kapala and Obeza) were reported and some ant-eucharitid associations were new. According to evaluated metrics, parasitism did not differ with habitat (forest, high-shade coffee, low-shade coffee), but did increase in the dry season for Gnamptogenys ants. Parasitism increased with vegetation complexity for Gnamptogenys and Pachycondyla and was high in sites with both high and low agrochemical use. Two landscape variables and two local factors positively correlated with parasitism for some ant genera and species. Thus, differences in vegetation complexity at the local and landscape scale and agrochemical use in coffee landscapes alter ecological interactions between parasitoids and their ant hosts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Ants as vectors of pathogenic microorganisms in a hospital in São Paulo county, Brazil.

    PubMed

    Máximo, Heros J; Felizatti, Henrique L; Ceccato, Marcela; Cintra-Socolowski, Priscila; Beretta, Ana Laura R Zeni

    2014-08-20

    The present study aimed to identify and characterize the presence of bacteria carried by ants, and check the distribution of these ants in the physical confines of a medium-sized hospital in São Paulo county, Brazil. The ants were collected from March 2012 to February 2013. Attractive non-toxic baits were used to catch the ants, and the sectors considered for the study were medical wards, outdoor areas, obstetric unit, reception area, kitchen, surgical centres, paediatric clinic and intensive care unit. Captured ants were classified using taxonomic keys and subsequently immersed in Brain Heart Infusion broth. Paratrechina spp. and Monomorium floricola ants were found most frequently in the hospital. Ants had a high capacity for carrying bacteria, and the isolates comprised 68.8% Gram-positive, spore-producing bacilli (Bacillus spp. and Listeria spp.); 14.7% Gram-negative bacilli (Pseudomonas aeruginosa and Klebsiella spp.); and 16.4% Gram-positive cocci (Streptococcus spp. and Staphylococcus aureus). Among the areas being evaluated, the medical wards had the largest number of ants captured, and therefore the most bacteria. Ants in hospitals may carry both Gram-positive and Gram-negative bacteria, and methods of controlling urban ants should be adopted and strictly adhered to, to minimize the risk of infection in hospital patients.

  10. Toxicity Profiles and Colony Effects of Liquid Baits on Tawny Crazy Ants (plus an update on their U.S. distribution)

    USDA-ARS?s Scientific Manuscript database

    Tawny crazy ants, Nylanderia fulva, is an invasive ant that are known to readily forage on the liquid, carbohydrate rich honeydew produced by hemipterans such as aphids and scales. There is interest in developing liquid ant baits that can eliminate tawny crazy ant colonies. Preliminary and anecdot...

  11. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects.

    PubMed

    Hoekman, David

    2010-10-01

    Understanding how communities respond to changes in temperature is a major challenge for community ecology. Temperature influences the relative degree to which top-down and bottom-up forces structure ecological communities. In greenhouse experiments using the aquatic community found in pitcher plants (Sarracenia purpurea), I tested how temperature affected the relative importance of top-down (mosquito predation) and bottom-up (ant carcasses) forces on protozoa and bacteria populations. While bottom-up effects did not vary consistently with temperature, the top-down effects of predators on protozoa increased at higher temperatures. These results suggest that temperature could change the relative importance of top-down and bottom-up effects in ecological communities. Specifically, higher temperature may increase the strength of top-down effects by raising predator metabolic rate and concomitant processes (e.g., activity, foraging, digestion, growth) relative to cooler temperatures. These findings apply broadly to an understanding of trophic interactions in a variable environment and are especially relevant in the context of ongoing climate change.

  12. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.

    PubMed

    Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C

    2017-08-10

    Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska

    Treesearch

    Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin

    2011-01-01

    Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...

  14. Fire Ant Bites

    MedlinePlus

    ... Favorite Name: Category: Share: Yes No, Keep Private Fire Ant Bites Share | Fire ants are aggressive, venomous insects that have pinching ... across the United States, even into Puerto Rico. Fire ant stings usually occur on the feet or ...

  15. Fast and flexible: argentine ants recruit from nearby trails.

    PubMed

    Flanagan, Tatiana P; Pinter-Wollman, Noa M; Moses, Melanie E; Gordon, Deborah M

    2013-01-01

    Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources.

  16. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height

    PubMed Central

    Grangier, Julien; Lester, Philip J.

    2011-01-01

    This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The ‘ant-dropping’ behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726

  17. Fast and Flexible: Argentine Ants Recruit from Nearby Trails

    PubMed Central

    Flanagan, Tatiana P.; Pinter-Wollman, Noa M.; Moses, Melanie E.; Gordon, Deborah M.

    2013-01-01

    Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources. PMID:23967129

  18. Impact of adenosine nucleotide translocase (ANT) proline isomerization on Ca2+-induced cysteine relative mobility/mitochondrial permeability transition pore.

    PubMed

    Pestana, Cezar R; Silva, Carlos H T P; Uyemura, Sérgio A; Santos, Antonio C; Curti, Carlos

    2010-08-01

    Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT "c" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT "c" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT "c" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.

  19. Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment

    NASA Astrophysics Data System (ADS)

    Flores-Flores, Rocío Vianey; Aguirre, Armando; Anjos, Diego V.; Neves, Frederico S.; Campos, Ricardo I.; Dáttilo, Wesley

    2018-02-01

    In this study, we conducted a series of experiments in a population of Vachellia constricta (Fabaceae) in the arid Tehuacan-Cuicatláan valley, Mexico, in order to evaluate if the food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions. Using an experiment with artificial nectaries, we observed that ants foraging on food sources with higher concentration of sugar are quicker in finding and attacking potential herbivorous insects. More specifically, we found that the same ant species may increase their defence effectiveness according to the quality of food available. These findings indicate that ant effectiveness in plant protection is context-dependent and may vary according to specific individual characteristics of plants. In addition, we showed that competitively superior ant species tend to dominate plants in periods with high nectar activity, emphasizing the role of the dominance hierarchy structuring ant-plant interactions. However, when high sugar food sources were experimentally available ad libitum, the nocturnal and competitively superior ant species, Camponotus atriceps, did not dominate the artificial nectaries during the day possibly due to limitation of its thermal tolerance. Therefore, temporal niche partitioning may be allowing the coexistence of two dominant ant species (Camponotus rubritorax during the day and C. atriceps at night) on V. constricta. Our findings indicate that the quality of the food source, and temporal shifts in ant dominance are key factors which structure the biotic plant defences in an arid environment.

  20. Tetramorium tsushimae Ants Use Methyl Branched Hydrocarbons of Aphids for Partner Recognition.

    PubMed

    Sakata, Itaru; Hayashi, Masayuki; Nakamuta, Kiyoshi

    2017-10-01

    In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.

  1. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory.

    PubMed

    Peräkylä, Jari; Sun, Lihua; Lehtimäki, Kai; Peltola, Jukka; Öhman, Juha; Möttönen, Timo; Ogawa, Keith H; Hartikainen, Kaisa M

    2017-12-01

    The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general ( OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors ( OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. "Total errors" is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.

  2. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    USGS Publications Warehouse

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.

  3. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  4. Trails of the leafcutters

    Treesearch

    John C. Moser

    1967-01-01

    The trails of leaf-cutting ants are among the most conspicuous and long-lived of all ant roadways. In tropical America, where such ants are abundant, paths leading from underground nests are often a foot wide and extended for 100 yards or more to trees or other plants whose leaves the ants gather. The ants commonly carry their forage above their heads, and when the...

  5. The direct and ecological costs of an ant-plant symbiosis.

    PubMed

    Frederickson, Megan E; Ravenscraft, Alison; Miller, Gabriel A; Arcila Hernández, Lina M; Booth, Gregory; Pierce, Naomi E

    2012-06-01

    How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.

  6. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant–plant mutualism

    PubMed Central

    Pringle, Elizabeth G.

    2014-01-01

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant–plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output. PMID:24807259

  7. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) is induced by interactions with mature workers.

    PubMed

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Temporal changes in randomness of bird communities across Central Europe.

    PubMed

    Renner, Swen C; Gossner, Martin M; Kahl, Tiemo; Kalko, Elisabeth K V; Weisser, Wolfgang W; Fischer, Markus; Allan, Eric

    2014-01-01

    Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the 'nugget', which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.

  9. Evidence for in situ production of chlorinated polycyclic aromatic hydrocarbons on tidal flats: environmental monitoring and laboratory scale experiment.

    PubMed

    Sankoda, Kenshi; Nomiyama, Kei; Yonehara, Takayuki; Kuribayashi, Tomonori; Shinohara, Ryota

    2012-07-01

    This study investigated environmental distributions and production mechanisms of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in the sediments from some tidal flats located in Asia. Cl-PAHs were found in sediments taken from Arao tidal flat, Kikuchigawa River and Shirakawa River. The range of ∑Cl-PAHs was from 25.5 to 483 pg g(-1) for Kikuchigawa River and Arao tidal flat, respectively. Concentrations of PAHs and Cl-PAHs showed no significant correlations (r=0.134). This result suggests that the origins of these compounds differ. In the identified Cl-PAH isomers, the most abundant Cl-PAH isomer was 9,10-dichloroanthracene (9,10-di-Cl-ANT) in the three sites. In general, concentrations of Cl-ANTs in the coastal environment are about 3-5 orders of magnitude lower than those of anthracene (ANT). However, concentration ratios between Cl-ANTs and ANT (Cl-ANTs/ANT) in the sediments ranged from 4.1% to 24.6%. This result indicated that Cl-PAHs were not generated under industrial processes but the high concentration ratios have resulted from the contribution of photochemical production of Cl-ANTs in the sediments because ANT is known to have high photochemical reactivity. For examining this phenomenon, ANT adsorbed onto glass beads was irradiated with UV under the mimicked field conditions of tidal flats. As a result, it was noticed that, while chlorinated derivatives were negligible in a light-controlled group, production of 2-Cl-ANT, 9-Cl-ANT and 9,10-diCl-ANT on the irradiated surface were found in this study. These results suggest that photochemical reaction of PAHs can be a potential source of the occurrence of Cl-PAHs in the coastal environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Increased Host Investment in Extrafloral Nectar (EFN) Improves the Efficiency of a Mutualistic Defensive Service

    PubMed Central

    González-Teuber, Marcia; Silva Bueno, Juan Carlos; Heil, Martin; Boland, Wilhelm

    2012-01-01

    Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained. PMID:23056362

  11. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani.

    PubMed

    Zhu, Jia-Ying

    2016-04-01

    Similar to venom found in most venomous animals, parasitoid venoms contain a complex cocktail of proteins with potential agrichemical and pharmaceutical use. Even though parasitoids are one of the largest group of venomous animals, little is known about their venom composition. Recent few studies revealed high variated venom composition existing not only in different species but also between closely related strains, impling that increasing information on the venom proteins from more greater diversity of species of different taxa is key to comprehensively uncover the complete picture of parasitoid venom. Here, we explored the major protein components of the venom of ectoparasitic ant-like bethylid wasp, Scleroderma guani by an integrative transcriptomic-proteomic approach. Illumina deep sequencing of venom apparatus cDNA produced 49,873 transcripts. By mapping the peptide spectral data derived from venom reservoir against these transcripts, mass spectrometry analysis revealed ten main venom proteins, including serine proteinase, metalloprotease, dipeptidyl peptidase IV, esterase, antithrombin-III, acid phosphatase, neural/ectodermal development factor IMP-L2 like protein, venom allergen 3, and unknown protein. Interestingly, one serine proteinase was firstly identified with rarely high molecular weight about 200 kDa in parasitoid venom. The occurrence of abundant acid phosphatase, antithrombin-III and venom allergen 3 demonstrated that S. guani venom composition is similar to that of social wasp venoms. All identified venom genes showed abundantly biased expression in venom apparatus, indicating their virulent functions involved in parasitization. This study shed light on the more better understanding of parasitoid venom evolution across species and will facilitate the further elucidation of function and toxicity of these venom proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Seismic structure of the Slave craton crust

    NASA Astrophysics Data System (ADS)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.

    2017-12-01

    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  13. Imported fire ants: the ants from hell!

    PubMed

    Freeman, T M

    1994-01-01

    Imported fire ants may certainly be considered the ANTS FROM HELL! This review focuses on both the interesting entomology of fire ants and the important medical characteristics of fire ant stings. They sting and they kill; they destroy; they mate in mid-air; and we may not be able to stop them. However, although they inject extremely potent venom, individuals can prevent secondary infections by leaving the so-called pustules alone and not opening them. Individuals who suffer systemic reactions may receive adequate treatment with the whole body extract immunotherapy.

  14. Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.

    PubMed

    Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi

    2016-03-01

    Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.

  15. Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii.

    PubMed

    Jiang, Yan; Qi, Hui; Zhang, Xian M

    2018-04-16

    NAP (Naphthalene) and ANT (anthracene) usually co-exist in environment and possessed interactional effects on their biodegradation in environment. Presently, a strain of Acinetobacter johnsonii was employed to degrade NAP and ANT in single- and dual-substrate systems. NAP was utilized as prefer substrate by cells to accelerate ANT biodegradation. As much as 200 mg L -1 ANT could be entirely degraded with 1,500 mg L -1 NAP, which was beyond bacterial potential in single substrate system. Especially, the shortest biodegradation period (103 h) for ANT was observed with the presence of 50 mg L -1 NAP. By contrast, ANT showed strong inhibition on NAP degradation, while the peak biodegradation of 1,950 mg L -1 NAP with 50 mg L -1 ANT could still proceed. By introducing an inhibition constant parameter to fit the inhibition on cells, modeling indicated the substrate inhibition for NAP and ANT over the concentrations of 174 and 49 mg L -1 , respectively. Furthermore, enzyme assay revealed the pathway of meta fission in NAP biodegradation due to the appearance of catechol 2,3-dioxygenase activity, and low-level lipase excretion was also found in both NAP and ANT biodegradation, but hardly affect NAP and ANT biodegradation in the present study. To research the interplay of NAP and ANT is conducive to targeted decontamination.

  16. Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna

    PubMed Central

    2015-01-01

    Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group – with free access of spiders and ants; exclusion group – spiders and ants excluded; ant group – absence of spiders; and spider group – absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage. PMID:26168036

  17. Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna.

    PubMed

    Stefani, Vanessa; Pires, Tayna Lopes; Torezan-Silingardi, Helena Maura; Del-Claro, Kleber

    2015-01-01

    Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group - with free access of spiders and ants; exclusion group - spiders and ants excluded; ant group - absence of spiders; and spider group - absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage.

  18. Non-native Ants Are Smaller than Related Native Ants.

    PubMed

    McGlynn, Terrence P

    1999-12-01

    I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.

  19. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study.

    PubMed

    Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan

    2015-01-01

    To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.

  20. Insect navigation: do ants live in the now?

    PubMed

    Graham, Paul; Mangan, Michael

    2015-03-01

    Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment. © 2015. Published by The Company of Biologists Ltd.

  1. Absence of jamming in ant trails: feedback control of self-propulsion and noise.

    PubMed

    Chaudhuri, Debasish; Nagar, Apoorva

    2015-01-01

    We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first-order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.

  2. Effect of density on traffic and velocity on trunk trails of Formica pratensis.

    PubMed

    Hönicke, C; Bliss, P; Moritz, R F A

    2015-04-01

    The allocation of large numbers of workers facilitates the swift intake of locally available resources which is essential for ant colony survival. To organise the traffic between nest and food source, the black-meadow ant Formica pratensis establishes permanent trunk trails, which are maintained by the ants. To unravel the ant organisation and potential traffic rules on these trails, we analysed velocity and lane segregation under various densities by experimentally changing feeding regimes. Even under the highest ant densities achieved, we never observed any traffic jams. On the contrary, velocity increased after supplementary feeding despite an enhanced density. Furthermore, inbound ants returning to the nest had a higher velocity than those leaving the colony. Whilst at low and medium density the ants used the centre of the trail, they used the full width of the trail at high density. Outbound ants also showed some degree of lane segregation which contributes to traffic organisation.

  3. The exploitation of an ant-defended host plant by a shelter-building herbivore.

    PubMed

    Eubanks, Micky D; Nesci, Kimberly A; Petersen, Mette K; Liu, Zhiwei; Sanchez, Horacio Bonfil

    1997-02-01

    Larvae of a Polyhymno species (Lepidoptera: Gelechiidae) feed on the ant-defended acacia, Acacia cornigera, in the tropical lowlands of Veracruz, Mexico. Polyhymno larvae construct sealed shelters by silking together the pinna or pinnules of acacia leaves. Although larval density and larval survival are higher on acacias not occupied by ants, shelters serve as a partial refuge from the ant Pseudomyrmex ferruginea (Hymenoptera: Formicidae), which defends A. cornigera plants; thus, shelters provide Polyhymno larvae access to an ant-defended host plant. P. ferruginea ants act as the primary antiherbivore defense of A. cornigera plants, which lack the chemical and mechanical defenses of non-ant-defended acacias. Thus, defeating the ant defense of A. cornigera provides Polyhymno larvae access to an otherwise poorly defended host plant. Damage caused by Polyhymno larval feeding reaches levels which can kill A. cornigera plants.

  4. Leaf volatile compounds and the distribution of ant patrollingin an ant-plant protection mutualism: Preliminary results on Leonardoxa (Fabaceae: Caesalpinioideae) and Petalomyrmex(Formicidae: Formicinae)

    NASA Astrophysics Data System (ADS)

    Brouat, Carine; McKey, Doyle; Bessière, Jean-Marie; Pascal, Laurence; Hossaert-McKey, Martine

    2000-12-01

    While observations suggest that plant chemicals could be important in maintaining the specificity and permitting the functioning of ant-plant symbioses, they have been little studied. We report here the strongest evidence yet for chemical signalling between ants and plants in a specific ant-plant protection symbiosis. In the mutualism between Leonardoxa africana subsp. africana and Petalomyrmex phylax, ants continuously patrol young leaves, which are vulnerable to attacks by phytophagous insects. We provide experimental evidence for chemical mediation of ant attraction to young leaves in this system. By a comparative analysis of the related non-myrmecophytic tree L. africana subsp. gracilicaulis, we identify likely candidates for attractant molecules, and suggest they may function not only as signals but also as resources. We also propose hypotheses on the evolutionary origin of these plant volatiles, and of the responses to them by mutualistic ants.

  5. Harvester ant bioassay for assessing hazardous chemical waste sites. [Pogonomyrmex owhyeei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; Carlile, D.W.; Rogers, L.E.

    1985-05-01

    A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three complex industrial waste residuals, wood preservative sludge, drilling fluid, and slop oil; and three heavy metals, copper zinc, and cadium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants weremore » sensitive to the insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material followed by Dieldrin, Endrin, wood preservative sludge, drilling fluid, and slop oil. 12 refs., 2 figs., 2 tabs.« less

  6. Harvester ant bioassay for assessing hazardous chemical waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; Carlile, D.W.; Rogers, L.E.

    1984-12-01

    A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three oil-like compounds, wood preservative, drilling fluid, and slop oil; and three heavy metals, copper, zinc, and cadmium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants were sensitive to themore » insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material, followed by Dieldrin, Endrin, wood preservative, drilling fluid, and slop oil. 10 refs., 2 figs., 2 tabs.« less

  7. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-01-01

    ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  8. Assessing state-wide biodiversity in the Florida Gap analysis project

    USGS Publications Warehouse

    Pearlstine, L.G.; Smith, S.E.; Brandt, L.A.; Allen, Craig R.; Kitchens, W.M.; Stenberg, J.

    2002-01-01

    The Florida Gap (FI-Gap) project provides an assessment of the degree to which native animal species and natural communities are or are not represented in existing conservation lands. Those species and communities not adequately represented in areas being managed for native species constitute 'gaps' in the existing network of conservation lands. The United States Geological Survey Gap Analysis Program is a national effort and so, eventually, all 50 states will have completed it. The objective of FI-Gap was to provide broad geographic information on the status of terrestrial vertebrates, butterflies, skippers and ants and their respective habitats to address the loss of biological diversity. To model the distributions and potential habitat of all terrestrial species of mammals, breeding birds, reptiles, amphibians, butterflies, skippers and ants in Florida, natural land cover was mapped to the level of dominant or co-dominant plant species. Land cover was classified from Landsat Thematic Mapper (TM) satellite imagery and auxiliary data such as the national wetlands inventory (NWI), soils maps, aerial imagery, existing land use/land cover maps, and on-the-ground surveys, Wildlife distribution models were produced by identifying suitable habitat for each species within that species' range, Mammalian models also assessed a minimum critical area required for sustainability of the species' population. Wildlife species richness was summarized against land stewardship ranked by an area's mandates for conservation protection. ?? 2002 Elsevier Science Ltd. All rights reserved.

  9. Ex Ante Research Explored: Numbers, Types and Use of Ex Ante Policy Studies by the Dutch Government

    ERIC Educational Resources Information Center

    Haarhuis, Carolien Maria Klein; Smit, Monika

    2017-01-01

    Ex ante research can contribute to evidence-informed policies. In this article, we explore numbers and types of ex ante studies as well as their use. First, we took stock of a potentially wide range of ex ante studies published by the Dutch government between 2005 and 2011, applying a systematic approach. Though unevenly distributed across…

  10. Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens.

    PubMed

    LeVan, Katherine E; Hung, Keng-Lou James; McCann, Kyle R; Ludka, John T; Holway, David A

    2014-01-01

    Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.

  11. Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb

    PubMed Central

    Bollmann, Felix; Saville, David; Riedel, Michael

    2018-01-01

    The number of plants pollinated by ants is surprisingly low given the abundance of ants and the fact that they are common visitors of angiosperms. Generally ants are considered as nectar robbers that do not provide pollination service. We studied the pollination system of the endangered dry grassland forb Euphorbia seguieriana and found two ant species to be the most frequent visitors of its flowers. Workers of Formica cunicularia carried five times more pollen than smaller Tapinoma erraticum individuals, but significantly more viable pollen was recovered from the latter. Overall, the viability of pollen on ant cuticles was significantly lower (p < 0.001)—presumably an antibiotic effect of the metapleural gland secretion. A marking experiment suggested that ants were unlikely to facilitate outcrossing as workers repeatedly returned to the same individual plant. In open pollinated plants and when access was given exclusively to flying insects, fruit set was nearly 100%. In plants visited by ants only, roughly one third of flowers set fruit, and almost none set fruit when all insects were excluded. The germination rate of seeds from flowers pollinated by flying insects was 31 ± 7% in contrast to 1 ± 1% resulting from ant pollination. We conclude that inbreeding depression may be responsible for the very low germination rate in ant pollinated flowers and that ants, although the most frequent visitors, play a negligible or even deleterious role in the reproduction of E. seguieriana. Our study reiterates the need to investigate plant fitness effects beyond seed set in order to confirm ant-plant mutualisms. PMID:29479496

  12. New Potentials in Red Phosphorus Compositions

    DTIC Science & Technology

    1976-08-01

    COMMAND 101 1 76 WASHINGTON, D. C. 20361 I A Best Avai~lable copy Submi tte:--’,.. . E . DOUA, Manager Chemical Sciences Branch Pyrotechnic Division...PHOPHORUS 7 naw,.pot o tOMPOSITIONS 1.. July 3751,-- 1 Jun 17 Ś. PER WORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRýANT NUMBER( O ) Henry A...non Dat &.MRM*4) 4I )~ ° o PREFACE The authors would like to thank Mr. John Brown, Mr. Ed Colvin and Mr. William T. Biggs for their assistance in the

  13. Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations.

    PubMed

    Brown, Charles R; Page, Catherine E; Robison, Grant A; O'Brien, Valerie A; Booth, Warren

    2015-06-01

    The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74-90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance. © 2015 The Society for Vector Ecology.

  14. Tracing the Rise of Ants - Out of the Ground

    PubMed Central

    Lucky, Andrea; Trautwein, Michelle D.; Guénard, Benoit S.; Weiser, Michael D.; Dunn, Robert R.

    2013-01-01

    The evolution of ants (Hymenoptera: Formicidae) is increasingly well-understood due to recent phylogenetic analyses, along with estimates of divergence times and diversification rates. Yet, leading hypotheses regarding the ancestral habitat of ants conflict with new findings that early ant lineages are cryptic and subterranean. Where the ants evolved, in respect to habitat, and how habitat shifts took place over time have not been formally tested. Here, we reconstruct the habitat transitions of crown-group ants through time, focusing on where they nest and forage (in the canopy, litter, or soil). Based on ancestral character reconstructions, we show that in contrast to the current consensus based on verbal arguments that ants evolved in tropical leaf litter, the soil is supported as the ancestral stratum of all ants. We also find subsequent movements up into the litter and, in some cases, into the canopy. Given the global importance of ants, because of their diversity, ecological influence and status as the most successful eusocial lineage on Earth, understanding the early evolution of this lineage provides insight into the factors that made this group so successful today. PMID:24386323

  15. Performance of the Species-Typical Alarm Response in Young Workers of the Ant Myrmica sabuleti (Hymenoptera: Formicidae) Is Induced by Interactions with Mature Workers

    PubMed Central

    Cammaerts, Marie-Claire

    2014-01-01

    Abstract Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants’ ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  16. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil communities. Significant differences of soil communities from potato and onion crops with the one from control site were observed at the beginning and during the crop cycle, but similarities were observed at the last sampling date after harvesting. The same was observed for the maize crop, indicating that soil communities recovered from the agricultural disturbances associated with crops management. An integrated approach such as the one adopted in present study, taking into consideration soil community's abundances, feeding activity and time variations along entire crop cycles of several crops under Mediterranean conditions, as well as soil exposure to pesticides residues, may contribute to decision making towards a sustainability of crop areas, including pesticide use and management practices.

  17. Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation

    USGS Publications Warehouse

    Angermeier, P.L.; Winston, M.R.

    1999-01-01

    The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.

  18. Phylogenetic placement of an unusual coral mushroom challenges the classic hypothesis of strict coevolution in the Apterostigma pilosum group ant-fungus mutualism

    Treesearch

    Bryn T.M. Dentinger; D.Jean Lodge; Andrew B. Munkacsi; Dennis E. Desjardin; David J. McLaughlin

    2009-01-01

    The ~50 million-year-old fungus-farming ant mutualism is a classic example of coevolution, involving ants that subsist on asexual, fungal biomass, in turn propagating the fungus clonally through nest-to-nest transmission. Most mutualistic ants cultivate two closely related groups of gilled mushrooms, whereas one small group of ants in the genus ...

  19. Swarm Intelligence Optimization and Its Applications

    NASA Astrophysics Data System (ADS)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  20. Methods for Casting Subterranean Ant Nests

    PubMed Central

    Tschinkel, Walter R.

    2010-01-01

    The study of subterranean ant nests has been impeded by the difficulty of rendering their structures in visible form. Here, several different casting materials are shown to make perfect casts of the underground nests of ants. Each material (dental plaster, paraffin wax, aluminum, zinc) has advantages and limitations, which are discussed. Some of the materials allow the recovery of the ants entombed in the casts, allowing a census of the ants to be connected with features of their nest architecture. The necessary equipment and procedures are described in the hope that more researchers will study this very important aspect of ant natural history. PMID:20673073

Top