Dynamics of an ant-plant-pollinator model
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.
2015-03-01
In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.
Recurrence analysis of ant activity patterns
2017-01-01
In this study, we used recurrence quantification analysis (RQA) and recurrence plots (RPs) to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic) ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena. PMID:29016648
Ex-Ante Beleidsevaluatie met System Dynamics (Ex-Ante Policy at System Dynamics)
2008-03-01
11 . van TFighciho,, cn. [DMO-11cleid 0 Vastgestlid d.d. 13 inaart 2008 (Lkzc mnccmn ss, i/it miet) Tite Onigerubriceerd Managenicnadiurcksel O...genaamd, brengt beleidsopties en beleidsdoelen vastgesteld. oorzaken en gevolgen rondom een Daamna heeft TNO conform de MARVEL 4/62 Ex-ante...rapport I TNO-DV 2007 A055 TNO-rapport I TNO-DV 2007 A055 9 /62 Afkortingen BPO Business Process Ownership CDC/DCIVB Commando Diensten Centra / Diensten
Glass-like dynamics in confined and congested ant traffic.
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I
2015-09-07
The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.
Richardson, Thomas O.; Robinson, Elva J. H.; Christensen, Kim; Jensen, Henrik J.; Franks, Nigel R.; Sendova-Franks, Ana B.
2010-01-01
The success of social animals (including ourselves) can be attributed to efficiencies that arise from a division of labour. Many animal societies have a communal nest which certain individuals must leave to perform external tasks, for example foraging or patrolling. Staying at home to care for young or leaving to find food is one of the most fundamental divisions of labour. It is also often a choice between safety and danger. Here we explore the regulation of departures from ant nests. We consider the extreme situation in which no one returns and show experimentally that exiting decisions seem to be governed by fluctuating record signals and ant-ant interactions. A record signal is a new ‘high water mark’ in the history of a system. An ant exiting the nest only when the record signal reaches a level it has never perceived before could be a very effective mechanism to postpone, until the last possible moment, a potentially fatal decision. We also show that record dynamics may be involved in first exits by individually tagged ants even when their nest mates are allowed to re-enter the nest. So record dynamics may play a role in allocating individuals to tasks, both in emergencies and in everyday life. The dynamics of several complex but purely physical systems are also based on record signals but this is the first time they have been experimentally shown in a biological system. PMID:20300174
All-Optical Implementation of the Ant Colony Optimization Algorithm
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-01-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098
Chomicki, Guillaume; Ward, Philip S.; Renner, Susanne S.
2015-01-01
Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems. PMID:26582029
Persistence of pollination mutualisms in the presence of ants.
Wang, Yuanshi; Wang, Shikun
2015-01-01
This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.
Bi-stability in cooperative transport by ants in the presence of obstacles
Pinkoviezky, Itai; Feinerman, Ofer
2018-01-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle. PMID:29746457
Bi-stability in cooperative transport by ants in the presence of obstacles.
Ron, Jonathan E; Pinkoviezky, Itai; Fonio, Ehud; Feinerman, Ofer; Gov, Nir S
2018-05-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle.
Fast and flexible: argentine ants recruit from nearby trails.
Flanagan, Tatiana P; Pinter-Wollman, Noa M; Moses, Melanie E; Gordon, Deborah M
2013-01-01
Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources.
Fast and Flexible: Argentine Ants Recruit from Nearby Trails
Flanagan, Tatiana P.; Pinter-Wollman, Noa M.; Moses, Melanie E.; Gordon, Deborah M.
2013-01-01
Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources. PMID:23967129
Lange, Denise; Del-Claro, Kleber
2014-01-01
Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007
Efficient Egress of Escaping Ants Stressed with Temperature
Boari, Santiago; Josens, Roxana; Parisi, Daniel R.
2013-01-01
In the present work we investigate the egress times of a group of Argentine ants (Linepithema humile) stressed with different heating speeds. We found that the higher the temperature ramp is, the faster ants evacuate showing, in this sense, a group-efficient evacuation strategy. It is important to note that even when the life of ants was in danger, jamming and clogging was not observed near the exit, in accordance with other experiments reported in the literature using citronella as aversive stimuli. Because of this clear difference between ants and humans, we recommend the use of some other animal models for studying competitive egress dynamics as a more accurate approach to understanding competitive egress in human systems. PMID:24312264
Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies
Blonder, Benjamin; Dornhaus, Anna
2011-01-01
Background An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. Methodology/Findings Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. Conclusions/Significance Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales. PMID:21625450
Karo, Jaanus; Peterson, Pearu; Vendelin, Marko
2012-01-01
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies. PMID:22241474
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M
2014-01-01
Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.
Ecological consequences of colony structure in dynamic ant nest networks.
Ellis, Samuel; Franks, Daniel W; Robinson, Elva J H
2017-02-01
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant ( Formica lugubris ) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.
DEVELOPING AND FIELD IMPLEMENTING A DYNAMIC ECO-ROUTING SYSTEM.
DOT National Transportation Integrated Search
2017-04-01
The study develops two different eco-routing systems and uses them to investigate and quantify the system-wide impacts of implementing an eco-routing system. The first one is basically a Nash Equilibrium feedback system, which uses the Ant Colony opt...
Hoy, Ron R.; Cohen, Itai; Beatus, Tsevi
2017-01-01
Protective mimicry, in which a palatable species avoids predation by being mistaken for an unpalatable model, is a remarkable example of adaptive evolution. These complex interactions between mimics, models and predators can explain similarities between organisms beyond the often-mechanistic constraints typically invoked in studies of convergent evolution. However, quantitative studies of protective mimicry typically focus on static traits (e.g. colour and shape) rather than on dynamic traits like locomotion. Here, we use high-speed cameras and behavioural experiments to investigate the role of locomotor behaviour in mimicry by the ant-mimicking jumping spider Myrmarachne formicaria, comparing its movement to that of ants and non-mimicking spiders. Contrary to previous suggestions, we find mimics walk using all eight legs, raising their forelegs like ant antennae only when stationary. Mimics exhibited winding trajectories (typical wavelength = 5–10 body lengths), which resemble the winding patterns of ants specifically engaged in pheromone-trail following, although mimics walked on chemically inert surfaces. Mimics also make characteristically short (approx. 100 ms) pauses. Our analysis suggests that this makes mimics appear ant-like to observers with slow visual systems. Finally, behavioural experiments with predatory spiders yield results consistent with the protective mimicry hypothesis. These findings highlight the importance of dynamic behaviours and observer perception in mimicry. PMID:28701553
Dynamic Network Formation Using Ant Colony Optimization
2009-03-01
backhauls, VRP with pick-up and delivery, VRP with satellite facilities, and VRP with time windows (Murata & Itai , 2005). The general vehicle...given route is only visited once. The objective of the basic problem is to minimize a total cost as follows (Murata & Itai , 2005): M m mc 1 min...Problem based on Ant Colony System. Second Internation Workshop on Freight Transportation and Logistics. Palermo, Italy. Murata, T., & Itai , R. (2005
Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase
Vendelin, Marko; Lemba, Maris; Saks, Valdur A.
2004-01-01
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented. PMID:15240503
Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M.
2014-01-01
Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations. PMID:24842117
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
Brandt, Miriam; Foitzik, Susanne; Fischer-Blass, Birgit; Heinze, Jürgen
2005-05-01
In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.
Ant-like task allocation and recruitment in cooperative robots
NASA Astrophysics Data System (ADS)
Krieger, Michael J. B.; Billeter, Jean-Bernard; Keller, Laurent
2000-08-01
One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects.
2010-05-05
employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map, allowing pheromone-like...matter of design, DSE-R-0808 employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map
Rodríguez-Castañeda, G; Brehm, G; Fiedler, K; Dyer, L A
2016-04-01
Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.
Urban Pest Management of Ants in California
USDA-ARS?s Scientific Manuscript database
Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...
Chaos–order transition in foraging behavior of ants
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-01-01
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159
At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango
Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas
2017-01-01
Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561
Aylward, Frank O.; Tremmel, Daniel M.; Bruce, David C.; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja
2013-01-01
The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens. PMID:23469353
2007-06-30
fractal dimensions and Lyapunov exponents . Fractal dimensions characterize geometri- cal complexity of dynamics (e.g., spatial distribution of points along...ant classi3ers (e.g., Lyapunov exponents , and fractal dimensions). The 3rst three steps show how chaotic systems may be separated from stochastic...correlated random walk in which a ¼ 2H, where H is the Hurst exponen interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando This model has been
Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard I.; Lee, Charles
2004-01-01
Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the shortest route updates the edges in its path.
Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F
2015-10-01
The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.
Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration
NASA Astrophysics Data System (ADS)
Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.
2002-01-01
The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Su; Kim, Dong-Hoi
The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.
Stigmergic construction and topochemical information shape ant nest architecture
Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy
2016-01-01
The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture. PMID:26787857
Stigmergic construction and topochemical information shape ant nest architecture.
Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy
2016-02-02
The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture.
Seasonal dynamics of ant community structure in the Moroccan Argan Forest.
El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah
2012-01-01
In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.
A Notional Battlespace for Simulating and Testing Dynamic Wireless Networks
2006-06-01
communications. The system is built with single and multiple-beam antenn provide more flexible coverage than its predecessor. The single steerable dish ante...The network recognizes inbound commercial satellite transmissions to the platoon are successful and through the relay back to the A-10s, the loop is
Defense on the Move: Ant-Based Cyber Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, Glenn A.; Haack, Jereme N.; McKinnon, Archibald D.
Many common cyber defenses (like firewalls and IDS) are as static as trench warfare allowing the attacker freedom to probe them at will. The concept of Moving Target Defense (MTD) adds dynamism to the defender side, but puts the systems to be defended themselves in motion, potentially at great cost to the defender. An alternative approach is a mobile resilient defense that removes attackers’ ability to rely on prior experience without requiring motion in the protected infrastructure itself. The defensive technology absorbs most of the cost of motion, is resilient to attack, and is unpredictable to attackers. The Ant-Based Cybermore » Defense (ABCD) is a mobile resilient defense providing a set of roaming, bio-inspired, digital-ant agents working with stationary agents in a hierarchy headed by a human supervisor. The ABCD approach provides a resilient, extensible, and flexible defense that can scale to large, multi-enterprise infrastructures like the smart electric grid.« less
A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.
Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu
2014-09-01
A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm
NASA Astrophysics Data System (ADS)
Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie
2018-02-01
The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.
Long-Term Disease Dynamics for a Specialized Parasite of Ant Societies: A Field Study
Loreto, Raquel G.; Elliot, Simon L.; Freitas, Mayara L. R.; Pereira, Thairine M.; Hughes, David P.
2014-01-01
Many studies have investigated how social insects behave when a parasite is introduced into their colonies. These studies have been conducted in the laboratory, and we still have a limited understanding of the dynamics of ant-parasite interactions under natural conditions. Here we consider a specialized parasite of ant societies (Ophiocordyceps camponoti-rufipedis infecting Camponotus rufipes) within a rainforest. We first established that the parasite is unable to develop to transmission stage when introduced within the host nest. Secondly, we surveyed all colonies in the studied area and recorded 100% prevalence at the colony level (all colonies were infected). Finally, we conducted a long-term detailed census of parasite pressure, by mapping the position of infected dead ants and foraging trails (future hosts) in the immediate vicinity of the colonies over 20 months. We report new dead infected ants for all the months we conducted the census – at an average of 14.5 cadavers/month/colony. Based on the low infection rate, the absence of colony collapse or complete recovery of the colonies, we suggest that this parasite represents a chronic infection in the ant societies. We also proposed a “terminal host model of transmission” that links the age-related polyethism to the persistence of a parasitic infection. PMID:25133749
Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P
2014-06-01
Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the interactions between fire and herbivory in savanna ecosystems.
3D sensor placement strategy using the full-range pheromone ant colony system
NASA Astrophysics Data System (ADS)
Shuo, Feng; Jingqing, Jia
2016-07-01
An optimized sensor placement strategy will be extremely beneficial to ensure the safety and cost reduction considerations of structural health monitoring (SHM) systems. The sensors must be placed such that important dynamic information is obtained and the number of sensors is minimized. The practice is to select individual sensor directions by several 1D sensor methods and the triaxial sensors are placed in these directions for monitoring. However, this may lead to non-optimal placement of many triaxial sensors. In this paper, a new method, called FRPACS, is proposed based on the ant colony system (ACS) to solve the optimal placement of triaxial sensors. The triaxial sensors are placed as single units in an optimal fashion. And then the new method is compared with other algorithms using Dalian North Bridge. The computational precision and iteration efficiency of the FRPACS has been greatly improved compared with the original ACS and EFI method.
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Technical Reports Server (NTRS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-01-01
ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
An ex ante control chart for project monitoring using earned duration management observations
NASA Astrophysics Data System (ADS)
Mortaji, Seyed Taha Hossein; Noori, Siamak; Noorossana, Rassoul; Bagherpour, Morteza
2017-12-01
In the past few years, there has been an increasing interest in developing project control systems. The primary purpose of such systems is to indicate whether the actual performance is consistent with the baseline and to produce a signal in the case of non-compliance. Recently, researchers have shown an increased interest in monitoring project's performance indicators, by plotting them on the Shewhart-type control charts over time. However, these control charts are fundamentally designed for processes and ignore project-specific dynamics, which can lead to weak results and misleading interpretations. By paying close attention to the project baseline schedule and using statistical foundations, this paper proposes a new ex ante control chart which discriminates between acceptable (as-planned) and non-acceptable (not-as-planned) variations of the project's schedule performance. Such control chart enables project managers to set more realistic thresholds leading to a better decision making for taking corrective and/or preventive actions. For the sake of clarity, an illustrative example has been presented to show how the ex ante control chart is constructed in practice. Furthermore, an experimental investigation has been set up to analyze the performance of the proposed control chart. As expected, the results confirm that, when a project starts to deflect significantly from the project's baseline schedule, the ex ante control chart shows a respectable ability to detect and report right signals while avoiding false alarms.
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
Social Insects: A Model System for Network Dynamics
NASA Astrophysics Data System (ADS)
Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna
Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.
Metzler, D; Jordan, F; Pamminger, T; Foitzik, S
2016-05-01
How can antiparasite defence traits evolve even if they do not directly benefit their carriers? An example of such an indirect defence is rebellion of enslaved Temnothorax longispinosus ant workers against their social parasite Temnothorax americanus, a slavemaking ant. Ant slaves have been observed to kill their oppressors' offspring, a behaviour from which the sterile slaves cannot profit directly. Parasite brood killing could, however, reduce raiding pressure on related host colonies nearby. We analyse with extensive computer simulations for the Temnothorax slavemaker system under what conditions a hypothetical rebel allele could invade a host population, and in particular, how host-parasite dynamics and population structure influence the rebel allele's success. Exploring a wide range of model parameters, we only found a small number of parameter combinations for which kin selection or multilevel selection could allow a slave rebellion allele to spread in the host population. Furthermore, we did not detect any cases in which the reduction of raiding pressure in the close vicinity of the slavemaker nest would substantially contribute to the inclusive fitness of rebels. This suggests that slave rebellion is not costly and perhaps a side-effect of some other beneficial trait. In some of our simulations, however, even a costly rebellion allele could spread in the population. This was possible when host-parasite interactions led to a metapopulation dynamic with frequent local extinctions and recolonizations of demes by the offspring of few immigrants. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Chemically armed mercenary ants protect fungus-farming societies.
Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J
2013-09-24
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.
Dynamic optimization of chemical processes using ant colony framework.
Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D
2001-11-01
Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.
From Marginal Adjustments to Meaningful Change: Rethinking Weapon System Acquisition
2010-01-01
phones, digital cameras, Blackberries , GPS navigation systems, Bluetooth headsets, et cetera. To achieve these breakthroughs, businesses accept a greater...informing the detailed design phase—is less valid. For instance, even with advances in computational fl uid dynamics, wind tunnel testing and live fl ight...of Federal Procurement Pol- icy, 2007. Antón, Philip S., Eugene C. Gritton, Richard Mesic, and Paul Steinberg, Wind Tunnel and Propulsion Test
Gaseous templates in ant nests.
Cox, M D; Blanchard, G B
2000-05-21
We apply a diffusion model to the atmosphere of ant nests. With particular reference to carbon dioxide (CO2), we explore analytically and numerically the spatial and temporal patterns of brood- or worker-produced gases in nests. The maximum concentration within a typical one-chamber ant nest with approximately 200 ants can reach 12.5 times atmospheric concentration, reaching 95% of equilibrium concentrations within 15 min. Maximum concentration increases with increasing number of ants in the nest (or production rate of the gas), distance between the centre of the nest ants and the nest entrance, entrance length, wall thickness, and with decreasing entrance width, wall permeability and diffusion coefficient. The nest can be divided into three qualitatively distinct regions according to the shape of the gradient: a plateau of high concentration in the back half of the nest; an intermediate region of increasingly steep gradient towards the entrance; and a steep linear gradient in the entrance tunnel. These regions are robust to changes in gas concentrations, but vary with changes in nest architecture. The pattern of diffusing gases contains information about position and orientation relative to gas sources and sinks, and about colony state, including colony size, activity state and aspects of nest architecture. We discuss how this diffusion pattern may act as a "dynamic template", providing local cues which trigger behavioural acts appropriate to colony needs, which in turn may feed back to changes in the gas template. In particular, wall building occurs along lines of similar concentration for a variety of nest geometries; there is surprising convergence between the period of cycles of synchronously active ants and the time taken for CO2 levels to equilibrate; and the qualitatively distinct regions of the "dynamic template" correspond to regions occupied by different groups of ants.
Ant species confer different partner benefits on two neotropical myrmecophytes.
Frederickson, Megan E
2005-04-01
The dynamics of mutualistic interactions involving more than a single pair of species depend on the relative costs and benefits of interaction among alternative partners. The neotropical myrmecophytes Cordia nodosa and Duroia hirsuta associate with several species of obligately symbiotic ants. I compared the ant partners of Cordia and Duroia with respect to two benefits known to be important in ant-myrmecophyte interactions: protection against herbivores provided by ants, and protection against encroaching vegetation provided by ants. Azteca spp., Myrmelachista schumanni, and Allomerus octoarticulatus demerarae ants all provide the leaves of Cordia and Duroia some protection against herbivores. However, Azteca and Allomerus provide more protection than does Myrmelachista to the leaves of their host plants. Although Allomerus protects the leaves of its hosts, plants occupied by Allomerus suffer more attacks by herbivores to their stems than do plants occupied by other ants. Relative to Azteca or Allomerus, Myrmelachista ants provide better protection against encroaching vegetation, increasing canopy openness over their host plants. These differences in benefits among the ant partners of Cordia and Duroia are reflected in the effect of each ant species on host plant size, growth rate, and reproduction. The results of this study show how mutualistic ant partners can differ with respect to both the magnitude and type of benefits they provide to the same species of myrmecophytic host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo
Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easilymore » accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.« less
Herbert, John J; Horn, David J
2008-10-01
Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.
The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants
Aylward, Frank O.; Currie, Cameron R.; Suen, Garret
2012-01-01
Fungus-growing ants gain access to nutrients stored in plant biomass through their association with a mutualistic fungus they grow for food. This 50 million-year-old obligate mutualism likely facilitated some of these species becoming dominant Neotropical herbivores that can achieve immense colony sizes. Recent culture-independent investigations have shed light on the conversion of plant biomass into nutrients within ant fungus gardens, revealing that this process involves both the fungal cultivar and a symbiotic community of bacteria including Enterobacter, Klebsiella, and Pantoea species. Moreover, the genome sequences of the leaf-cutter ants Atta cephalotes and Acromyrmex echinatior have provided key insights into how this symbiosis has shaped the evolution of these ants at a genetic level. Here we summarize the findings of recent research on the microbial community dynamics within fungus-growing ant fungus gardens and discuss their implications for this ancient symbiosis. PMID:26467948
Chemically armed mercenary ants protect fungus-farming societies
Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.
2013-01-01
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482
The invasive ant, Solenopsis invicta, reduces herpetofauna richness and abundance
Allen, Craig R.; Birge, Hannah E.; Slater, J.; Wiggers, E.
2017-01-01
Amphibians and reptiles are declining globally. One potential cause of this decline includes impacts resulting from co-occurrence with non-native red imported fire ant, Solenopsis invicta. Although a growing body of anecdotal and observational evidence from laboratory experiments supports this hypothesis, there remains a lack of field scale manipulations testing the effect of fire ants on reptile and amphibian communities. We addressed this gap by measuring reptile and amphibian (“herpetofauna”) community response to successful fire ant reductions over the course of 2 years following hydramethylnon application to five 100–200 ha plots in southeastern coastal South Carolina. By assessing changes in relative abundance and species richness of herpetofauna in response to fire ant reductions, we were able to assess whether some species were particularly vulnerable to fire ant presence, and whether this sensitivity manifested at the community level. We found that herpetofauna abundance and species richness responded positively to fire ant reductions. Our results document that even moderate populations of red imported fire ants decrease both the abundance and diversity of herpetofauna. Given global herpetofauna population declines and continued spread of fire ants, there is urgency to understand the impacts of fire ants beyond anecdotal and singles species studies. Our results provides the first community level investigation addressing these dynamics, by manipulating fire ant abundance to reveal a response in herpetofauna species abundance and richness.
Pestana, Cezar R; Silva, Carlos H T P; Uyemura, Sérgio A; Santos, Antonio C; Curti, Carlos
2010-08-01
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT "c" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT "c" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT "c" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
ANTS/SARA: Future Observation of Saturn's Rings
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C. Y.; Mumma, M. J.
2004-05-01
The Saturn Autonomous Ring Array (SARA) mission concept applies the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm developed for exploration of high surface area and/or multi-body targets. ANTS architecture involves large numbers of tiny, highly autonomous, yet socially interactive, craft, in a small number of specialist classes. SARA will acquire in situ observations in the high gravity environment of Saturn's rings. The high potential for collision represents an insurmountable challenge for previous mission designs. Each ANTS nanocraft weighs approximately a kilogram, and thus requires gossamer structures for all subsystems. Individual specialists include Workers, the vast majority, that acquire scientific measurements, as well as Messenger/Rulers that provide communication and coordination. The high density distribution of particles combines with the high intensity gravity and magnetic field environment to produce dynamic plasmas. Plasma, particle, wave, and field detectors will take measurements from the edge of the ring plane to observe the result of particle interactions. Imagers and spectrome-ters would measure variations composition and dust/gas ratio among particles using a strategy for serial rendezvous with individual particles. The numbers and distances of these particles, as well as anticipated high attrition rate, re-quire hundreds of spacecraft to characterize thousands of particles and ring features over the course of the mission. The bimodal propulsion system would include a large solar sail carrier for transporting the swarm the long distance in low gravity between deployment site and the target, and a nuclear system for each craft for maneuvering in the high gravity regime of Saturn's rings.
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
NASA Astrophysics Data System (ADS)
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants
Yek, Sze Huei; Nash, David R.; Jensen, Annette B.; Boomsma, Jacobus J.
2012-01-01
Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced. PMID:22915672
USDA-ARS?s Scientific Manuscript database
An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...
Economo, Evan P; Sarnat, Eli M
2012-07-01
Understanding the historical evolution of biotas and the dynamics of contemporary human-mediated species introductions are two central tasks of biology. One hypothesis may address both-the taxon cycle. Taxon cycles are phases of range expansion and contraction coupled to ecological and evolutionary niche shifts. These historical invasion processes resemble human-mediated invasions in pattern and possibly mechanism, but both the existence of historical cycles and the roles of recent introductions are in question. We return to the system that originally inspired the taxon cycle-Melanesian ants-and perform novel tests of the hypothesis. We analyze (i) the habitat distributions of Fiji's entire ant fauna (183 species), (ii) ecological shifts associated with the in situ radiation of Fijian Pheidole in a phylogenetic context, and (iii) the ecological structure of a massive exotic ant invasion of the archipelago. Our analyses indicate lineages shift toward primary habitats, higher elevation, rarity, and ecological specialization with increasing level of endemism, consistent with taxon cycle predictions. The marginal habitats that historically formed a dispersal conduit in the Pacific are now mostly replaced by human-modified habitats dominated by a colonization pulse of exotic species. We propose this may represent the first phase of an incipient global cycle of human-mediated colonization, ecological shifts, and diversification.
Liere, Heidi; Jackson, Doug; Vandermeer, John
2012-01-01
Background Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. Methodology/Principal Findings Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. Conclusions/Significance From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern. PMID:23029061
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
Lutinski, Junir A; Lutinski, Cladis J; Guarda, Carin; Busato, Maria A; Garcia, Flávio R M
2017-01-01
Ant diversity is influenced by the structural complexity of the environment. Ants are thus an ecologically important group due to their potential to serve as indicators of environmental quality. The objective of this study was to evaluate ant diversity in areas with different land use histories and thus, within different stages of regeneration in the Permanent Preservation Area of the Foz do Chapecó Hydroelectric Plant reservoir. Ant assemblies among sample sites were compared using rarefaction analysis, and estimated richness, frequency of occurrence, and relative abundance were calculated. Associations between species and sample sites were evaluated using Principal Component Analysis (PCA). We identified 55 species in total from 24 genera, distributed among seven subfamilies. Eight species had positive associations with sample sites. Estimates indicated that ant richness may be up to 21.4% greater than that observed. This study presents an inventory of species capable of colonizing environments undergoing natural regeneration processes, and aids our understanding of ecological recovery dynamics in protected areas near hydroelectric plant reservoirs southern Brazil.
Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier
2012-01-01
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125
Hartley, Stephen; Krushelnycky, Paul D.; Lester, Philip J.
2010-01-01
Mechanistic models for predicting species’ distribution patterns present particular advantages and challenges relative to models developed from statistical correlations between distribution and climate. They can be especially useful for predicting the range of invasive species whose distribution has not yet reached equilibrium. Here, we illustrate how a physiological model of development for the invasive Argentine ant can be connected to differences in micro-site suitability, population dynamics and climatic gradients; processes operating at quite different spatial scales. Our study is located in the subalpine shrubland of Haleakala National Park, Hawaii, where the spread of Argentine ants Linepithema humile has been documented for the past twenty-five years. We report four main results. First, at a microsite level, the accumulation of degree-days recorded in potential ant nest sites under bare ground or rocks was significantly greater than under a groundcover of grassy vegetation. Second, annual degree-days measured where population boundaries have not expanded (456-521 degree-days), were just above the developmental requirements identified from earlier laboratory studies (445 degree-days above 15.98C). Third, rates of population expansion showed a strong linear relationship with annual degree-days. Finally, an empirical relationship between soil degree-days and climate variables mapped at a broader scale predicts the potential for future range expansion of Argentine ants at Haleakala, particularly to the west of the lower colony and the east of the upper colony. Variation in the availability of suitable microsites, driven by changes in vegetation cover and ultimately climate, provide a hierarchical understanding of the distribution of Argentine ants close to their cold-wet limit of climatic tolerances. We conclude that the integration of physiology, population dynamics and climate mapping holds much promise for making more robust predictions about the potential spread of invasive species.
Campbell, Heather; Fellowes, Mark D E; Cook, James M
2015-12-01
Myrmecophyte plants house ants within domatia in exchange for protection against herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: (i) domatia nest sites are a limiting resource and (ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilizing multispecies systems to further our understanding of mutualism biology.
Long-term record of Argentine ant invasions reveals enduring ecological impacts.
Menke, Sean B; Ward, Philip S; Holway, David A
2018-05-01
The ecological effects of species introductions can change in magnitude over time, but an understanding of how and why they do so remains incompletely understood. Clarifying this issue requires consideration of how temporal variation in invader traits affects invasion impacts (e.g., through differential effects on the diversity and composition of native species assemblages). We examine the temporal dynamics of Argentine ant invasions in northern California by resurveying 202 sites first sampled 30-40 yr ago. To test how invasion impacts change over time, we estimated native ant richness and species composition at 20 riparian woodland sites that span a 30-yr invasion chronosequence. We then use these data to test how variation in two invader traits (aggression and relative abundance) is related to time since invasion and invasion impact. Native ant assemblages along the chronosequence exhibited reduced native ant richness and altered species composition (compared to uninvaded control sites), but the magnitude of these impacts was independent of time since invasion. These results are corroborated by additional temporal comparisons of native ant assemblages at riparian sites sampled 20-30 yr ago. Our findings together illustrate that the impacts of invasions can persist undiminished over at least a 30-yr time frame and remain evident at regional scales. Although neither invader trait varied with time since invasion, native ant richness declined as the relative abundance of the Argentine ant increased. This latter result supports the hypothesis that factors reducing invader abundance at particular sites can decrease invasion impacts, but also that such changes may be due to site-specific factors (e.g., abiotic conditions) that affect invader abundance rather than time since invasion per se. Future studies should attempt to differentiate factors that are intrinsic to the process of invasion (e.g., changes in invader populations) from long-term environmental changes (e.g., climate change) that represent extrinsic influences on the dynamics of invasion. © 2018 by the Ecological Society of America.
Consuming fire ants reduces northern bobwhite survival and weight gain
Myers, P.E.; Allen, Craig R.; Birge, Hannah E.
2014-01-01
Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.
Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship
Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor
2014-01-01
Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750
Analytic Prediction of Emergent Dynamics for Autonomous Negotiating Team (ANT) Systems
2003-11-01
it is determined that a “phase transition” behavior is to be expected. 15. NUMBER OF PAGES 140 14. SUBJECT TERMS autonomous negotiation...parameter. Crisis has the worst asymptotic behavior of the three strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 iv 3.7...deadline, as opposed to harder with increasing communication time. Again, we see that the crisis strategy has the worst asymptotic behavior over the
Successful conservation of a threatened Maculinea butterfly.
Thomas, J A; Simcox, D J; Clarke, R T
2009-07-03
Globally threatened butterflies have prompted research-based approaches to insect conservation. Here, we describe the reversal of the decline of Maculinea arion (Large Blue), a charismatic specialist whose larvae parasitize Myrmica ant societies. M. arion larvae were more specialized than had previously been recognized, being adapted to a single host-ant species that inhabits a narrow niche in grassland. Inconspicuous changes in grazing and vegetation structure caused host ants to be replaced by similar but unsuitable congeners, explaining the extinction of European Maculinea populations. Once this problem was identified, UK ecosystems were perturbed appropriately, validating models predicting the recovery and subsequent dynamics of the butterfly and ants at 78 sites. The successful identification and reversal of the problem provides a paradigm for other insect conservation projects.
Dual ant colony operational modal analysis parameter estimation method
NASA Astrophysics Data System (ADS)
Sitarz, Piotr; Powałka, Bartosz
2018-01-01
Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.
The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens
Harholt, Jesper; Willats, William G. T.; Boomsma, Jacobus J.
2011-01-01
The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants. PMID:21423735
Distributed nestmate recognition in ants.
Esponda, Fernando; Gordon, Deborah M
2015-05-07
We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.
NASA Astrophysics Data System (ADS)
Vespignani, Alessandro
From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...
Collective Traffic-like Movement of Ants on a Trail: Dynamical Phases and Phase Transitions
NASA Astrophysics Data System (ADS)
Kunwar, Ambarish; John, Alexander; Nishinari, Katsuhiro; Schadschneider, Andreas; Chowdhury, Debashish
2004-11-01
The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.
Speed versus accuracy in decision-making ants: expediting politics and policy implementation.
Franks, Nigel R; Dechaume-Moncharmont, François-Xavier; Hanmore, Emma; Reynolds, Jocelyn K
2009-03-27
Compromises between speed and accuracy are seemingly inevitable in decision-making when accuracy depends on time-consuming information gathering. In collective decision-making, such compromises are especially likely because information is shared to determine corporate policy. This political process will also take time. Speed-accuracy trade-offs occur among house-hunting rock ants, Temnothorax albipennis. A key aspect of their decision-making is quorum sensing in a potential new nest. Finding a sufficient number of nest-mates, i.e. a quorum threshold (QT), in a potential nest site indicates that many ants find it suitable. Quorum sensing collates information. However, the QT is also used as a switch, from recruitment of nest-mates to their new home by slow tandem running, to recruitment by carrying, which is three times faster. Although tandem running is slow, it effectively enables one successful ant to lead and teach another the route between the nests. Tandem running creates positive feedback; more and more ants are shown the way, as tandem followers become, in turn, tandem leaders. The resulting corps of trained ants can then quickly carry their nest-mates; but carried ants do not learn the route. Therefore, the QT seems to set both the amount of information gathered and the speed of the emigration. Low QTs might cause more errors and a slower emigration--the worst possible outcome. This possible paradox of quick decisions leading to slow implementation might be resolved if the ants could deploy another positive-feedback recruitment process when they have used a low QT. Reverse tandem runs occur after carrying has begun and lead ants back from the new nest to the old one. Here we show experimentally that reverse tandem runs can bring lost scouts into an active role in emigrations and can help to maintain high-speed emigrations. Thus, in rock ants, although quick decision-making and rapid implementation of choices are initially in opposition, a third recruitment method can restore rapid implementation after a snap decision. This work reveals a principle of widespread importance: the dynamics of collective decision-making (i.e. the politics) and the dynamics of policy implementation are sometimes intertwined, and only by analysing the mechanisms of both can we understand certain forms of adaptive organization.
Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit
Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken
2013-01-01
Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644
Dynamics of sperm transfer in the ant Leptothorax gredleri
NASA Astrophysics Data System (ADS)
Oppelt, Angelika; Heinze, Jürgen
2007-09-01
Mating tactics differ remarkably between and within species of social Hymenoptera (bees, wasps, ants) concerning, e.g., mating frequencies, sperm competition, and the degree of male sperm limitation. Although social Hymenoptera might, therefore, potentially be ideal model systems for testing sexual selection theory, the dynamics of mating and sperm transfer have rarely been studied in species other than social bees, and basic information needed to draw conclusions about possible sperm competition and female choice is lacking. We investigated sperm transfer in the ant Leptothorax gredleri, a species in which female sexuals attract males by “female calling.” The analysis of 38 female sexuals fixed immediately or up to 7 days after copulation with a single male each revealed that the sperm is transferred into the female bursa copulatrix embedded in a gelatinous mass, presumably a spermatophore. Sperm cells rapidly start to migrate from the tip of the spermatophore towards the spermatheca, but transfer is drastically slowed down by an extreme constriction of the spermathecal duct, through which sperm cells have to pass virtually one by one. This results in the spermatheca being filled only between one and several hours after mating. During this time, the posterior part of the spermatophore seals the junction between bursa copulatrix and spermathecal duct and prevents sperm loss. The prolonged duration of sperm transfer might allow female sexuals to chose between ejaculates and explain previously reported patterns of single paternity of the offspring of multiply mated queens.
NASA Technical Reports Server (NTRS)
Wehner, R.
1972-01-01
Experimental data, on the visual orientation of desert ants toward astromenotactic courses and horizon landmarks involving the cooperation of different direction finding systems, are given. Attempts were made to: (1) determine if the ants choose a compromise direction between astromenotactic angles and the direction toward horizon landmarks when both angles compete with each other or whether they decide alternatively; (2) analyze adaptations of the visual system to the special demands of direction finding by astromenotactic orientation or pattern recognition; and (3) determine parameters of visual learning behavior. Results show separate orientation mechanisms are responsible for the orientation of the ant toward astromenotactic angles and horizon landmarks. If both systems compete with each other, the ants switch over from one system to the other and do not perform a compromise direction.
Horvitz, C C
1981-10-01
The evolutionary effects of a tropical ant-seed interaction are examined by posing questions about the fate of Calathea seeds carried by neotropical ants. Where do ants take seeds and what do they do with them? How do ant behaviors affect seed germination? Treatment of seeds by ants is determined by a series of seed-fate trials in captive colonies. There is no evidence of seed predation by ants. Odontomachus laticeps, Pachycondyla spp, and Solenopsis geminata rapidly displace seeds to ant nests, determine the microsites of seeds, and remove the seed arils for food. The seed arils are rich in lipids. The effects on germination of microsite selection and aril removal are quantitatively evaluated. Seeds which are immediately taken to a consistently moist spot germinate readily; 72% germinate, with a mean germination speed of 29 days. For such seeds aril removal does not significantly affect germination. In contrast, seeds which experience a delay before encountering appropriate germination conditions seem to exhibit an induced dormancy (sensu, Harper 1977) and a lower germination percentage. They take longer to germinate (up to 85 days) even after conditions become appropriate. It appears that their germination is enhanced by aril removal, which may act as an environmental cue to break dormancy. Such a mechanism would indicate that ant-handling of seeds is predictive of favorable conditions for seedling growth and establishment. The exact nature of such conditions and the effects on plant population dynamics remain to be seen.
De La Riva, Deborah G; Trumble, John T
2016-06-01
Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.
Bologna, Audrey; Detrain, Claire
2015-01-01
Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.
Savage, Amy M; Rudgers, Jennifer A
2013-06-01
In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.
The GÉANT network: addressing current and future needs of the HEP community
NASA Astrophysics Data System (ADS)
Capone, Vincenzo; Usman, Mian
2015-12-01
The GÉANT infrastructure is the backbone that serves the scientific communities in Europe for their data movement needs and their access to international research and education networks. Using the extensive fibre footprint and infrastructure in Europe the GÉANT network delivers a portfolio of services aimed to best fit the specific needs of the users, including Authentication and Authorization Infrastructure, end-to-end performance monitoring, advanced network services (dynamic circuits, L2-L3VPN, MD-VPN). This talk will outline the factors that help the GÉANT network to respond to the needs of the High Energy Physics community, both in Europe and worldwide. The Pan-European network provides the connectivity between 40 European national research and education networks. In addition, GÉANT also connects the European NRENs to the R&E networks in other world region and has reach to over 110 NREN worldwide, making GÉANT the best connected Research and Education network, with its multiple intercontinental links to different continents e.g. North and South America, Africa and Asia-Pacific. The High Energy Physics computational needs have always had (and will keep having) a leading role among the scientific user groups of the GÉANT network: the LHCONE overlay network has been built, in collaboration with the other big world REN, specifically to address the peculiar needs of the LHC data movement. Recently, as a result of a series of coordinated efforts, the LHCONE network has been expanded to the Asia-Pacific area, and is going to include some of the main regional R&E network in the area. The LHC community is not the only one that is actively using a distributed computing model (hence the need for a high-performance network); new communities are arising, as BELLE II. GÉANT is deeply involved also with the BELLE II Experiment, to provide full support to their distributed computing model, along with a perfSONAR-based network monitoring system. GÉANT has also coordinated the setup of the network infrastructure to perform the BELLE II Trans-Atlantic Data Challenge, and has been active on helping the BELLE II community to sort out their end-to-end performance issues. In this talk we will provide information about the current GÉANT network architecture and of the international connectivity, along with the upcoming upgrades and the planned and foreseeable improvements. We will also describe the implementation of the solutions provided to support the LHC and BELLE II experiments.
Evidence that insect herbivores are deterred by ant pheromones.
Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit
2004-01-01
It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596
Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii.
Jiang, Yan; Qi, Hui; Zhang, Xian M
2018-04-16
NAP (Naphthalene) and ANT (anthracene) usually co-exist in environment and possessed interactional effects on their biodegradation in environment. Presently, a strain of Acinetobacter johnsonii was employed to degrade NAP and ANT in single- and dual-substrate systems. NAP was utilized as prefer substrate by cells to accelerate ANT biodegradation. As much as 200 mg L -1 ANT could be entirely degraded with 1,500 mg L -1 NAP, which was beyond bacterial potential in single substrate system. Especially, the shortest biodegradation period (103 h) for ANT was observed with the presence of 50 mg L -1 NAP. By contrast, ANT showed strong inhibition on NAP degradation, while the peak biodegradation of 1,950 mg L -1 NAP with 50 mg L -1 ANT could still proceed. By introducing an inhibition constant parameter to fit the inhibition on cells, modeling indicated the substrate inhibition for NAP and ANT over the concentrations of 174 and 49 mg L -1 , respectively. Furthermore, enzyme assay revealed the pathway of meta fission in NAP biodegradation due to the appearance of catechol 2,3-dioxygenase activity, and low-level lipase excretion was also found in both NAP and ANT biodegradation, but hardly affect NAP and ANT biodegradation in the present study. To research the interplay of NAP and ANT is conducive to targeted decontamination.
Tetramorium tsushimae Ants Use Methyl Branched Hydrocarbons of Aphids for Partner Recognition.
Sakata, Itaru; Hayashi, Masayuki; Nakamuta, Kiyoshi
2017-10-01
In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.
Crab regulation of cross-ecosystem resource transfer by marine foraging fire ants.
Garcia, Erica A; Bertness, Mark D; Alberti, Juan; Silliman, Brian R
2011-08-01
Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.
The interactions of ants with their biotic environment.
Chomicki, Guillaume; Renner, Susanne S
2017-03-15
This s pecial feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this s pecial feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. © 2017 The Author(s).
The interactions of ants with their biotic environment
Renner, Susanne S.
2017-01-01
This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352
Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks.
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.
Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing. PMID:23112610
Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants
2015-01-01
Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161
Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, Glenn A.; Oehmen, Christopher S.
This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF canmore » be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.« less
Assessing Nurse Anaesthetists' Non-Technical Skills in the operating room.
Lyk-Jensen, H T; Jepsen, R M H G; Spanager, L; Dieckmann, P; Østergaard, D
2014-08-01
Incident reporting and fieldwork in operating rooms have shown that some of the errors that arise in anaesthesia relate to inadequate use of non-technical skills. To provide a tool for training and feedback on nurse anaesthetists' non-technical skills, this study aimed to adapt the Anaesthetists' Non-Technical Skills (ANTS) as a behavioural marker system for the formative assessment of nurse anaesthetists' non-technical skills in the operating room. A qualitative approach with focus group interviews was used to identify the non-technical skills of nurse anaesthetists in the operating room. The interview data were transcribed verbatim. Directed content analysis was used to code and sort data deductively into the ANTS categories: task management, team working, situation awareness and decision making. The prototype named Nurse Anaesthetists' Non-Technical Skills (N-ANTS) was presented and discussed in a group of subject matter experts to ensure face validity. The N-ANTS system consists of the same four categories as ANTS and 15 underlying elements. Three to five good and poor behavioural markers for each element were identified. The headings and definitions of the categories and elements were adjusted to encompass the behavioural markers in N-ANTS. The differences that emerged mainly reflected statements regarding the establishment of role, competence, and task delegation. A behavioural marker system, N-ANTS, for nurse anaesthetists was adapted from a behavioural marker system, ANTS, for anaesthesiologists. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Imported fire ants: the ants from hell!
Freeman, T M
1994-01-01
Imported fire ants may certainly be considered the ANTS FROM HELL! This review focuses on both the interesting entomology of fire ants and the important medical characteristics of fire ant stings. They sting and they kill; they destroy; they mate in mid-air; and we may not be able to stop them. However, although they inject extremely potent venom, individuals can prevent secondary infections by leaving the so-called pustules alone and not opening them. Individuals who suffer systemic reactions may receive adequate treatment with the whole body extract immunotherapy.
1985-02-01
stationnaire. Le Systeme pseudo-instationnaire est constrult en rempla^ant 1 equation de 1’energie le) par la condition de rothalpie uniforme I ■ cte et...la definition de nouvelles helices permet des gains substantiels pour tout le domaine de vol et, notanment, au decollage et en montee. Nous...etudes d’un tel Systeme sont effectuees et I’essai d’une maquette dans la grande soufflerie transsonique SI de Modane est prevu en 1985. On presente
Fault tolerant features and experiments of ANTS distributed real-time system
NASA Astrophysics Data System (ADS)
Dominic-Savio, Patrick; Lo, Jien-Chung; Tufts, Donald W.
1995-01-01
The ANTS project at the University of Rhode Island introduces the concept of Active Nodal Task Seeking (ANTS) as a way to efficiently design and implement dependable, high-performance, distributed computing. This paper presents the fault tolerant design features that have been incorporated in the ANTS experimental system implementation. The results of performance evaluations and fault injection experiments are reported. The fault-tolerant version of ANTS categorizes all computing nodes into three groups. They are: the up-and-running green group, the self-diagnosing yellow group and the failed red group. Each available computing node will be placed in the yellow group periodically for a routine diagnosis. In addition, for long-life missions, ANTS uses a monitoring scheme to identify faulty computing nodes. In this monitoring scheme, the communication pattern of each computing node is monitored by two other nodes.
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.
Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-04-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.
Gammans, Nicola; Drummond, Frank; Groden, Eleanor
2018-05-16
We investigated the impact of an invasive ant species from Europe, Myrmica rubra (L.), on a myrmecochorous system (seeds dispersed by ants) in its invaded range in North America. We assessed: 1) how M. rubra process the myrmecochorous diapsores (seeds and elaiosome as a single dispersal unit transported by ants) in comparison with native ants; 2) its preference for common native and invasive diaspore species relative to native ants; 3) how far they disperse diaspores in the field; and 4) the diaspore removal rate by invertebrates and vertebrates in infested areas compared to noninvaded sites. Field experiments demonstrated higher diaspore removal rates over a 10-min and 24-h period by M. rubra compared to native ants. M. rubra's diaspore dispersal distance was 40% greater compared to native ants. In two of three laboratory studies and one field study, there was no significant difference between the seed species which M. rubra and native ants selected. Our data suggest no long-term deleterious effects of M. rubra's invasion on diaspore dispersal in the Maine plant community that is comprised of both native and invasive species. This implies that M. rubra benefits from the myrmechorous plant species' diaspores by increasing their dispersal range away from the parent plant and potentially reducing seed predation. However, it is not known whether the fact that the native ant fauna and M. rubra are attracted to the same plant species' diaspores creates a high level of competition between the ants with deleterious effects on the native ant community.
de la Fuente, Marie Ann S; Marquis, Robert J
1999-02-01
One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack.
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-03-01
ANTS (Autonomous Nano Technology Swarm of hundreds of picoclass autonomous spacecraft) have many applications. A version designed for surveying and the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
Swarm Intelligence Optimization and Its Applications
NASA Astrophysics Data System (ADS)
Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu
Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.
Savage, Amy M.; Rudgers, Jennifer A.
2013-01-01
Background and Aims In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Methods Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. Key Results The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. Conclusions It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions. PMID:23609021
Dejean, Alain; Azémar, Frédéric; Céréghino, Régis; Leponce, Maurice; Corbara, Bruno; Orivel, Jérôme; Compin, Arthur
2016-08-01
Ants, the most abundant taxa among canopy-dwelling animals in tropical rainforests, are mostly represented by territorially dominant arboreal ants (TDAs) whose territories are distributed in a mosaic pattern (arboreal ant mosaics). Large TDA colonies regulate insect herbivores, with implications for forestry and agronomy. What generates these mosaics in vegetal formations, which are dynamic, still needs to be better understood. So, from empirical research based on 3 Cameroonian tree species (Lophira alata, Ochnaceae; Anthocleista vogelii, Gentianaceae; and Barteria fistulosa, Passifloraceae), we used the Self-Organizing Map (SOM, neural network) to illustrate the succession of TDAs as their host trees grow and age. The SOM separated the trees by species and by size for L. alata, which can reach 60 m in height and live several centuries. An ontogenic succession of TDAs from sapling to mature trees is shown, and some ecological traits are highlighted for certain TDAs. Also, because the SOM permits the analysis of data with many zeroes with no effect of outliers on the overall scatterplot distributions, we obtained ecological information on rare species. Finally, the SOM permitted us to show that functional groups cannot be selected at the genus level as congeneric species can have very different ecological niches, something particularly true for Crematogaster spp., which include a species specifically associated with B. fistulosa, nondominant species and TDAs. Therefore, the SOM permitted the complex relationships between TDAs and their growing host trees to be analyzed, while also providing new information on the ecological traits of the ant species involved. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Fernández-Marín, Hermógenes; Nash, David R; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S; d'Ettorre, Patrizia; Wcislo, William T; Boomsma, Jacobus J
2015-05-22
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Fernández-Marín, Hermógenes; Nash, David R.; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S.; d'Ettorre, Patrizia; Wcislo, William T.; Boomsma, Jacobus J.
2015-01-01
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. PMID:25925100
Loreto, R G; Hughes, D P
2016-01-01
It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism. Copyright © 2016 Elsevier Inc. All rights reserved.
Ant groups optimally amplify the effect of transiently informed individuals
NASA Astrophysics Data System (ADS)
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-07-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.
Ant groups optimally amplify the effect of transiently informed individuals
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer
2015-01-01
To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613
Dynamics Days US 2013 Conference Held in Denver, Colorado on 3-6 January 2013. Abstracts
2013-12-17
repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different...nest are pre-programmed. Observation of movement of ants in these tunnels reveals that locomotion is rarely smooth, but repeated slips occur during...ascending and descending climbs. However, ants rapidly arrest these slips using antennae, limbs and body parts to jam and stabilize falls. Monitoring
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
Ancient village fire escape path planning based on improved ant colony algorithm
NASA Astrophysics Data System (ADS)
Xia, Wei; Cao, Kang; Hu, QianChuan
2017-06-01
The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.
Paris, Carolina I.
2018-01-01
The invasive Argentine ant causes ecological and economic damage worldwide. In 2011, this species was reported in vineyards of Cafayate, a wine-producing town in the Andes, Argentina. While the local xeric climate is unsuitable for Argentine ants, populations could establish in association with vineyards where human activity and irrigation facilitate propagule introduction and survival. In 2013–2014, we combined extensive sampling of the area using ant-baits with monitoring of the change in land use and vineyard cultivated area over the past 15 years. Our results revealed that the species has thus far remained confined to a relatively isolated small area, owing to an effective barrier of dry shrublands surrounding the infested vineyards; yet the recent expansion of vineyard acreage in this region will soon connect this encapsulated area with the rest of the valley. When this happens, vulnerable ecosystems and the main local industry will be put at risk. This case provides a rare opportunity to study early invasion dynamics and reports, to the best of our knowledge, for the first time, the Argentine ant in high altitude agroecosystems. PMID:29382117
Schulze-Sylvester, Maria; Corronca, José A; Paris, Carolina I
2018-01-29
The invasive Argentine ant causes ecological and economic damage worldwide. In 2011, this species was reported in vineyards of Cafayate, a wine-producing town in the Andes, Argentina. While the local xeric climate is unsuitable for Argentine ants, populations could establish in association with vineyards where human activity and irrigation facilitate propagule introduction and survival. In 2013-2014, we combined extensive sampling of the area using ant-baits with monitoring of the change in land use and vineyard cultivated area over the past 15 years. Our results revealed that the species has thus far remained confined to a relatively isolated small area, owing to an effective barrier of dry shrublands surrounding the infested vineyards; yet the recent expansion of vineyard acreage in this region will soon connect this encapsulated area with the rest of the valley. When this happens, vulnerable ecosystems and the main local industry will be put at risk. This case provides a rare opportunity to study early invasion dynamics and reports, to the best of our knowledge, for the first time, the Argentine ant in high altitude agroecosystems.
Visualization of metabolic interaction networks in microbial communities using VisANT 5.0
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...
2016-04-15
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies.
Loreto, Raquel G; Hughes, David P
2016-01-01
Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested.
Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.
Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676
Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies
Loreto, Raquel G.; Hughes, David P.
2016-01-01
Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested. PMID:27529548
Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System
NASA Astrophysics Data System (ADS)
Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang
2018-03-01
Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.
Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System
NASA Astrophysics Data System (ADS)
Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang
2017-12-01
Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.
Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M
2012-11-01
The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.
Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.
Foitzik, S; DeHeer, C J; Hunjan, D N; Herbers, J M
2001-06-07
Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host.
The ecological role of ants in two Mexican agroecosystems.
Risch, Stephen J; Carroll, C Ronald
1982-10-01
The development of the ant communities and their foraging dynamics were studied in two annual agroecosystems of the Mexican tropical lowlands: a "forest milpa" of corn, beans, and squash made by cutting and buring 40-year-old forest, and a "field milpa" of corn, beans, and squash made by plowing 1-year-old second growth. The ant community was sampled using tuna fish baits 26, 52, 110 and 353 days after planting. Although immediately after planting the same number of ant species occurred in each milpa type, thereafter the ant faunas diverged. The field milpa became completely dominated by the native fire ant, Solenopsis geminata, while the number of ant species in the forest milpa gradually increased over time, reaching eight species 110 days after planting and 14 species by 353 days. Initially S. geminata dominated the ant fauna in the forest milpa (occurring on 90% of the baits), but by 353 days planting it was found on only 26% of the occupied baits. Ant foraging efficiency, as measured by proportion of tuna baits occupied and the removal rates of dead Drosophila fly baits, was much higher (by a factor of 2 to 3) in the field than the forest milpa. This was caused by the extremely high density of S. geminata colonies in the field milpa. The simple Solenopsis-dominated community of the field milpa may be much more effective in biological control than the more diverse community of the forest milpa. Although S. geminata has potential negative impacts in annual agroecosystems (it stings, eats corn seeds, and guards homopterams), its overall impact appears to be beneficial. As forested areas of the lowland wet tropics are increasingly cut and converted to annual agriculture, the primary ant inhabitant of these highly disturbed environments, S. geminata, will necessarily play a much more significant ecological role in agroecosystems.
Panteleeva, Sofia; Reznikova, Zhanna; Vygonyailova, Olga
2013-01-01
We simulated the situation of risky hunting in the striped field mouse Apodemus agrarius in order to examine whether these animals are able to make a choice between small and large quantities of live prey (ants). In the first (preliminary) experiment we investigated to what extent mice were interested in ants as a live prey and how their hunting activity depended on the quantity of these edible but rather aggressive insects. We placed mice one by one into arenas together with ant groups of different quantities, from 10 to 60. Surprisingly, animals, both wild-caught and laboratory-reared, displayed rather skilled predatory attacks: mice killed and ate from 0.37 ± 003 to 4 ± 0.5 ants per minute. However, there was a threshold number of ants in the arenas when rodents expressed signs of discomfort and started to panic, likely because ants bit them. This threshold corresponds to the dynamic density (about 400 individuals per m2 per min) in the vicinity of anthills and ants' routes in natural environment. In the second experiment mice had to choose between different quantities of ants placed in two transparent tunnels. Ants here served both as food items and as a source of danger. As far as we know, this is the first experimental paradigm based on evaluation of quantity judgments in the context of risk/reward decision making where the animals face a trade-off between the hedonistic value of the prey and the danger it presents. We found that when mice have to choose between 5 vs. 15, 5 vs. 30, and 10 vs. 30 ants, they always tend to prefer the smaller quantity, thus displaying the capacity for distinguishing more from less in order to ensure comfortable hunting. The results of this study are ecologically relevant as they reflect situations and challenges faced by free-living small rodents. PMID:23407476
Absence of jamming in ant trails: feedback control of self-propulsion and noise.
Chaudhuri, Debasish; Nagar, Apoorva
2015-01-01
We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first-order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.
NASA Astrophysics Data System (ADS)
Brouat, Carine; McKey, Doyle; Bessière, Jean-Marie; Pascal, Laurence; Hossaert-McKey, Martine
2000-12-01
While observations suggest that plant chemicals could be important in maintaining the specificity and permitting the functioning of ant-plant symbioses, they have been little studied. We report here the strongest evidence yet for chemical signalling between ants and plants in a specific ant-plant protection symbiosis. In the mutualism between Leonardoxa africana subsp. africana and Petalomyrmex phylax, ants continuously patrol young leaves, which are vulnerable to attacks by phytophagous insects. We provide experimental evidence for chemical mediation of ant attraction to young leaves in this system. By a comparative analysis of the related non-myrmecophytic tree L. africana subsp. gracilicaulis, we identify likely candidates for attractant molecules, and suggest they may function not only as signals but also as resources. We also propose hypotheses on the evolutionary origin of these plant volatiles, and of the responses to them by mutualistic ants.
Variation in Extrafloral Nectary Productivity Influences the Ant Foraging
2017-01-01
Extrafloral nectar is the main food source offered by plants to predatory ants in most land environments. Although many studies have demonstrated the importance of extrafloral nectaries (EFNs) to plant defense against herbivores, the influence of EFNs secretory activity pattern on predatory ants remains yet not fully understood. Here, we verified the relation between the extrafloral nectar production of a plant community in Cerrado in different times of the day, and its attractiveness to ants. The extrafloral nectaries (EFNs) of seven plant species showed higher productivity overnight. Ant abundance was higher in times of large extrafloral nectar production, however, there was no positive relation between ant richness on plants and EFNs productivity. There was temporal resource partitioning among ant species, and it indicates strong resource competition. The nectar productivity varied among plant species and time of the day, and it influenced the visitation patterns of ants. Therefore, EFNs are a key ant-plant interaction driver in the studied system. PMID:28046069
Li, Qiao; Hoffmann, Benjamin D.; Zhang, Wei
2014-01-01
This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the first two factors. PMID:24887398
Boucher, Philippe; Hébert, Christian; Francoeur, André; Sirois, Luc
2015-10-01
Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Unraveling Trichoderma species in the attine ant environment: description of three new taxa.
Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre
2016-05-01
Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.
Why are there few seedlings beneath the myrmecophyte Triplaris americana?
NASA Astrophysics Data System (ADS)
Larrea-Alcázar, Daniel M.; Simonetti, Javier A.
2007-07-01
We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.
Wehner, Rüdiger; Müller, Martin
2006-01-01
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This “signature” of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant’s compound eyes and is channeled into two rather separate systems of navigation. PMID:16888039
Foraging distance of the Argentine ant in California vineyards
USDA-ARS?s Scientific Manuscript database
Argentine ants, Linepithema humile (Mayr), form mutualisms with hemipteran pests in crop systems. In vineyards, they feed on honeydew produced by mealybugs and soft scales, which they tend and protect from natural enemies. Few options for controlling Argentine ants are available; one of the more eff...
Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong
2018-04-01
One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.
Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng
2015-01-01
Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921
Asteroid Exploration with Autonomic Systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
Characterization of actinobacteria associated with three ant-plant mutualisms.
Hanshew, Alissa S; McDonald, Bradon R; Díaz Díaz, Carol; Djiéto-Lordon, Champlain; Blatrix, Rumsaïs; Currie, Cameron R
2015-01-01
Ant-plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant-plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant-plant-fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant-plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant-plant-fungi niches.
Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.
Smith, R A; Mooney, K A; Agrawal, A A
2008-08-01
Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in preferentially suppressing competitively dominant A. nerii. Nonetheless, A. asclepiadis benefits from ants, and A. asclepiadis and M. asclepiadis may escape competitive exclusion by A. nerii on select milkweed genotypes. Taken as a whole, the coexistence of three host-specific aphid species sharing the same resource was promoted by the dual action of ants as antagonists and mutualists and by genetic diversity in the plant population itself.
Nicholls, James A; Melika, George; Stone, Graham N
2017-01-01
Many herbivores employ reward-based mutualisms with ants to gain protection from natural enemies. We examine the evolutionary dynamics of a tetra-trophic interaction in which gall wasp herbivores induce their host oaks to produce nectar-secreting galls, which attract ants that provide protection from parasitoids. We show that, consistent with other gall defensive traits, nectar secretion has evolved repeatedly across the oak gall wasp tribe and also within a single genus (Disholcaspis) that includes many nectar-inducing species. Once evolved, nectar secretion is never lost in Disholcaspis, consistent with high defensive value of this trait. We also show that evolution of nectar secretion is correlated with a transition from solitary to aggregated oviposition, resulting in clustered nectar-secreting galls, which produce a resource that ants can more easily monopolize. Such clustering is commonly seen in ant guard mutualisms. We suggest that correlated evolution between maternal oviposition and larval nectar induction traits has enhanced the effectiveness of this gall defense strategy.
NASA Astrophysics Data System (ADS)
Wang, Pan; Zhang, Yi; Yan, Dong
2018-05-01
Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0
Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-01-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850
Vicente, R E; Dáttilo, W; Izzo, T J
2014-12-01
Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants' capability in discerning plants' chemical compounds (innate attraction) or by ants' learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant's learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.
Aggressive mimicry coexists with mutualism in an aphid.
Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David
2015-01-27
Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.
How to find home backwards? Navigation during rearward homing of Cataglyphis fortis desert ants.
Pfeffer, Sarah E; Wittlinger, Matthias
2016-07-15
Cataglyphis ants are renowned for their impressive navigation skills, which have been studied in numerous experiments during forward locomotion. However, the ants' navigational performance during backward homing when dragging large food loads has not been investigated until now. During backward locomotion, the odometer has to deal with unsteady motion and irregularities in inter-leg coordination. The legs' sensory feedback during backward walking is not just a simple reversal of the forward stepping movements: compared with forward homing, ants are facing towards the opposite direction during backward dragging. Hence, the compass system has to cope with a flipped celestial view (in terms of the polarization pattern and the position of the sun) and an inverted retinotopic image of the visual panorama and landmark environment. The same is true for wind and olfactory cues. In this study we analyze for the first time backward-homing ants and evaluate their navigational performance in channel and open field experiments. Backward-homing Cataglyphis fortis desert ants show remarkable similarities in the performance of homing compared with forward-walking ants. Despite the numerous challenges emerging for the navigational system during backward walking, we show that ants perform quite well in our experiments. Direction and distance gauging was comparable to that of the forward-walking control groups. Interestingly, we found that backward-homing ants often put down the food item and performed foodless search loops around the left food item. These search loops were mainly centred around the drop-off position (and not around the nest position), and increased in length the closer the ants came to their fictive nest site. © 2016. Published by The Company of Biologists Ltd.
Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint.
Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F; McGroarty, Mark; Delahunt, Eamonn
2015-09-01
Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Controlled laboratory study. University biomechanics laboratory. A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P < .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P > .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P < .05) in all reach directions. Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint.
QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees.
Miyakawa, Misato O; Mikheyev, Alexander S
2015-11-01
Sex determination mechanisms play a central role in life-history characteristics, affecting mating systems, sex ratios, inbreeding tolerance, etc. Downstream components of sex determination pathways are highly conserved, but upstream components evolve rapidly. Evolutionary dynamics of sex determination remain poorly understood, particularly because mechanisms appear so diverse. Here we investigate the origins and evolution of complementary sex determination (CSD) in ants and bees. The honey bee has a well-characterized CSD locus, containing tandemly arranged homologs of the transformer gene [complementary sex determiner (csd) and feminizer (fem)]. Such tandem paralogs appear frequently in aculeate hymenopteran genomes. However, only comparative genomic, but not functional, data support a broader role for csd/fem in sex determination, and whether species other than the honey bee use this pathway remains controversial. Here we used a backcross to test whether csd/fem acts as a CSD locus in an ant (Vollenhovia emeryi). After sequencing and assembling the genome, we computed a linkage map, and conducted a quantitative trait locus (QTL) analysis of diploid male production using 68 diploid males and 171 workers. We found two QTLs on separate linkage groups (CsdQTL1 and CsdQTL2) that jointly explained 98.0% of the phenotypic variance. CsdQTL1 included two tandem transformer homologs. These data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years. CsdQTL2 had no similarity to CsdQTL1 and included a 236-kb region with no obvious CSD gene candidates, making it impossible to conclusively characterize it using our data. The sequence of this locus was conserved in at least one other ant genome that diverged >75 million years ago. By applying QTL analysis to ants for the first time, we support the hypothesis that elements of hymenopteran CSD are ancient, but also show that more remains to be learned about the diversity of CSD mechanisms.
Feeding and stocking up: radio-labelled food reveals exchange patterns in ants.
Buffin, Aurélie; Denis, Damien; Van Simaeys, Gaetan; Goldman, Serge; Deneubourg, Jean-Louis
2009-06-17
Food sharing is vital for a large number of species, either solitary or social, and is of particular importance within highly integrated societies, such as in colonial organisms and in social insects. Nevertheless, the mechanisms that govern the distribution of food inside a complex organizational system remain unknown. Using scintigraphy, a method developed for medical imaging, we were able to describe the dynamics of food-flow inside an ant colony. We monitored the sharing process of a radio-labelled sucrose solution inside a nest of Formica fusca. Our results show that, from the very first load that enters the nest, food present within the colony acts as negative feedback to entering food. After one hour of the experiments, 70% of the final harvest has already entered the nest. The total foraged quantity is almost four times smaller than the expected storage capacity. A finer study of the spatial distribution of food shows that although all ants have been fed rapidly (within 30 minutes), a small area representing on average 8% of the radioactive surface holds more than 25% of the stored food. Even in rather homogeneous nests, we observed a strong concentration of food in few workers. Examining the position of these workers inside the nest, we found heavily loaded ants in the centre of the aggregate. The position of the centre of this high-intensity radioactive surface remained stable for the three consecutive hours of the experiments. We demonstrate that the colony simultaneously managed to rapidly feed all workers (200 ants fed within 30 minutes) and build up food stocks to prevent food shortage, something that occurs rather often in changing environments. Though we expected the colony to forage to its maximum capacity, the flow of food entering the colony is finely tuned to the colony's needs. Indeed the food-flow decreases proportionally to the food that has already been harvested, liberating the work-force for other tasks.
Foraging Distance of the Argentine Ant in California Vineyards.
Hogg, Brian N; Nelson, Erik H; Hagler, James R; Daane, Kent M
2018-04-02
Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), form mutualisms with hemipteran pests in crop systems. In vineyards, they feed on honeydew produced by mealybugs and soft scales, which they tend and protect from natural enemies. Few options for controlling Argentine ants are available; one of the more effective approaches is to use liquid baits containing a low dose of an insecticide. Knowledge of ant foraging patterns is required to estimate how many bait stations to deploy per unit area. To measure how far ants move liquid bait in vineyards, we placed bait stations containing sugar water and a protein marker in plots for 6 d, and then collected ants along transects extending away from bait stations. The ants moved an average of 16.08 m and 12.21 m from bait stations in the first and second years of the study, respectively. Marked ants were found up to 63 m from bait stations; however, proportions of marked ants decreased exponentially as distance from the bait station increased. Results indicate that Argentine ants generally forage at distances <36 m in California vineyards, thus suggesting that insecticide bait stations must be deployed at intervals of 36 m or less to control ants. We found no effect of insecticide on distances that ants moved the liquid bait, but this may have been because bait station densities were too low to affect the high numbers of Argentine ants that were present at the study sites.
Nangia, Shikha; Jasper, Ahren W; Miller, Thomas F; Truhlar, Donald G
2004-02-22
The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is inefficient for sampling low-probability nonadiabatic events. We present a new sampling scheme (called the army ants algorithm) for carrying out TSH calculations that is applicable to systems with any strength of coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm can be reduced to the anteater algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter the army ants algorithm may be efficiently applied to systems with low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed atom-diatom scattering calculations on a model system involving weakly coupled electronic states. Fully converged quantum mechanical calculations were performed, and the probabilities for nonadiabatic reaction and nonreactive deexcitation (quenching) were found to be on the order of 10(-8). For such low-probability events the anteater sampling scheme requires a large number of trajectories ( approximately 10(10)) to obtain good statistics and converged semiclassical results. In contrast by using the new army ants algorithm converged results were obtained by running 10(5) trajectories. Furthermore, the results were found to be in excellent agreement with the quantum mechanical results. Sampling errors were estimated using the bootstrap method, which is validated for use with the army ants algorithm. (c) 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylward, Frank O.; Burnum-Johnson, Kristin E.; Tringe, Susannah G.
Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass ismore » degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.« less
Fitness costs of worker specialization for ant societies
Jongepier, Evelien; Foitzik, Susanne
2016-01-01
Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated the social organization of 102 T. longispinosus colonies, based on the behavioural responses of all 3842 workers. We find that strict specialization is disadvantageous for a colony's annual reproduction and growth during slave raids. These fitness costs may favour generalist strategies in dynamic environments, as we also demonstrate that societies exposed to slavemakers in the field show a lower degree of specialization than those originating from slavemaker-free populations. Our findings provide an explanation for the ubiquity of generalists and highlight their importance for the flexibility and functional robustness of entire societies. PMID:26763706
Improving Emergency Management by Modeling Ant Colonies
2015-03-01
LEFT BLANK vii TABLE OF CONTENTS I. THE INCIDENT COMMAND SYSTEM AND AUTONOMOUS ACTORS ......1 A. PROBLEM STATEMENT...managerial level tasking.12 The Oklahoma City bombing has generally been viewed as a success for the ICS model; however, there were numerous occurrences...developed. The youngest generation of ant 25 Bert Holldobler and Edward O. Wilson, The Ants
An adaptive grid algorithm for 3-D GIS landform optimization based on improved ant algorithm
NASA Astrophysics Data System (ADS)
Wu, Chenhan; Meng, Lingkui; Deng, Shijun
2005-07-01
The key technique of 3-D GIS is to realize quick and high-quality 3-D visualization, in which 3-D roaming system based on landform plays an important role. However how to increase efficiency of 3-D roaming engine and process a large amount of landform data is a key problem in 3-D landform roaming system and improper process of the problem would result in tremendous consumption of system resources. Therefore it has become the key of 3-D roaming system design that how to realize high-speed process of distributed data for landform DEM (Digital Elevation Model) and high-speed distributed modulation of various 3-D landform data resources. In the paper we improved the basic ant algorithm and designed the modulation strategy of 3-D GIS landform resources based on the improved ant algorithm. By initially hypothetic road weights σi , the change of the information factors in the original algorithm would transform from ˜τj to ∆τj+σi and the weights was decided by 3-D computative capacity of various nodes in network environment. So during the course of initial phase of task assignment, increasing the resource information factors of high task-accomplishing rate and decreasing ones of low accomplishing rate would make load accomplishing rate approach the same value as quickly as possible, then in the later process of task assignment, the load balanced ability of the system was further improved. Experimental results show by improving ant algorithm, our system not only decreases many disadvantage of the traditional ant algorithm, but also like ants looking for food effectively distributes the complicated landform algorithm to many computers to process cooperatively and gains a satisfying search result.
Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.
Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi
2016-03-01
Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.
Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.
Foitzik, S.; DeHeer, C. J.; Hunjan, D. N.; Herbers, J. M.
2001-01-01
Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host. PMID:11375101
Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.
2013-01-01
Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038
Newly discovered sister lineage sheds light on early ant evolution.
Rabeling, Christian; Brown, Jeremy M; Verhaagh, Manfred
2008-09-30
Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time.
Newly discovered sister lineage sheds light on early ant evolution
Rabeling, Christian; Brown, Jeremy M.; Verhaagh, Manfred
2008-01-01
Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time. PMID:18794530
The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.
Gordon, Deborah M
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.
Optic flow odometry operates independently of stride integration in carried ants.
Pfeffer, Sarah E; Wittlinger, Matthias
2016-09-09
Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.
An Adaptive Pheromone Updation of the Ant-System using LMS Technique
NASA Astrophysics Data System (ADS)
Paul, Abhishek; Mukhopadhyay, Sumitra
2010-10-01
We propose a modified model of pheromone updation for Ant-System, entitled as Adaptive Ant System (AAS), using the properties of basic Adaptive Filters. Here, we have exploited the properties of Least Mean Square (LMS) algorithm for the pheromone updation to find out the best minimum tour for the Travelling Salesman Problem (TSP). TSP library has been used for the selection of benchmark problem and the proposed AAS determines the minimum tour length for the problems containing large number of cities. Our algorithm shows effective results and gives least tour length in most of the cases as compared to other existing approaches.
Structure and formation of ant transportation networks
Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine
2011-01-01
Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958
Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.
Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T
2010-12-01
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. © 2010 Entomological Society of America
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization
ERIC Educational Resources Information Center
Rastegarmoghadam, Mahin; Ziarati, Koorush
2017-01-01
Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…
Agricultural matrices affect ground ant assemblage composition inside forest fragments
Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
Aggressive mimicry coexists with mutualism in an aphid
Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David
2015-01-01
Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474
Akesson, Susanne; Wehner, Rüdiger
2002-07-01
Central-place foraging insects such as desert ants of the genus Cataglyphis use both path integration and landmarks to navigate during foraging excursions. The use of landmark information and a celestial system of reference for nest location was investigated by training desert ants returning from an artificial feeder to find the nest at one of four alternative positions located asymmetrically inside a four-cylinder landmark array. The cylindrical landmarks were all of the same size and arranged in a square, with the nest located in the southeast corner. When released from the compass direction experienced during training (southeast), the ants searched most intensely at the fictive nest position. When instead released from any of the three alternative directions of approach (southwest, northwest or northeast), the same individuals instead searched at two of the four alternative positions by initiating their search at the position closest to the direction of approach when entering the landmark square and then returning to the position at which snapshot, current landmark image and celestial reference information were in register. The results show that, in the ants' visual snapshot memory, a memorized landmark scene can temporarily be decoupled from a memorized celestial system of reference.
González-Teuber, Marcia; Silva Bueno, Juan Carlos; Heil, Martin; Boland, Wilhelm
2012-01-01
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained. PMID:23056362
LeVan, Katherine E; Hung, Keng-Lou James; McCann, Kyle R; Ludka, John T; Holway, David A
2014-01-01
Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.
Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb
Bollmann, Felix; Saville, David; Riedel, Michael
2018-01-01
The number of plants pollinated by ants is surprisingly low given the abundance of ants and the fact that they are common visitors of angiosperms. Generally ants are considered as nectar robbers that do not provide pollination service. We studied the pollination system of the endangered dry grassland forb Euphorbia seguieriana and found two ant species to be the most frequent visitors of its flowers. Workers of Formica cunicularia carried five times more pollen than smaller Tapinoma erraticum individuals, but significantly more viable pollen was recovered from the latter. Overall, the viability of pollen on ant cuticles was significantly lower (p < 0.001)—presumably an antibiotic effect of the metapleural gland secretion. A marking experiment suggested that ants were unlikely to facilitate outcrossing as workers repeatedly returned to the same individual plant. In open pollinated plants and when access was given exclusively to flying insects, fruit set was nearly 100%. In plants visited by ants only, roughly one third of flowers set fruit, and almost none set fruit when all insects were excluded. The germination rate of seeds from flowers pollinated by flying insects was 31 ± 7% in contrast to 1 ± 1% resulting from ant pollination. We conclude that inbreeding depression may be responsible for the very low germination rate in ant pollinated flowers and that ants, although the most frequent visitors, play a negligible or even deleterious role in the reproduction of E. seguieriana. Our study reiterates the need to investigate plant fitness effects beyond seed set in order to confirm ant-plant mutualisms. PMID:29479496
Army ants dynamically adjust living bridges in response to a cost-benefit trade-off.
Reid, Chris R; Lutz, Matthew J; Powell, Scott; Kao, Albert B; Couzin, Iain D; Garnier, Simon
2015-12-08
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.
Army ants dynamically adjust living bridges in response to a cost–benefit trade-off
Reid, Chris R.; Lutz, Matthew J.; Powell, Scott; Kao, Albert B.; Couzin, Iain D.; Garnier, Simon
2015-01-01
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges” of linked individuals that are constructed to span gaps in the colony’s foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost–benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost–benefit trade-off, without any individual unit’s having information on global benefits or costs. PMID:26598673
Ješovnik, Ana; González, Vanessa L; Schultz, Ted R
2016-01-01
Fungus-farming ("attine") ants are model systems for studies of symbiosis, coevolution, and advanced eusociality. A New World clade of nearly 300 species in 15 genera, all attine ants cultivate fungal symbionts for food. In order to better understand the evolution of ant agriculture, we sequenced, assembled, and analyzed transcriptomes of four different attine ant species in two genera: three species in the higher-attine genus Sericomyrmex and a single lower-attine ant species, Apterostigma megacephala, representing the first genomic data for either genus. These data were combined with published genomes of nine other ant species and the honey bee Apis mellifera for phylogenomic and divergence-dating analyses. The resulting phylogeny confirms relationships inferred in previous studies of fungus-farming ants. Divergence-dating analyses recovered slightly older dates than most prior analyses, estimating that attine ants originated 53.6-66.7 million of years ago, and recovered a very long branch subtending a very recent, rapid radiation of the genus Sericomyrmex. This result is further confirmed by a separate analysis of the three Sericomyrmex species, which reveals that 92.71% of orthologs have 99% - 100% pairwise-identical nucleotide sequences. We searched the transcriptomes for genes of interest, most importantly argininosuccinate synthase and argininosuccinate lyase, which are functional in other ants but which are known to have been lost in seven previously studied attine ant species. Loss of the ability to produce the amino acid arginine has been hypothesized to contribute to the obligate dependence of attine ants upon their cultivated fungi, but the point in fungus-farming ant evolution at which these losses occurred has remained unknown. We did not find these genes in any of the sequenced transcriptomes. Although expected for Sericomyrmex species, the absence of arginine anabolic genes in the lower-attine ant Apterostigma megacephala strongly suggests that the loss coincided with the origin of attine ants.
USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, L; Doug Martin, D; Michael Paller, M
2007-01-12
Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here.more » This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.« less
Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.
2011-01-01
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285
Swarm Intelligence for Urban Dynamics Modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-04-16
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Swarm Intelligence for Urban Dynamics Modelling
NASA Astrophysics Data System (ADS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
The assembly of ant-farmed gardens: mutualism specialization following host broadening
Janda, Milan
2017-01-01
Ant-gardens (AGs) are ant/plant mutualisms in which ants farm epiphytes in return for nest space and food rewards. They occur in the Neotropics and Australasia, but not in Africa, and their evolutionary assembly remains unclear. We here use phylogenetic frameworks for important AG lineages in Australasia, namely the ant genus Philidris and domatium-bearing ferns (Lecanopteris) and flowering plants in the Apocynaceae (Hoya and Dischidia) and Rubiaceae (Myrmecodia, Hydnophytum, Anthorrhiza, Myrmephytum and Squamellaria). Our analyses revealed that in these clades, diaspore dispersal by ants evolved at least 13 times, five times in the Late Miocene and Pliocene in Australasia and seven times during the Pliocene in Southeast Asia, after Philidris ants had arrived there, with subsequent dispersal between these two areas. A uniquely specialized AG system evolved in Fiji at the onset of the Quaternary. The farming in the same AG of epiphytes that do not offer nest spaces suggests that a broadening of the ants' plant host spectrum drove the evolution of additional domatium-bearing AG-epiphytes by selecting on pre-adapted morphological traits. Consistent with this, we found a statistical correlation between the evolution of diaspore dispersal by ants and domatia in all three lineages. Our study highlights how host broadening by a symbiont has led to new farming mutualisms. PMID:28298344
Wolbachia transmission dynamics in Formica wood ants
2008-01-01
Background The role of Wolbachia endosymbionts in shaping the mitochondrial diversity of their arthropod host depends on the effects they have on host reproduction and on the mode of transmission of the bacteria. We have compared the sequence diversity of wsp (Wolbachia surface protein gene) and the host mtDNA in a group of Formica ant species that have diverged approximately 0.5 million years ago (MYA). The aim was to study the relationship of Wolbachia and its ant hosts in terms of vertical and horizontal transmission of the bacteria. Results All studied ant species were doubly infected with two Wolbachia strains (wFex1 and wFex4) all over their geographical distribution area in Eurasia. The most common haplotypes of these strains were identical with strains previously described from a more distantly related Formica ant, with an estimated divergence time of 3.5 – 4 MYA. Some strain haplotypes were associated to the same or closely related mtDNA haplotypes as expected under vertical transmission. However, in several cases the wsp haplotypes coexisted with distant mtDNA haplotypes, a pattern which is more compatible with horizontal transmission of the bacteria. Conclusion Two lines of evidence suggest that the sharing of Wolbachia strains by all F. rufa species is rather due to horizontal than vertical transmission. First, the fact that endosymbiont strains identical to those of F. rufa ants have been found in another species that diverged 3.5–4 MYA strongly suggests that horizontal transfer can and does occur between Formica ants. Second, the frequent sharing of identical Wolbachia strains by distant mitochondrial lineages within the F. rufa group further shows that horizontal transmission has occurred repeatedly. Nevertheless, our dataset also provides some evidence for longer-term persistence of infection, indicating that Wolbachia infection within this host clade has been shaped by both horizontal and vertical transmission of symbionts. The fact that all the ants were infected irrespective of the family structure of their societies gives no support to the proposed hypotheses that the spreading of Wolbachia in ants might be associated to the types of their societies. PMID:18291041
NASA Astrophysics Data System (ADS)
Bain, Anthony; Harrison, Rhett D.; Schatz, Bertrand
2014-05-01
Mutualistic interactions are open to exploitation by one or other of the partners and a diversity of other organisms, and hence are best understood as being embedded in a complex network of biotic interactions. Figs participate in an obligate mutualism in that figs are dependent on agaonid fig wasps for pollination and the wasps are dependent on fig ovules for brood sites. Ants are common insect predators and abundant in tropical forests. Ants have been recorded on approximately 11% of fig species, including all six subgenera, and often affect the fig-fig pollinator interaction through their predation of either pollinating and parasitic wasps. On monoecious figs, ants are often associated with hemipterans, whereas in dioecious figs ants predominantly prey on fig wasps. A few fig species are true myrmecophytes, with domatia or food rewards for ants, and in at least one species this is linked to predation of parasitic fig wasps. Ants also play a role in dispersal of fig seeds and may be particularly important for hemi-epiphytic species, which require high quality establishment microsites in the canopy. The intersection between the fig-fig pollinator and ant-plant systems promises to provide fertile ground for understanding mutualistic interactions within the context of complex interaction networks.
On the morphology of the digestive system of two Monomorium ant species.
Solis, Daniel Russ; Rossi, Mônica Lanzoni; Fox, Eduardo Gonçalves Paterson; Nogueira, Neusa de Lima; Tanaka, Francisco André Ossamu; Bueno, Odair Correa
2013-01-01
The digestive system of adults and mature larvae of two ant species of Monomorium Mayr (Hymoneptera: Formicidae) were described with the aid of light and scanning electron microscopy, as there is a lack of studies in this area. These two ant species are recurrently found in urban habitats and are known as 'tramp species,' as they cause problems in households, businesses, and hospitals. The most interesting finds of the present study include the existence of spinules in the crop of adults, and the number of Malpighian tubules and rectal pads was constant among different castes, ages, and species.
Ants, eyelashes, and the 2015 Ig Nobel Prize in Physics
NASA Astrophysics Data System (ADS)
Hu, David
2016-11-01
The zoo can be a source of recreation and rich scientific investigation. In this lecture, I will give an overview of my recent research with animals at the Atlanta Zoo. We will talk about how to make ant hamburgers, how eyelashes reduce evaporation of your eyes by a factor of two, and why mammals urinate for the same duration of 21 seconds. Although animal-inspired research can sound trendy, it can lead the way toward potential future directions in fluid mechanics, including the dynamics of active materials, flow through hairy surfaces, and the physics of digestion and excretion.
Nonlinear dynamics of steep surface waves as derived from a Lagrangian
NASA Astrophysics Data System (ADS)
Longuet-Higgins, Michael
1999-11-01
A simple and natural method for calculating the deformation of surface gravity waves on deep water was recently formulated by A.M. Balk (1996). The equations of motion are derived from a Lagrangian (T-V) where T and V are the kinetic and potential energies, expressed in terms of the Fourier coefficients a_n(t) of the motion in an auxiliary half-space. The method has certain advantages over the more usual Hamiltonian equations: (1) The expressions for T and V are of finite order N <= 4 in the Fourier coefficients a_n(t) and their rates of change dota(t); (2) the constants in these expressions are low integers, mainly ± 1 or 0; (3) breaking or overturning waves are described by single-valued functions of a parameter. The analysis leads to dynamical equations for än of the form sumj P_ij äj = Qi (a, ; dota) (P_ij and Qi being polynomials of low degree in the coefficients a_n) which can in general be solved to allow time-stepping to proceed. Conveniently, the determinant Δ of P_ij is found to factorise. Some examples will be discussed, particularly the case of standing waves, when the coefficients a_n(t) are all real. The phenomena of ``flip through'' and jet formation are of special interest.
UNC Pembroke Laser Scanning Confocal Microscopy Facility
2016-04-29
cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on the new confocal system. Dr. Kelly’s research...interest in the trophic ecology of the invasive fire ant has begun to benefit from the wide field view and long working distances of a confocal imaging...of protein clearance pathways in living brain tissue cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on
Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis
Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R.; Clardy, Jon
2009-01-01
Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. In the first system to be analyzed at the molecular level, the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the parasitic fungus (Escovopsis sp.). PMID:19330011
The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus
Gordon, Deborah M.
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest. PMID:23209749
Temperature limits trail following behaviour through pheromone decay in ants
NASA Astrophysics Data System (ADS)
van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim
2011-12-01
In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.
Fire ants perpetually rebuild sinking towers.
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta , cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
NASA Astrophysics Data System (ADS)
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Tovey, Craig
2017-01-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers. PMID:28791170
Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.
Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S
2016-06-01
In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).
Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, L
2005-06-01
Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the meansmore » for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the relative health of the ecosystem. The IBI, though originally for Midwestern streams, has been successfully adapted to other ecoregions and taxa (macroinvertebrates, Lombard and Goldstein, 2004) and has become an important tool for scientists and regulatory agencies alike in determining health of stream ecosystems. The IBI is a specific type of a larger group of methods and procedures referred to as Rapid Bioassessment (RBA). These protocols have the advantage of directly measuring the organisms affected by system perturbations, thus providing an integrated evaluation of system health because the organisms themselves integrate all aspects of their environment and its condition. In addition to the IBI, the RBA concept has also been applied to seep wetlands (Paller et al. 2005) and terrestrial systems (O'Connell et al. 1998, Kremen et al. 1993, Rodriguez et al. 1998, Rosenberg et al. 1986). Terrestrial RBA methods have lagged somewhat behind those for aquatic systems because terrestrial systems are less distinctly defined and seem to have a less universal distribution of an all-inclusive taxon, such as fish in the IBI, upon which to base an RBA. In the last decade, primarily in Australia, extensive development of an RBA using ant communities has shown great promise. Ants have the same advantage for terrestrial RBAs that fish do for aquatic systems in that they are an essential and ubiquitous component of virtually all terrestrial ecosystems. They occupy a broad range of niches, functional groups, and trophic levels and they possess one very important characteristic that makes them ideal for RBA because, similar to the fishes, there is a wide range of tolerance to conditions within the larger taxa. Within ant communities there are certain groups, genera, or species that may be very robust and abundant under even the harshest impacts. There are also taxa that are very sensitive to disturbance and change and their presence or absence is also indicative of the local conditions. Also, as with the aquatic RBAs using macroinvertebrates, ants have a wide variety of functional foraging or feeding groups, by whose abundance or scarcity an evaluation of the system health may be made. Much of the ground work has been done for useful ant RBAs, but it has primarily been in Australia, Europe, the US desert Southwest, and South America. However, the work already done will transport well to other ecoregions and as has been done with the IBI, it could be adapted with an appropriate investment of time and resources. It would be necessary to establish taxonomic expertise, allocate the local ant fauna to functional groups, and evaluation and modification of metrics and characteristics used to develop indices in the existing methods. Successful adaptation and application of an ant RBA would provide a cost effective, useful, and robust tool for evaluating the health of terrestrial ecosystems anywhere in the region.« less
Visual cues for the retrieval of landmark memories by navigating wood ants.
Harris, Robert A; Graham, Paul; Collett, Thomas S
2007-01-23
Even on short routes, ants can be guided by multiple visual memories. We investigate here the cues controlling memory retrieval as wood ants approach a one- or two-edged landmark to collect sucrose at a point along its base. In such tasks, ants store the desired retinal position of landmark edges at several points along their route. They guide subsequent trips by retrieving the appropriate memory and moving to bring the edges in the scene toward the stored positions. The apparent width of the landmark turns out to be a powerful cue for retrieving the desired retinal position of a landmark edge. Two other potential cues, the landmark's apparent height and the distance that the ant walks, have little effect on memory retrieval. A simple model encapsulates these conclusions and reproduces the ants' routes in several conditions. According to this model, the ant stores a look-up table. Each entry contains the apparent width of the landmark and the desired retinal position of vertical edges. The currently perceived width provides an index for retrieving the associated stored edge positions. The model accounts for the population behavior of ants and the idiosyncratic training routes of individual ants. Our results imply binding between the edge of a shape and its width and, further, imply that assessing the width of a shape does not depend on the presence of any particular local feature, such as a landmark edge. This property makes the ant's retrieval and guidance system relatively robust to edge occlusions.
Ant-plant-herbivore interactions in the neotropical cerrado savanna.
Oliveira, Paulo S; Freitas, André V L
2004-12-01
The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant-plant-herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant-plant-butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant-plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.
In Situ Surveying of Saturn's Rings
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Cheung, C.
2004-03-01
Saturn Autonomous Ring Array (SARA) mission concept is an application for the Autonomous Nano-Technology Swarm (ANTS) architecture that would perform in situ observations of compositional and dynamic properties of ring particles, a challenge unachievable by previous mission designs.
Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems.
Mavrovouniotis, Michalis; Muller, Felipe M; Yang, Shengxiang
2016-06-13
For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms.
A Ground Systems Template for Remote Sensing Systems
NASA Astrophysics Data System (ADS)
McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.
2002-10-01
Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.
Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca
2014-01-01
About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea “predatory species” directly feed on the ant larvae, while those of “cuckoo species” are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry. PMID:24718496
Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca
2014-01-01
About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea "predatory species" directly feed on the ant larvae, while those of "cuckoo species" are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.
Foraging at the Edge of Chaos: Internal Clock versus External Forcing
NASA Astrophysics Data System (ADS)
Nicolis, S. C.; Fernández, J.; Pérez-Penichet, C.; Noda, C.; Tejera, F.; Ramos, O.; Sumpter, D. J. T.; Altshuler, E.
2013-06-01
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Desert ants achieve reliable recruitment across noisy interactions
Razin, Nitzan; Eckmann, Jean-Pierre; Feinerman, Ofer
2013-01-01
We study how desert ants, Cataglyphis niger, a species that lacks pheromone-based recruitment mechanisms, inform each other about the presence of food. Our results are based on automated tracking that allows us to collect a large database of ant trajectories and interactions. We find that interactions affect an ant's speed within the nest. Fast ants tend to slow down, whereas slow ones increase their speed when encountering a faster ant. Faster ants tend to exit the nest more frequently than slower ones. So, if an ant gains enough speed through encounters with others, then she tends to leave the nest and look for food. On the other hand, we find that the probability for her to leave the nest depends only on her speed, but not on whether she had recently interacted with a recruiter that has found the food. This suggests a recruitment system in which ants communicate their state by very simple interactions. Based on this assumption, we estimate the information-theoretical channel capacity of the ants’ pairwise interactions. We find that the response to the speed of an interacting nest-mate is very noisy. The question is then how random interactions with ants within the nest can be distinguished from those interactions with a recruiter who has found food. Our measurements and model suggest that this distinction does not depend on reliable communication but on behavioural differences between ants that have found the food and those that have not. Recruiters retain high speeds throughout the experiment, regardless of the ants they interact with; non-recruiters communicate with a limited number of nest-mates and adjust their speed following these interactions. These simple rules lead to the formation of a bistable switch on the level of the group that allows the distinction between recruitment and random noise in the nest. A consequence of the mechanism we propose is a negative effect of ant density on exit rates and recruitment success. This is, indeed, confirmed by our measurements. PMID:23486172
Destructive disinfection of infected brood prevents systemic disease spread in ant colonies.
Pull, Christopher D; Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark Jf; Cremer, Sylvia
2018-01-09
In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus , the negative consequences of fungal infections ( Metarhizium brunneum ) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.
Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination
NASA Astrophysics Data System (ADS)
Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer
2015-07-01
Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange.
Destructive disinfection of infected brood prevents systemic disease spread in ant colonies
Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark JF
2018-01-01
In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen’s non-contagious incubation period, utilising chemical ‘sickness cues’ emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. PMID:29310753
NASA Astrophysics Data System (ADS)
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint
Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F.; McGroarty, Mark; Delahunt, Eamonn
2015-01-01
Context Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. Objective To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Design Controlled laboratory study. Setting University biomechanics laboratory. Patients or Other Participants A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Intervention(s) Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Main Outcome Measure(s) Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. Results We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P < .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P > .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P < .05) in all reach directions. Conclusions Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint. PMID:26285088
Rappoport, Nadav; Linial, Michal
2015-08-07
Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.
On the Morphology of the Digestive System of Two Monomorium Ant Species
Solis, Daniel Russ; Rossi, Mônica Lanzoni; Fox, Eduardo Gonçalves Paterson; Nogueira, Neusa de Lima; Tanaka, Francisco André Ossamu; Bueno, Odair Correa
2013-01-01
The digestive system of adults and mature larvae of two ant species of Monomorium Mayr (Hymoneptera: Formicidae) were described with the aid of light and scanning electron microscopy, as there is a lack of studies in this area. These two ant species are recurrently found in urban habitats and are known as ‘tramp species,’ as they cause problems in households, businesses, and hospitals. The most interesting finds of the present study include the existence of spinules in the crop of adults, and the number of Malpighian tubules and rectal pads was constant among different castes, ages, and species. PMID:24224520
Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-01-01
In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait. PMID:29168742
Zhu, Yaguang; Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-11-23
Abstract : In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait.
Martín-Vega, Daniel; Garbout, Amin; Ahmed, Farah; Wicklein, Martina; Goater, Cameron P; Colwell, Douglas D; Hall, Martin J R
2018-06-05
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem
Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David S.
2016-01-01
Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.
Pires, L. P.; Del-Claro, K.
2014-01-01
Abstract Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora , and the most abundant genera were Crematogaster , Cephalotes , and Camponotus . Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna. PMID:25368040
LeBrun, Edward G; Plowes, Robert M; Gilbert, Lawrence E
2012-07-01
1. Habitat disturbance and species invasions interact in natural systems, making it difficult to isolate the primary cause of ecosystem degradation. A general understanding requires case studies of how disturbance and invasion interact across a variety of ecosystem - invasive species combinations. 2. Dramatic losses in ant diversity followed the invasion of central Texas by red imported fire ants (Solenopsis invicta). However, recent manipulative studies in Florida revealed no effect on ant diversity following the removal of S. invicta from a disturbed pasture habitat, but moderate loss of diversity associated with their introduction into undisturbed habitat and no invasion occurred without disturbance. Thus, the importance of S. invicta in driving diversity loss and its ability to invade undisturbed systems is unresolved. 3. We examine the distribution and abundance of a large monogyne S. invicta population and its association with the co-occurring ant assemblage at a site in south Texas close to the aridity tolerance limit of S. invicta. 4. We document that moisture modulates S. invicta densities. Further, soil disturbing habitat manipulations greatly increase S. invicta population densities. However, S. invicta penetrates all habitats regardless of soil disturbance history. In contrast, controlled burns depress S. invicta densities. 5. In habitats where S. invicta is prevalent, it completely replaces native fire ants. However, S. invicta impacts native ants as a whole less strongly. Intriguingly, native ants responded distinctly to S. invicta in different environments. In wet, undisturbed environments, high S. invicta abundance disrupts the spatial structure of the ant assemblage by increasing clumping and is associated with reduced species density, while in dry-disturbed habitats, sites with high S. invicta abundance possess high numbers of native species. Analyses of co-occurrence indicate that reduced species density in wet-undisturbed sites arises from negative species interactions between native ants and S. invicta. However, these same data suggest that the high native species density of abundant S. invicta sites in dry-disturbed environments does not result from facilitation. 6. Monogyne S. invicta populations play different roles in different environments, driving ant diversity loss in some, but being largely symptomatic of habitat disturbance in others. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
The interplay between scent trails and group-mass recruitment systems in ants.
Planqué, Robert; van den Berg, Jan Bouwe; Franks, Nigel R
2013-10-01
Large ant colonies invariably use effective scent trails to guide copious ant numbers to food sources. The success of mass recruitment hinges on the involvement of many colony members to lay powerful trails. However, many ant colonies start off as single queens. How do these same colonies forage efficiently when small, thereby overcoming the hurdles to grow large? In this paper, we study the case of combined group and mass recruitment displayed by some ant species. Using mathematical models, we explore to what extent early group recruitment may aid deployment of scent trails, making such trails available at much smaller colony sizes. We show that a competition between group and mass recruitment may cause oscillatory behaviour mediated by scent trails. This results in a further reduction of colony size to establish trails successfully.
ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei
2016-09-01
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.
Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.
Galen, Candace; Geib, Jennifer C
2007-05-01
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.
Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.
2005-01-01
Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.
Ant system: optimization by a colony of cooperating agents.
Dorigo, M; Maniezzo, V; Colorni, A
1996-01-01
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.
ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.
2002-01-01
ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.
Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants
Elizalde, Luciana; Folgarait, Patricia Julia
2012-01-01
Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking. The presence of phorids was a significant determinant for the presence of defensive behaviors by the ants. Although ant species varied in the incidence levels of these defensive behaviors, most ant species reacted against different phorids by utilizing similar behaviors, in contrast to what parasitoids do. General features of the observed phorid-ant interactions were parasitoid specialization and corresponding high interspecific variation in their behaviors, while their hosts showed generalized responses to attacks with high intraspecific variation. Behavioral patterns as well as specific features of these ant-parasitoid interactions are described, and their ecological importance discussed. PMID:23448343
Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J
2010-12-31
Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
Mind wandering and the attention network system.
Gonçalves, Óscar F; Rêgo, Gabriel; Oliveira-Silva, Patrícia; Leite, Jorge; Carvalho, Sandra; Fregni, Felipe; Amaro, Edson; Boggio, Paulo S
2017-01-01
Attention and mind wandering are often seen as anticorrelated. However, both attention and mind wandering are multi-component processes, and their relationship may be more complex than previously thought. In this study, we tested the interference of different types of thoughts as measured by a Thought Identification Task - TIT (on task thoughts, task related interference thoughts, external distractions, stimulus independent and task unrelated thoughts) on different components of the attention network system - ANT (alerting, orienting, executive). Results show that, during the ANT, individuals were predominantly involved in task related interference thoughts which, along with external distractors, significantly impaired their performance accuracy. However, mind wandering (i.e., stimulus independent and task unrelated thoughts) did not significantly interfere with accuracy in the ANT. No significant relationship was found between type of thoughts and alerting, orienting, or executive effects in the ANT. While task related interference thoughts and external distractions seemed to impair performance on the attention task, mind wandering was still compatible with satisfactory performance in the ANT. The present results confirmed the importance of differentiating type of "out of task" thoughts in studying the relationship between though distractors and attention. Copyright © 2016 Elsevier B.V. All rights reserved.
Using Swarming Agents for Scalable Security in Large Network Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouse, Michael; White, Jacob L.; Fulp, Errin W.
2011-09-23
The difficulty of securing computer infrastructures increases as they grow in size and complexity. Network-based security solutions such as IDS and firewalls cannot scale because of exponentially increasing computational costs inherent in detecting the rapidly growing number of threat signatures. Hostbased solutions like virus scanners and IDS suffer similar issues, and these are compounded when enterprises try to monitor these in a centralized manner. Swarm-based autonomous agent systems like digital ants and artificial immune systems can provide a scalable security solution for large network environments. The digital ants approach offers a biologically inspired design where each ant in the virtualmore » colony can detect atoms of evidence that may help identify a possible threat. By assembling the atomic evidences from different ant types the colony may detect the threat. This decentralized approach can require, on average, fewer computational resources than traditional centralized solutions; however there are limits to its scalability. This paper describes how dividing a large infrastructure into smaller managed enclaves allows the digital ant framework to effectively operate in larger environments. Experimental results will show that using smaller enclaves allows for more consistent distribution of agents and results in faster response times.« less
Desert ants learn vibration and magnetic landmarks.
Buehlmann, Cornelia; Hansson, Bill S; Knaden, Markus
2012-01-01
The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
Trail pheromone disruption of red imported fire ant.
Suckling, David M; Stringer, Lloyd D; Bunn, Barry; El-Sayed, Ashraf M; Vander Meer, Robert K
2010-07-01
The fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is considered one of the most aggressive and invasive species in the world. Toxic bait systems are used widely for control, but they also affect non-target ant species and cannot be used in sensitive ecosystems such as organic farms and national parks. The fire ant uses recruitment pheromones to organize the retrieval of large food resources back to the colony, with Z,E-alpha-farnesene responsible for the orientation of workers along trails. We prepared Z,E-alpha-farnesene, (91% purity) from extracted E,E-alpha-farnesene and demonstrated disruption of worker trail orientation after presentation of an oversupply of this compound from filter paper point sources (30 microg). Trails were established between queen-right colony cells and food sources in plastic tubs. Trail-following behavior was recorded by overhead webcam, and ants were digitized before and after presentation of the treatment, using two software approaches. The linear regression statistic, r(2) was calculated. Ants initially showed high linear trail integrity (r(2) = 0.75). Within seconds of presentation of the Z,E-alpha-farnesene treatment, the trailing ants showed little or no further evidence of trail following behavior in the vicinity of the pheromone source. These results show that trailing fire ants become disorientated in the presence of large amounts of Z,E-alpha-farnesene. Disrupting fire ant recruitment to resources may have a negative effect on colony size or other effects yet to be determined. This phenomenon was demonstrated recently for the Argentine ant, where trails were disrupted for two weeks by using their formulated trail pheromone, Z-9-hexadecenal. Further research is needed to establish the long term effects and control potential for trail disruption in S. invicta.
Robbins, T R; Langkilde, T
2012-10-01
Responses to novel threats (e.g. invasive species) can involve genetic changes or plastic shifts in phenotype. There is controversy over the relative importance of these processes for species survival of such perturbations, but we are realizing they are not mutually exclusive. Native eastern fence lizards (Sceloporus undulatus) have adapted to top-down predation pressure imposed by the invasive red imported fire ant (Solenopsis invicta) via changes in adult (but not juvenile) lizard antipredator behaviour. Here, we examine the largely ignored, but potentially equally important, bottom-up effect of fire ants as toxic prey for lizards. We test how fire ant consumption (or avoidance) is affected by lifetime (via plasticity) and evolutionary (via natural selection) exposure to fire ants by comparing field-caught and laboratory-reared lizards, respectively, from fire ant-invaded and uninvaded populations. More naive juveniles from invaded populations ate fire ants than did adults, reflecting a natural ontogenetic dietary shift away from ants. Laboratory-reared lizards from the invaded site were less likely to eat fire ants than were those from the uninvaded site, suggesting a potential evolutionary shift in feeding behaviour. Lifetime and evolutionary exposure interacted across ontogeny, however, and field-caught lizards from the invaded site exhibited opposite ontogenetic trends; adults were more likely to eat fire ants than were juveniles. Our results suggest that plastic and evolutionary processes may both play important roles in permitting species survival of novel threats. We further reveal how complex interactions can shape adaptive responses to multimodal impacts imposed by invaders: in our system, fire ants impose stronger bottom-up selection than top-down selection, with each selection regime changing differently across lizard ontogeny. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
From Present Surveying to Future Prospecting of the Asteroid Belt
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M.; Cheung, C.
2004-01-01
We have applied a future mission architecture, the Autonomous Nano-Technology Swarm (ANTS), to a proposed mission for in situ survey, or prospecting, of the asteroid belt, the Prospecting Asteroid Mission (PAM) as part of a NASA 2003 Revolutionary Aerospace Concept (RASC) study. ANTS architecture builds on and advances recent trends in robotics, artificial intelligence, and materials processing to minimize costs and maximize effectiveness of space operations. PAM and other applications have been proposed for the survey of inaccessible, high surface area populations of great interest from the standpoint of resources and/or solar system origin. The ANTS architecture is inspired by the success of social insect colonies, a success based on the division of labor within the colonies in two key ways: 1) within their specialties, individual specialists generally outperform generalists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outperforms the group of generalists. Thus systems designed as ANTS are built from potentially very large numbers of highly autonomous, yet socially interactive, elements. The architecture is self-similar in that elements and sub-elements of the system may also be recursively structured as ANTS on scales ranging from microscopic to interplanetary distances. Here, we analyze requirements for the mission application at the low gravity target end of the spectrum, the Prospecting Asteroid Mission (PAM), and for specialized autonomous operations which would support this mission. ANTS as applied to PAM involves the activities of hundreds of individual specialist 'sciencecraft'. Most of them, called Workers, carry and operate eight to nine different scientific instruments, as listed in the table, including spectrometers, ranging and radio science devices, and imagers. The remaining specialists, Messenger/Rulers, provide communication and coordination functions among specialists operating autonomously as individuals, team members, and subswarms.
Spatial pattern and ecological process in the coffee agroforestry system.
Perfecto, Ivette; Vandermeer, John
2008-04-01
The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.
Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.
Scott, Jarrod J; Budsberg, Kevin J; Suen, Garret; Wixon, Devin L; Balser, Teri C; Currie, Cameron R
2010-03-29
Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation gradient created by ant behavior, specifically their fungiculture and waste management.
Active walker model for the formation of human and animal trail systems
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Schweitzer, Frank; Keltsch, Joachim; Molnár, Péter
1997-09-01
Active walker models have recently proved their great value for describing the formation of clusters, periodic patterns, and spiral waves as well as the development of rivers, dielectric breakdown patterns, and many other structures. It is shown that they also allow one to simulate the formation of trail systems by pedestrians and ants, yielding a better understanding of human and animal behavior. A comparison with empirical material shows a good agreement between model and reality. Our trail formation model includes an equation of motion, an equation for environmental changes, and an orientation relation. It contains some model functions, which are specified according to the characteristics of the considered animals or pedestrians. Not only the kind of environmental changes differs: Whereas pedestrians leave footprints on the ground, ants produce chemical markings for their orientation. Nevertheless, it is more important that pedestrians steer towards a certain destination, while ants usually find their food sources by chance, i.e., they reach their destination in a stochastic way. As a consequence, the typical structure of the evolving trail systems depends on the respective species. Some ant species produce a dendritic trail system, whereas pedestrians generate a minimal detour system. The trail formation model can be used as a tool for the optimization of pedestrian facilities: It allows urban planners to design convenient way systems which actually meet the route choice habits of pedestrians.
Path integration mediated systematic search: a Bayesian model.
Vickerstaff, Robert J; Merkle, Tobias
2012-08-21
The systematic search behaviour is a backup system that increases the chances of desert ants finding their nest entrance after foraging when the path integrator has failed to guide them home accurately enough. Here we present a mathematical model of the systematic search that is based on extensive behavioural studies in North African desert ants Cataglyphis fortis. First, a simple search heuristic utilising Bayesian inference and a probability density function is developed. This model, which optimises the short-term nest detection probability, is then compared to three simpler search heuristics and to recorded search patterns of Cataglyphis ants. To compare the different searches a method to quantify search efficiency is established as well as an estimate of the error rate in the ants' path integrator. We demonstrate that the Bayesian search heuristic is able to automatically adapt to increasing levels of positional uncertainty to produce broader search patterns, just as desert ants do, and that it outperforms the three other search heuristics tested. The searches produced by it are also arguably the most similar in appearance to the ant's searches. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neuromodulation of Nestmate Recognition Decisions by Pavement Ants.
Bubak, Andrew N; Yaeger, Jazmine D W; Renner, Kenneth J; Swallow, John G; Greene, Michael J
2016-01-01
Ant colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors. Despite the relevance to colony fitness, the mechanisms that drive individual decisions leading to cooperative behavior are not well understood. Here we show how sensory information, both tactile and chemical, and social context-isolation, nestmate interaction, or fighting non-nestmates-affects brain monoamine levels in pavement ants (Tetramorium caespitum). Our results provide evidence that changes in octopamine and serotonin in the brains of individuals are sufficient to alter the decision by pavement ants to be aggressive towards non-nestmate ants whereas increased brain levels of dopamine correlate to physical fighting. We propose a model in which the changes in brain states of many workers collectively lead to the self-organization of societal aggression between neighboring colonies of pavement ants.
Neuromodulation of Nestmate Recognition Decisions by Pavement Ants
Bubak, Andrew N.; Yaeger, Jazmine D. W.; Renner, Kenneth J.; Swallow, John G.; Greene, Michael J.
2016-01-01
Ant colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors. Despite the relevance to colony fitness, the mechanisms that drive individual decisions leading to cooperative behavior are not well understood. Here we show how sensory information, both tactile and chemical, and social context—isolation, nestmate interaction, or fighting non-nestmates—affects brain monoamine levels in pavement ants (Tetramorium caespitum). Our results provide evidence that changes in octopamine and serotonin in the brains of individuals are sufficient to alter the decision by pavement ants to be aggressive towards non-nestmate ants whereas increased brain levels of dopamine correlate to physical fighting. We propose a model in which the changes in brain states of many workers collectively lead to the self-organization of societal aggression between neighboring colonies of pavement ants. PMID:27846261
A Survey of Formal Methods for Intelligent Swarms
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Hinchey, Mike; Rouff, Chrustopher A.
2004-01-01
Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are being proposed for future space exploration missions. Such missions provide greater flexibility and offer the possibility of gathering more science data than traditional single spacecraft missions. The emergent properties of swarms make these missions powerful, but simultaneously far more difficult to design, and to assure that the proper behaviors will emerge. These missions are also considerably more complex than previous types of missions, and NASA, like other organizations, has little experience in developing or in verifying and validating these types of missions. A significant challenge when verifying and validating swarms of intelligent interacting agents is how to determine that the possible exponential interactions and emergent behaviors are producing the desired results. Assuring correct behavior and interactions of swarms will be critical to mission success. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft that will fly from Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be composed of specialized workers for asteroid exploration. Exploration would consist of cataloguing the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. To perform this task, ANTS would carry miniaturized instruments, such as imagers, spectrometers, and detectors. Since ANTS and other similar missions are going to consist of autonomous spacecraft that may be out of contact with the earth for extended periods of time, and have low bandwidths due to weight constraints, it will be difficult to observe improper behavior and to correct any errors after launch. Providing V&V (verification and validation) for this type of mission is new to NASA, and represents the cutting edge in system correctness, and requires higher levels of assurance than other (traditional) missions that use a single or small number of spacecraft that are deterministic in nature and have near continuous communication access. One of the highest possible levels of assurance comes from the application of formal methods. Formal methods are mathematics-based tools and techniques for specifying and verifying (software and hardware) systems. They are particularly useful for specifying complex parallel systems, such as exemplified by the ANTS mission, where the entire system is difficult for a single person to fully understand, a problem that is multiplied with multiple developers. Once written, a formal specification can be used to prove properties of a system (e.g., the underlying system will go from one state to another or not into a specific state) and check for particular types of errors (e.g., race or livelock conditions). A formal specification can also be used as input to a model checker for further validation. This report gives the results of a survey of formal methods techniques for verification and validation of space missions that use swarm technology. Multiple formal methods were evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of spacecraft using the ANTS mission as an example system. This report is the first result of the project to determine formal approaches that are promising for formally specifying swarm-based systems. From this survey, the most promising approaches were selected and are discussed relative to their possible application to the ANTS mission. Future work will include the application of an integrated approach, based on the selected approaches identified in this report, to the formal specification of the ANTS mission.
The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration
NASA Astrophysics Data System (ADS)
Zhao, Ming; Han, Baoling
2016-11-01
The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.
Myrmica rubra ants are more communicative when young: Do they need experience?
Atsarkina, Natalia V; Panteleeva, Sofia N; Reznikova, Zhanna I
2017-05-01
The role of experience in the development of communication in animals is a matter of special interest to many ethologists and psychologists. Ants are known to possess sophisticated and flexible communication systems based mainly on their antennal movements (Reznikova & Ryabko, 2011). However, it is still enigmatic whether young ants need stimulation performances by adults to develop their communication capacities. Experiments with pairwise interactions of Myrmica rubra ants revealed significant differences in individual behavior and the mode of communication in callow (newly emerged) and adult workers. Adult ants are much more mobile than callow ones, and they switch their behavior depending on what partner they interact with, whereas callows behave independently. Adults communicate with callows and queens much longer than with other adults. Both callows and queens seem to be rather attractive to adults, although in different ways. Adults pay close attention to callow ants and initiate prolonged antennal contacts with them, touching their bodies and not leaving them alone. Young (callow) ants appear to be more communicative than adults, and they are equally ready to communicate with each other and with adults. Antennal movements are slow and clumsy in young ants, and they often switch from communication to other activities. It is likely that patterns of antennal movements in callows change gradually. Peculiarities of the mode of communication enable us to speculate that young ants need prolonged contacts with adult nestmates to gain the experience of communication. Some parallels with the development of communication skills in vertebrate species are considered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Toxic industrial deposit remediation by ant activity
NASA Astrophysics Data System (ADS)
Jilkova, Veronika; Frouz, Jan
2016-04-01
Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.
No sex in fungus-farming ants or their crops.
Himler, Anna G; Caldera, Eric J; Baer, Boris C; Fernández-Marín, Hermógenes; Mueller, Ulrich G
2009-07-22
Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent-offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant-fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.
Wound treatment and selective help in a termite-hunting ant.
Frank, Erik T; Wehrhahn, Marten; Linsenmair, K Eduard
2018-02-14
Open wounds are a major health risk in animals, with species prone to injuries likely developing means to reduce these risks. We therefore analysed the behavioural response towards open wounds on the social and individual level in the termite group-hunting ant Megaponera analis During termite raids, some ants get injured by termite soldiers (biting off extremities), after the fight injured ants get carried back to the nest by nest-mates. We observed treatment of the injury by nest-mates inside the nest through intense allogrooming at the wound. Lack of treatment increased mortality from 10% to 80% within 24 h, most likely due to infections. Wound clotting occurred extraordinarily fast in untreated injured individuals, within 10 min. Furthermore, heavily injured ants (loss of five extremities) were not rescued or treated; this was regulated not by the helper but by the unresponsiveness of the injured ant. Interestingly, lightly injured ants behaved 'more injured' near nest-mates. We show organized social wound treatment in insects through a multifaceted help system focused on injured individuals. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk), but, moreover, included a differentiated treatment inside the nest. © 2018 The Author(s).
Climatic warming destabilizes forest ant communities
Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.
2016-01-01
How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044
Climatic warming destabilizes forest ant communities.
Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J
2016-10-01
How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.
Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.
Falibene, Agustina; Josens, Roxana
2014-12-01
Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems.
Wu, Jianxiao; Ngo, Gia H; Greve, Douglas; Li, Jingwei; He, Tong; Fischl, Bruce; Eickhoff, Simon B; Yeo, B T Thomas
2018-05-16
The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion). © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at
We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distributionmore » in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.« less
Multirobot Lunar Excavation and ISRU Using Artificial-Neural-Tissue Controllers
NASA Astrophysics Data System (ADS)
Thangavelautham, Jekanthan; Smith, Alexander; Abu El Samid, Nader; Ho, Alexander; Boucher, Dale; Richard, Jim; D'Eleuterio, Gabriele M. T.
2008-01-01
Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks. An ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to `breed' controllers for the task at hand in simulation and the fittest controllers are transferred onto hardware for further validation and testing. ANT facilitates `machine creativity', with the emergence of novel functionality through a process of self-organized task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, avoid burying or trapping other robots and clear/maintain digging routes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelautham, Jekanthan; Smith, Alexander; Abu El Samid, Nader
Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks. An ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to 'breed' controllersmore » for the task at hand in simulation and the fittest controllers are transferred onto hardware for further validation and testing. ANT facilitates 'machine creativity', with the emergence of novel functionality through a process of self-organized task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, avoid burying or trapping other robots and clear/maintain digging routes.« less
Diversification amongst the South American fire ants: how when and why species barriers break down
USDA-ARS?s Scientific Manuscript database
Fire ants (Solenopsis) are an ideal model system for studying speciation and coexistence. Based on preliminary mitochondrial work, they appear to be a relatively recent radiation, and possibly a species swarm (ancient hybridization among young species). We are using a variety of phylogenetic, phylog...
Bouwma, Andrew M.; Shoemaker, DeWayne
2011-01-01
Wolbachia are intracellular bacteria that commonly infect many arthropods and some nematodes. In arthropods, these maternally transmitted bacteria often induce a variety of phenotypic effects to enhance their own spread within host populations. Wolbachia phenotypic effects generally either provide benefits to infected host females (cytoplasmic incompatibility, positive fitness effects) or bias host sex ratio in favor of females (male-killing, parthenogenesis, feminization), all of which increase the relative production of infected females in host populations. Wolbachia surveys have found infections to be exceedingly common in ants, but little is known at this juncture as to what phenotypic effects, if any, they induce in this group. Previous studies have demonstrated that individuals from native populations of the invasive fire ant Solenopsis invicta commonly harbor one or more of three Wolbachia variants. One of the variants, wSinvictaA, typically occurs at low prevalence in S. invicta populations, appears to have been transmitted horizontally into S. invicta three or more times, and has been lost repeatedly from host lineages over time. In order to determine the phenotypic effects and likely population dynamics of wSinvictaA infections in these ants, brood production patterns of newly mated fire ant queens were studied during simulated claustral founding and measured wSinvictaA transmission fidelity within mature single-queen families. No clear evidence was found for Wolbachia-mduced cytoplasmic incompatibility, significant fitness effects, or male-killing. Maternal transmission was perfect to both virgin queens and males. Possible mechanisms for how this variant could be maintained in host populations are discussed. PMID:21526927
Bouwma, Andrew M; Shoemaker, Dewayne
2011-01-01
Wolbachia are intracellular bacteria that commonly infect many arthropods and some nematodes. In arthropods, these maternally transmitted bacteria often induce a variety of phenotypic effects to enhance their own spread within host populations. Wolbachia phenotypic effects generally either provide benefits to infected host females (cytoplasmic incompatibility, positive fitness effects) or bias host sex ratio in favor of females (male-killing, parthenogenesis, feminization), all of which increase the relative production of infected females in host populations. Wolbachia surveys have found infections to be exceedingly common in ants, but little is known at this juncture as to what phenotypic effects, if any, they induce in this group. Previous studies have demonstrated that individuals from native populations of the invasive fire ant Solenopsis invicta commonly harbor one or more of three Wolbachia variants. One of the variants, wSinvictaA, typically occurs at low prevalence in S. invicta populations, appears to have been transmitted horizontally into S. invicta three or more times, and has been lost repeatedly from host lineages over time. In order to determine the phenotypic effects and likely population dynamics of wSinvictaA infections in these ants, brood production patterns of newly mated fire ant queens were studied during simulated claustral founding and measured wSinvictaA transmission fidelity within mature single-queen families. No clear evidence was found for Wolbachia-induced cytoplasmic incompatibility, significant fitness effects, or male-killing. Maternal transmission was perfect to both virgin queens and males. Possible mechanisms for how this variant could be maintained in host populations are discussed.
Kim, Kyung; Kim, Young Mi; Kang, Dong Yeon
2015-01-01
[Purpose] This study aimed to improve the asymmetrical weight-bearing ratio by applying repetitive sit-to-stand training methods that feature a step-foot position to the paretic-side foot of hemiplegic patients; it sought also to provide the information needed to apply weight-bearing and balance training to hemiplegic patients. [Subjects and Methods] The subjects were divided into two groups: a spontaneous group and a step group. They all performed repetitive sit-to-stand training five times per week for a total of six weeks. The Biodex Balance System, TUG, and 5XSST were used to measure the static and dynamic standing balance of each patient. A foot mat system was used to measure foot pressure. [Results] In the balance measurements, differences in the Overall index, Ant-post index, Med-lat index, Fall risk index, TUG, and 5XSST after training was significantly different between the two study groups. In evaluating foot pressure measurements, we found that the COP (Ant-post), Peak pressure: hind foot, and Contact area: hind foot measurements significantly differed between the groups after the training. [Conclusion] Repetitive sit-to-stand training that involves positioning the non-paretic leg upward can be considered a significant form of training that improves the symmetric posture adjustment and balance of hemiplegic patients following a stroke. PMID:26357448
NASA Astrophysics Data System (ADS)
Okita, Ichiro; Tsuchida, Koji
2016-04-01
In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.
Okita, Ichiro; Tsuchida, Koji
2016-04-01
In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.
Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior
Li, Qiye; Wang, Zongji; Lian, Jinmin; Schiøtt, Morten; Jin, Lijun; Zhang, Pei; Zhang, Yanyan; Nygaard, Sanne; Peng, Zhiyu; Zhou, Yang; Deng, Yuan; Zhang, Wenwei; Boomsma, Jacobus J.; Zhang, Guojie
2014-01-01
Eusocial insects have evolved the capacity to generate adults with distinct morphological, reproductive and behavioural phenotypes from the same genome. Recent studies suggest that RNA editing might enhance the diversity of gene products at the post-transcriptional level, particularly to induce functional changes in the nervous system. Using head samples from the leaf-cutting ant Acromyrmex echinatior, we compare RNA editomes across eusocial castes, identifying ca. 11,000 RNA editing sites in gynes, large workers and small workers. Those editing sites map to 800 genes functionally enriched for neurotransmission, circadian rhythm, temperature response, RNA splicing and carboxylic acid biosynthesis. Most A. echinatior editing sites are species specific, but 8–23% are conserved across ant subfamilies and likely to have been important for the evolution of eusociality in ants. The level of editing varies for the same site between castes, suggesting that RNA editing might be a general mechanism that shapes caste behaviour in ants. PMID:25266559
Delloye, Justin; Peeters, Dominique; Thomas, Isabelle
2015-01-01
In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system.
Andrew, Nigel R; Hart, Robert A; Jung, Myung-Pyo; Hemmings, Zac; Terblanche, John S
2013-09-01
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osei, Richard
There are many problems associated with operating a data center. Some of these problems include data security, system performance, increasing infrastructure complexity, increasing storage utilization, keeping up with data growth, and increasing energy costs. Energy cost differs by location, and at most locations fluctuates over time. The rising cost of energy makes it harder for data centers to function properly and provide a good quality of service. With reduced energy cost, data centers will have longer lasting servers/equipment, higher availability of resources, better quality of service, a greener environment, and reduced service and software costs for consumers. Some of the ways that data centers have tried to using to reduce energy costs include dynamically switching on and off servers based on the number of users and some predefined conditions, the use of environmental monitoring sensors, and the use of dynamic voltage and frequency scaling (DVFS), which enables processors to run at different combinations of frequencies with voltages to reduce energy cost. This thesis presents another method by which energy cost at data centers could be reduced. This method involves the use of Ant Colony Optimization (ACO) on a Quadratic Assignment Problem (QAP) in assigning user request to servers in geo-distributed data centers. In this paper, an effort to reduce data center energy cost involves the use of front portals, which handle users' requests, were used as ants to find cost effective ways to assign users requests to a server in heterogeneous geo-distributed data centers. The simulation results indicate that the ACO for Optimal Server Activation and Task Placement algorithm reduces energy cost on a small and large number of users' requests in a geo-distributed data center and its performance increases as the input data grows. In a simulation with 3 geo-distributed data centers, and user's resource request ranging from 25,000 to 25,000,000, the ACO algorithm was able to reduce energy cost on an average of $.70 per second. The ACO for Optimal Server Activation and Task Placement algorithm has proven to work as an alternative or improvement in reducing energy cost in geo-distributed data centers.
Lopes, Juliane F. S.; Brugger, Mariana S.; Menezes, Regys B.; Camargo, Roberto S.; Forti, Luiz Carlos; Fourcassié, Vincent
2016-01-01
Foraging networks are a key element for ant colonies because they facilitate the flow of resources from the environment to the nest and they allow the sharing of information among individuals. Here we report the results of an 8-month survey, extending from November 2009 to June 2010, of the foraging networks of four mature colonies of Atta bisphaerica, a species of grass-cutting ant which is considered as a pest in Brazil. We found that the distribution of foraging effort was strongly influenced by the landscape features around the nests, in particular by the permanently wet parts of the pasture in which the nests were located. The foraging networks consisted of underground tunnels which opened on average at 21.5m from the nests and of above-ground physical trails that reached on average 4.70m in length. The use of the foraging networks was highly dynamic, with few sections of the networks used for long periods of time. Three different phases, which could be linked to the seasonal change in the local rainfall regime, could be identified in the construction and use of the foraging networks. The first phase corresponded to the beginning of the rainy season and was characterized by a low foraging activity, as well as a low excavation and physical trail construction effort. The second phase, which began in February and extended up to the end of the humid season at the end of March, was characterized by an intense excavation and trail construction effort, resulting in an expansion of the foraging networks. Finally, in the third phase, which corresponded to the beginning of the dry season, the excavation and trail construction effort leveled off or decreased while foraging activity kept increasing. Our hypothesis is that ants could benefit from the underground tunnels and physical trails built during the humid season to maintain their foraging activity at a high level. PMID:26752413
Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory.
Greenhalgh, Trisha; Stones, Rob
2010-05-01
The UK National Health Service is grappling with various large and controversial IT programmes. We sought to develop a sharper theoretical perspective on the question "What happens - at macro-, meso- and micro-level - when government tries to modernise a health service with the help of big IT?" Using examples from data fragments at the micro-level of clinical work, we considered how structuration theory and actor-network theory (ANT) might be combined to inform empirical investigation. Giddens (1984) argued that social structures and human agency are recursively linked and co-evolve. ANT studies the relationships that link people and technologies in dynamic networks. It considers how discourses become inscribed in data structures and decision models of software, making certain network relations irreversible. Stones' (2005) strong structuration theory (SST) is a refinement of Giddens' work, systematically concerned with empirical research. It views human agents as linked in dynamic networks of position-practices. A quadripartite approcach considers [a] external social structures (conditions for action); [b] internal social structures (agents' capabilities and what they 'know' about the social world); [c] active agency and actions and [d] outcomes as they feed back on the position-practice network. In contrast to early structuration theory and ANT, SST insists on disciplined conceptual methodology and linking this with empirical evidence. In this paper, we adapt SST for the study of technology programmes, integrating elements from material interactionism and ANT. We argue, for example, that the position-practice network can be a socio-technical one in which technologies in conjunction with humans can be studied as 'actants'. Human agents, with their complex socio-cultural frames, are required to instantiate technology in social practices. Structurally relevant properties inscribed and embedded in technological artefacts constrain and enable human agency. The fortunes of healthcare IT programmes might be studied in terms of the interplay between these factors. Copyright 2010 Elsevier Ltd. All rights reserved.
ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan
2016-09-15
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over othermore » common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.« less
Marín, Linda; Perfecto, Ivette
2013-04-01
Spiders are a very diverse group of invertebrate predators found in agroecosystems and natural systems. However, spider distribution, abundance, and eventually their ecological function in ecosystems can be influenced by abiotic and biotic factors such as agricultural intensification and dominant ants. Here we explore the influence of both agricultural intensification and the dominant arboreal ant Azteca instabilis on the spider community in coffee agroecosystems in southern Mexico. To measure the influence of the arboreal ant Azteca instabilis (F. Smith) on the spider community inhabiting the coffee layer of coffee agroecosystems, spiders were collected from coffee plants that were and were not patrolled by the ant in sites differing in agricultural intensification. For 2008, generalized linear mixed models showed that spider diversity was affected positively by agricultural intensification but not by the ant. However, results suggested that some spider species were associated with A. instabilis. Therefore, in 2009 we concentrated our research on the effect of A. instabilis on spider diversity and composition. For 2009, generalized linear mixed models show that spider richness and abundance per plant were significantly higher in the presence of A. instabilis. In addition, analyses of visual counts of insects and sticky traps data show that more resources were present in plants patrolled by the ant. The positive effect of A. instabilis on spiders seems to be caused by at least two mechanisms: high abundance of insects and protection against predators.
View of the 200ton derrick from east showing the boom ...
View of the 200-ton derrick from east showing the boom on it's rest and both the 200 -ton hoist and the 40-ton hoist ant their respective block and tackle. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Testing models of parental investment strategy and offspring size in ants.
Gilboa, Smadar; Nonacs, Peter
2006-01-01
Parental investment strategies can be fixed or flexible. A fixed strategy predicts making all offspring a single 'optimal' size. Dynamic models predict flexible strategies with more than one optimal size of offspring. Patterns in the distribution of offspring sizes may thus reveal the investment strategy. Static strategies should produce normal distributions. Dynamic strategies should often result in non-normal distributions. Furthermore, variance in morphological traits should be positively correlated with the length of developmental time the traits are exposed to environmental influences. Finally, the type of deviation from normality (i.e., skewed left or right, or platykurtic) should be correlated with the average offspring size. To test the latter prediction, we used simulations to detect significant departures from normality and categorize distribution types. Data from three species of ants strongly support the predicted patterns for dynamic parental investment. Offspring size distributions are often significantly non-normal. Traits fixed earlier in development, such as head width, are less variable than final body weight. The type of distribution observed correlates with mean female dry weight. The overall support for a dynamic parental investment model has implications for life history theory. Predicted conflicts over parental effort, sex investment ratios, and reproductive skew in cooperative breeders follow from assumptions of static parental investment strategies and omnipresent resource limitations. By contrast, with flexible investment strategies such conflicts can be either absent or maladaptive.
Pérez-Lachaud, Gabriela; Bartolo-Reyes, Juan Carlos; Quiroa-Montalván, Claudia M; Cruz-López, Leopoldo; Lenoir, Alain; Lachaud, Jean-Paul
2015-04-01
Communication in ants is based to a great extent on chemical compounds. Recognition of intruders is primarily based on cuticular hydrocarbon (CHC) profile matching but is prone to being cheated. Eucharitid wasps are specific parasitoids of the brood of ants; the immature stages are either well integrated within the colony or are protected within the host cocoons, whereas adult wasps at emergence must leave their host nest to reproduce and need to circumvent the ant recognition system to escape unscathed. The behavioral interactions between eucharitid wasps and workers of their host, the Neotropical ant Ectatomma tuberculatum, are characterized. In experimental bioassays, newly emerged parasitoids were not violently aggressed. They remained still and were grabbed by ants upon contact and transported outside the nest; host workers were even observed struggling to reject them. Parasitoids were removed from the nest within five minutes, and most were unharmed, although two wasps (out of 30) were killed during the interaction with the ants. We analyzed the CHCs of the ant and its two parasitoids, Dilocantha lachaudii and Isomerala coronata, and found that although wasps shared all of their compounds with the ants, each wasp species had typical blends and hydrocarbon abundance was also species specific. Furthermore, the wasps had relatively few CHCs compared to E. tuberculatum (22-44% of the host components), and these were present in low amounts. Wasps, only partially mimicking the host CHC profile, were immediately recognized as alien and actively removed from the nest by the ants. Hexane-washed wasps were also transported to the refuse piles, but only after being thoroughly inspected and after most of the workers had initially ignored them. Being recognized as intruder may be to the parasitoids' advantage, allowing them to quickly leave the natal nest, and therefore enhancing the fitness of these very short lived parasitoids. We suggest that eucharitids take advantage of the hygienic behavior of ants to quickly escape from their host nests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scope of Various Random Number Generators in Ant System Approach for TSP
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2007-01-01
Experimented on heuristic, based on an ant system approach for traveling Salesman problem, are several quasi and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is just to seek an answer to the controversial performance ranking of the generators in probabilistic/statically sense.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan
2013-01-01
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
Grob, Robin; Fleischmann, Pauline N.; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system. PMID:29184487
Grob, Robin; Fleischmann, Pauline N; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance-presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Alvarenga, Júlio Miguel; Vieira, Cecília Rodrigues; Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi
2017-01-01
Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services.
Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi
2017-01-01
Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services. PMID:29077763
USDA-ARS?s Scientific Manuscript database
Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...
Tools for visually exploring biological networks.
Suderman, Matthew; Hallett, Michael
2007-10-15
Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.
Seagraves, Michael P; McPherson, Robert M
2003-06-01
The red imported fire ant, Solenopsis invicta Buren, is an abundant predator in cropping systems throughout its range. It has been documented to be an important predator of numerous crop pests, as well as being an agricultural pest itself. Information on the impact of insecticides on natural enemies such as fire ants is necessary for the integration of biological and chemical control tactics in an effective pest management program. Therefore, a residual vial bioassay was developed to determine the concentration-mortality responses of S. invicta workers to four commonly used insecticides: acephate, chlorpyrifos, methomyl and lambda-cyhalothrin. Fire ant workers showed a mortality response to serial dilutions to all four chemicals. Methomyl (LC50 0.04 microg/vial, fiducial limits 0.03-0.06) was the most toxic, followed by chlorpyrifos (LC50 0.11 microg/vial, fiducial limits 0.07-0.17) and acephate (LC50 0.76 microg/vial, fiducial limits 0.50-1.04). Of the chemicals assayed, it took a much higher concentration of lambda-cyhalothrin (LC50 2.30 microg/vial, fiducial limits 1.57-3.59) to kill 50% of the workers compared with the other three chemicals. The results of this study demonstrate the wide range in responses of fire ants to four insecticides that are labeled and commonly used on numerous agricultural crops throughout the United States. These results further suggest the possibility of using a discriminating dose of lambda-cyhalothrin to control the target pest species while conserving fire ants in the agricultural systems in which their predatory behavior is beneficial to the integrated pest management program.
Ants as a measure of effectiveness of habitat conservation planning in southern California
Mitrovich, Milan J.; Matsuda, Tritia; Pease, Krista H.; Fisher, Robert N.
2010-01-01
In the United States multispecies habitat conservation plans were meant to be the solution to conflicts between economic development and protection of biological diversity. Although now widely applied, questions exist concerning the scientific credibility of the conservation planning process and effectiveness of the plans. We used ants to assess performance of one of the first regional conservation plans developed in the United States, the Orange County Central-Coastal Natural Community Conservation Plan (NCCP), in meeting its broader conservation objectives of biodiversity and ecosystem-level protection. We collected pitfall data on ants for over 3 years on 172 sites established across a network of conservation lands in coastal southern California. Although recovered native ant diversity for the study area was high, site-occupancy models indicated the invasive and ecologically disruptive Argentine ant ( Linepithema humile) was present at 29% of sites, and sites located within 200 m of urban and agricultural areas were more likely to have been invaded. Within invaded sites, native ants were largely displaced, and their median species richness declined by more than 60% compared with uninvaded sites. At the time of planning, 24% of the 15,133-ha reserve system established by Orange County NCCP fell within 200 m of an urban or agricultural edge. With complete build out of lands surrounding the reserve, the proportion of the reserve system vulnerable to invasion will grow to 44%. Our data indicate that simply protecting designated areas from development is not enough. If habitat conservation plans are to fulfill their conservation promise of ecosystem-level protection, a more-integrated and systematic approach to the process of habitat conservation planning is needed.
2017-01-01
Phylogenetic and biogeographic analyses can enhance our understanding of multispecies interactions by placing the origin and evolution of such interactions in a temporal and geographical context. We use a phylogenomic approach—ultraconserved element sequence capture—to investigate the evolutionary history of an iconic multispecies mutualism: Neotropical acacia ants (Pseudomyrmex ferrugineus group) and their associated Vachellia hostplants. In this system, the ants receive shelter and food from the host plant, and they aggressively defend the plant against herbivores and competing plants. We confirm the existence of two separate lineages of obligate acacia ants that convergently occupied Vachellia and evolved plant-protecting behaviour, from timid ancestors inhabiting dead twigs in rainforest. The more diverse of the two clades is inferred to have arisen in the Late Miocene in northern Mesoamerica, and subsequently expanded its range throughout much of Central America. The other lineage is estimated to have originated in southern Mesoamerica about 3 Myr later, apparently piggy-backing on the pre-existing mutualism. Initiation of the Pseudomyrmex/Vachellia interaction involved a shift in the ants from closed to open habitats, into an environment with more intense plant herbivory. Comparative studies of the two lineages of mutualists should provide insight into the essential features binding this mutualism. PMID:28298350
Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter
2012-06-01
Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.
Narendra, Ajay; Greiner, Birgit; Ribi, Willi A; Zeil, Jochen
2016-08-15
Ants of the Australian genus Myrmecia partition their foraging niche temporally, allowing them to be sympatric with overlapping foraging requirements. We used histological techniques to study the light and dark adaptation mechanisms in the compound eyes of diurnal (Myrmecia croslandi), crepuscular (M. tarsata, M. nigriceps) and nocturnal ants (M. pyriformis). We found that, except in the day-active species, all ants have a variable primary pigment cell pupil that constricts the crystalline cone in bright light to control for light flux. We show for the nocturnal M. pyriformis that the constriction of the crystalline cone by the primary pigment cells is light dependent whereas the opening of the aperture is regulated by an endogenous rhythm. In addition, in the light-adapted eyes of all species, the retinular cell pigment granules radially migrate towards the rhabdom, a process that in both the day-active M. croslandi and the night-active M. pyriformis is driven by ambient light intensity. Visual system properties thus do not restrict crepuscular and night-active ants to their temporal foraging niche, while day-active ants require high light intensities to operate. We discuss the ecological significance of these adaptation mechanisms and their role in temporal niche partitioning. © 2016. Published by The Company of Biologists Ltd.
Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host
Konrad, Matthias; Grasse, Anna V.; Tragust, Simon; Cremer, Sylvia
2015-01-01
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. PMID:25473011
von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C
2016-01-01
Army ant colonies host a diverse community of arthropod symbionts. Among the best-studied symbiont communities are those of Neotropical army ants of the genus Eciton. It is clear, however, that even in these comparatively well studied systems, a large proportion of symbiont biodiversity remains unknown. Even more striking is our lack of knowledge regarding the nature and specificity of these host-symbiont interactions. Here we surveyed the diversity and host specificity of rove beetles of the genus Tetradonia Wasmann, 1894 (Staphylinidae: Aleocharinae). Systematic community sampling of 58 colonies of the six local Eciton species at La Selva Biological Station, Costa Rica, combined with an integrative taxonomic approach, allowed us to uncover species diversity, host specificity, and co-occurrence patterns of symbionts in unprecedented detail. We used an integrative taxonomic approach combining morphological and genetic analyses, to delineate species boundaries. Mitochondrial DNA barcodes were analyzed for 362 Tetradonia specimens, and additional nuclear markers for a subset of 88 specimens. All analyses supported the presence of five Tetradonia species, including two species new to science. Host specificity is highly variable across species, ranging from generalists such as T. laticeps, which parasitizes all six local Eciton species, to specialists such as T. lizonae, which primarily parasitizes a single species, E. hamatum. Here we provide a dichotomous key along with diagnostic molecular characters for identification of Tetradonia species at La Selva Biological Station. By reliably assessing biodiversity and providing tools for species identification, we hope to set the baseline for future studies of the ecological and evolutionary dynamics in these species-rich host-symbiont networks.
von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J. C.
2016-01-01
Army ant colonies host a diverse community of arthropod symbionts. Among the best-studied symbiont communities are those of Neotropical army ants of the genus Eciton. It is clear, however, that even in these comparatively well studied systems, a large proportion of symbiont biodiversity remains unknown. Even more striking is our lack of knowledge regarding the nature and specificity of these host-symbiont interactions. Here we surveyed the diversity and host specificity of rove beetles of the genus Tetradonia Wasmann, 1894 (Staphylinidae: Aleocharinae). Systematic community sampling of 58 colonies of the six local Eciton species at La Selva Biological Station, Costa Rica, combined with an integrative taxonomic approach, allowed us to uncover species diversity, host specificity, and co-occurrence patterns of symbionts in unprecedented detail. We used an integrative taxonomic approach combining morphological and genetic analyses, to delineate species boundaries. Mitochondrial DNA barcodes were analyzed for 362 Tetradonia specimens, and additional nuclear markers for a subset of 88 specimens. All analyses supported the presence of five Tetradonia species, including two species new to science. Host specificity is highly variable across species, ranging from generalists such as T. laticeps, which parasitizes all six local Eciton species, to specialists such as T. lizonae, which primarily parasitizes a single species, E. hamatum. Here we provide a dichotomous key along with diagnostic molecular characters for identification of Tetradonia species at La Selva Biological Station. By reliably assessing biodiversity and providing tools for species identification, we hope to set the baseline for future studies of the ecological and evolutionary dynamics in these species-rich host-symbiont networks. PMID:27829037
First calibration results and antenna placement studies of the RPW ANT instrument on Solar Orbiter
NASA Astrophysics Data System (ADS)
Sampl, M.; Oswald, T. H.; Rucker, H. O.; Plettemeier, D.; Maksimovic, M.; Macher, W.
2010-12-01
We report our analyses of the Radio and Plasma Wave Analyzer (RPW ANT) onboard the Solar Orbiter spacecraft with a focus on the high-frequency electric antennas. The aim of the Solar Orbiter mission is to determine in-situ properties and dynamics of solarwind plasma, electric and magnetic fields in the near-Sun heliosphere. The mission is planned to be launched in 2017 with a spacecraft trajectory of, for the first time, partial co-rotation with the Sun, providing a full suite of in-situ and remote sensing instruments from as close as 0.25 AU. The RPW ANT high-frequency electric sensors, consist of three cylindrical antennas mounted on appendant booms extruded from the central body of the spacecraft. Due to the parasitic effects of the conducting spacecraft body and solar panels the true antenna properties (effective axes and length; capacitances) do not coincide with their physical representations. In order to analyze the antenna system we applied a numerical method. The current distribution on the spacecraft body and the effective length vector was calculated, by solving the underlying field equations using electromagnetic codes. In the applied method the spacecraft is modelled as a patch-grid. The numerical analysis of the reception properties, including several placement options of these antennas, is presented. Since the Solar Orbiter spacecraft body and antennas are not yet finally specified, the results can be used to evaluate the performance of the proposed sensors. In particular, goniopolarimetry techniques like polarization analysis, direction finding and ray tracing depend crucially on the effective axes and the therefore the corresponding data analysis significantly improves. Software model (patch-grid) of the Solar Orbiter spacecraft
Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De
2002-03-01
To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.
Meng, Qiang; Weng, Jinxian
2013-01-01
Taking into account the uncertainty caused by exogenous factors, the accident notification time (ANT) and emergency medical service (EMS) response time were modeled as 2 random variables following the lognormal distribution. Their mean values and standard deviations were respectively formulated as the functions of environmental variables including crash time, road type, weekend, holiday, light condition, weather, and work zone type. Work zone traffic accident data from the Fatality Analysis Report System between 2002 and 2009 were utilized to determine the distributions of the ANT and the EMS arrival time in the United States. A mixed logistic regression model, taking into account the uncertainty associated with the ANT and the EMS response time, was developed to estimate the risk of death. The results showed that the uncertainty of the ANT was primarily influenced by crash time and road type, whereas the uncertainty of EMS response time is greatly affected by road type, weather, and light conditions. In addition, work zone accidents occurring during a holiday and in poor light conditions were found to be statistically associated with a longer mean ANT and longer EMS response time. The results also show that shortening the ANT was a more effective approach in reducing the risk of death than the EMS response time in work zones. To shorten the ANT and the EMS response time, work zone activities are suggested to be undertaken during non-holidays, during the daytime, and in good weather and light conditions.
Detection and dispersal of explosives by ants
NASA Astrophysics Data System (ADS)
McFee, John E.; Achal, Steve; Faust, Anthony A.; Puckrin, Eldon; House, Andrew; Reynolds, Damon; McDougall, William; Asquini, Adam
2009-05-01
The ability of animals to detect explosives is well documented. Mammalian systems, insects and even single celled organisms have all been studied and in a few cases employed to detect explosives. This paper will describe the potential ability of ants to detect, disperse and possibly neutralize bulk explosives. In spring 2008 a team of DRDC and Itres scientists conducted experiments on detecting surface-laid and buried landmines, improvised explosive devices (IEDs) and their components. Measurements were made using state-of-the-art short wave and thermal infrared hyperspectral imagers mounted on a personnel lift. During one of the early morning measurement sessions, a wispy, long linear trail was seen to emanate several meters from piles of explosives that were situated on the ground. Upon close visual inspection, it was observed that ants had found the piles of explosives and were carrying it to their ant hill, a distance of almost 20 meters from the piles. Initial analysis of the hyperspectral images clearly revealed the trail to the ant hill of explosives, despite being present in quantities not visible to the unaided eye. This paper details these observations and discusses them in the context of landmine and IED detection and neutralization. Possible reasons for such behaviour are presented. A number of questions regarding the behaviour, many pertinent to the use of ants in a counter-landmine/IED role, are presented and possible methods of answering them are discussed. Anecdotal evidence from deminers of detection and destruction of explosives by ants are presented.
Recent human history governs global ant invasion dynamics
Cleo Bertelsmeier; Sébastien Ollier; Andrew Liebhold; Laurent Keller
2017-01-01
Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien...
Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance
Robert J. Warren; Lacy Chick
2013-01-01
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and...
Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo
2010-01-01
For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.
Li, Yang; Li, Guoqing; Wang, Zhenhao
2015-01-01
In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.
Activity-driven changes in the mechanical properties of fire ant aggregations
NASA Astrophysics Data System (ADS)
Tennenbaum, Michael; Fernandez-Nieves, Alberto
2017-11-01
Fire ant aggregations are active materials composed of individual constituents that are able to transform internal energy into work. We find using rheology and direct visualization that the aggregation undergoes activity cycles that affect the mechanical properties of the system. When the activity is high, the aggregation approximately equally stores and dissipates energy, it is more homogeneous, and exerts a high outward force. When the activity is low, the aggregation is predominantly elastic, it is more heterogeneous, and it exerts a small outward force. We rationalize our results using a simple kinetic model where the number of active ants within the aggregation is the essential quantity.
Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision
NASA Astrophysics Data System (ADS)
Gai, Qiyang
2018-01-01
Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.
Ant- and Ant-Colony-Inspired ALife Visual Art.
Greenfield, Gary; Machado, Penousal
2015-01-01
Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.
Manica, Scheila
2014-12-01
The INTERPOL (International Police Organization) Disaster Victim Identification forms represent a global standard for mass disasters and the collection of international ante-mortem dental records. These records can now be interpreted more easily with the help of a new online dictionary of dental terminology for translating dental charts from several languages into English. The free website launched in 2013 (www.internationaldentalcharts.org) is the result of a M.Sc project on international dental charts: Guide of International Dental Charts translated into English decoding international ante-mortem dental charts for INTERPOL's Ante-mortem (AM) Disaster Victim Identification (DVI) forms (Section F2), completed in 2011. The aim of this study was to analyze the tooth numbering system, symbols and abbreviations used on dental charting worldwide. A letter was sent to the national dental associations of the 188 INTERPOL member countries, addressing the goals of the project and asking for samples of dental charts. A total of 45 countries replied and 32 common dental alterations were selected for translation, such as: decay, filling and extraction. Their symbols and/or abbreviations used were summarized in various languages. More than one system of dental notations was used in the same country whereas there was an absence of standard systems in other countries. Some of the samples of charts received were of little value. However, a fair amount of useful information and detail was found in most of them. This free consultation website could be useful when the handwriting, symbols, and abbreviations on the ante-mortem dental charts are not clear. It will be particularly applicable when ante-mortem xrays and casts are not available.
Bolek, Siegfried; Wittlinger, Matthias; Wolf, Harald
2012-09-15
When finding more food than one is able to carry home, should one come back to the site to exploit it further? This question is crucial for central place foragers that provide for a home place with brood or nest mates. The benefit of returning has to be weighed against the chance of finding food elsewhere and the resources available. Desert ants Cataglyphis fortis are well-studied examples when it comes to navigating back and forth between their nest and a foraging area, due to their primary reliance on path integration in the open and featureless desert habitat. The ants use path integration not only for a safe return from their foraging trips but also for future returns to plentiful feeding sites. The direction from the nest that has previously yielded food items is preferred for future foraging trips, a phenomenon termed sector fidelity. What prompts the ants to return to a particular site, and how faithfully they search for that place, has not been well studied. We examine the evaluation of food sources in channel experiments by varying both the number of food items in a feeder and the number of visits to the feeder before testing search distances of foragers returning to the feeding site. Ants exhibited more focused searches for plentiful food sources than for sources with only few food items upon their first return visit. After several successful visits, the ants always searched thoroughly for the food source, independent of the amount of food offered. Thus, desert ants consider both food abundance and reliability of food encounter, with corroborative learning of reliability gradually overriding the initial preference for plentiful feeders. The density of food items appears to be used by the ants as a proxy for food abundance. On the level of our analysis, the searches performed in the experimental channels are indistinguishable from those performed in the open desert terrain. The present results not only demonstrate how otherwise well-studied desert ants assess yield and experience with reliability of food sources, but also establish a model system for future study of how itemised food sources are exploited.
Emergent oscillations assist obstacle negotiation during ant cooperative transport.
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Gov, Nir S; Feinerman, Ofer
2016-12-20
Collective motion by animal groups is affected by internal interactions, external constraints, and the influx of information. A quantitative understanding of how these different factors give rise to different modes of collective motion is, at present, lacking. Here, we study how ants that cooperatively transport a large food item react to an obstacle blocking their path. Combining experiments with a statistical physics model of mechanically coupled active agents, we show that the constraint induces a deterministic collective oscillatory mode that facilitates obstacle circumvention. We provide direct experimental evidence, backed by theory, that this motion is an emergent group effect that does not require any behavioral changes at the individual level. We trace these relaxation oscillations to the interplay between two forces; informed ants pull the load toward the nest whereas uninformed ants contribute to the motion's persistence along the tangential direction. The model's predictions that oscillations appear above a critical system size, that the group can spontaneously transition into its ordered phase, and that the system can exhibit complete rotations are all verified experimentally. We expect that similar oscillatory modes emerge in collective motion scenarios where the structure of the environment imposes conflicts between individually held information and the group's tendency for cohesiveness.
Composite collective decision-making
Czaczkes, Tomer J.; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen
2015-01-01
Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. PMID:26019155
Predatory birds and ants partition caterpillar prey by body size and diet breadth.
Singer, Michael S; Clark, Robert E; Lichter-Marck, Issac H; Johnson, Emily R; Mooney, Kailen A
2017-10-01
The effects of predator assemblages on herbivores are predicted to depend critically on predator-predator interactions and the extent to which predators partition prey resources. The role of prey heterogeneity in generating such multiple predator effects has received limited attention. Vertebrate and arthropod insectivores constitute two co-dominant predatory taxa in many ecosystems, and the emergent properties of their joint effects on insect herbivores inform theory on multiple predator effects as well as biological control of insect herbivores. Here we use a large-scale factorial manipulation to assess the extent to which birds and ants engage in antagonistic predator-predator interactions and the consequences of heterogeneity in herbivore body size and diet breadth (i.e. the diversity of host plants used) for prey partitioning. We excluded birds and reduced ant density (by 60%) in the canopies of eight northeastern USA deciduous tree species during two consecutive years and measured the community composition and traits of lepidopteran larvae (caterpillars). Birds did not affect ant density, implying limited intraguild predation between these taxa in this system. Birds preyed selectively upon large-bodied caterpillars (reducing mean caterpillar length by 12%) and ants preyed selectively upon small-bodied caterpillars (increasing mean caterpillar length by 6%). Birds and ants also partitioned caterpillar prey by diet breadth. Birds reduced the frequency dietary generalist caterpillars by 24%, while ants had no effect. In contrast, ants reduced the frequency of dietary specialists by 20%, while birds had no effect, but these effects were non-additive; under bird exclusion, ants had no detectable effect, while in the presence of birds, they reduced the frequency of specialists by 40%. As a likely result of prey partitioning by body size and diet breadth, the combined effects of birds and ants on total caterpillar density were additive, with birds and ants reducing caterpillar density by 44% and 20% respectively. These results show evidence for the role of prey heterogeneity in driving functional complementarity among predators and enhanced top-down control. Heterogeneity in herbivore body size and diet breadth, as well as other prey traits, may represent key predictors of the strength of top-down control from predator communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas
2014-01-01
Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.
Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas
2015-01-01
Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753
Autonomous control of production networks using a pheromone approach
NASA Astrophysics Data System (ADS)
Armbruster, D.; de Beer, C.; Freitag, M.; Jagalski, T.; Ringhofer, C.
2006-04-01
The flow of parts through a production network is usually pre-planned by a central control system. Such central control fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks according to low work-in-progress and short throughput times, an autonomous control approach is proposed. Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their way to communicate with following ants. The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model with limited service rates in a general network topology is derived and compared to a discrete-event simulation model. Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g. discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.
NASA Astrophysics Data System (ADS)
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Task partitioning in a ponerine ant.
Theraulaz, Guy; Bonabeau, Eric; Sole, Ricard V; Schatz, Bertrand; Deneubourg, Jean-Louis
2002-04-21
This paper reports a study of the task partitioning observed in the ponerine ant Ectatomma ruidum, where prey-foraging behaviour can be subdivided into two categories: stinging and transporting. Stingers kill live prey and transporters carry prey corpses back to the nest. Stinging and transporting behaviours are released by certain stimuli through response thresholds; the respective stimuli for stinging and transporting appear to be the number of live prey and the number of prey corpses. A response threshold model, the parameters of which are all measured empirically, reproduces a set of non-trivial colony-level dynamical patterns observed in the experiments. This combination of modelling and empirical work connects explicitly the level of individual behaviour with colony-level patterns of work organization. Copyright 2002 Elsevier Science Ltd. All rights reserved.
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
Vardhana, Pratibhasri A.; Julius, Martin A.; Pollak, Susan V.; Lustbader, Evan G.; Trousdale, Rhonda K.; Lustbader, Joyce W.
2009-01-01
Ovarian hyperstimulation syndrome (OHSS) is a complication of in vitro fertilization associated with physiological changes after hCG administration to induce final oocyte maturation. It presents as widespread increases in vascular permeability and, in rare cases, results in cycle cancellation, multi-organ dysfunction, and pregnancy termination. These physiological changes are due primarily to activation of the vascular endothelial growth factor (VEGF) system in response to exogenous human chorionic gonadotropin (hCG). An hCG antagonist (hCG-Ant) could attenuate these effects by competitively binding to the LH/CG receptor, thereby blocking LH activity in vivo. We expressed a form of hCG that lacks three of its four N-linked glycosylation sites and tested its efficacy as an antagonist. The hCG-Ant binds the LH receptor with an affinity similar to native hCG and inhibits cAMP response in vitro. In a rat model for ovarian stimulation, hCG-Ant dramatically reduces ovulation and steroid hormone production. In a well-established rat OHSS model, vascular permeability and vascular endothelial growth factor (VEGF) expression are dramatically reduced after hCG-Ant treatment. Finally, hCG-Ant does not appear to alter blastocyst development when given after hCG in mice. These studies demonstrate that removing specific glycosylation sites on native hCG can produce an hCG-Ant that is capable of binding without activating the LH receptor and blocking the actions of hCG. Thus hCG-Ant will be investigated as a potential therapy for OHSS. PMID:19443574
Graham, Sean P; Freidenfelds, Nicole A; McCormick, Gail L; Langkilde, Tracy
2012-05-01
As anthropogenic stressors increase exponentially in the coming decades, native vertebrates will likely face increasing threats from these novel challenges. The success or failure of the primary physiological mediator of these stressors--the HPA axis--will likely involve numerous and chaotic outcomes. Among the most challenging of these new threats are invasive species. These have the capacity to simultaneously challenge the HPA axis and the immune system as they are often associated with, or the cause of, emerging infectious diseases, and energetic tradeoffs with the HPA response can have immunosuppressive effects. To determine the effects of invasive species on the vertebrate GC response to a novel stressor, and on immunity, we examined the effects of invasive fire ants on native lizards, comparing lizards from sites with long histories with fire ants to those outside the invasion zone. We demonstrated higher baseline and acute stress (captive restraint) CORT levels in lizards from within fire ant invaded areas; females are more strongly affected than males, suggesting context-specific effects of invasion. We found no effect of fire ant invasion on the immune parameters we measured (complement bacterial lysis and antibody hemagglutination) with the exception of ectoparasite infestation. Mites were far less prevalent on lizards within fire ant invaded sites, suggesting fire ants may actually benefit lizards in this regard. This study suggests that invasive species may impose physiological stress on native vertebrates, but that the consequences of this stress may be complicated and unpredictable. Copyright © 2012 Elsevier Inc. All rights reserved.
Joint optimization of maintenance, buffers and machines in manufacturing lines
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Nourelfath, Mustapha
2018-01-01
This article considers a series manufacturing line composed of several machines separated by intermediate buffers of finite capacity. The goal is to find the optimal number of preventive maintenance actions performed on each machine, the optimal selection of machines and the optimal buffer allocation plan that minimize the total system cost, while providing the desired system throughput level. The mean times between failures of all machines are assumed to increase when applying periodic preventive maintenance. To estimate the production line throughput, a decomposition method is used. The decision variables in the formulated optimal design problem are buffer levels, types of machines and times between preventive maintenance actions. Three heuristic approaches are developed to solve the formulated combinatorial optimization problem. The first heuristic consists of a genetic algorithm, the second is based on the nonlinear threshold accepting metaheuristic and the third is an ant colony system. The proposed heuristics are compared and their efficiency is shown through several numerical examples. It is found that the nonlinear threshold accepting algorithm outperforms the genetic algorithm and ant colony system, while the genetic algorithm provides better results than the ant colony system for longer manufacturing lines.
Ants avoid superinfections by performing risk-adjusted sanitary care.
Konrad, Matthias; Pull, Christopher D; Metzler, Sina; Seif, Katharina; Naderlinger, Elisabeth; Grasse, Anna V; Cremer, Sylvia
2018-03-13
Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.
Dry habitats were crucibles of domestication in the evolution of agriculture in ants.
Branstetter, Michael G; Ješovnik, Ana; Sosa-Calvo, Jeffrey; Lloyd, Michael W; Faircloth, Brant C; Brady, Seán G; Schultz, Ted R
2017-04-12
The evolution of ant agriculture, as practised by the fungus-farming 'attine' ants, is thought to have arisen in the wet rainforests of South America about 55-65 Ma. Most subsequent attine agricultural evolution, including the domestication event that produced the ancestor of higher attine cultivars, is likewise hypothesized to have occurred in South American rainforests. The 'out-of-the-rainforest' hypothesis, while generally accepted, has never been tested in a phylogenetic context. It also presents a problem for explaining how fungal domestication might have occurred, given that isolation from free-living populations is required. Here, we use phylogenomic data from ultra-conserved element (UCE) loci to reconstruct the evolutionary history of fungus-farming ants, reduce topological uncertainty, and identify the closest non-fungus-growing ant relative. Using the phylogeny we infer the history of attine agricultural systems, habitat preference and biogeography. Our results show that the out-of-the-rainforest hypothesis is correct with regard to the origin of attine ant agriculture; however, contrary to expectation, we find that the transition from lower to higher agriculture is very likely to have occurred in a seasonally dry habitat, inhospitable to the growth of free-living populations of attine fungal cultivars. We suggest that dry habitats favoured the isolation of attine cultivars over the evolutionary time spans necessary for domestication to occur. © 2017 The Authors.
Dry habitats were crucibles of domestication in the evolution of agriculture in ants
2017-01-01
The evolution of ant agriculture, as practised by the fungus-farming ‘attine’ ants, is thought to have arisen in the wet rainforests of South America about 55–65 Ma. Most subsequent attine agricultural evolution, including the domestication event that produced the ancestor of higher attine cultivars, is likewise hypothesized to have occurred in South American rainforests. The ‘out-of-the-rainforest’ hypothesis, while generally accepted, has never been tested in a phylogenetic context. It also presents a problem for explaining how fungal domestication might have occurred, given that isolation from free-living populations is required. Here, we use phylogenomic data from ultra-conserved element (UCE) loci to reconstruct the evolutionary history of fungus-farming ants, reduce topological uncertainty, and identify the closest non-fungus-growing ant relative. Using the phylogeny we infer the history of attine agricultural systems, habitat preference and biogeography. Our results show that the out-of-the-rainforest hypothesis is correct with regard to the origin of attine ant agriculture; however, contrary to expectation, we find that the transition from lower to higher agriculture is very likely to have occurred in a seasonally dry habitat, inhospitable to the growth of free-living populations of attine fungal cultivars. We suggest that dry habitats favoured the isolation of attine cultivars over the evolutionary time spans necessary for domestication to occur. PMID:28404776
Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host.
Konrad, Matthias; Grasse, Anna V; Tragust, Simon; Cremer, Sylvia
2015-01-22
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Mind Wandering and Task-Focused Attention: ERP Correlates.
Gonçalves, Óscar F; Rêgo, Gabriel; Conde, Tatiana; Leite, Jorge; Carvalho, Sandra; Lapenta, Olívia Morgan; Boggio, Paulo S
2018-05-15
Previous studies looking at how Mind Wandering (MW) impacts performance in distinct Focused Attention (FA) systems, using the Attention Network Task (ANT), showed that the presence of pure MW thoughts did not impact the overall performance of ANT (alert, orienting and conflict) performance. However, it still remains unclear if the lack of interference of MW in the ANT, reported at the behavioral level, has a neurophysiological correspondence. We hypothesize that a distinct cortical processing may be required to meet attentional demands during MW. The objective of the present study was to test if, given similar levels of ANT performance, individuals predominantly focusing on MW or FA show distinct cortical processing. Thirty-three healthy participants underwent an EEG high-density acquisition while they were performing the ANT. MW was assessed following the ANT using an adapted version of the Resting State Questionnaire (ReSQ). The following ERP's were analyzed: pN1, pP1, P1, N1, pN, and P3. At the behavioral level, participants were slower and less accurate when responding to incongruent than to congruent targets (conflict effect), benefiting from the presentation of the double (alerting effect) and spatial (orienting effect) cues. Consistent with the behavioral data, ERP's waves were discriminative of distinct attentional effects. However, these results remained true irrespective of the MW condition, suggesting that MW imposed no additional cortical demand in alert, orienting, and conflict attention tasks.
Ant-lepidopteran associations along African forest edges
NASA Astrophysics Data System (ADS)
Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno
2017-02-01
Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.
Dorosevich, A E; Bekhtereva, I A; Sudilovskaia, V V
2009-01-01
The investigation has indicated the presence of adrenergic and cholinergic autonomic nerve terminals (ANT) in the tissues of squamous cell carcinomas of the cervix uteri in a tumor growth area and contralaterally. Heterogeneity of the local neuromediator background in the tumor growth area and contralaterally may be explained, by studying the specific features of the cell microenvironment of ANT.
Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.
Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675
Sendoya, Sebastián F; Oliveira, Paulo S
2015-03-01
Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Interactions of the polarization and the sun compass in path integration of desert ants.
Lebhardt, Fleur; Ronacher, Bernhard
2014-08-01
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.
Schultner, Eva; Gardner, Andy; Karhunen, Markku; Helanterä, Heikki
2014-12-01
Conflict arises among social organisms when individuals differ in their inclusive-fitness interests. Ant societies are excellent models for understanding how genetic relatedness mediates conflict intensity. However, although conflicts within colonies typically arise over offspring production, the role of larvae as actors in social conflict has received little attention. We develop and empirically test kin-selection theory of larval egg cannibalism in ant societies. Specifically, we investigate how selection for cannibalism is mediated by nestmate relatedness and larval sex in a mathematical model and then test the model's predictions by measuring cannibalism levels in eight ant species with varying nestmate relatedness. In line with our theoretical predictions, cannibalism levels in larvae were significantly influenced by relatedness and sex. Increased relatedness was associated with reduced levels of cannibalism, indicating that larval behavior is mediated by inclusive-fitness considerations. Levels of cannibalism were significantly higher in male larvae, and our model suggests that this is due to sex differences in the benefits of cannibalism. By examining the selfish interests of larvae and the constraints they face in a social environment, our study presents a novel perspective on conflict in ants and on the evolution of selfish elements in social systems in general.
Vision for navigation: What can we learn from ants?
Graham, Paul; Philippides, Andrew
2017-09-01
The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Ant-seed mutualisms: Can red imported fire ants sour the relationship?
Zettler, J.A.; Spira, T.P.; Allen, Craig R.
2001-01-01
Invasion by the red imported fire ant, Solenopsis invicta, has had negative impacts on individual animal and plant species, but little is known about how S. invicta affects complex mutualistic relationships. In some eastern forests of North America, 30% of herbaceous species have ant-dispersed seeds. We conducted experiments to determine if fire ants are attracted to seeds of these plant species and assessed the amount of scarification or damage that results from handling by fire ants. Fire ants removed nearly 100% of seeds of the ant-dispersed plants Trillium undulatum, T. discolor, T. catesbaei, Viola rotundifolia, and Sanguinaria canadensis. In recovered seeds fed to ant colonies, fire ants scarified 80% of S. canadensis seeds and destroyed 86% of V. rotundifolia seeds. Our study is the first to document that red imported fire ants are attracted to and remove seeds of species adapted for ant dispersal. Moreover, fire ants might damage these seeds and discard them in sites unfavorable for germination and seedling establishment. ?? 2001 Elsevier Science Ltd. All rights reserved.
Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056
Adapting an ant colony metaphor for multi-robot chemical plume tracing.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments.
Price, Shauna L; Etienne, Rampal S; Powell, Scott
2016-04-01
Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Distributed leadership and adaptive decision-making in the ant Tetramorium caespitum.
Collignon, B; Detrain, C
2010-04-22
In the ant species Tetramorium caespitum, communication and foraging patterns rely on group-mass recruitment. Scouts having discovered food recruit nestmates and behave as leaders by guiding groups of recruits to the food location. After a while, a mass recruitment takes place in which foragers follow a chemical trail. Since group recruitment is crucial to the whole foraging process, we investigated whether food characteristics induce a tuning of recruiting stimuli by leaders that act upon the dynamics and size of recruited groups. High sucrose concentration triggers the exit of a higher number of groups that contain twice as many ants and reach the food source twice as fast than towards a weakly concentrated one. Similar trends were found depending on food accessibility: for a cut mealworm, accessibility to haemolymph results in a faster formation of larger groups than for an entire mealworm. These data provide the background for developing a stochastic model accounting for exploitation patterns by group-mass recruiting species. This model demonstrates how the modulations performed by leaders drive the colony to select the most profitable food source among several ones. Our results highlight how a minority of individuals can influence collective decisions in societies based on a distributed leadership.
Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber
2014-11-01
Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny.
de Vega, Clara; Herrera, Carlos M
2013-04-01
Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.
ERIC Educational Resources Information Center
Daugherty, Belinda
2001-01-01
Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)
Delloye, Justin; Peeters, Dominique; Thomas, Isabelle
2015-01-01
In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system. PMID:26308858
Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul
2015-01-01
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.
Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements.
Arcila Hernández, Lina M; Sanders, Jon G; Miller, Gabriel A; Ravenscraft, Alison; Frederickson, Megan E
2017-12-01
Many arboreal ants depend on myrmecophytic plants for both food and shelter; in return, these ants defend their host plants against herbivores, which are often insects. Ant-plant and other mutualisms do not necessarily involve the exchange of costly rewards or services; they may instead result from by-product benefits, or positive outcomes that do not entail a cost for one or both partners. Here, we examined whether the plant-ant Allomerus octoarticulatus pays a short-term cost to defend their host plants against herbivores, or whether plant defense is a by-product benefit of ant foraging for insect prey. Because the food offered by ant-plants is usually nitrogen-poor, arboreal ants may balance their diets by consuming insect prey or associating with microbial symbionts to acquire nitrogen, potentially shifting the costs and benefits of plant defense for the ant partner. To determine the effect of ant diet on an ant-plant mutualism, we compared the behavior, morphology, fitness, stable isotope signatures, and gaster microbiomes of A. octoarticulatus ants nesting in Cordia nodosa trees maintained for nearly a year with or without insect herbivores. At the end of the experiment, ants from herbivore exclosures preferred protein-rich baits more than ants in the control (i.e., herbivores present) treatment. Furthermore, workers in the control treatment were heavier than in the herbivore-exclusion treatment, and worker mass predicted reproductive output, suggesting that foraging for insect prey directly increased ant colony fitness. The gaster microbiome of ants was not significantly affected by the herbivore exclusion treatment. We conclude that the defensive behavior of some phytoecious ants is a by-product of their need for external protein sources; thus, the consumption of insect herbivores by ants benefits both the ant colony and the host plant. © 2017 by the Ecological Society of America.
Nicklen, E Fleur; Wagner, Diane
2006-05-01
Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.
Fock, Heino O; Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems.
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health
Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems. PMID:27509185
ANTS/PAM: Future Exploration of the Asteroid Belt
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.
2004-05-01
The Autonomous Nano-Technology Swarm (ANTS) is applied to the Prospecting Asteroid Mission (PAM) concept, as part of a NASA RASC study. The ANTS architecture is inspired by success of social insect colonies, based on the division of labor within the colonies: 1) within their specialties, individual specialists generally outperform general-ists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outper-forms the group of generalists. ANTS as applied to PAM involves a thousand individual specialist `sciencecraft', one subswarm per target, in an environment where detection and tracking of irregular, infrequent targets is a major chal-lenge. Workers, carry and operate eight to nine different scientific instruments, including spectrometers, ranging and radio science devices, imagers. The remaining specialists, Messenger/Rulers, provide communication and coordina-tion. The non-expendable propulsion system is based on autonomously deployable and configurable solar sails, a system suitable to a low gravity environment. The design of the neural basis function requires a minimum of 4 or 5 specialists for collective decision making. Allowing for ten instrument specialist teams and compensating for antici-pated high attrition, we calculate an initial minimum of 100 per subswarm should allow characterization of hundreds of asteroids. The difficulty in observing irregular, rapidly moving, poorly illuminated objects is largely overcome by the ANT sciencecraft capability to optimize conditions for each instrument. Components are composed of carbon nanotubules reversibly deployable from NEMS nodes, allowing 100 times decrease in packaging volume. 1000 smart 10 centimeter, 1 kg cubic boxes create a 1000 kg 1 meter cube.
[Research Award providing funds for a tracking video camera
NASA Technical Reports Server (NTRS)
Collett, Thomas
2000-01-01
The award provided funds for a tracking video camera. The camera has been installed and the system calibrated. It has enabled us to follow in real time the tracks of individual wood ants (Formica rufa) within a 3m square arena as they navigate singly in-doors guided by visual cues. To date we have been using the system on two projects. The first is an analysis of the navigational strategies that ants use when guided by an extended landmark (a low wall) to a feeding site. After a brief training period, ants are able to keep a defined distance and angle from the wall, using their memory of the wall's height on the retina as a controlling parameter. By training with walls of one height and length and testing with walls of different heights and lengths, we can show that ants adjust their distance from the wall so as to keep the wall at the height that they learned during training. Thus, their distance from the base of a tall wall is further than it is from the training wall, and the distance is shorter when the wall is low. The stopping point of the trajectory is defined precisely by the angle that the far end of the wall makes with the trajectory. Thus, ants walk further if the wall is extended in length and not so far if the wall is shortened. These experiments represent the first case in which the controlling parameters of an extended trajectory can be defined with some certainty. It raises many questions for future research that we are now pursuing.
Species-specific ant brain manipulation by a specialized fungal parasite.
de Bekker, Charissa; Quevillon, Lauren E; Smith, Philip B; Fleming, Kimberly R; Ghosh, Debashis; Patterson, Andrew D; Hughes, David P
2014-08-29
A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation by this specialized fungus and therefore represent a major advancement towards an understanding of the molecular mechanisms underlying this phenomenon.
Nogueira, Anselmo; Rey, Pedro J.; Alcántara, Julio M.; Feitosa, Rodrigo M.; Lohmann, Lúcia G.
2015-01-01
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales. PMID:25885221
Krizek, Beth A.
2015-01-01
AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884
Robinson, Elva J.H.
2016-01-01
Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest “forage” to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy. PMID:27004016
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.
mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants frameworkmore » is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.« less
Emergent oscillations assist obstacle negotiation during ant cooperative transport
Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Gov, Nir S.; Feinerman, Ofer
2016-01-01
Collective motion by animal groups is affected by internal interactions, external constraints, and the influx of information. A quantitative understanding of how these different factors give rise to different modes of collective motion is, at present, lacking. Here, we study how ants that cooperatively transport a large food item react to an obstacle blocking their path. Combining experiments with a statistical physics model of mechanically coupled active agents, we show that the constraint induces a deterministic collective oscillatory mode that facilitates obstacle circumvention. We provide direct experimental evidence, backed by theory, that this motion is an emergent group effect that does not require any behavioral changes at the individual level. We trace these relaxation oscillations to the interplay between two forces; informed ants pull the load toward the nest whereas uninformed ants contribute to the motion’s persistence along the tangential direction. The model’s predictions that oscillations appear above a critical system size, that the group can spontaneously transition into its ordered phase, and that the system can exhibit complete rotations are all verified experimentally. We expect that similar oscillatory modes emerge in collective motion scenarios where the structure of the environment imposes conflicts between individually held information and the group’s tendency for cohesiveness. PMID:27930304
Composite collective decision-making.
Czaczkes, Tomer J; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen
2015-06-22
Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Overcoming PCR Inhibition During DNA-Based Gut Content Analysis of Ants.
Penn, Hannah J; Chapman, Eric G; Harwood, James D
2016-10-01
Generalist predators play an important role in many terrestrial systems, especially within agricultural settings, and ants (Hymenoptera: Formicidae) often constitute important linkages of these food webs, as they are abundant and influential in these ecosystems. Molecular gut content analysis provides a means of delineating food web linkages of ants based on the presence of prey DNA within their guts. Although this method can provide insight, its use on ants has been limited, potentially due to inhibition when amplifying gut content DNA. We designed a series of experiments to determine those ant organs responsible for inhibition and identified variation in inhibition among three species (Tetramorium caespitum (L.), Solenopsis invicta Buren, and Camponotus floridanus (Buckley)). No body segment, other than the gaster, caused significant inhibition. Following dissection, we determined that within the gaster, the digestive tract and crop cause significant levels of inhibition. We found significant differences in the frequency of inhibition between the three species tested, with inhibition most evident in T. caespitum The most effective method to prevent inhibition before DNA extraction was to exude crop contents and crop structures onto UV-sterilized tissue. However, if extracted samples exhibit inhibition, addition of bovine serum albumin to PCR reagents will overcome this problem. These methods will circumvent gut content inhibition within selected species of ants, thereby allowing more detailed and reliable studies of ant food webs. As little is known about the prevalence of this inhibition in other species, it is recommended that the protocols in this study are used until otherwise shown to be unnecessary. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sunamura, Eiriki; Hoshizaki, Sugihiko; Sakamoto, Hironori; Fujii, Takeshi; Nishisue, Koji; Suzuki, Shun; Terayama, Mamoru; Ishikawa, Yukio; Tatsuki, Sadahiro
2011-05-01
Some invasive ants form large networks of mutually non-aggressive nests, i.e., supercolonies. The Argentine ant Linepithema humile forms much larger supercolonies in introduced ranges than in its native range. In both cases, it has been shown that little gene flow occurs between supercolonies of this species, though the mechanism of gene flow restriction is unknown. In this species, queens do not undertake nuptial flight, and males have to travel to foreign nests and cope with workers before gaining access to alien queens. In this study, we hypothesized that male Argentine ants receive interference from workers of alien supercolonies. To test this hypothesis, we conducted behavioral and chemical experiments using ants from two supercolonies in Japan. Workers attacked males from alien supercolonies but not those from their own supercolonies. The level of aggression against alien males was similar to that against alien workers. The frequency of severe aggression against alien males increased as the number of recipient workers increased. Cuticular hydrocarbon profiles, which serve as cues for nestmate recognition, of workers and males from the same supercolony were very similar. Workers are likely to distinguish alien males from males of their own supercolony using the profiles. It is predicted that males are subject to considerable aggression from workers when they intrude into the nests of alien supercolonies. This may be a mechanism underlying the restricted gene flow between supercolonies of Argentine ants. The Argentine ant may possess a distinctive reproductive system, where workers participate in selecting mates for their queens. We argue that the aggression of workers against alien males is a novel form of reproductive interference.
Clark, Adam T; Rykken, Jessica J; Farrell, Brian D
2011-01-01
Many studies have examined how island biogeography affects diversity on the scale of island systems. In this study, we address how diversity varies over very short periods of time on individual islands. To do this, we compile an inventory of the ants living in the Boston Harbor Islands National Recreation Area, Boston, Massachusetts, USA using data from a five-year All Taxa Biodiversity Inventory of the region's arthropods. Consistent with the classical theory of island biogeography, species richness increased with island size, decreased with island isolation, and remained relatively constant over time. Additionally, our inventory finds that almost half of the known Massachusetts ant fauna can be collected in the BHI, and identifies four new species records for Massachusetts, including one new to the United States, Myrmica scabrinodis. We find that the number of species actually active on islands depended greatly on the timescale under consideration. The species that could be detected during any given week of sampling could by no means account for total island species richness, even when correcting for sampling effort. Though we consistently collected the same number of species over any given week of sampling, the identities of those species varied greatly between weeks. This variation does not result from local immigration and extinction of species, nor from seasonally-driven changes in the abundance of individual species, but rather from weekly changes in the distribution and activity of foraging ants. This variation can be upwards of 50% of ant species per week. This suggests that numerous ant species on the BHI share the same physical space at different times. This temporal partitioning could well explain such unexpectedly high ant diversity in an isolated, urban site.
Clark, Adam T.; Rykken, Jessica J.; Farrell, Brian D.
2011-01-01
Many studies have examined how island biogeography affects diversity on the scale of island systems. In this study, we address how diversity varies over very short periods of time on individual islands. To do this, we compile an inventory of the ants living in the Boston Harbor Islands National Recreation Area, Boston, Massachusetts, USA using data from a five-year All Taxa Biodiversity Inventory of the region's arthropods. Consistent with the classical theory of island biogeography, species richness increased with island size, decreased with island isolation, and remained relatively constant over time. Additionally, our inventory finds that almost half of the known Massachusetts ant fauna can be collected in the BHI, and identifies four new species records for Massachusetts, including one new to the United States, Myrmica scabrinodis. We find that the number of species actually active on islands depended greatly on the timescale under consideration. The species that could be detected during any given week of sampling could by no means account for total island species richness, even when correcting for sampling effort. Though we consistently collected the same number of species over any given week of sampling, the identities of those species varied greatly between weeks. This variation does not result from local immigration and extinction of species, nor from seasonally-driven changes in the abundance of individual species, but rather from weekly changes in the distribution and activity of foraging ants. This variation can be upwards of 50% of ant species per week. This suggests that numerous ant species on the BHI share the same physical space at different times. This temporal partitioning could well explain such unexpectedly high ant diversity in an isolated, urban site. PMID:22140504
Quantifying Ant Activity Using Vibration Measurements
Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C. S.; Evans, Theodore A.
2014-01-01
Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult. PMID:24658467
Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico
2017-09-01
Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.
Dynamic vehicle routing with time windows in theory and practice.
Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael
2017-01-01
The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.
Flexible augmented reality architecture applied to environmental management
NASA Astrophysics Data System (ADS)
Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo
2003-05-01
Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.
Modeling Warfare in Social Animals: A "Chemical" Approach
Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco
2014-01-01
We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones. PMID:25369269
Modeling warfare in social animals: a "chemical" approach.
Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco
2014-01-01
We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones.
Ants and ant scent reduce bumblebee pollination of artificial flowers.
Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E
2014-01-01
Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.
Chamberlain, Scott A; Holland, J Nathaniel
2008-05-01
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.
Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants.
Fleischmann, Pauline N; Grob, Robin; Wehner, Rüdiger; Rössler, Wolfgang
2017-07-01
Cataglyphis desert ants are famous navigators. Like all central place foragers, they are confronted with the challenge to return home, i.e. relocate an inconspicuous nest entrance in the ground, after their extensive foraging trips. When leaving the underground nest for the first time, desert ants perform a striking behavior, so-called learning walks that are well structured. However, it is still unclear how the ants initially acquire the information needed for sky- and landmark-based navigation, in particular how they calibrate their compass system at the beginning of their foraging careers. Using high-speed video analyses, we show that different Cataglyphis species include different types of characteristic turns in their learning walks. Pirouettes are full or partial rotations (tight turns about the vertical body axis) during which the ants frequently stop and gaze back in the direction of the nest entrance during the longest stopping phases. In contrast, voltes are small walked circles without directed stopping phases. Interestingly, only Cataglyphis ant species living in a cluttered, and therefore visually rich, environment (i.e. C. noda and C. aenescens in southern Greece) perform both voltes and pirouettes. They look back to the nest entrance during pirouettes, most probably to take snapshots of the surroundings. In contrast, C. fortis inhabiting featureless saltpans in Tunisia perform only voltes and do not stop during these turns to gaze back at the nest - even if a set of artificial landmarks surrounds the nest entrance. © 2017. Published by The Company of Biologists Ltd.
A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Liu, Shuang; Hu, Xiangyun; Liu, Tianyou
2014-07-01
Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.
NASA Astrophysics Data System (ADS)
Cande, S. C.; Stock, J. M.
2010-12-01
Motion between East and West Antarctica in the Late Cretaceous and Cenozoic is derived by summing the plate circuit(s) linking East Antarctica to Australia to the Lord Howe Rise to the Pacific plate to West Antarctica (the Aus-Pac plate circuit). We discuss this motion in two parts: motion before and after 42 Ma. For the younger time interval, motion is directly constrained by magnetic anomalies in the Adare Basin, which opened by ultraslow seafloor spreading between 42 and 26 Ma (anomalies 18 to 9). The Adare Basin magnetic anomaly constraints can be combined with magnetic anomaly and fracture zone data from the SEIR (Aus-East Ant to the west of the Balleny FZ and Aus - West Ant to the east) to set up an Aus-East Ant - West Ant three-plate problem. The original solution of this three-plate configuration (Cande et al., 2000) only had data from a very short section of the Adare Basin and obtained an answer with very large uncertainties on the East-West Ant rotation. Better estimates of the East-West Ant rotation have been calculated by adding constraints based on seismically controlled estimates of extension in the Victoria Land Basin (Davey et al., 2006) and constraints from Damaske et al’s (2007) detailed aeromagnetic survey of the Adare Basin and adjacent Northern Basin (Granot et al., 2010). Currently, we are working on improving the accuracy of rotations for the post-42 Ma time interval by taking advantage of an unusual plate geometry that enables us to solve a five-boundary, four-plate configuration. Specifically, motion between the four plates (East Ant, West Ant, Aus and Pac) encompasses two related triple junction systems with five spreading ridge segments (Aus-East Ant, Aus-West Ant, Aus-Pac, Pac-West Ant and East Ant-West Ant) which can be combined and solved simultaneously. For the older, pre-42 Ma time interval, the only way to calculate motion between East and West Antarctica is via the long Aus-Pac plate circuit (although it is possible that magnetic anomalies formed by direct spreading between East and West Antarctica, akin to the Adare Basin anomalies, may exist in the poorly mapped Central Basin between the Hallett Ridge and the Iselin Bank). The weakest link in this time interval is the Aus - East Ant boundary; for the time interval from 84 to 42 Ma there are distinctly different results depending on how the tectonic constraints are prioritized (Royer and Rollett, 1997; Tikku and Cande, 1999; Whittaker et al., 2007). The disagreement over the pre-42 Ma motion between Australia and East Antarctica leads to large differences in the predicted motion in the Western Ross Sea and near Ellsworth Land. Another weak link in this circuit is the pattern of sea floor spreading in the Tasman Sea, which is difficult to unravel because of the complex history of motion between Australia, the Lord Howe Rise, and Tasmania (Gaina et al., 1999). Resolution of these issues is required before a well constrained history of East -West Antarctic motion back to the Late Cretaceous is obtained
The Legitimation of Novel Technologies: The Case of Nanotechnology
NASA Astrophysics Data System (ADS)
Thyroff, Anastasia E.
Nanotechnology is the control, manipulation, and application of matter on an atomic and molecular level. The technology is complex and confusing to consumers, and its long-term safety and effect on the human body, as well as the environment, are unknown. However, for the past decade, nanotechnology has been used to develop consumer products and food with novel and attractive attributes. Since nanotechnology is still not well known, it is not legitimized; that is, it has not been deemed safe and accepted by society. However, the market for nanotechnology is in the legitimation process. It will take an entire network of key stakeholders playing a specific roles for nanotechnology to legitimize. Specifically, each key stakeholder will align with a certain cultural discourse to frame nanotechnology in a particular way that complements their values. In Essay 1, I follow previous market system dynamic's literature and combine Actor Network Theory (ANT), Foucault's Discourse on Power and Goffman's Frame analysis to theoretically explore what the actor network for nanotechnology looks like. Four dominate frames are identified: 1) Advancement (i.e., government), 2) Management (i.e., industry), 3) Development (i.e., academia/scientists), and 4) Informant (i.e., NGO). Essay 2 empirically explores each actor's perspective on the nanotechnology network through a total of 24 interviews. A hermeneutic approach is used to analyze the 208 page text and themes describing each actor's role from a self and other's perspective are discussed. Additionally, three overarching themes (i.e., contradiction, constance, and cutoff) emerge; these themes describe the degree of similarity in how actors view their role in the nanotechnology network compared to how other actor's view that actor's role. In Essay 3, I bring critical theory into market system's research to better contextualize market formation theories. Specifically, I discuss how critical theory can be used to supplement ANT. I suggest that ANT can be combined with critical theory to better understand the process of translation through exploring conflicts and contradictions among key stakeholders. To show this process, I explore the juxtaposition of economic benefits vs. cultural concerns that has emerged in the nanotechnology marketplace. It is determined that this exploration process can determine why mobilization has not occurred.
Usefulness of fire ant genetics in insecticide efficacy trials
USDA-ARS?s Scientific Manuscript database
Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...
Mathis, Kaitlyn A; Tsutsui, Neil D
2016-08-17
Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant-myrmecophile interactions beyond just their pairwise context. © 2016 The Author(s).
2012-01-01
Background Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2–repeat containing transcription factor, regulates cell production during fruit growth in apple. Results Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, ‘Gala’ and ‘Golden Delicious Smoothee’ (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to ‘Gala’, the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Conclusions Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple. PMID:22731507
Dash, Madhumita; Malladi, Anish
2012-06-25
Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2-repeat containing transcription factor, regulates cell production during fruit growth in apple. Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, 'Gala' and 'Golden Delicious Smoothee' (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to 'Gala', the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple.
Novels, Nests and Other Provocations: Emergent Literacy Curriculum Production in a Childcare Centre
ERIC Educational Resources Information Center
Heydon, Rachel; Crocker, Wendy; Zhang, Zheng
2014-01-01
In a bid to identify and gain analytic insight into the make-up and dynamics of kindergarten literacy curricula in an era of early childhood education and care reform, this study was designed to trace how classroom literacy curricula were produced in a kindergarten in a childcare centre in Ontario, Canada. Drawing on actor-network theory's (ANT)…
Congestion control and routing over satellite networks
NASA Astrophysics Data System (ADS)
Cao, Jinhua
Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).
2016-01-01
Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant–myrmecophile interactions beyond just their pairwise context. PMID:27512148
Scope of Various Random Number Generators in ant System Approach for TSP
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2007-01-01
Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."
Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V
2015-06-10
Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.
Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.
2015-01-01
Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296
Social Life in Arid Environments: The Case Study of Cataglyphis Ants.
Boulay, Raphaël; Aron, Serge; Cerdá, Xim; Doums, Claudie; Graham, Paul; Hefetz, Abraham; Monnin, Thibaud
2017-01-31
Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.
An element search ant colony technique for solving virtual machine placement problem
NASA Astrophysics Data System (ADS)
Srija, J.; Rani John, Rose; Kanaga, Grace Mary, Dr.
2017-09-01
The data centres in the cloud environment play a key role in providing infrastructure for ubiquitous computing, pervasive computing, mobile computing etc. This computing technique tries to utilize the available resources in order to provide services. Hence maintaining the resource utilization without wastage of power consumption has become a challenging task for the researchers. In this paper we propose the direct guidance ant colony system for effective mapping of virtual machines to the physical machine with maximal resource utilization and minimal power consumption. The proposed algorithm has been compared with the existing ant colony approach which is involved in solving virtual machine placement problem and thus the proposed algorithm proves to provide better result than the existing technique.
Ré Jorge, Leonardo; Benitez-Vieyra, Santiago; Amorim, Felipe W.
2017-01-01
Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms. PMID:29211790
Evolution of the Insect Desaturase Gene Family with an Emphasis on Social Hymenoptera
Helmkampf, Martin; Cash, Elizabeth; Gadau, Jürgen
2015-01-01
Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes. PMID:25425561
Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial
NASA Astrophysics Data System (ADS)
Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam
2016-01-01
Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.
SMART Power Systems for ANTS Missions
NASA Astrophysics Data System (ADS)
Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.
2005-02-01
Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.
King, Joshua R; Tschinkel, Walter R
2006-11-01
1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.
de Oliveira, Bruna Maria S; Melo, Carlisson R; Alves, Péricles B; Santos, Abraão A; Santos, Ane Caroline C; Santana, Alisson da S; Araújo, Ana Paula A; Nascimento, Pedro E S; Blank, Arie F; Bacci, Leandro
2017-02-25
Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani , two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p -cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens , respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides.
The polarization compass dominates over idiothetic cues in path integration of desert ants.
Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard
2012-02-01
Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.
Schmid, Volker S.; Morales, Mírian N.; Marinoni, Luciane; Kamke, Rafael; Steiner, Josefina; Zillikens, Anne
2014-01-01
Abstract The syrphid subfamily Microdontinae is characterized by myrmecophily of their immature stages, i.e., they develop in ant nests. Data on natural history of microdontines are scarce, especially in the Neotropics. Based on fieldwork in southern Brazil, this study provided new data on development and ecology of the hoverfly Pseudomicrodon biluminiferus (Hull) (Diptera: Syrphidae) as well as the first morphological descriptions of male genitalia, larvae, and pupa. Immature specimens were specifically found in colonies of the ant species Crematogaster limata Smith (Hymenoptera: Formicidae) found in rosettes of the bromeliad species Aechmea lindenii (E. Morren) Baker (Poales: Bromeliaceae) and A. nudicaulis (L.) Grisebach. Third instar larvae were observed preying on ant larvae, revealing the parasitic nature of P. biluminiferus . In this and several other aspects, the natural history of P. biluminiferus is similar to that of Holarctic microdontine species. Exceptions include: (i) indications that adults of P. biluminiferus outlast the winter months (in contrast to 3 rd instar larvae in Holarctic species) and (ii) P. biluminiferus ’ relationship with bromeliads. The importance of bromeliads for this host-parasite system is evaluated in this paper. The single occurrence of another, unidentified microdontine species’ pupae in a nest of the ant species Camponotus melanoticus Emery (Hymenoptera: Formicidae) is reported. PMID:25373185
2011-01-01
Background The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully established in nearly all continents across the globe. Argentine ants are characterised by a social structure known as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is particularly pronounced in introduced populations and results in the formation of large and spatially expansive supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa. We use behavioural (aggression tests) and chemical (CHC) approaches to investigate the population structure of Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions. Results Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates. This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two supercolonies. Conclusions The presence of these two distinct supercolonies is suggestive of at least two independent introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study, with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings are of interest because recent studies show that Argentine ants from South Africa are different from those identified in other introduced ranges and therefore provide an opportunity to further understand factors that determine the distributional and spread patterns of Argentine ant supercolonies. PMID:21288369
Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.
Perrichot, Vincent; Wang, Bo; Engel, Michael S
2016-06-06
Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Figueiro, Ana Claudia; de Araújo Oliveira, Sydia Rosana; Hartz, Zulmira; Couturier, Yves; Bernier, Jocelyne; do Socorro Machado Freire, Maria; Samico, Isabella; Medina, Maria Guadalupe; de Sa, Ronice Franco; Potvin, Louise
2017-03-01
Public health interventions are increasingly represented as complex systems. Research tools for capturing the dynamic of interventions processes, however, are practically non-existent. This paper describes the development and proof of concept process of an analytical tool, the critical event card (CEC), which supports the representation and analysis of complex interventions' evolution, based on critical events. Drawing on the actor-network theory (ANT), we developed and field-tested the tool using three innovative health interventions in northeastern Brazil. Interventions were aimed to promote health equity through intersectoral approaches; were engaged in participatory evaluation and linked to professional training programs. The CEC developing involve practitioners and researchers from projects. Proof of concept was based on document analysis, face-to-face interviews and focus groups. Analytical categories from CEC allow identifying and describing critical events as milestones in the evolution of complex interventions. Categories are (1) event description; (2) actants (human and non-human) involved; (3) interactions between actants; (4) mediations performed; (5) actions performed; (6) inscriptions produced; and (7) consequences for interventions. The CEC provides a tool to analyze and represent intersectoral internvetions' complex and dynamic evolution.
Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures
NASA Astrophysics Data System (ADS)
Creath, Katherine
2010-08-01
This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.
Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.
2015-01-01
Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416
Mathieson, Melissa; Toft, Richard; Lester, Philip J
2012-08-01
The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.
Revolutionizing Remote Exploration with ANTS
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.
2002-05-01
We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.
Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants.
Narendra, Ajay; Kamhi, J Frances; Ogawa, Yuri
2017-11-01
Visual navigation is a benchmark information processing task that can be used to identify the consequence of being active in dim-light environments. Visual navigational information that animals use during the day includes celestial cues such as the sun or the pattern of polarized skylight and terrestrial cues such as the entire panorama, canopy pattern, or significant salient features in the landscape. At night, some of these navigational cues are either unavailable or are significantly dimmer or less conspicuous than during the day. Even under these circumstances, animals navigate between locations of importance. Ants are a tractable system for studying navigation during day and night because the fine scale movement of individual animals can be recorded in high spatial and temporal detail. Ant species range from being strictly diurnal, crepuscular, and nocturnal. In addition, a number of species have the ability to change from a day- to a night-active lifestyle owing to environmental demands. Ants also offer an opportunity to identify the evolution of sensory structures for discrete temporal niches not only between species but also within a single species. Their unique caste system with an exclusive pedestrian mode of locomotion in workers and an exclusive life on the wing in males allows us to disentangle sensory adaptations that cater for different lifestyles. In this article, we review the visual navigational abilities of nocturnal ants and identify the optical and physiological adaptations they have evolved for being efficient visual navigators in dim-light. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
North American velvet ants form one of the world's largest known Müllerian mimicry complexes.
Wilson, Joseph S; Jahner, Joshua P; Forister, Matthew L; Sheehan, Erica S; Williams, Kevin A; Pitts, James P
2015-08-17
Color mimicry is often celebrated as one of the most straightforward examples of evolution by natural selection, as striking morphological similarity between species evolves in response to a shared predation pressure. Recently, a large North American mimetic complex was described that included 65 species of Dasymutilla velvet ants (Hymenoptera: Mutillidae). Beyond those 65 species, little is known about how many species participate in this unique Müllerian complex, though several other arthropods are thought to be involved as Müllerian mimics (spider wasps) and Batesian mimics (beetles, antlions, and spiders; see references in). Müllerian mimicry is similarity in appearance or phenotype among harmful species, while Batesian mimicry is similarity in which not all species are harmful. Here, we investigate the extent of the velvet ant mimicry complex beyond Dasymutilla by examining distributional and color pattern similarities in all of the 21 North American diurnal velvet ant genera, including 302 of the 361 named species (nearly 84%), as well as 16 polymorphic color forms and an additional 33 undescribed species. Of the 351 species and color forms that were analyzed (including undescribed species), 336 exhibit some morphological similarities and we hypothesize that they form eight distinct mimicry rings (Figure 1A; Supplemental Information). Two of these eight mimicry rings, red-headed Timulla and black-headed Timulla, were not documented in earlier assessments of mimicry in velvet ants, and are newly described here. These findings identify one of the largest known Müllerian mimicry systems worldwide and provide a novel system to test hypotheses about aposematism and mimicry, especially those regarding the evolution of imperfect mimicry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
ERIC Educational Resources Information Center
Walters, Glenn D.; Diamond, Pamela M.; Magaletta, Philip R.; Geyer, Matthew D.; Duncan, Scott A.
2007-01-01
The Antisocial Features (ANT) scale of the Personality Assessment Inventory (PAI) was subjected to taxometric analysis in a group of 2,135 federal prison inmates. Scores on the three ANT subscales--Antisocial Behaviors (ANT-A), Egocentricity (ANT-E), and Stimulus Seeking (ANT-S)--served as indicators in this study and were evaluated using the…
Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.
Pringle, Elizabeth G
2014-06-22
In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.
Predaceous ants, beach replenishment, and nest placement by sea turtles.
Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie
2007-10-01
Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.
Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants
Russell, Jacob A.; Moreau, Corrie S.; Goldman-Huertas, Benjamin; Fujiwara, Mikiko; Lohman, David J.; Pierce, Naomi E.
2009-01-01
Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with “herbivores” feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous “turtle ants” from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution. PMID:19948964
Roadside Survey of Ants on Oahu, Hawaii
Tong, Reina L.; Grace, J. Kenneth; Krushelnycky, Paul D.
2018-01-01
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a timed hand-collection of ants was made at 44 sites in a systematic, roadside survey throughout Oahu. Ants were identified and species distribution in relation to elevation, precipitation and soil type was analyzed. To assess possible convenience sampling bias, 15 additional sites were sampled further from roads to compare with the samples near roads. Twenty-four species of ants were found and mapped; Pheidole megacephala (F.), Ochetellus glaber (Mayr), and Technomyrmex difficilis Forel were the most frequently encountered ants. For six ant species, a logistic regression was performed with elevation, average annual precipitation, and soil order as explanatory variables. O. glaber was found in areas with lower precipitation around Oahu. Paratrechina longicornis (Latrielle) and Tetramorium simillimum (Smith, F.) were found more often in lower elevations and in areas with the Mollisol soil order. Elevation, precipitation, and soil type were not significant sources of variation for P. megacephala, Plagiolepis alluaudi Emery, and T. difficilis. P. megacephala was associated with fewer mean numbers of ants where it occurred. Ant assemblages near and far from roads did not significantly differ. Many species of ants remain established on Oahu, and recent invaders are spreading throughout the island. Mapping ant distributions contributes to continued documentation and understanding of these pests. PMID:29439503
A tunable algorithm for collective decision-making.
Pratt, Stephen C; Sumpter, David J T
2006-10-24
Complex biological systems are increasingly understood in terms of the algorithms that guide the behavior of system components and the information pathways that link them. Much attention has been given to robust algorithms, or those that allow a system to maintain its functions in the face of internal or external perturbations. At the same time, environmental variation imposes a complementary need for algorithm versatility, or the ability to alter system function adaptively as external circumstances change. An important goal of systems biology is thus the identification of biological algorithms that can meet multiple challenges rather than being narrowly specified to particular problems. Here we show that emigrating colonies of the ant Temnothorax curvispinosus tune the parameters of a single decision algorithm to respond adaptively to two distinct problems: rapid abandonment of their old nest in a crisis and deliberative selection of the best available new home when their old nest is still intact. The algorithm uses a stepwise commitment scheme and a quorum rule to integrate information gathered by numerous individual ants visiting several candidate homes. By varying the rates at which they search for and accept these candidates, the ants yield a colony-level response that adaptively emphasizes either speed or accuracy. We propose such general but tunable algorithms as a design feature of complex systems, each algorithm providing elegant solutions to a wide range of problems.
Berberich, Gabriele; Schreiber, Ulrich
2013-01-01
Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413
Red imported fire ant impacts on upland arthropods in Southern Mississippi
Epperson, D.M.; Allen, Craig R.
2010-01-01
Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.
Nectar Theft and Floral Ant-Repellence: A Link between Nectar Volume and Ant-Repellent Traits?
Ballantyne, Gavin; Willmer, Pat
2012-01-01
As flower visitors, ants rarely benefit a plant. They are poor pollinators, and can also disrupt pollination by deterring other flower visitors, or by stealing nectar. Some plant species therefore possess floral ant-repelling traits. But why do particular species have such traits when others do not? In a dry forest in Costa Rica, of 49 plant species around a third were ant-repellent at very close proximity to a common generalist ant species, usually via repellent pollen. Repellence was positively correlated with the presence of large nectar volumes. Repellent traits affected ant species differently, some influencing the behaviour of just a few species and others producing more generalised ant-repellence. Our results suggest that ant-repellent floral traits may often not be pleiotropic, but instead could have been selected for as a defence against ant thieves in plant species that invest in large volumes of nectar. This conclusion highlights to the importance of research into the cost of nectar production in future studies into ant-flower interactions. PMID:22952793
[Syagrus romanzoffiana (Arecaceae) seed utilization by ants in a secondary forest in South Brazil].
Silva, Fernanda R; Begnini, Romualdo M; Klier, Vinícius A; Scherer, Karla Z; Lopes, Benedito C; Castellani, Tânia T
2009-01-01
Ants can nest in a wide variety of substracts. This paper shows Syagrus romanzoffiana seed utilization by ants in an Atlantic secondary forest. We report 29 seeds occupied by small-bodied ants, with 27 of them showing at least two ant development stages. Although a large number of seeds were sampled, a low level of ant occupation was observed.
NASA Technical Reports Server (NTRS)
Dermott, S. F.
1984-01-01
Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.
Oña, L; Lachmann, M
2011-03-01
Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
2015-01-01
programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa
Multitrophic interactions mediate the effects of climate change on herbivore abundance.
Robinson, Ayla; Inouye, David W; Ogilvie, Jane E; Mooney, Emily H
2017-10-01
Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.
Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts
Kautz, Stefanie; Ballhorn, Daniel J.; Kroiss, Johannes; Pauls, Steffen U.; Moreau, Corrie S.; Eilmus, Sascha; Strohm, Erhard; Heil, Martin
2012-01-01
Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers — regardless of the route to achieve this social structure — enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants. PMID:22662191
Rapid Decision-Making with Side-Specific Perceptual Discrimination in Ants
Stroeymeyt, Nathalie; Guerrieri, Fernando J.; van Zweden, Jelle S.; d'Ettorre, Patrizia
2010-01-01
Background Timely decision making is crucial for survival and reproduction. Organisms often face a speed-accuracy trade-off, as fully informed, accurate decisions require time-consuming gathering and treatment of information. Optimal strategies for decision-making should therefore vary depending on the context. In mammals, there is mounting evidence that multiple systems of perceptual discrimination based on different neural circuits emphasize either fast responses or accurate treatment of stimuli depending on the context. Methodology/Principal Findings We used the ant Camponotus aethiops to test the prediction that fast information processing achieved through direct neural pathways should be favored in situations where quick reactions are adaptive. Social insects discriminate readily between harmless group-members and dangerous strangers using easily accessible cuticular hydrocarbons as nestmate recognition cues. We show that i) tethered ants display rapid aggressive reactions upon presentation of non-nestmate odor (120 to 160 ms); ii) ants' aggressiveness towards non-nestmates can be specifically reduced by exposure to non-nestmate odor only, showing that social interactions are not required to alter responses towards non-nestmates; iii) decision-making by ants does not require information transfer between brain hemispheres, but relies on side-specific decision rules. Conclusions/Significance Our results strongly suggest that first-order olfactory processing centers (up to the antennal lobes) are likely to play a key role in ant nestmate recognition. We hypothesize that the coarse level of discrimination achieved in the antennal lobes early in odor processing provides enough information to determine appropriate behavioral responses towards non-nestmates. This asks for a reappraisal of the mechanisms underlying social recognition in insects. PMID:20808782
Ants determine their next move at rest: motor planning and causality in complex systems.
Hunt, Edmund R; Baddeley, Roland J; Worley, Alan; Sendova-Franks, Ana B; Franks, Nigel R
2016-01-01
To find useful work to do for their colony, individual eusocial animals have to move, somehow staying attentive to relevant social information. Recent research on individual Temnothorax albipennis ants moving inside their colony's nest found a power-law relationship between a movement's duration and its average speed; and a universal speed profile for movements showing that they mostly fluctuate around a constant average speed. From this predictability it was inferred that movement durations are somehow determined before the movement itself. Here, we find similar results in lone T. albipennis ants exploring a large arena outside the nest, both when the arena is clean and when it contains chemical information left by previous nest-mates. This implies that these movement characteristics originate from the same individual neural and/or physiological mechanism(s), operating without immediate regard to social influences. However, the presence of pheromones and/or other cues was found to affect the inter-event speed correlations. Hence we suggest that ants' motor planning results in intermittent response to the social environment: movement duration is adjusted in response to social information only between movements, not during them. This environmentally flexible, intermittently responsive movement behaviour points towards a spatially allocated division of labour in this species. It also prompts more general questions on collective animal movement and the role of intermittent causation from higher to lower organizational levels in the stability of complex systems.
Baines, Christopher P; Molkentin, Jeffery D
2009-06-01
Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.
Smaller Brains and Optic Lobes in Reproductive Workers of the Ant Harpegnathos
NASA Astrophysics Data System (ADS)
Gronenberg, Wulfila; Liebig, Jürgen
Most animals show long-term modifications of their behavior which often reflect an adaptation to seasonal variations (e.g., hibernation) or result from changes in the animal's internal state (e.g., estrous cycle or sexual maturity). Such modifications may substantially affect the nervous system [1, 2]. A particularly striking behavioral change can occur in workers of the ant Harpegnathos. A few young workers in the colony may become reproductives and are thus confined to their dark nest chambers, whereas most workers spend their lives as foragers, employing acute vision when hunting prey. This behavioral difference coincides with a marked decrease in brain volume and with an even stronger reduction in the large visual brain centers. Instead of maintaining superfluous brain functions, these ants reduce brain matter which is expensive to support.
The effects of ant nests on soil fertility and plant performance: a meta-analysis.
Farji-Brener, Alejandro G; Werenkraut, Victoria
2017-07-01
Ants are recognized as one of the major sources of soil disturbance world-wide. However, this view is largely based on isolated studies and qualitative reviews. Here, for the first time, we quantitatively determined whether ant nests affect soil fertility and plant performance, and identified the possible sources of variation of these effects. Using Bayesian mixed-models meta-analysis, we tested the hypotheses that ant effects on soil fertility and plant performance depend on the substrate sampled, ant feeding type, latitude, habitat and the plant response variable measured. Ant nests showed higher nutrient and cation content than adjacent non-nest soil samples, but similar pH. Nutrient content was higher in ant refuse materials than in nest soils. The fertilizer effect of ant nests was also higher in dry habitats than in grasslands or savannas. Cation content was higher in nests of plant-feeding ants than in nests of omnivorous species, and lower in nests from agro-ecosystems than in nests from any other habitat. Plants showed higher green/root biomass and fitness on ant nests soils than in adjacent, non-nest sites; but plant density and diversity were unaffected by the presence of ant nests. Root growth was particularly higher in refuse materials than in ant nest soils, in leaf-cutting ant nests and in deserts habitats. Our results confirm the major role of ant nests in influencing soil fertility and vegetation patterns and provide information about the factors that mediate these effects. First, ant nests improve soil fertility mainly through the accumulation of refuse materials. Thus, different refuse dump locations (external or in underground nest chambers) could benefit different vegetation life-forms. Second, ant nests could increase plant diversity at larger spatial scales only if the identity of favoured plants changes along environmental gradients (i.e. enhancing β-diversity). Third, ant species that feed on plants play a relevant role fertilizing soils, which may balance their known influence as primary consumers. Fourth, the effects of ant nests as fertility islands are larger in arid lands, possibly because fertility is intrinsically lower in these habitats. Overall, this study provide novel and quantitative evidence confirming that ant nests are key soil modifiers, emphasizing their role as ecological engineers. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
The Ants Go Marching Millions by Millions: Invasive Ant Research
USDA-ARS?s Scientific Manuscript database
Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...
The ants go marching millions by millions: invasive ant research
USDA-ARS?s Scientific Manuscript database
Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resasco, Julian; et al,
2014-04-01
Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors thanmore » in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.« less
Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.
Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana
2016-11-01
One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.
Army gas-cooled reactor systems program. Preliminary design report off-normal scram system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushnell, W.H.; Malmstrom, S.A.
1965-06-01
The maximum allowable ML-1 fuel element cladding (hot spot) temperature is established by ANTS 201 at 1750/sup 0/F. The existing ML-1 design makes no provision for automatic scram when this limit is reached. Operating experience has indicated a requirement for such an automatic system during plant startup and a revised hot spot envelope (generated during conceptual design of the scram system) established the desirability of extending this protection to operation at full power conditions. It was also determined that the scram system should include circuitry to initiate an automatic scram if reactor ..delta..T exceeded 450/sup 0/F (the limit established inmore » ANTS 201) and if reactor power exceeded 6 kw(t) without coolant flow in the main loop. The preliminary design of the scram system (designated off-normal scram system) which will provide the required protection is described.« less
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants.
Ruiz-González, Mario X; Malé, Pierre-Jean G; Leroy, Céline; Dejean, Alain; Gryta, Hervé; Jargeat, Patricia; Quilichini, Angélique; Orivel, Jérôme
2011-06-23
Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.
The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants. PMID:23902334
The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants.
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants.
Vasse, Marie; Voglmayr, Hermann; Mayer, Veronika; Gueidan, Cécile; Nepel, Maximilian; Moreno, Leandro; de Hoog, Sybren; Selosse, Marc-André; McKey, Doyle; Blatrix, Rumsaïs
2017-03-15
The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales. © 2017 The Author(s).
Martínez-Bauer, Angélica E; Martínez, Gerardo Cerón; Murphy, Daniel J; Burd, Martin
2015-06-01
Plant associations with protective ants are widespread among angiosperms, but carry the risk that ants will deter pollinators as well as herbivores. Such conflict, and adaptations to ameliorate or prevent the conflict, have been documented in African and neotropical acacias. Ant-acacia associations occur in Australia, but little is known of their ecology. Moreover, recent phylogenetic evidence indicates that Australian acacias are only distantly related to African and American acacias, providing an intercontinental natural experiment in the management of ant-pollinator conflict. We examined four populations of Acacia myrtifolia over a 400-km environmental gradient in southeastern Australia using ant and pollinator exclusion as well as direct observation of ants and pollinators to assess the potential for ant-pollinator conflict to affect seed set. Native bees were the only group of floral visitors whose visitation rates were a significant predictor of fruiting success, although beetles and wasps may play an important role as "insurance" pollinators. We found no increase in pollinator visitation or fruiting success following ant exclusion, even with large sample sizes and effective exclusion. Because ants are facultative visitors to A. myrtifolia plants, their presence may be insufficient to interfere greatly with floral visitors. It is also likely that the morphological location of extrafloral nectaries tends to draw ants away from reproductive parts, although we commonly observed ants on inflorescences, so the spatial separation is not strict. A. myrtifolia appears to maintain a generalized mutualism over a wide geographic range without the need for elaborate adaptations to resolve ant-pollinator conflict.
NASA Astrophysics Data System (ADS)
Pereira, Marcela Fernandes; Trigo, José Roberto
2013-08-01
Crotalaria pallida (Fabaceae) is a pantropical plant with extrafloral nectaries (EFNs) near the reproductive structures. EFN-visiting ants attack and remove arctiid moth Utetheisa ornatrix larvae, the main pre-dispersal seed predator, but the impact of ants on C. pallida fitness is unknown. To assess this impact, we controlled ant presence on plants and evaluated the reproductive output of C. pallida with and without ants. Predatory wasps also visit EFNs, prey upon U. ornatrix larvae, and may be driven out by ants during EFN feeding. Does this agonistic interaction affect the multitrophic interaction outcome? We found it difficult to evaluate the effect of both visitors because cages excluding wasps affect plant growth and do not allow U. ornatrix oviposition. Therefore, we verified whether ant presence inhibited wasp EFN visitation and predicted that (1) if ants confer a benefit for C. pallida, any negative effect of ants on wasps would be negligible for the plant because ants would be the best guardians, and (2) if ants are poor guardians, they would negatively affect wasps and negatively impact the fitness of C. pallida. Surprisingly, we found that the number of seeds/pods significantly increased, ca. 4.7 times, after ant removal. Additionally, we unexpectedly verified that controls showed a higher percentage of herbivore bored pods than ant-excluded plants. We found that wasps spent less time visiting EFNs patrolled by ants (ca. 299 s less). These results support our second prediction and suggest that the outcome of multitrophic interactions may vary with natural enemy actors.
Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?
Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi
2015-12-01
In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.
Berberich, Gabriele; Schreiber, Ulrich
2013-05-17
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.
The effects of fire on ant trophic assemblage and sex allocation
Caut, Stephane; Jowers, Michael J; Arnan, Xavier; Pearce-Duvet, Jessica; Rodrigo, Anselm; Cerda, Xim; Boulay, Raphaël R
2014-01-01
Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground-dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire-induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire-resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein-rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment. Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the dramatically reduced production of females on burned zones compared to unburned zones 1 year postfire may result in considerably reduced recruitment of new colonies in the mid to long term, which could yield genetic bottlenecks and founder effects. Our study paves the way for future functional analyses of fire-induced modifications in ant populations and communities. PMID:24455159
Gravato, Carlos; Almeida, Joana R; Silva, Carlos; Oliveira, Cristiana; Soares, Amadeu M V M
2014-04-01
Polycyclic aromatic hydrocarbons (PAHs) are recognised as one of the main groups of contaminants that assume more importance in the marine environment, enhancing the need of studies concerning their adverse effects and more efficient and ecologically relevant tools for environmental monitoring purposes. This study aims to apply an integrated approach including several multi-level biological responses (accumulation levels, biochemical responses important for different physiological functions and behavioural alterations) to assess the ecological relevance of the effects induced by sub-lethal concentrations of anthracene (ANT) in Palaemon serratus (common prawn). ANT accumulation was assessed by measuring the levels of ANT-type compounds in prawn digestive gland, muscle and eye; biochemical responses were determined using biomarkers involved in biotransformation, oxidative damage, energy production and neurotransmission processes; and behavioural alterations through swimming performance after 96 h exposure bioassay (ANT:16-1,024 μg/L). The rationale behind this approach is to assess the ecologically relevant effects induced by ANT in prawn, given by the association between behavioural alterations with biochemical responses, in search for more efficient tools for environmental risk assessment. Results show a significant decrease of swimming velocity (LOEC=128 μg/L) along with increased levels of ANT-type compounds in digestive gland (LOEC=128 μg/L), muscle (LOEC=256 μg/L) and eye (LOEC=32 μg/L) in prawn exposed to ANT. Increased activities of glutathione peroxidase (GPx) and catalase (CAT), involved in anti-oxidant defence system, were also observed (LOEC=256 μg/L; 1024μg/L, respectively) in the digestive gland of prawn, induction of oxidative damage in lipids (LPO) also occurred (LOEC=32 μg/L). The inhibition of swimming velocity showed a correlation with some biochemical parameters measured, including the levels of ANT-type compounds in tissues and LPO, and thus these may be considered sensitive and ecologically relevant criteria as well as early warning endpoints for assessing polycyclic aromatic compounds exposure effects on marine organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Musings on the management of Nylanderia fulva Crazy Ants
USDA-ARS?s Scientific Manuscript database
Nylanderia fulva is an invasive crazy ant that can inundate landscapes and structures. This invasive ant has been called the Caribbean crazy ant in Florida and the Rasberry [sic] crazy ant in Texas. The species was thought to be Nylanderia pubens or Nylanderia near pubens, in Florida and Texas, resp...
Yellow jackets may be an underestimated component of an ant-seed mutualism
Bale, M.T.; Zettler, J.A.; Robinson, B.A.; Spira, T.P.; Allen, Craig R.
2003-01-01
Yellow jackets (Hymenoptera: Vespidae) are attracted to the typically ant-dispersed seeds of trilliums and will take seeds from ants in the genus Aphaenogaster. To determine if yellow jacket, Vespula maculifrons (Buysson), presence interferes with seed foraging by ants, we presented seeds of Trillium discolor Wray to three species (A. texana carolinensis Wheeler, Formica schaufussi Mayr, and Solenopsis invicta Buren) of seed-carrying ants in areas where vespids were present or excluded. We found that interspecific aggression between yellow jackets and ants is species specific. Vespid presence decreased average foraging time and increased foraging efficiency of two of the three ant species studied, a situation that might reflect competition for a limited food source. We also found that yellow jackets removed more seeds than ants, suggestive that vespids are important, albeit underestimated, components of ant-seed mutualisms.
Navigation in wood ants Formica japonica: context dependent use of landmarks.
Fukushi, Tsukasa; Wehner, Rüdiger
2004-09-01
Wood ants Formica japonica can steer their outbound (foraging) and inbound (homing) courses without using celestial compass information, by relying exclusively on landmark cues. This is shown by training ants to run back and forth between the nest and an artificial feeder, and later displacing the trained ants either from the nest (when starting their foraging runs: outbound full-vector ants) or from the feeder (when starting their home runs: inbound full-vector ants) to various nearby release sites. In addition, ants that have already completed their foraging and homing runs are displaced after arrival either at the feeder (outbound zero-vector ants) or at the nest (inbound zero-vector ants), respectively, to the very same release sites. Upon release, the full-vector ants steer their straight courses by referring to panoramic landmark cues, while the zero-vector ants presented with the very same visual scenery immediately search for local landmark cues defining their final goal. Hence, it depends on the context, in this case on the state of the forager's round-trip cycle, what visual cues are picked out from a given set of landmarks and used for navigation.
Current and potential ant impacts in the Pacific region
Loope, Lloyd L.; Krushelnycky, Paul D.
2007-01-01
Worldwide, ants are a powerful ecological force, and they appear to be dominant components of animal communities of many tropical and temperate ecosystems in terms of biomass and numbers of individuals (Bluthgen et al. 2000). For example, ants comprise up to 94% of arthropod individuals in fogging samples taken from diverse lowland tropical rainforest canopies, and 86% of the biomass (Davidson et al. 2003). The majority of these ant species and individuals obtain carbohydrates either from extrafloral nectaries or from sap-feeding Hemiptera that pass carbohydrate-rich “honeydew” to attending ants while concentrating nitrogen (N) from N-poor plant sap (Davidson et al. 2003). Honeydew and nectar represent key resources for arboreal ant species, although most ant species are at least partly carnivorous or scavengers (Bluthgen et al. 2004). In contrast to most of the terrestrial world, the biotas of many Pacific islands evolved without ants. Whereas endemic ant species are found in New Zealand (ca. 10 spp.), Tonga (ca. 10 spp.), and Samoa (ca. 12 spp.), other islands of Polynesia and parts of Micronesia likely lack native ants (Wilson and Taylor 1967, Wetterer 2002, Wetterer and Vargo 2003). About 20 Indo-Australian and western Pacific ant species range to the east and north of Samoa, but it is unclear how many of these were transported there by humans at some time (Wilson and Taylor 1967). Most of the remainder of the ant species currently found on Pacific islands are widespread species that fall in the category of “tramp species,” dispersed by recent human commerce and generally closely tied to human activity and urban areas (Wilson and Taylor 1967, McGlynn 1999). In Pacific island situations, some of these tramp ant species are able to thrive beyond areas of human activity. Relatively few ant species have been successful invaders of native communities on continents, and these include most of the species that pose the greatest problems for Pacific islands. They generally have multiple queens per colony, are unicolonial (lacking internest aggression), quickly recruit to food items, thrive in a variety of habitats including disturbed areas, and can be highly aggressive to other ant species (McGlynn 1999). Hawaii’s arthropod fauna evolved in the absence of ants and has been observed by many biologists to be highly vulnerable to displacement by non-native ants. Pacific island biotas have also very likely suffered greatly from displacement by ants. However, in contrast to Hawaii, virtually nothing has been published on effects of non-native ants on native arthropod fauna elsewhere on Pacific islands, with the exception of the Galapagos archipelago, which may have at least four species of endemic ants (Lubin 1984, Nishida and Evenhuis 2000) and New Caledonia (Jourdan et al. 2001, Le Breton et al. 2005). In addition, many ant species in the Pacific have long been a nuisance for humans, and significant agricultural impacts have occurred from ants tending hemipteran insects of crop plants.
Private information alone can trigger trapping of ant colonies in local feeding optima.
Czaczkes, Tomer J; Salmane, Anete K; Klampfleuthner, Felicia A M; Heinze, Jürgen
2016-03-01
Ant colonies are famous for using trail pheromones to make collective decisions. Trail pheromone systems are characterised by positive feedback, which results in rapid collective decision making. However, in an iconic experiment, ants were shown to become 'trapped' in exploiting a poor food source, if it was discovered earlier. This has conventionally been explained by the established pheromone trail becoming too strong for new trails to compete. However, many social insects have a well-developed memory, and private information often overrules conflicting social information. Thus, route memory could also explain this collective 'trapping' effect. Here, we disentangled the effects of social and private information in two 'trapping' experiments: one in which ants were presented with a good and a poor food source, and one in which ants were presented with a long and a short path to the same food source. We found that private information is sufficient to trigger trapping in selecting the poorer of two food sources, and may be sufficient to cause it altogether. Memories did not trigger trapping in the shortest path experiment, probably because sufficiently detailed memories did not form. The fact that collective decisions can be triggered by private information alone may require other collective patterns previously attributed solely to social information use to be reconsidered. © 2016. Published by The Company of Biologists Ltd.
Variability in individual activity bursts improves ant foraging success.
Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç; Andrade, José S; Espadaler, Xavier
2016-12-01
Using experimental and computational methods, we study the role of behavioural variability in activity bursts (or temporal activity patterns) for individual and collective regulation of foraging in A. senilis ants. First, foraging experiments were carried out under special conditions (low densities of ants and food and absence of external cues or stimuli) where individual-based strategies are most prevalent. By using marked individuals and recording all foraging trajectories, we were then able to precisely quantify behavioural variability among individuals. Our main conclusions are that (i) variability of ant trajectories (turning angles, speed, etc.) is low compared with variability of temporal activity profiles, and (ii) this variability seems to be driven by plasticity of individual behaviour through time, rather than the presence of fixed behavioural stereotypes or specialists within the group. The statistical measures obtained from these experimental foraging patterns are then used to build a general agent-based model (ABM) which includes the most relevant properties of ant foraging under natural conditions, including recruitment through pheromone communication. Using the ABM, we are able to provide computational evidence that the characteristics of individual variability observed in our experiments can provide a functional advantage (in terms of foraging success) to the group; thus, we propose the biological basis underpinning our observations. Altogether, our study reveals the potential utility of experiments under simplified (laboratory) conditions for understanding information-gathering in biological systems. © 2016 The Author(s).
Banko, Paul C.; Peck, Robert W.; Pendleton, Frank; Schmaedick, Mark; Ernsberger, Kelsie
2014-01-01
Rose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.
A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism
Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André
2014-01-01
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551
A specialist herbivore uses chemical camouflage to overcome the defenses of an ant-plant mutualism.
Whitehead, Susan R; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M; Posto, Amanda L; Kessler, André
2014-01-01
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.
In Situ Surveying of Saturn's Rings
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.
2004-01-01
The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.
Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior
Chung, Yuan-Kai
2017-01-01
The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation. PMID:28355235
ERIC Educational Resources Information Center
Conway, John R.
1984-01-01
Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)
Imported fire ants in the southeast
David F. Williams
1998-01-01
Two species of imported fire ants were introduced into the U.S. at Mobile, Alabama. The black imported fire ant, Solenopsis richteri Forel, was introduced around the early 1900's while the red imported fire ant, Solenopsis invicta Buren entered in the late 1930' or early 1940's. The red imported fire ant is the most...
Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto
2015-01-01
Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397
DeFisher, Luke E.; Bonter, David N.
2013-01-01
Various invasive ant species have negatively affected reproductive success in birds by disrupting nest site selection, incubation patterns, food supply, and by direct predation on nestlings. Impacts can be particularly severe when non-native ants colonize seabird nesting islands where thousands of birds may nest in high densities on the ground or in burrows or crevices. Here we report on the first documented effects of Myrmica rubra, the European fire ant, on the reproduction of birds in its non-native range. We documented herring gulls (Larus argentatus) on Appledore Island, Maine, engaging in more erratic incubation behaviors at nests infested by the ants. Newly-hatched chicks in some nests were swarmed by ants, leading to rapid chick death. Due to high overall rates of chick mortality, survival probabilities did not vary between nests with and without ant activity, however chick growth rates were slower at nests with ants than at ant-free nests. Ant infestation likely leads to longer-term fitness consequences because slower growth rates early in life may ultimately lead to lower post-fledging survival probabilities. PMID:23691168
Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can We Draw a Line?
Jing, Xiaomin; Evangelista Falcon, Wilfredo; Baudry, Jerome; Serpersu, Engin H
2017-07-27
Aminoglycoside nucleotidyltransferase 4' (ANT) is a homodimeric enzyme that modifies the C4'-OH site of aminoglycoside antibiotics by nucleotidylation. A few single- and double-residue mutants of this enzyme (T130K, D80Y, and D80Y/T130K) from Bacillus stearothermophilus show increased thermostability. This article investigates how such residue replacements, which are distant from the active site and monomer-monomer interface, result in various changes of the thermostability of the enzyme. In this work, we show that the thermodynamic properties of enzyme-ligand complexes and protein dynamics may be indicators of a thermophilic behavior. Our data suggests that one of the single-site mutants of ANT, D80Y, may be a thermophilic protein and the other thermostable mutant, T130K, is actually a more heat-stable variant of the mesophilic wild type (WT) with a higher T m . Our data also suggest that T130K and D80Y adopt different global dynamics strategies to achieve different levels of thermostability enhancement and that the differences between the properties of the species can be described in terms of global dynamics rather than in terms of specific structural features. Thermophilicity of the D80Y comes at the cost of less favorable thermodynamic parameters for ligand binding relative to WT. On the other hand, the T130K species exhibits the same affinity to ligands and the same thermodynamic parameters of complex formation as the WT enzyme. These observations suggest that a quantitative characterization of ligand binding and protein dynamics can be used to differentiate thermophilic proteins from their simply more heat-stable mesophilic counterparts.
Hip strength and star excursion balance test deficits of patients with chronic ankle instability.
McCann, Ryan S; Crossett, Ian D; Terada, Masafumi; Kosik, Kyle B; Bolding, Brenn A; Gribble, Phillip A
2017-11-01
To examine isometric hip strength in those with and without CAI, and determine the degree of Star Excursion Balance Test (SEBT) variance explained by isometric hip strength. Single-blinded, cross-sectional, case-control study. Thirty individuals with CAI, 29 lateral ankle sprain (LAS) copers, and 26 healthy controls participated. We assessed dynamic postural control with the SEBT anterior (SEBT-ANT), posteromedial (SEBT-PM), and posterolateral (SEBT-PL) reaches, and isometric hip extension (EXT), abduction (ABD) and external rotation (ER) strength with hand-held dynamometry. The CAI and LAS coper groups' involved limbs and randomly selected limbs in controls were tested. Separate Kruskal-Wallis tests compared SEBT scores and isometric hip strength between groups. Backwards linear regression models determined the degree of SEBT variance explained by isometric hip strength. Statistical significance was set a priori at P<0.05. The CAI group had lower SEBT-ANT scores compared to LAS copers (P=0.03) and controls (P=0.03). The CAI group had lower ABD compared to LAS copers (P=0.03) and controls (P=0.02). The CAI group had lower ER compared to LAS copers (P=0.01) and controls (P=0.01). ER (R 2 =0.25, P=0.01) and ABD (R 2 =0.25, P=0.01) explained 25% of the CAI group's SEBT-PM and SEBT-PL variances, respectively. The CAI group had deficient dynamic postural control and isometric hip strength compared to LAS copers and controls. Additionally, the CAI group's isometric hip strength significantly influenced dynamic postural control performance. Future CAI rehabilitation strategies should consider hip muscular strengthening to facilitate improvements in dynamic postural control. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Belchior, Ceres; Sendoya, Sebastián F; Del-Claro, Kleber
2016-01-01
Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation.
Belchior, Ceres; Sendoya, Sebastián F.
2016-01-01
Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722
Moll, Karin; Roces, Flavio; Federle, Walter
2013-01-01
Background Foraging workers of grass-cutting ants (Atta vollenweideri) regularly carry grass fragments larger than their own body. Fragment length has been shown to influence the ants’ running speed and thereby the colony’s food intake rate. We investigated whether and how grass-cutting ants maintain stability when carrying fragments of two different lengths but identical mass. Principal Findings Ants carried all fragments in an upright, backwards-tilted position, but held long fragments more vertically than short ones. All carrying ants used an alternating tripod gait, where mechanical stability was increased by overlapping stance phases of consecutive steps. The overlap was greatest for ants carrying long fragments, resulting in more legs contacting the ground simultaneously. For all ants, the projection of the total centre of mass (ant and fragment) was often outside the supporting tripod, i.e. the three feet that would be in stance for a non-overlapping tripod gait. Stability was only achieved through additional legs in ground contact. Tripod stability (quantified as the minimum distance of the centre of mass to the edge of the supporting tripod) was significantly smaller for ants with long fragments. Here, tripod stability was lowest at the beginning of each step, when the center of mass was near the posterior margin of the supporting tripod. By contrast, tripod stability was lowest at the end of each step for ants carrying short fragments. Consistently, ants with long fragments mainly fell backwards, whereas ants carrying short fragments mainly fell forwards or to the side. Assuming that transporting ants adjust neither the fragment angle nor the gait, they would be less stable and more likely to fall over. Conclusions In grass-cutting ants, the need to maintain static stability when carrying long grass fragments has led to multiple kinematic adjustments at the expense of a reduced material transport rate. PMID:23300994
Distribution of invasive ants and methods for their control in Hawai'i Volcanoes National Park
Peck, Robert W.; Banko, Paul C.; Snook, Kirsten; Euaparadorn, Melody
2013-01-01
The first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites, upper boundaries of big-headed ants coincided with lower boundaries of Argentine ants. Significantly, Wasmannia auropunctata (little fire ant) was not detected during our surveys. Formicidal baits tested for controlling Argentine ants included XstinguishTM (containing fipronil at 0.01%), Maxforce® (hydramethylnon 1.0%), and Australian Distance® (pyriproxyfen 0.5%). Each bait was distributed evenly over four 2500 m2 replicate plots. Applications were repeated approximately four weeks after the initial treatment. Plots were subdivided into 25 subplots and ants monitored within each subplot using paper cards containing tuna bait at approximately one week intervals for about 14 weeks. All treatments reduced ant numbers, but none eradicated ants on any of the plots. XstinguishTM produced a strong and lasting effect, depressing ant abundance below 1% of control plot levels within the first week and for about eight weeks afterward. Maxforce® was slower to attain maximum effectiveness, reducing ants to 8% of control levels after one week and 3% after six weeks. Australian Distance® was least effective, decreasing ant abundance to 19% of control levels after one week with numbers subsequently rebounding to 40% of controls at four weeks and 72% at 10 weeks. In measurements of the proportion of bait cards at which ants were detected, XstinguishTM clearly out-performed Maxforce®, reaching a minimum detection rate of 3% of bait cards at one week compared to a low of 19% for Maxforce® two weeks following the second treatment. Although ant abundances were dramatically reduced on XstinguishTM plots, it is not currently registered for use in the USA. Our results suggest that ant abundance can be greatly reduced using registered baits, but further research is needed before even small-scale eradication of Argentine ants can be achieved. Formicidal baits tested to control big-headed ants included Amdro® (hydramethylnon 0.75%), XstinguishTM (fipronil 0.01%), Extinguish® Plus (a blend of hydramethylnon 0.365% and S- methoprene 0.25%), and Australian Distance® Plus (hydramethylnon 0.365% and pyriproxyfen 0.25%). Application methods were the same as used for Argentine ants, with baits being applied on two occasions (approximately four weeks apart) on four 2500 m2 replicate plots. All four baits reduced populations to below 2% of control plot levels within one week of treatment. Amdro® was particularly effective as no ants were detected on two of the four Amdro® plots immediately following treatment. Suppression was long-lived in three of the treatments; Amdro®, Australian Distance® Plus, and Extinguish® Plus all maintained ant abundances at levels less than 1% of control plots over 12 weeks of study. In contrast, ant abundances in XstinguishTM plots rose to 7% of control plots after four weeks and 20% after 10 weeks. Our results corroborate other recent studies indicating that small populations of big-headed ants can be controlled in natural areas using products registered in the USA.
Local and Landscape Drivers of Ant Parasitism in a Coffee Landscape.
De la Mora, Aldo; Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul; Philpott, Stacy M
2015-08-01
Parasitism of ants that nest in rotting wood by eucharitid wasps was studied in order to examine whether habitat and season influence ant parasitism, vegetation complexity and agrochemical use correlate with ant parasitism, and whether specific local and landscape features of agricultural landscapes correlate with changes in ant parasitism. In a coffee landscape, 30 coffee and 10 forest sites were selected in which local management (e.g., vegetation, agrochemical use) and landscape features (e.g., distance to forest, percent of rustic coffee nearby) were characterized. Rotten logs were sampled and ant cocoons were collected from logs and cocoons were monitored for parasitoid emergence. Sixteen ant morphospecies in three ant subfamilies (Ectatomminae, Ponerinae, and Formicinae) were found. Seven ant species parasitized by two genera of Eucharitidae parasitoids (Kapala and Obeza) were reported and some ant-eucharitid associations were new. According to evaluated metrics, parasitism did not differ with habitat (forest, high-shade coffee, low-shade coffee), but did increase in the dry season for Gnamptogenys ants. Parasitism increased with vegetation complexity for Gnamptogenys and Pachycondyla and was high in sites with both high and low agrochemical use. Two landscape variables and two local factors positively correlated with parasitism for some ant genera and species. Thus, differences in vegetation complexity at the local and landscape scale and agrochemical use in coffee landscapes alter ecological interactions between parasitoids and their ant hosts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo
2018-04-05
Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.
Ants as vectors of pathogenic microorganisms in a hospital in São Paulo county, Brazil.
Máximo, Heros J; Felizatti, Henrique L; Ceccato, Marcela; Cintra-Socolowski, Priscila; Beretta, Ana Laura R Zeni
2014-08-20
The present study aimed to identify and characterize the presence of bacteria carried by ants, and check the distribution of these ants in the physical confines of a medium-sized hospital in São Paulo county, Brazil. The ants were collected from March 2012 to February 2013. Attractive non-toxic baits were used to catch the ants, and the sectors considered for the study were medical wards, outdoor areas, obstetric unit, reception area, kitchen, surgical centres, paediatric clinic and intensive care unit. Captured ants were classified using taxonomic keys and subsequently immersed in Brain Heart Infusion broth. Paratrechina spp. and Monomorium floricola ants were found most frequently in the hospital. Ants had a high capacity for carrying bacteria, and the isolates comprised 68.8% Gram-positive, spore-producing bacilli (Bacillus spp. and Listeria spp.); 14.7% Gram-negative bacilli (Pseudomonas aeruginosa and Klebsiella spp.); and 16.4% Gram-positive cocci (Streptococcus spp. and Staphylococcus aureus). Among the areas being evaluated, the medical wards had the largest number of ants captured, and therefore the most bacteria. Ants in hospitals may carry both Gram-positive and Gram-negative bacteria, and methods of controlling urban ants should be adopted and strictly adhered to, to minimize the risk of infection in hospital patients.
Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve
2003-02-01
Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.
Schrader, Lukas; Helanterä, Heikki; Oettler, Jan
2017-03-01
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kuhn, A; Bauman, D; Darras, H; Aron, S
2017-10-01
Reproduction and dispersal are key aspects of species life history that influence spatial genetic structure in populations. Several ant species in the genus Cataglyphis have evolved a unique breeding system in which new reproductives (that is, queens and males) are produced asexually by parthenogenesis; in contrast, non-reproductives (that is, workers) are produced via sexual reproduction by mates from distinct genetic lineages. We investigated how these two coexisting reproductive methods affect population-level spatial genetic structure using the ant Cataglyphis mauritanica as a model. We obtained genotypes for queens and their male mates from 338 colonies, and we found that the two lineages present in the study population occurred with equal frequency. Furthermore, analysis of spatial genetic structure revealed strong sex-biased dispersal. Because queens were produced by parthenogenesis and because they dispersed over short distances, there was an extreme level of spatial structuring: a mosaic of patches composed of clonal queens was formed. Males, on the other hand, dispersed over several hundred metres and, thus, across patches, ensuring successful interlineage mating.
Solving NP-Hard Problems with Physarum-Based Ant Colony System.
Liu, Yuxin; Gao, Chao; Zhang, Zili; Lu, Yuxiao; Chen, Shi; Liang, Mingxin; Tao, Li
2017-01-01
NP-hard problems exist in many real world applications. Ant colony optimization (ACO) algorithms can provide approximate solutions for those NP-hard problems, but the performance of ACO algorithms is significantly reduced due to premature convergence and weak robustness, etc. With these observations in mind, this paper proposes a Physarum-based pheromone matrix optimization strategy in ant colony system (ACS) for solving NP-hard problems such as traveling salesman problem (TSP) and 0/1 knapsack problem (0/1 KP). In the Physarum-inspired mathematical model, one of the unique characteristics is that critical tubes can be reserved in the process of network evolution. The optimized updating strategy employs the unique feature and accelerates the positive feedback process in ACS, which contributes to the quick convergence of the optimal solution. Some experiments were conducted using both benchmark and real datasets. The experimental results show that the optimized ACS outperforms other meta-heuristic algorithms in accuracy and robustness for solving TSPs. Meanwhile, the convergence rate and robustness for solving 0/1 KPs are better than those of classical ACS.
USDA-ARS?s Scientific Manuscript database
Tawny crazy ants, Nylanderia fulva, is an invasive ant that are known to readily forage on the liquid, carbohydrate rich honeydew produced by hemipterans such as aphids and scales. There is interest in developing liquid ant baits that can eliminate tawny crazy ant colonies. Preliminary and anecdot...
NASA Astrophysics Data System (ADS)
Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.
Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.
Jirativanont, T; Raksamani, K; Aroonpruksakul, N; Apidechakul, P; Suraseranivongse, S
2017-07-01
We sought to evaluate the validity of two non-technical skills evaluation instruments, the Anaesthetists' Non-Technical Skills (ANTS) behavioural marker system and the Ottawa Global Rating Scale (GRS), to apply them to anaesthesia training. The content validity, response process, internal structure, relations with other variables and consequences were described for validity evidence. Simulated crisis management sessions were initiated during which two trained raters evaluated the performance of postgraduate first-, second- and third-year (PGY-1, PGY-2 and PGY-3) anaesthesia residents. The study included 70 participants, composed of 24 PGY-1, 24 PGY-2 and 22 PGY-3 residents. Both instruments differentiated the non-technical skills of PGY-1 from PGY-3 residents ( P <0.05). Inter-rater agreement was measured using the intraclass correlation coefficient (ICC). For the ANTS instrument, the intraclass correlation coefficients for task management, team-working, situation awareness and decision-making were 0.79, 0.34, 0.81 and 0.70, respectively. For the Ottawa GRS, the intraclass correlation coefficients for overall performance, leadership, problem-solving, situation awareness, resource utilisation and communication skills were 0.86, 0.83, 0.84, 0.87, 0.80 and 0.86, respectively. The Cronbach's alpha for internal consistency of the ANTS instrument was 0.93, and was 0.96 for the Ottawa GRS. There was a high correlation between the ANTS and Ottawa GRS. The raters reported the ease of use of the Ottawa GRS compared to the ANTS. We found sufficient evidence of validity in the ANTS instrument and the Ottawa GRS for the evaluation of non-technical skills in a simulated anaesthesia setting, but the Ottawa GRS was more practical and had higher reliability.
Jiménez-Soto, Estelí; Cruz-Rodríguez, Juan A; Vandermeer, John; Perfecto, Ivette
2013-10-01
The coffee berry borer is currently the most important insect pest of coffee worldwide. In shaded coffee farms such as Finca Irlanda in Chiapas, Mexico, natural enemies limit coffee berry borer and potentially prevent outbreaks. This research aimed to determine the effect of ants on coffee berry borer damage and to describe behaviors of Azteca instabilis F. Smith and Pheidole synanthropica (Longino 2009) when encountering the coffee berry borer. To these ends, an ant survey was conducted in a 2,500-m(2) plot within the farm. A 4- by 4-m coordinate system was established, and the coffee plant or shade tree closest to the coordinate point was sampled using tuna fish for a total of 168 coffee plants and 46 shade trees sampled. In addition, up to 100 berries were harvested from 138 coffee plants to measure damage and verify the presence of the coffee berry borer. Behavior was determined in the field by placing live coffee berry borer adults on berries and video recording all attacks. Results showed that plants with ants had less percentage of damaged berries and shorter coffee berry borer galleries than plants without ants. However, the length of galleries in plants with A. instabilis showed no significant differences from plants without ants. P. synanthropica was observed carrying coffee berry borer to the nest in 50% of the cases, whereas A. instabilis threw coffee berry borer off of the coffee plant in 79% of the cases. Results indicate that the presence of these species of ants reduce coffee berry borer damage and suggest that different behaviors could explain the pattern of coffee berry borer attack in this agroecosystem.
Dyer, Lee A.
2002-01-01
While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests. PMID:15455052
Dyer, Lee A
2002-01-01
While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae), on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.
Dejean, Alain; Compin, Arthur; Leponce, Maurice; Azémar, Frédéric; Bonhomme, Camille; Talaga, Stanislas; Pelozuelo, Laurent; Hénaut, Yann; Corbara, Bruno
2018-03-01
In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks. Copyright © 2018. Published by Elsevier Masson SAS.
orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.
Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C
2017-08-10
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
... Favorite Name: Category: Share: Yes No, Keep Private Fire Ant Bites Share | Fire ants are aggressive, venomous insects that have pinching ... across the United States, even into Puerto Rico. Fire ant stings usually occur on the feet or ...
Grangier, Julien; Lester, Philip J.
2011-01-01
This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The ‘ant-dropping’ behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726
Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L
2014-01-01
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534
NASA Astrophysics Data System (ADS)
Flores-Flores, Rocío Vianey; Aguirre, Armando; Anjos, Diego V.; Neves, Frederico S.; Campos, Ricardo I.; Dáttilo, Wesley
2018-02-01
In this study, we conducted a series of experiments in a population of Vachellia constricta (Fabaceae) in the arid Tehuacan-Cuicatláan valley, Mexico, in order to evaluate if the food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions. Using an experiment with artificial nectaries, we observed that ants foraging on food sources with higher concentration of sugar are quicker in finding and attacking potential herbivorous insects. More specifically, we found that the same ant species may increase their defence effectiveness according to the quality of food available. These findings indicate that ant effectiveness in plant protection is context-dependent and may vary according to specific individual characteristics of plants. In addition, we showed that competitively superior ant species tend to dominate plants in periods with high nectar activity, emphasizing the role of the dominance hierarchy structuring ant-plant interactions. However, when high sugar food sources were experimentally available ad libitum, the nocturnal and competitively superior ant species, Camponotus atriceps, did not dominate the artificial nectaries during the day possibly due to limitation of its thermal tolerance. Therefore, temporal niche partitioning may be allowing the coexistence of two dominant ant species (Camponotus rubritorax during the day and C. atriceps at night) on V. constricta. Our findings indicate that the quality of the food source, and temporal shifts in ant dominance are key factors which structure the biotic plant defences in an arid environment.
Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles
ERIC Educational Resources Information Center
Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick
2010-01-01
Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.
John C. Moser
1967-01-01
The trails of leaf-cutting ants are among the most conspicuous and long-lived of all ant roadways. In tropical America, where such ants are abundant, paths leading from underground nests are often a foot wide and extended for 100 yards or more to trees or other plants whose leaves the ants gather. The ants commonly carry their forage above their heads, and when the...
The direct and ecological costs of an ant-plant symbiosis.
Frederickson, Megan E; Ravenscraft, Alison; Miller, Gabriel A; Arcila Hernández, Lina M; Booth, Gregory; Pierce, Naomi E
2012-06-01
How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.
Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant–plant mutualism
Pringle, Elizabeth G.
2014-01-01
In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant–plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output. PMID:24807259
Cammaerts, Marie-Claire
2014-01-01
Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Sankoda, Kenshi; Nomiyama, Kei; Yonehara, Takayuki; Kuribayashi, Tomonori; Shinohara, Ryota
2012-07-01
This study investigated environmental distributions and production mechanisms of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in the sediments from some tidal flats located in Asia. Cl-PAHs were found in sediments taken from Arao tidal flat, Kikuchigawa River and Shirakawa River. The range of ∑Cl-PAHs was from 25.5 to 483 pg g(-1) for Kikuchigawa River and Arao tidal flat, respectively. Concentrations of PAHs and Cl-PAHs showed no significant correlations (r=0.134). This result suggests that the origins of these compounds differ. In the identified Cl-PAH isomers, the most abundant Cl-PAH isomer was 9,10-dichloroanthracene (9,10-di-Cl-ANT) in the three sites. In general, concentrations of Cl-ANTs in the coastal environment are about 3-5 orders of magnitude lower than those of anthracene (ANT). However, concentration ratios between Cl-ANTs and ANT (Cl-ANTs/ANT) in the sediments ranged from 4.1% to 24.6%. This result indicated that Cl-PAHs were not generated under industrial processes but the high concentration ratios have resulted from the contribution of photochemical production of Cl-ANTs in the sediments because ANT is known to have high photochemical reactivity. For examining this phenomenon, ANT adsorbed onto glass beads was irradiated with UV under the mimicked field conditions of tidal flats. As a result, it was noticed that, while chlorinated derivatives were negligible in a light-controlled group, production of 2-Cl-ANT, 9-Cl-ANT and 9,10-diCl-ANT on the irradiated surface were found in this study. These results suggest that photochemical reaction of PAHs can be a potential source of the occurrence of Cl-PAHs in the coastal environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul
2014-01-01
Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as 'hot-points' of biodiversity that urgently require special attention as a component of conservation and management programs.
Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.
2016-01-01
Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919
Sarvi, Majid
2017-01-01
Introduction Understanding collective behavior of moving organisms and how interactions between individuals govern their collective motion has triggered a growing number of studies. Similarities have been observed between the scale-free behavioral aspects of various systems (i.e. groups of fish, ants, and mammals). Investigation of such connections between the collective motion of non-human organisms and that of humans however, has been relatively scarce. The problem demands for particular attention in the context of emergency escape motion for which innovative experimentation with panicking ants has been recently employed as a relatively inexpensive and non-invasive approach. However, little empirical evidence has been provided as to the relevance and reliability of this approach as a model of human behaviour. Methods This study explores pioneer experiments of emergency escape to tackle this question and to connect two forms of experimental observations that investigate the collective movement at macroscopic level. A large number of experiments with human and panicking ants are conducted representing the escape behavior of these systems in crowded spaces. The experiments share similar architectural structures in which two streams of crowd flow merge with one another. Measures such as discharge flow rates and the probability distribution of passage headways are extracted and compared between the two systems. Findings Our findings displayed an unexpected degree of similarity between the collective patterns emerged from both observation types, particularly based on aggregate measures. Experiments with ants and humans commonly indicated how significantly the efficiency of motion and the rate of discharge depend on the architectural design of the movement environment. Practical applications Our findings contribute to the accumulation of evidence needed to identify the boarders of applicability of experimentation with crowds of non-human entities as models of human collective motion as well as the level of measurements (i.e. macroscopic or microscopic) and the type of contexts at which reliable inferences can be drawn. This particularly has implications in the context of experimenting evacuation behaviour for which recruiting human subjects may face ethical restrictions. The findings, at minimum, offer promise as to the potential benefit of piloting such experiments with non-human crowds, thereby forming better-informed hypotheses. PMID:28854221
Shahhoseini, Zahra; Sarvi, Majid
2017-01-01
Understanding collective behavior of moving organisms and how interactions between individuals govern their collective motion has triggered a growing number of studies. Similarities have been observed between the scale-free behavioral aspects of various systems (i.e. groups of fish, ants, and mammals). Investigation of such connections between the collective motion of non-human organisms and that of humans however, has been relatively scarce. The problem demands for particular attention in the context of emergency escape motion for which innovative experimentation with panicking ants has been recently employed as a relatively inexpensive and non-invasive approach. However, little empirical evidence has been provided as to the relevance and reliability of this approach as a model of human behaviour. This study explores pioneer experiments of emergency escape to tackle this question and to connect two forms of experimental observations that investigate the collective movement at macroscopic level. A large number of experiments with human and panicking ants are conducted representing the escape behavior of these systems in crowded spaces. The experiments share similar architectural structures in which two streams of crowd flow merge with one another. Measures such as discharge flow rates and the probability distribution of passage headways are extracted and compared between the two systems. Our findings displayed an unexpected degree of similarity between the collective patterns emerged from both observation types, particularly based on aggregate measures. Experiments with ants and humans commonly indicated how significantly the efficiency of motion and the rate of discharge depend on the architectural design of the movement environment. Our findings contribute to the accumulation of evidence needed to identify the boarders of applicability of experimentation with crowds of non-human entities as models of human collective motion as well as the level of measurements (i.e. macroscopic or microscopic) and the type of contexts at which reliable inferences can be drawn. This particularly has implications in the context of experimenting evacuation behaviour for which recruiting human subjects may face ethical restrictions. The findings, at minimum, offer promise as to the potential benefit of piloting such experiments with non-human crowds, thereby forming better-informed hypotheses.
Stochastic recruitment leads to symmetry breaking in foraging populations
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; Dyson, Louise; McKane, Alan
2014-03-01
When an ant colony is faced with two identical equidistant food sources, the foraging ants are found to concentrate more on one source than the other. Analogous symmetry-breaking behaviours have been reported in various population systems, (such as queueing or stock market trading) suggesting the existence of a simple universal mechanism. Past studies have neglected the effect of demographic noise and required rather complicated models to qualitatively reproduce this behaviour. I will show how including the effects of demographic noise leads to a radically different conclusion. The symmetry-breaking arises solely due to the process of recruitment and ceases to occur for large population sizes. The latter fact provides a testable prediction for a real system.
Ant colony optimization and event-based dynamic task scheduling and staffing for software projects
NASA Astrophysics Data System (ADS)
Ellappan, Vijayan; Ashwini, J.
2017-11-01
In programming change organizations from medium to inconceivable scale broadens, the issue of wander orchestrating is amazingly unusual and testing undertaking despite considering it a manual system. Programming wander-organizing requirements to deal with the issue of undertaking arranging and in addition the issue of human resource portion (also called staffing) in light of the way that most of the advantages in programming ventures are individuals. We propose a machine learning approach with finds respond in due order regarding booking by taking in the present arranging courses of action and an event based scheduler revives the endeavour arranging system moulded by the learning computation in perspective of the conformity in event like the begin with the Ander, the instant at what time possessions be free starting to ended errands, and the time when delegates stick together otherwise depart the wander inside the item change plan. The route toward invigorating the timetable structure by the even based scheduler makes the arranging method dynamic. It uses structure components to exhibit the interrelated surges of endeavours, slip-ups and singular all through different progression organizes and is adjusted to mechanical data. It increases past programming wander movement ask about by taking a gander at a survey based process with a one of a kind model, organizing it with the data based system for peril assessment and cost estimation, and using a choice showing stage.
Penn, Hannah J; Dale, Andrew M
2017-08-01
Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods
Lubertazzi, David; Tschinkel, Walter R.
2003-01-01
Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237