Science.gov

Sample records for ant workers food

  1. Young fire ant workers feign death and survive aggressive neighbors

    NASA Astrophysics Data System (ADS)

    Cassill, Deby L.; Vo, Kim; Becker, Brandie

    2008-07-01

    Feigning death is a method of self-defense employed among a wide range of prey species when threatened by predator species. This paper reports on death-feigning behavior by the fire ant, Solenopsis invicta, during intraspecific aggression among neighboring fire ant workers. Days-old workers responded to aggression by death feigning, weeks-old workers responded by fleeing and months-old workers responded by fighting back. By feigning death, days-old workers were four times more likely to survive aggression than older workers. From a proximate perspective, retaliation by young workers against aggressive older workers is certain to fail. With their relatively soft exoskeleton, young workers would be prone to injury and death and unable to execute an effective attack of biting or stinging older workers with harder exoskeletons. From an ultimate perspective, death feigning allows young workers to survive and contribute to brood care and colony growth, both of which are essential to queen survival and fitness.

  2. Sugary food robbing in ants: a case of temporal cleptobiosis.

    PubMed

    Richard, Freddie-Jeanne; Dejean, Alain; Lachaud, Jean-Paul

    2004-05-01

    This study reports new information on interactions between Ectatomma tuberculatum (Ponerinae) and Crematogaster limata parabiotica (Myrmicinae). Workers of these sympatric arboreal ant species forage on the same pioneer trees. Diurnally, Ectatomma preyed on Crematogaster workers that avoided overt aggression by respecting a 'safe distance'. At night, Crematogaster initiated raids within the Ectatomma nests that they apparently left with their abdomen empty, then remained near the nest entrances where they successfully intercepted 75.2% of the returning Ectatomma foragers (N = 322). Certain intercepted workers rapidly resumed their return trip. Others (39.1%) were stopped, explored and licked during a long time by the Crematogaster. Most of them were carrying between their mandibles a droplet of liquid food that was stolen. This relationship, that appears to be a typical case of interspecific cleptobiosis, whose expression varies during the daytime, demonstrates for the first time sugary-food robbing, instead of prey robbing, in ants.

  3. Reactions by army ant workers to nestmates having had contact with sympatric ant species.

    PubMed

    Dejean, Alain; Corbara, Bruno

    2014-11-01

    It was recently shown that Pheidole megacephala colonies (an invasive species originating from Africa) counterattack when raided by the army ant, Eciton burchellii. The subsequent contact permits Pheidole cuticular compounds (that constitute the "colony odour") to be transferred onto the raiding Eciton, which are then not recognised by their colony-mates and killed. Using a simple method for transferring cuticular compounds, we tested if this phenomenon occurs for Neotropical ants. Eciton workers rubbed with ants from four sympatric species were released among their colony-mates. Individuals rubbed with Solenopsis saevissima or Camponotus blandus workers were attacked, but not those rubbed with Atta sexdens, Pheidole fallax or with colony-mates (control lot). So, the chemicals of certain sympatric ant species, but not others, trigger intra-colonial aggressiveness in Eciton. We conclude that prey-ant chemicals might have played a role in the evolution of army ant predatory behaviour, likely influencing prey specialization in certain cases. PMID:25444708

  4. Worker senescence and the sociobiology of aging in ants

    PubMed Central

    Giraldo, Ysabel Milton; Traniello, James F. A.

    2014-01-01

    Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker lifespan in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their lifespan in nature. We present seven hypotheses concerning how selection could favor extended worker lifespan through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker lifespan could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker lifespan and its relationship to colony fitness, and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker lifespan in ants. PMID:25530660

  5. Ant Genetics: Reproductive Physiology, Worker Morphology, and Behavior.

    PubMed

    Friedman, D A; Gordon, D M

    2016-07-01

    Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions. PMID:27050321

  6. Ant Genetics: Reproductive Physiology, Worker Morphology, and Behavior.

    PubMed

    Friedman, D A; Gordon, D M

    2016-07-01

    Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions.

  7. Identification of an ant queen pheromone regulating worker sterility.

    PubMed

    Holman, Luke; Jørgensen, Charlotte G; Nielsen, John; d'Ettorre, Patrizia

    2010-12-22

    The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal. PMID:20591861

  8. Summer and fall ants have different physiological responses to food macronutrient content.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2016-04-01

    Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein-carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually.

  9. Rescue of newborn ants by older Cataglyphis cursor adult workers.

    PubMed

    Nowbahari, Elise; Amirault, Céline; Hollis, Karen L

    2016-05-01

    Cataglyphis cursor worker ants are capable of highly sophisticated rescue behaviour in which individuals are able to identify what has trapped a nestmate and to direct their behaviour towards that obstacle. Nonetheless, rescue behaviour is constrained by workers' subcaste: whereas foragers, the oldest workers, are able both to give and to receive the most help, the youngest workers, inactives, neither give nor receive any help whatsoever; nurses give and receive intermediate levels of aid, reflecting their intermediate age. Such differences in rescue behaviour across subcastes suggest that age and experience play a critical role. In this species, as in many others in which a sensitive period for nestmate recognition exists, newly enclosed ants, called callows, are adopted by ants belonging not only to different colonies but also to different species; foreign callows receive nearly the same special care provided to resident newborns. Because callows are younger than inactives, which are incapable of soliciting rescue, we wondered whether entrapped callows would receive such aid. In the present study, we artificially ensnared individual callows from their own colony (homocolonial), from a different colony (heterocolonial), and from a different species (heterospecific), and tested each one with groups of five potential C. cursor rescuers, either all foragers or all nurses. Our results show that all three types of callows are able to elicit rescue behaviour from both foragers and nurses. Nonetheless, nurse rescuers are better able to discriminate between the three types of callow victims than are foragers.

  10. Rescue of newborn ants by older Cataglyphis cursor adult workers.

    PubMed

    Nowbahari, Elise; Amirault, Céline; Hollis, Karen L

    2016-05-01

    Cataglyphis cursor worker ants are capable of highly sophisticated rescue behaviour in which individuals are able to identify what has trapped a nestmate and to direct their behaviour towards that obstacle. Nonetheless, rescue behaviour is constrained by workers' subcaste: whereas foragers, the oldest workers, are able both to give and to receive the most help, the youngest workers, inactives, neither give nor receive any help whatsoever; nurses give and receive intermediate levels of aid, reflecting their intermediate age. Such differences in rescue behaviour across subcastes suggest that age and experience play a critical role. In this species, as in many others in which a sensitive period for nestmate recognition exists, newly enclosed ants, called callows, are adopted by ants belonging not only to different colonies but also to different species; foreign callows receive nearly the same special care provided to resident newborns. Because callows are younger than inactives, which are incapable of soliciting rescue, we wondered whether entrapped callows would receive such aid. In the present study, we artificially ensnared individual callows from their own colony (homocolonial), from a different colony (heterocolonial), and from a different species (heterospecific), and tested each one with groups of five potential C. cursor rescuers, either all foragers or all nurses. Our results show that all three types of callows are able to elicit rescue behaviour from both foragers and nurses. Nonetheless, nurse rescuers are better able to discriminate between the three types of callow victims than are foragers. PMID:26846232

  11. Mating system evolution and worker caste diversity in Pheidole ants.

    PubMed

    Huang, Ming H; Wheeler, Diana E; Fjerdingstad, Else J

    2013-04-01

    The efficiency of social groups is generally optimized by a division of labour, achieved through behavioural or morphological diversity of members. In social insects, colonies may increase the morphological diversity of workers by recruiting standing genetic variance for size and shape via multiply mated queens (polyandry) or multiple-breeding queens (polygyny). However, greater worker diversity in multi-lineage species may also have evolved due to mutual worker policing if there is worker reproduction. Such policing reduces the pressure on workers to maintain reproductive morphologies, allowing the evolution of greater developmental plasticity and the maintenance of more genetic variance for worker size and shape in populations. Pheidole ants vary greatly in the diversity of worker castes. Also, their workers lack ovaries and are thus invariably sterile regardless of the queen mating frequency and numbers of queens per colony. This allowed us to perform an across-species study examining the genetic effects of recruiting more patrilines on the developmental diversity of workers in the absence of confounding effects from worker policing. Using highly variable microsatellite markers, we found that the effective mating frequency of the soldier-polymorphic P. rhea (avg. meN = 2.65) was significantly higher than that of the dimorphic P. spadonia (avg. meN = 1.06), despite a significant paternity skew in P. rhea (avg. B = 0.10). Our findings support the idea that mating strategies of queens may co-evolve with selection to increase the diversity of workers. We also detected patriline bias in the production of different worker sizes, which provides direct evidence for a genetic component to worker polymorphism.

  12. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants.

    PubMed

    Buffin, Aurélie; Denis, Damien; Van Simaeys, Gaetan; Goldman, Serge; Deneubourg, Jean-Louis

    2009-06-17

    Food sharing is vital for a large number of species, either solitary or social, and is of particular importance within highly integrated societies, such as in colonial organisms and in social insects. Nevertheless, the mechanisms that govern the distribution of food inside a complex organizational system remain unknown. Using scintigraphy, a method developed for medical imaging, we were able to describe the dynamics of food-flow inside an ant colony. We monitored the sharing process of a radio-labelled sucrose solution inside a nest of Formica fusca. Our results show that, from the very first load that enters the nest, food present within the colony acts as negative feedback to entering food. After one hour of the experiments, 70% of the final harvest has already entered the nest. The total foraged quantity is almost four times smaller than the expected storage capacity. A finer study of the spatial distribution of food shows that although all ants have been fed rapidly (within 30 minutes), a small area representing on average 8% of the radioactive surface holds more than 25% of the stored food. Even in rather homogeneous nests, we observed a strong concentration of food in few workers. Examining the position of these workers inside the nest, we found heavily loaded ants in the centre of the aggregate. The position of the centre of this high-intensity radioactive surface remained stable for the three consecutive hours of the experiments. We demonstrate that the colony simultaneously managed to rapidly feed all workers (200 ants fed within 30 minutes) and build up food stocks to prevent food shortage, something that occurs rather often in changing environments. Though we expected the colony to forage to its maximum capacity, the flow of food entering the colony is finely tuned to the colony's needs. Indeed the food-flow decreases proportionally to the food that has already been harvested, liberating the work-force for other tasks.

  13. Global energy gradients and size in colonial organisms: worker mass and worker number in ant colonies.

    PubMed

    Kaspari, Michael

    2005-04-01

    Body mass shapes processes from cell metabolism to community dynamics. Little is known, however, about how the average body mass of individuals varies among ecological communities. Ants alter colony mass by independently changing worker mass and/or worker number. In a survey of 49 ecosystems from tundra to tropical rainforest, average worker mass and worker number were uncorrelated (r(s) = 0.2, P > 0.14) and varied 100-fold. Data supported the hypothesis that higher mean monthly temperatures, T, reduce worker mass by increasing metabolic costs during worker development. In contrast, worker number was unimodal over a 1,000-fold gradient of net primary productivity (NPP, g of carbon per m2 per yr), a measure of organic carbon available to consumers. At the lowest levels of NPP colonies appeared to be carbon-limited; above 60 g of carbon per m2 per yr average worker number decreased to a global low. This decline in worker number with increasing NPP supports the hypothesis that abundant carbon ameliorates the Achilles heel of small taxa in competition with large taxa: their relatively high metabolic demands. Higher predation rates in resource-rich environments may also play a role in limiting worker number. In all, about half the global variation in worker mass and number was accounted for by gradients of NPP and T. Changes in global temperature and rainfall may thus mold gradients of ectotherm size, with consequences for the structure and function of the ecosystems.

  14. Direct and indirect effects of ants on a forest-floor food web.

    PubMed

    Moya-Laraño, Jordi; Wise, David H

    2007-06-01

    Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG

  15. Ant workers exhibit specialization and memory during raft formation

    NASA Astrophysics Data System (ADS)

    Avril, Amaury; Purcell, Jessica; Chapuisat, Michel

    2016-06-01

    By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.

  16. Ant workers exhibit specialization and memory during raft formation.

    PubMed

    Avril, Amaury; Purcell, Jessica; Chapuisat, Michel

    2016-06-01

    By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages. PMID:27056046

  17. Global network structure of dominance hierarchy of ant workers.

    PubMed

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-01

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks.

  18. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.

  19. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology. PMID:23320633

  20. Wasps robbing food from ants: a frequent behavior?

    NASA Astrophysics Data System (ADS)

    Lapierre, Louis; Hespenheide, Henry; Dejean, Alain

    2007-12-01

    Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.

  1. Summer and fall ants have different physiological responses to food macronutrient content.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2016-04-01

    Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein-carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually. PMID:26860359

  2. Larval regulation of worker reproduction in the polydomous ant Novomessor cockerelli

    NASA Astrophysics Data System (ADS)

    Ebie, Jessica D.; Hölldobler, Bert; Liebig, Jürgen

    2015-12-01

    Although workers in many ant species are capable of producing their own offspring, they generally rear the queen's offspring instead. There are various mechanisms that regulate worker reproduction including inhibitory effects of ant brood. Colonies of the ant Novomessor cockerelli are monogynous and polydomous resulting in a large portion of nest workers being physically isolated from the queen for extended periods of time. Some workers experimentally isolated from the queen in laboratory nests lay viable eggs, which develop into males. We investigate the mechanism that regulates worker fertility in subnests separated from the queen by giving queenless worker groups queen-produced larvae, queen-produced eggs, or no brood. Our findings show that larvae delay the time to worker egg-laying, but eggs have no effect. Larval inhibition is a likely mechanism that contributes to the regulation of worker reproduction in N. cockerellli because larvae are easily transported to subnests that do not contain a queen.

  3. Establishing food site vectors in desert ants.

    PubMed

    Bolek, Siegfried; Wittlinger, Matthias; Wolf, Harald

    2012-02-15

    When returning to the site of a successful previous forage, where does one search for the goodies? Should one rely on experience from the previous homebound journey, or should one consider the outbound journey as well, or even exclusively? Desert ants are particularly well suited for pursuing this question because of their primary reliance on path integration in open and featureless desert habitats. Path integration has been studied particularly with regard to homing after lengthy foraging trips. The ants also use path integration to return to plentiful feeding sites, but what is memorised for revisiting the feeder remains controversial. Here, we demonstrate that desert ants consider, and indeed linearly average, both outbound and inbound travel for their return to a familiar feeder. This may be interpreted as a strategy to reduce navigation errors.

  4. The role of multiple pheromones in food recruitment by ants.

    PubMed

    Dussutour, A; Nicolis, S C; Shephard, G; Beekman, M; Sumpter, D J T

    2009-08-01

    In this paper we investigate the foraging activity of an invasive ant species, the big headed ant Pheidole megacephala. We establish that the ants' behavior is consistent with the use of two different pheromone signals, both of which recruit nestmates. Our experiments suggest that during exploration the ants deposit a long-lasting pheromone that elicits a weak recruitment of nestmates, while when exploiting food the ants deposit a shorter lasting pheromone eliciting a much stronger recruitment. We further investigate experimentally the role of these pheromones under both static and dynamic conditions and develop a mathematical model based on the hypothesis that exploration locally enhances exploitation, while exploitation locally suppresses exploration. The model and the experiments indicate that exploratory pheromone allows the colony to more quickly mobilize foragers when food is discovered. Furthermore, the combination of two pheromones allows colonies to track changing foraging conditions more effectively than would a single pheromone. In addition to the already known causes for the ecological success of invasive ant species, our study suggests that their opportunistic strategy of rapid food discovery and ability to react to changes in the environment may have strongly contributed to their dominance over native species. PMID:19617426

  5. Study on the Repellency of Callicarpenal and Intermedeol against Workers of Imported Fire Ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repellency of callicarpenal and intermedeol, two terpenoids isolated from American beautyberry and Japanese beautyberry, were tested against workers of red imported fire ants, Solenopsis invicta Buren, black imported fire ants, Solenopsis richteri Forel, and a hybrid of these two species using diggi...

  6. Olfactory memory established during trophallaxis affects food search behaviour in ants.

    PubMed

    Provecho, Yael; Josens, Roxana

    2009-10-01

    Camponotus mus ants can associate sucrose and odour at the source during successive foraging cycles and use this memory to locate the nectar in the absence of other cues. These ants perform conspicuous trophallactic behaviour during recruitment while foraging for nectar. In this work, we studied whether Camponotus mus ants are able to establish this odour-sucrose association in the social context of trophallaxis and we evaluated this memory in another context previously experienced by the ant, as a nectar source. After a single trophallaxis of a scented solution, the receiver ant was tested in a Y-maze without any reward, where two scents were presented: in one arm, the solution scent and in the other, a new scent. Ants consistently chose the arm with the solution scent and stayed longer therein. Trophallaxis duration had no effect on the arm choice or with the time spent in each arm. Workers are able to associate an odour (conditioned stimulus) with the sucrose (unconditioned stimulus) they receive through a social interaction and use this memory as choice criteria during food searching. PMID:19801426

  7. Internest food sharing within wood ant colonies: resource redistribution behavior in a complex system

    PubMed Central

    Robinson, Elva J.H.

    2016-01-01

    Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest “forage” to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy. PMID:27004016

  8. Nutrition Comes Alive. Food Service Worker Guide.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Health and Drug Education and Services.

    This handbook provides nutrition activities and resource material that the food service worker can use in cooperation with the teacher to promote an understanding of major nutrition concepts and concerns. It focuses on the concept that a school's food service program serves as an extension of the classroom. The classroom and the cafeteria…

  9. Food Service Worker. Supplemental Individualized Student Modules.

    ERIC Educational Resources Information Center

    Hasty, Liswa E.; Bridwell, Terry B.

    Developed to supplement the food service worker modules published in 1977, this handbook provides fourteen additional individualized student modules. The topics included are as follow: (1) personal grooming; (2) safe handling of food and eating utensils; (3) setting up tables; (4) handling customers; (5) menus; (6) taking and placing the order;…

  10. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    PubMed

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-01

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants. PMID:22859596

  11. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    PubMed

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-01

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants.

  12. Worker policing limits the number of reproductives in a ponerine ant

    PubMed Central

    Liebig, J.; Peeters, C.; lldobler, B. H

    1999-01-01

    Reproductive division of labour is an essential feature of insect sociality, but the regulation of sterility among colony members remains incompletely understood. Ant workers and queens are morphologically divergent and workers are only capable of producing males in a colony, although they usually do not do so. Worker policing is one mechanism proposed for their infertility and it can be expressed as either aggressive inhibition of ovarian activity among workers or destruction of worker-laid eggs. A few studies have shown that workers with developed ovaries are preferentially attacked by nest-mates, but adequate demonstration of worker policing also requires evidence that these attacks result in the suppression of ovarian activity or death. We investigated worker policing in the ponerine ant Harpegnathos saltator in which workers are able to mate and replace the founding queen. Five colonies were each divided into two groups, one of which consisted exclusively of infertile workers. Some individuals in the orphaned groups began laying eggs during the three-week separation and upon reunification these were vigorously attacked by infertile workers of the other groups. The ovarian activity of these new egg layers became inhibited, as revealed by subsequent dissection of marked individuals. Worker policing in H. saltator appears to function primarily in preventing an excess of reproductive workers.

  13. Regulation of host workers' oviposition by the social parasite ant Polyergus samurai.

    PubMed

    Tsuneoka, Yousuke

    2014-07-01

    Polyergus samurai, an obligatory social parasite ant, lacks the ability to perform usual colony tasks. It depends completely on host Formica japonica workers. In the mixed colony, arrhenotokous reproduction by host workers must be detrimental to the parasites. This study, conducted under artificial rearing conditions, investigated the behavioral influence by P. samurai worker on the production of host workers' male eggs. Host workers started laying eggs when the P. samurai queen was removed, but most eggs were destroyed by P. samurai workers. In a queenless condition, P. samurai workers showed frequent intraspecific dominance interactions, but few interspecific ones. After a short while the P. samurai worker started laying eggs, the F. japonica worker stopped laying eggs. The ovary had no mature oocyte. These results suggest that both the P. samurai queen and dominant workers can inhibit host workers' oviposition. A mesh experiment revealed that the dominant P. samurai workers were able to inhibit host workers' oviposition without contacts. The dominant workers and queens of P. samurai frequently received grooming and trophallaxis from host workers just as a host queen does, suggesting that the parasites secreted similar products to those of the host queen to inhibit the host workers' oviposition. PMID:25001911

  14. Being a Food Service Worker; Student Manual.

    ERIC Educational Resources Information Center

    Hospital Research and Educational Trust, Chicago, IL.

    Instructional materials for student use in training or retraining for the occupation of food service worker at the vocational high school or community college level were developed by professional consultants. They were tested in a nationwide on-the-job training program and revised according to instructor evaluation and consultant suggestions. A…

  15. Training the Food Service Worker; Instructor's Guide.

    ERIC Educational Resources Information Center

    Hospital Research and Educational Trust, Chicago, IL.

    Curriculum materials for instructor use in planning lessons to train or retrain food service workers at the vocational high school or community college level were developed by professional consultants. They were tested in a nation-wide on-the-job training program and revised according to instructor evaluation and consultant suggestions. A minimum…

  16. Queen influence on workers behavior of the leaf-cutting ant Atta sexdens rubropilosa (Forel, 1908).

    PubMed

    Sousa-Souto, L; Souza, D J

    2006-05-01

    In an ant colony, the queen is the single reproducer and can interact with her workers via pheromones and cuticular compounds. However, in most species queen importance is not restricted to reproduction: in the initial development of the colony, her presence might play a more important role. In this work, we studied the effects of queen absence on workers behavior displayed in the foraging arena. Ants mortality and refuse accumulation was also measured daily. The results showed that queen absence did not alter either workers behavior or foraging efficiency. However, we observed increased ant mortality accompanied by a decrease in refuse dumping outside the nest. These results corroborate the hypothesis that environmental factors are more important than intrinsical factors in the allocation of external tasks. Probably, the queen could only influence internal activities of the colony. PMID:16862305

  17. Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata.

    PubMed

    Muscedere, Mario L; Johnson, Natalie; Gillis, Brendan C; Kamhi, J Frances; Traniello, James F A

    2012-03-01

    As social insect workers mature, outside-nest tasks associated with foraging and defense are typically performed at higher frequencies. Foraging in ants is often a pheromonally mediated collective action performed by mature workers; age-dependent differences in olfactory response thresholds may therefore proximately regulate task repertoire development. In the ant Pheidole dentata, foraging activity increases with chronological age in minor workers, and is chemically controlled. The onset of foraging in minor workers is accompanied by marked neuroanatomical and neurochemical changes, including synaptic remodeling in olfactory regions of the brain, proliferation of serotonergic neurons, and increased brain titers of monoamines, notably serotonin. We examined the linkage of serotonin and olfactory responsiveness by assaying trail-following performance in mature P. dentata minor workers with normal serotonin levels, or serotonin levels experimentally lowered by oral administration of the serotonin synthesis inhibitor α-methyltryptophan (AMTP). By assessing responsiveness to standardized pheromone trails, we demonstrate that trail-following behaviors are significantly reduced in serotonin-depleted workers. AMTP-treated individuals were less likely to initiate trail following, and oriented along pheromone trails for significantly shorter distances than untreated, similar-age workers. These results demonstrate for the first time that serotonin modulates olfactory processes and/or motor functions associated with cooperative foraging in ants. PMID:22134381

  18. Molecular and social regulation of worker division of labour in fire ants.

    PubMed

    Manfredini, Fabio; Lucas, Christophe; Nicolas, Michael; Keller, Laurent; Shoemaker, Dewayne; Grozinger, Christina M

    2014-02-01

    Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta. PMID:24329612

  19. Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta

    NASA Astrophysics Data System (ADS)

    Vander Meer, Robert K.; Preston, Catherine A.; Hefetz, Abraham

    2008-12-01

    Nestmate recognition is a critical element in social insect organization, providing a means to maintain territoriality and close the colony to parasites and predators. Ants detect the colony chemical label via their antennae and respond to the label mismatch of an intruder with aggressive behavior. In the fire ant, Solenopsis invicta, worker ability to recognize conspecific nonnestmates decreases if the colony queen is removed, such that they do not recognize conspecific nonnestmates as different. Here, we tested the hypothesis that the presence of the colony queen influences the concentration of octopamine, a neuromodulator, in worker ants, which in turn has an effect on nestmate recognition acuity in workers. We demonstrate that queenless workers exhibit reduced brain octopamine levels and reduced discriminatory acuteness; however, feeding queenless workers octopamine restored both. Dopamine levels are influenced by honeybee queen pheromones; however, levels of this biogenic amine were unchanged in our experiments. This is the first demonstration of a link between the presence of the colony queen, a worker biogenic amine, and conspecific nestmate recognition, a powerful expression of colony cohesion and territoriality.

  20. Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Hefetz, Abraham

    2008-12-01

    Nestmate recognition is a critical element in social insect organization, providing a means to maintain territoriality and close the colony to parasites and predators. Ants detect the colony chemical label via their antennae and respond to the label mismatch of an intruder with aggressive behavior. In the fire ant, Solenopsis invicta, worker ability to recognize conspecific nonnestmates decreases if the colony queen is removed, such that they do not recognize conspecific nonnestmates as different. Here, we tested the hypothesis that the presence of the colony queen influences the concentration of octopamine, a neuromodulator, in worker ants, which in turn has an effect on nestmate recognition acuity in workers. We demonstrate that queenless workers exhibit reduced brain octopamine levels and reduced discriminatory acuteness; however, feeding queenless workers octopamine restored both. Dopamine levels are influenced by honeybee queen pheromones; however, levels of this biogenic amine were unchanged in our experiments. This is the first demonstration of a link between the presence of the colony queen, a worker biogenic amine, and conspecific nestmate recognition, a powerful expression of colony cohesion and territoriality. PMID:18704354

  1. Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers.

    PubMed

    Larsen, Janni; Fouks, Bertrand; Bos, Nick; d'Ettorre, Patrizia; Nehring, Volker

    2014-11-01

    A key feature for the success of social insects is division of labour, allowing colony members to specialize on different tasks. Nest defence is a defining task for social insects since it is crucial for colony integrity. A particularly impressive and well-known case of worker specialization in complex hymenopteran societies is found in leaf-cutting ants of the genera Atta and Acromyrmex. We hypothesized that three morphological worker castes of Acromyrmex echinatior differ in their likelihood to attack intruders, and show that major workers are more aggressive towards non-nestmate workers than medium and minor workers. Moreover, minors do not discriminate between nestmate and non-nestmate brood, while larger workers do. We further show that A. echinatior ants use cuticular chemical compounds for nestmate recognition. We took advantage of the natural variation in the cuticular compounds between colonies to investigate the proximate factors that may have led to the observed caste differences in aggression. We infer that major workers differ from medium workers in their general propensity to attack intruders (the "action component" of the nestmate recognition system), while minors seem to be less sensitive to foreign odours ("perception component"). Our results highlight the importance of proximate mechanisms underlying social insect behaviour, and encourage an appreciation of intra-colony variation when analysing colony-level traits such as nest defence. PMID:25205477

  2. Degeneration of sperm reservoir and the loss of mating ability in worker ants

    NASA Astrophysics Data System (ADS)

    Gobin, Bruno; Ito, Fuminori; Billen, Johan; Peeters, Christian

    2008-11-01

    Workers never mate in the large majority of ants, and they have usually lost the spermatheca, an organ specialized for long-term storage of sperm. Such ‘non-sexual’ workers are restricted to laying unfertilized eggs that give rise to males, and they cannot compete with the queens for the production of female offspring. In sharp contrast, workers in 200 300 species from phylogenetically basal subfamilies can reproduce sexually (‘gamergates’) because they retain a functional spermatheca like the queens. Importantly, ‘non-sexual’ workers in closely related species have a vestigial spermatheca. In this study, we compared the reservoir epithelium of ‘sexual’ workers to that of congeneric queens and ‘non-sexual’ workers using 21 species of Amblyoponinae, Ponerinae and Ectatomminae. We show that a pronounced thickening of the epithelium near the opening of the sperm duct is strictly associated with sexual reproduction in both castes. This is unlike ‘non-sexual’ workers in which this epithelium is always very thin, with few organelles; but all other structures remain intact. We discuss this evolutionary degeneration of the spermatheca and how it relates to behavioural or physiological modifications linked to mating. Our results help understand the loss of sexual reproduction by ant workers, a critical step in the extreme specialization of their phenotype.

  3. Effects of worker size on the dynamics of fire ant tunnel construction

    PubMed Central

    Gravish, Nick; Garcia, Mateo; Mazouchova, Nicole; Levy, Laura; Umbanhowar, Paul B.; Goodisman, Michael A. D.; Goldman, Daniel I.

    2012-01-01

    Social insects work together to complete tasks. However, different individuals within a colony may vary in task proficiency. We investigated if fire ant (Solenopsis invicta) worker body size influenced the ability to construct tunnels—a key component of subterranean nests. We monitored excavation by worker groups in a substrate of small wetted glass particles in quasi-two-dimensional arenas. Morphological and network features of the tunnel system were measured. Total tunnel area did not differ significantly between groups of large and small workers, although the tunnel area of control sized workers was significantly larger than that of large workers. Moreover, large workers created wider but shorter tunnels, with slower growth rate of tunnel number. However, edge–vertex scaling and degree distribution of the tunnel network were similar across all treatments. In all cases, the amount of excavated material was correlated with the number of active workers. Our study reveals that morphological features of excavated tunnels show modest variation when constructed by workers of varying sizes, but topological features associated with the tunnel network are conserved. These results suggest that important behavioural aspects of tunnel construction—and thus nest building—are similar among morphologically distinct members of fire ant societies. PMID:22915634

  4. Aggressions and size-related fecundity of queenless workers in the ant Cataglyphis cursor

    NASA Astrophysics Data System (ADS)

    Clémencet, Johanna; Rome, Quentin; Fédérici, Pierre; Doums, Claudie

    2008-02-01

    In social hymenoptera, the reproductive division of labor is often linked to differences in individual body size with the reproductive caste (the queen) being larger than the workers. Likewise, the reproductive potential may vary with size within the worker caste and could affect the evolution of worker size in social insects. Here, we tested the relationship between worker size and reproductive potential in the facultative parthenogenetic ant Cataglyphis cursor. Colonies are headed by a multiply mated queen, but workers can produce gynes (virgin queens) and workers by thelytokous parthenogenesis after the queen’s death. We observed the behaviour of workers ( n = 357) until the production of gynes (212 h over 3 months) in an orphaned colony (mated queen not present). The size of workers was measured, and their paternal lineage determined using six microsatellite markers, to control for an effect of patriline. Larger workers were more likely to reproduce and lay more eggs indicating that individual level selection could take place. However, paternal lineage had no effect on the reproductive potential and worker size. From the behavioural and genetic data, we also show for the first time in this species, evidence of aggressive interactions among workers and a potential for nepotism to occur in orphaned colonies, as the five gynes produced belonged to a single paternal lineage.

  5. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    PubMed

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. PMID:26814223

  6. Hydrocarbon signals explain the pattern of worker and egg policing in the ant Aphaenogaster cockerelli.

    PubMed

    Smith, Adrian A; Hölldobler, Bert; Liebig, Jürgen

    2008-10-01

    In ant societies, worker reproduction is regulated through policing behaviors, such as physical aggression or egg eating. The information used by policing individuals is thought to be in blends of hydrocarbons present on the cuticle and the surface of eggs. These fertility signals have been studied in numerous genera. However, signaling patterns that emerge across distinct subfamilies of ants have yet to be explained. We investigated policing behavior and the chemical signaling upon which policing behaviors are informed in the ant Aphaenogaster cockerelli. We found that worker-produced eggs are not policed, and we showed that there is a lack of chemical signaling for effective egg policing to occur in this species. Furthermore, we identified the available signals that demarcate workers to be policed physically. We showed that in A. cockerelli, a species with derived social organization, workers produce fertility signals identical to the queen. This queen-like signaling may be due to workers maintaining a high level of ovarian activity, linked to trophic egg production, in the presence of the queen. PMID:18709507

  7. Smaller Brains and Optic Lobes in Reproductive Workers of the Ant Harpegnathos

    NASA Astrophysics Data System (ADS)

    Gronenberg, Wulfila; Liebig, Jürgen

    Most animals show long-term modifications of their behavior which often reflect an adaptation to seasonal variations (e.g., hibernation) or result from changes in the animal's internal state (e.g., estrous cycle or sexual maturity). Such modifications may substantially affect the nervous system [1, 2]. A particularly striking behavioral change can occur in workers of the ant Harpegnathos. A few young workers in the colony may become reproductives and are thus confined to their dark nest chambers, whereas most workers spend their lives as foragers, employing acute vision when hunting prey. This behavioral difference coincides with a marked decrease in brain volume and with an even stronger reduction in the large visual brain centers. Instead of maintaining superfluous brain functions, these ants reduce brain matter which is expensive to support.

  8. Colony insularity through queen control on worker social motivation in ants.

    PubMed

    Boulay, Raphaël; Katzav-Gozansky, Tamar; Vander Meer, Robert K; Hefetz, Abraham

    2003-05-01

    We investigated the relative contribution of the queen and workers to colony nestmate recognition cues and on colony insularity in the Carpenter ant Camponotus fellah. Workers were either individually isolated, preventing contact with both queen and workers (colonial deprived, CD), kept in queenless groups, allowing only worker-worker interactions (queen deprived, QD) or in queenright (QR) groups. Two weeks post-separation QD and QR workers were amicable towards each other but both rejected their CD nestmates, which suggests that the queen does not measurably influence the colony recognition cues. By contrast, aggression between QD and QR workers from the same original colony was apparent only after six months of separation. This clearly demonstrates the power of the Gestalt and indicates that the queen is not a dominant contributor to the nestmate recognition cues in this species. Aggression between nestmates was correlated with a greater hydrocarbon (HC) profile divergence for CD than for QD and QR workers, supporting the importance of worker-worker interactions in maintaining the colony Gestalt odour. While the queen does not significantly influence nestmate recognition cues, she does influence colony insularity since within 3 days QD (queenless for six months) workers from different colony origins merged to form a single queenless colony. By contrast, the corresponding QR colonies maintained their territoriality and did not merge. The originally divergent cuticular and postpharyngeal gland HC profiles became congruent following the merger. Therefore, while workers supply and blend the recognition signal, the queen affects worker-worker interaction by reducing social motivation and tolerance of alien conspecifics.

  9. Colony insularity through queen control on worker social motivation in ants.

    PubMed

    Boulay, Raphaël; Katzav-Gozansky, Tamar; Vander Meer, Robert K; Hefetz, Abraham

    2003-05-01

    We investigated the relative contribution of the queen and workers to colony nestmate recognition cues and on colony insularity in the Carpenter ant Camponotus fellah. Workers were either individually isolated, preventing contact with both queen and workers (colonial deprived, CD), kept in queenless groups, allowing only worker-worker interactions (queen deprived, QD) or in queenright (QR) groups. Two weeks post-separation QD and QR workers were amicable towards each other but both rejected their CD nestmates, which suggests that the queen does not measurably influence the colony recognition cues. By contrast, aggression between QD and QR workers from the same original colony was apparent only after six months of separation. This clearly demonstrates the power of the Gestalt and indicates that the queen is not a dominant contributor to the nestmate recognition cues in this species. Aggression between nestmates was correlated with a greater hydrocarbon (HC) profile divergence for CD than for QD and QR workers, supporting the importance of worker-worker interactions in maintaining the colony Gestalt odour. While the queen does not significantly influence nestmate recognition cues, she does influence colony insularity since within 3 days QD (queenless for six months) workers from different colony origins merged to form a single queenless colony. By contrast, the corresponding QR colonies maintained their territoriality and did not merge. The originally divergent cuticular and postpharyngeal gland HC profiles became congruent following the merger. Therefore, while workers supply and blend the recognition signal, the queen affects worker-worker interaction by reducing social motivation and tolerance of alien conspecifics. PMID:12803913

  10. Niemann-Pick type C2 protein mediating chemical communication in the worker ant.

    PubMed

    Ishida, Yuko; Tsuchiya, Wataru; Fujii, Takeshi; Fujimoto, Zui; Miyazawa, Mitsuhiro; Ishibashi, Jun; Matsuyama, Shigeru; Ishikawa, Yukio; Yamazaki, Toshimasa

    2014-03-11

    Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors. It has been hypothesized that semiochemicals are recognized by α-helical carrier proteins. The number of these proteins, however, is not sufficient to interact with a large number of semiochemicals estimated from chemosensory receptor genes. Here we shed light on this conundrum by identifying a Niemann-Pick type C2 (NPC2) protein from the antenna of the worker Japanese carpenter ant, Camponotus japonicus (CjapNPC2). CjapNPC2 accumulated in the sensillum cavity in the basiconic sensillum. The ligand-binding pocket of CjapNPC2 was composed of a flexible β-structure that allowed it to bind to a wide range of potential semiochemicals. Some of the semiochemicals elicited electrophysiolgical responses in the worker antenna. In vertebrates, NPC2 acts as an essential carrier protein for cholesterol from late endosomes and lysosomes to other cellular organelles. However, the ants have evolved an NPC2 with a malleable ligand-binding pocket as a moderately selective carrier protein in the sensillum cavity of the basiconic sensillum. CjapNPC2 might be able to deliver various hydrophobic semiochemicals to chemosensory receptor neurons and plays crucial roles in chemical communication required to perform the worker ant tasks.

  11. Niemann–Pick type C2 protein mediating chemical communication in the worker ant

    PubMed Central

    Ishida, Yuko; Tsuchiya, Wataru; Fujii, Takeshi; Fujimoto, Zui; Miyazawa, Mitsuhiro; Ishibashi, Jun; Matsuyama, Shigeru; Ishikawa, Yukio; Yamazaki, Toshimasa

    2014-01-01

    Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors. It has been hypothesized that semiochemicals are recognized by α-helical carrier proteins. The number of these proteins, however, is not sufficient to interact with a large number of semiochemicals estimated from chemosensory receptor genes. Here we shed light on this conundrum by identifying a Niemann–Pick type C2 (NPC2) protein from the antenna of the worker Japanese carpenter ant, Camponotus japonicus (CjapNPC2). CjapNPC2 accumulated in the sensillum cavity in the basiconic sensillum. The ligand-binding pocket of CjapNPC2 was composed of a flexible β-structure that allowed it to bind to a wide range of potential semiochemicals. Some of the semiochemicals elicited electrophysiolgical responses in the worker antenna. In vertebrates, NPC2 acts as an essential carrier protein for cholesterol from late endosomes and lysosomes to other cellular organelles. However, the ants have evolved an NPC2 with a malleable ligand-binding pocket as a moderately selective carrier protein in the sensillum cavity of the basiconic sensillum. CjapNPC2 might be able to deliver various hydrophobic semiochemicals to chemosensory receptor neurons and plays crucial roles in chemical communication required to perform the worker ant tasks. PMID:24567405

  12. Niemann-Pick type C2 protein mediating chemical communication in the worker ant.

    PubMed

    Ishida, Yuko; Tsuchiya, Wataru; Fujii, Takeshi; Fujimoto, Zui; Miyazawa, Mitsuhiro; Ishibashi, Jun; Matsuyama, Shigeru; Ishikawa, Yukio; Yamazaki, Toshimasa

    2014-03-11

    Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors. It has been hypothesized that semiochemicals are recognized by α-helical carrier proteins. The number of these proteins, however, is not sufficient to interact with a large number of semiochemicals estimated from chemosensory receptor genes. Here we shed light on this conundrum by identifying a Niemann-Pick type C2 (NPC2) protein from the antenna of the worker Japanese carpenter ant, Camponotus japonicus (CjapNPC2). CjapNPC2 accumulated in the sensillum cavity in the basiconic sensillum. The ligand-binding pocket of CjapNPC2 was composed of a flexible β-structure that allowed it to bind to a wide range of potential semiochemicals. Some of the semiochemicals elicited electrophysiolgical responses in the worker antenna. In vertebrates, NPC2 acts as an essential carrier protein for cholesterol from late endosomes and lysosomes to other cellular organelles. However, the ants have evolved an NPC2 with a malleable ligand-binding pocket as a moderately selective carrier protein in the sensillum cavity of the basiconic sensillum. CjapNPC2 might be able to deliver various hydrophobic semiochemicals to chemosensory receptor neurons and plays crucial roles in chemical communication required to perform the worker ant tasks. PMID:24567405

  13. When can ants discriminate the sex of brood? A new aspect of queen-worker conflict.

    PubMed

    Nonacs, P; Carlin, N F

    1990-12-15

    The stage in preimaginal ontogeny at which the sexes can first be distinguished has important implications for queen-worker conflict in social insects. If workers are unable to sex larvae at an early instar, their opportunity to control colony reproductive strategies may be limited. In addition, by concealing the sex of her sons for some portion of development, the queen could protect them from the workers' attempts to substitute their own sons or to skew the numerical sex ratio. In a series of choice experiments, workers of the carpenter ant, Camponotus floridanus, failed to discriminate the sex of several stages of larvae but did retrieve female pupae significantly more rapidly than male pupae. Our results suggest that in this species, sex may not become detectable until pupation, which is consistent with sexual deception as an aspect of queen control.

  14. When can ants discriminate the sex of brood? A new aspect of queen-worker conflict.

    PubMed

    Nonacs, P; Carlin, N F

    1990-12-15

    The stage in preimaginal ontogeny at which the sexes can first be distinguished has important implications for queen-worker conflict in social insects. If workers are unable to sex larvae at an early instar, their opportunity to control colony reproductive strategies may be limited. In addition, by concealing the sex of her sons for some portion of development, the queen could protect them from the workers' attempts to substitute their own sons or to skew the numerical sex ratio. In a series of choice experiments, workers of the carpenter ant, Camponotus floridanus, failed to discriminate the sex of several stages of larvae but did retrieve female pupae significantly more rapidly than male pupae. Our results suggest that in this species, sex may not become detectable until pupation, which is consistent with sexual deception as an aspect of queen control. PMID:11607136

  15. Higher expression of somatic repair genes in long-lived ant queens than workers

    PubMed Central

    Lucas, Eric R.; Privman, Eyal; Keller, Laurent

    2016-01-01

    Understanding why organisms senesce is a fundamental question in biology. One common explanation is that senescence results from an increase in macromolecular damage with age. The tremendous variation in lifespan between genetically identical queen and worker ants, ranging over an order of magnitude, provides a unique system to study how investment into processes of somatic maintenance and macromolecular repair influence lifespan. Here we use RNAseq to compare patterns of expression of genes involved in DNA and protein repair of age-matched queens and workers. There was no difference between queens and workers in 1-day-old individuals, but the level of expression of these genes increased with age and this up-regulation was greater in queens than in workers, resulting in significantly queen-biased expression in 2-month-old individuals in both legs and brains. Overall, these differences are consistent with the hypothesis that higher longevity is associated with increased investment into somatic repair. PMID:27617474

  16. Ant workers die young and colonies collapse when fed a high-protein diet

    PubMed Central

    Dussutour, A.; Simpson, S. J.

    2012-01-01

    A key determinant of the relationship between diet and longevity is the balance of protein and carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary insects. Here, we investigated the link between high-protein diet and longevity, both at the level of individual ants and colonies in black garden ants, Lasius niger. We explored how lifespan was affected by the dietary protein-to-carbohydrate ratio and the duration of exposure to a high-protein diet. We show that (i) restriction to high-protein, low-carbohydrate diets decreased worker lifespan by up to 10-fold; (ii) reduction in lifespan on such diets was mainly due to elevated intake of protein rather than lack of carbohydrate; and (iii) only one day of exposure to a high-protein diet had dire consequences for workers and the colony, reducing population size by more than 20 per cent. PMID:22357267

  17. Winged queens replaced by reproductives smaller than workers in Mystrium ants

    NASA Astrophysics Data System (ADS)

    Molet, Mathieu; Peeters, Christian; Fisher, Brian L.

    2007-04-01

    In ants, winged queens that are specialized for independent colony foundation can be replaced by wingless reproductives better adapted for colony fission. We studied this shift in reproductive strategy by comparing two Mystrium species from Madagascar using morphometry, allometry and dissections. Mystrium rogeri has a single dealate queen in each colony with a larger thorax than workers and similar mandibles that allow these queens to hunt during non-claustral foundation. In contrast, Mystrium ‘red’ lacks winged queens and half of the female adults belong to a wingless ‘intermorph’ caste smaller and allometrically distinct from the workers. Intermorphs have functional ovaries and spermatheca while those of workers are degenerate. Intermorphs care for brood and a few mate and reproduce making them an all-purpose caste that takes charge of both work and reproduction. However, their mandibles are reduced and inappropriate for hunting centipedes, unlike the workers’ mandibles. This together with their small thorax disallow them to perform independent colony foundation, and colonies reproduce by fission. M. rogeri workers have mandibles polymorphic in size and shape, which allow for all tasks from brood care to hunting. In M. ‘red’, colonial investment in reproduction has shifted from producing expensive winged queens to more numerous helpers. M. ‘red’ intermorphs are the first case of reproductives smaller than workers in ants and illustrate their potential to diversify their caste system for better colonial economy.

  18. Interaction between Workers during a Short Time Window Is Required for Bacterial Symbiont Transmission in Acromyrmex Leaf-Cutting Ants

    PubMed Central

    Marsh, Sarah E.; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R.

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association. PMID:25058579

  19. Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants.

    PubMed

    Marsh, Sarah E; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association. PMID:25058579

  20. Restaurant manager and worker food safety certification and knowledge.

    PubMed

    Brown, Laura G; Le, Brenda; Wong, Melissa R; Reimann, David; Nicholas, David; Faw, Brenda; Davis, Ernestine; Selman, Carol A

    2014-11-01

    Over half of foodborne illness outbreaks occur in restaurants. To combat these outbreaks, many public health agencies require food safety certification for restaurant managers, and sometimes workers. Certification entails passing a food safety knowledge examination, which is typically preceded by food safety training. Current certification efforts are based on the assumption that certification leads to greater food safety knowledge. The Centers for Disease Control and Prevention conducted this study to examine the relationship between food safety knowledge and certification. We also examined the relationships between food safety knowledge and restaurant, manager, and worker characteristics. We interviewed managers (N=387) and workers (N=365) about their characteristics and assessed their food safety knowledge. Analyses showed that certified managers and workers had greater food safety knowledge than noncertified managers and workers. Additionally, managers and workers whose primary language was English had greater food safety knowledge than those whose primary language was not English. Other factors associated with greater food safety knowledge included working in a chain restaurant, working in a larger restaurant, having more experience, and having more duties. These findings indicate that certification improves food safety knowledge, and that complex relationships exist among restaurant, manager, and worker characteristics and food safety knowledge.

  1. Bigger Helpers in the Ant Cataglyphis bombycina: Increased Worker Polymorphism or Novel Soldier Caste?

    PubMed Central

    Molet, Mathieu; Maicher, Vincent; Peeters, Christian

    2014-01-01

    Introduction The mechanisms by which development favors or constrains the evolution of new phenotypes are incompletely understood. Polyphenic species may benefit from developmental plasticity not only regarding ecological advantages, but also potential for evolutionary diversification. For instance, the repeated evolution of novel castes in ants may have been facilitated by the existence of alternative queen and worker castes and their respective developmental programs. Material and Methods Cataglyphis bombycina is exceptional in its genus because winged queens and size-polymorphic workers occur together with bigger individuals having saber-shaped mandibles. We measured seven body parts in more than 150 individuals to perform a morphometric analysis and assess the developmental origin of this novel phenotype. Results Adults with saber-shaped mandibles differ from both workers and queens regarding the size of most body parts. Their relative growth rates are identical to workers for some pairs of body parts, and identical to queens for other pairs of body parts; critical sizes differ in all cases. Conclusions Big individuals are a third caste, i.e. soldiers, not major workers. Novel traits such as elongated mandibles are combined with a mix of queen and worker growth rates. We also reveal the existence of a dimorphism in the queen caste (microgynes and macrogynes). We discuss how novel phenotypes can evolve more readily in the context of an existing polyphenism. Both morphological traits and growth rules from existing queen and worker castes can be recombined, hence mosaic phenotypes are more likely to be viable. In C. bombycina, such a mosaic phenotype appears to function both for defense (saber-shaped mandibles) and fat storage (big abdomen). Recycling of developmental programs may have contributed to the morphological diversity and ecological success of ants. PMID:24404196

  2. Workers select mates for queens: a possible mechanism of gene flow restriction between supercolonies of the invasive Argentine ant.

    PubMed

    Sunamura, Eiriki; Hoshizaki, Sugihiko; Sakamoto, Hironori; Fujii, Takeshi; Nishisue, Koji; Suzuki, Shun; Terayama, Mamoru; Ishikawa, Yukio; Tatsuki, Sadahiro

    2011-05-01

    Some invasive ants form large networks of mutually non-aggressive nests, i.e., supercolonies. The Argentine ant Linepithema humile forms much larger supercolonies in introduced ranges than in its native range. In both cases, it has been shown that little gene flow occurs between supercolonies of this species, though the mechanism of gene flow restriction is unknown. In this species, queens do not undertake nuptial flight, and males have to travel to foreign nests and cope with workers before gaining access to alien queens. In this study, we hypothesized that male Argentine ants receive interference from workers of alien supercolonies. To test this hypothesis, we conducted behavioral and chemical experiments using ants from two supercolonies in Japan. Workers attacked males from alien supercolonies but not those from their own supercolonies. The level of aggression against alien males was similar to that against alien workers. The frequency of severe aggression against alien males increased as the number of recipient workers increased. Cuticular hydrocarbon profiles, which serve as cues for nestmate recognition, of workers and males from the same supercolony were very similar. Workers are likely to distinguish alien males from males of their own supercolony using the profiles. It is predicted that males are subject to considerable aggression from workers when they intrude into the nests of alien supercolonies. This may be a mechanism underlying the restricted gene flow between supercolonies of Argentine ants. The Argentine ant may possess a distinctive reproductive system, where workers participate in selecting mates for their queens. We argue that the aggression of workers against alien males is a novel form of reproductive interference.

  3. Workers select mates for queens: a possible mechanism of gene flow restriction between supercolonies of the invasive Argentine ant

    NASA Astrophysics Data System (ADS)

    Sunamura, Eiriki; Hoshizaki, Sugihiko; Sakamoto, Hironori; Fujii, Takeshi; Nishisue, Koji; Suzuki, Shun; Terayama, Mamoru; Ishikawa, Yukio; Tatsuki, Sadahiro

    2011-05-01

    Some invasive ants form large networks of mutually non-aggressive nests, i.e., supercolonies. The Argentine ant Linepithema humile forms much larger supercolonies in introduced ranges than in its native range. In both cases, it has been shown that little gene flow occurs between supercolonies of this species, though the mechanism of gene flow restriction is unknown. In this species, queens do not undertake nuptial flight, and males have to travel to foreign nests and cope with workers before gaining access to alien queens. In this study, we hypothesized that male Argentine ants receive interference from workers of alien supercolonies. To test this hypothesis, we conducted behavioral and chemical experiments using ants from two supercolonies in Japan. Workers attacked males from alien supercolonies but not those from their own supercolonies. The level of aggression against alien males was similar to that against alien workers. The frequency of severe aggression against alien males increased as the number of recipient workers increased. Cuticular hydrocarbon profiles, which serve as cues for nestmate recognition, of workers and males from the same supercolony were very similar. Workers are likely to distinguish alien males from males of their own supercolony using the profiles. It is predicted that males are subject to considerable aggression from workers when they intrude into the nests of alien supercolonies. This may be a mechanism underlying the restricted gene flow between supercolonies of Argentine ants. The Argentine ant may possess a distinctive reproductive system, where workers participate in selecting mates for their queens. We argue that the aggression of workers against alien males is a novel form of reproductive interference.

  4. Higher brain centers for social tasks in worker ants, Camponotus japonicus.

    PubMed

    Nishikawa, Michiko; Watanabe, Hidehiro; Yokohari, Fumio

    2012-05-01

    Ants, eusocial insects, have highly elaborate chemical communication systems using a wide variety of pheromones. In the carpenter ant, Camponotus japonicus, workers and queens have the female-specific basiconic sensilla on antennae. The antennal lobe, the primary processing center, in female carpenter ants contains about 480 glomeruli, which are divided into seven groups (T1–T7 glomeruli) based on sensory afferent tracts. The axons of sensory neurons in basiconic sensilla are thought to project to female-specific T6 glomeruli. Therefore, these sensilla and glomeruli are thought to relate to female-specific social tasks in the ants. By using dye filling into local neurons (LNs) and projection neurons (PNs) in the antennal lobe, we neuroanatomically revealed the existence of an isolated processing system for signals probably relating to social tasks in the worker ant. In the antennal lobe, two categories of glomeruli, T6 glomeruli and non-T6 glomeruli, are clearly segregated by LNs. Furthermore, axon terminals of uniglomerular PNs from the respective categories of glomeruli (T6 uni-PNs and non-T6 uni-PNs) are also segregated in the secondary olfactory centers, the calyces of the mushroom body and the lateral horn: T6 uni-PNs terminate in the outer layers of the basal ring and lip of mushroom body calyces and in the posterior region of the lateral horn, whereas non-T6 uni-PNs terminate in the middle and inner layers of the basal ring and lip and in the anterior region of the lateral horn. These findings suggest that information probably relating to social tasks might be isolated from other olfactory information and processed in a separate subsystem.

  5. Higher brain centers for social tasks in worker ants, Camponotus japonicus.

    PubMed

    Nishikawa, Michiko; Watanabe, Hidehiro; Yokohari, Fumio

    2012-05-01

    Ants, eusocial insects, have highly elaborate chemical communication systems using a wide variety of pheromones. In the carpenter ant, Camponotus japonicus, workers and queens have the female-specific basiconic sensilla on antennae. The antennal lobe, the primary processing center, in female carpenter ants contains about 480 glomeruli, which are divided into seven groups (T1–T7 glomeruli) based on sensory afferent tracts. The axons of sensory neurons in basiconic sensilla are thought to project to female-specific T6 glomeruli. Therefore, these sensilla and glomeruli are thought to relate to female-specific social tasks in the ants. By using dye filling into local neurons (LNs) and projection neurons (PNs) in the antennal lobe, we neuroanatomically revealed the existence of an isolated processing system for signals probably relating to social tasks in the worker ant. In the antennal lobe, two categories of glomeruli, T6 glomeruli and non-T6 glomeruli, are clearly segregated by LNs. Furthermore, axon terminals of uniglomerular PNs from the respective categories of glomeruli (T6 uni-PNs and non-T6 uni-PNs) are also segregated in the secondary olfactory centers, the calyces of the mushroom body and the lateral horn: T6 uni-PNs terminate in the outer layers of the basal ring and lip of mushroom body calyces and in the posterior region of the lateral horn, whereas non-T6 uni-PNs terminate in the middle and inner layers of the basal ring and lip and in the anterior region of the lateral horn. These findings suggest that information probably relating to social tasks might be isolated from other olfactory information and processed in a separate subsystem. PMID:22102363

  6. Ants detect but do not discriminate diseased workers within their nest.

    PubMed

    Leclerc, Jean-Baptiste; Detrain, Claire

    2016-08-01

    Social insects have evolved an array of individual and social behaviours that limit pathogen entrance and spread within the colony. The detection of ectoparasites or of fungal spores on a nestmate body triggers their removal by allogrooming and appears as a primary component of social prophylaxis. However, in the case of fungal infection, one may wonder whether ant workers are able to detect, discriminate and keep at bay diseased nestmates that have no spores over their cuticle but which constitute a latent sanitary risk due to post-mortem corpse sporulation. Here, we investigate the ability of Myrmica rubra workers to detect and discriminate a healthy from a diseased nestmate infected by the entomopathogen Metarhizium anisopliae. During dyadic encounters in a neutral location, workers were more aggressive towards isolated sick nestmates on the 3rd post-infection day. However, no such detection or discrimination of fungus-infected nestmates occurred in a social context inside the nest or at the nest entrance. Gatekeepers never actively rejected incoming diseased nestmates that rather spontaneously isolated themselves outside the nest. Our study reveals that ant workers may detect health-dependent cues and that their 'acceptance level' of sick nestmates is tunable depending on the social context. This raises questions about possible trade-offs between a social closure to pathogens and risks of erroneous rejection of healthy nestmates. Social isolation of moribund ants also appears as a widespread prophylactic strategy of social insects allowing them to reduce exposure to pathogens and to spare costs associated with the management of infected individuals. PMID:27475810

  7. Ants detect but do not discriminate diseased workers within their nest

    NASA Astrophysics Data System (ADS)

    Leclerc, Jean-Baptiste; Detrain, Claire

    2016-08-01

    Social insects have evolved an array of individual and social behaviours that limit pathogen entrance and spread within the colony. The detection of ectoparasites or of fungal spores on a nestmate body triggers their removal by allogrooming and appears as a primary component of social prophylaxis. However, in the case of fungal infection, one may wonder whether ant workers are able to detect, discriminate and keep at bay diseased nestmates that have no spores over their cuticle but which constitute a latent sanitary risk due to post-mortem corpse sporulation. Here, we investigate the ability of Myrmica rubra workers to detect and discriminate a healthy from a diseased nestmate infected by the entomopathogen Metarhizium anisopliae. During dyadic encounters in a neutral location, workers were more aggressive towards isolated sick nestmates on the 3rd post-infection day. However, no such detection or discrimination of fungus-infected nestmates occurred in a social context inside the nest or at the nest entrance. Gatekeepers never actively rejected incoming diseased nestmates that rather spontaneously isolated themselves outside the nest. Our study reveals that ant workers may detect health-dependent cues and that their `acceptance level' of sick nestmates is tunable depending on the social context. This raises questions about possible trade-offs between a social closure to pathogens and risks of erroneous rejection of healthy nestmates. Social isolation of moribund ants also appears as a widespread prophylactic strategy of social insects allowing them to reduce exposure to pathogens and to spare costs associated with the management of infected individuals.

  8. Queen execution increases relatedness among workers of the invasive Argentine ant, Linepithema humile.

    PubMed

    Inoue, Maki N; Ito, Fuminori; Goka, Koichi

    2015-09-01

    Polygyny in social insects can greatly reduce within-nest genetic relatedness. In polygynous ant species, potential rival queens in colonies with multiple queens are often executed by other queens, workers, or both. The Argentine ant, Linepithema humile, native to South America, forms a "supercolony" that is composed of a large number of nests and is considered to contribute to the ant's invasion success. Currently, four mutually antagonistic supercolonies are contiguously distributed within a small area of Japan. Here, we analyzed the genetic structure and relatedness within and among the four supercolonies using microsatellite markers to clarify how L. humile maintains its supercoloniality. The results of AMOVA and BASP, the F ST values, and the existence of several private alleles indicated that the L. humile population in the Kobe area had a characteristic genetic structure. Within a given supercolony, there was significant genetic differentiation (F ST) among workers collected in May and those collected in September. The significant deviation from Hardy-Weinberg equilibrium increased, and the relatedness among workers significantly increased from May to September in all supercolonies. This result suggested that the supercolonies replaced old queens with new ones during the reproductive season, thus supporting the plausibility of queen execution. From the perspective of kin selection, workers collectively eliminate queens, thereby increasing their own inclusive fitness. Restricted gene flow among supercolonies, together with mating with sib and queen execution, could help to maintain the unique social structure of L. humile, the distribution of which is expanding worldwide. PMID:26445661

  9. Blessings on the Food, Blessings on the Workers: Arts-Based Education for Migrant Worker Justice

    ERIC Educational Resources Information Center

    Barndt, Deborah

    2013-01-01

    Migrant agricultural workers are not only on the margins of Canadian and global food systems; they are also on the margins of public consciousness about the labour behind the food we eat. Even local food movement groups who advocate for both social justice and sustainable food production have not made migrant labour a priority concern. Popular…

  10. Dominance Hierarchies in Leptothorax Ants

    NASA Astrophysics Data System (ADS)

    Cole, Blaine J.

    1981-04-01

    The social organization of Leptothorax allardycei is unique among ant species thus far studied. The workers form linear dominance hierarchies characterized by routine displays of dominance, avoidance behavior, and even fighting. The high-ranking ants are favored in liquid food exchange, have greater ovarian development, and produce 20 percent of the eggs.

  11. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei.

    PubMed

    Suefuji, Masaki; Heinze, Jürgen

    2015-03-01

    Socially parasitic ants of the formicoxenine genus Myrmoxenus exhibit considerable diversity in colony structure and life history. While some species are active slave-makers with many workers and others are workerless 'murder-parasites,' Myrmoxenus kraussei is considered as a 'degenerate slave-maker' because of its very low worker numbers. Here, we document that Temnothorax recedens host workers in single colonies of M. kraussei from Lago di Garda, Italy, exhibit significantly more genetic diversity than workers in unparasitized colonies. This raises the possibility that, despite its low worker numbers, M. kraussei may actively engage in slave raids in nature.

  12. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) is induced by interactions with mature workers.

    PubMed

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior.

  13. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) is induced by interactions with mature workers.

    PubMed

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  14. Food Production Worker. Dietetic Support Personnel Training Program.

    ERIC Educational Resources Information Center

    Barker, Ellen; And Others

    This curriculum guide, part of a multi-volume dietetic support personnel training program, consists of materials (15 units) for use in training future food production workers. Covered in the first part of the guide are nutrition in food production and diet therapy. The second part of the guide deals with sanitation and safety in food production.…

  15. Food Preference and Foraging Activity of Ants: Recommendations for Field Applications of Low-Toxicity Baits

    PubMed Central

    Nyamukondiwa, Casper; Addison, Pia

    2014-01-01

    Control of ants using baits of low toxicity cannot be effective without knowledge of bait distribution patterns and bait station densities, which are determined by ants' foraging activities. Furthermore, the success of toxic baits also depends upon attractiveness of bait carriers. Here, we assessed ground and vine foraging activity and food preferences for the three ant species (Linepithema humile (Mayr) (Hymenoptera: Formicidae), Anoplolepis custodiens (F. Smith) and Crematogaster peringueyi Emery) under field conditions. We found that L. humile's vineyard foraging activity was high and that movement of ant bait by C. peringueyi and A. custodiens in the vineyard was relatively low. Consequently, more bait stations need to be dispensed for more effective control of C. peringueyi and A. custodiens than for L. humile. Different bait densities are discussed for the various ant species. Food preference trials indicated that vineyard foraging ants preferred wet bait attractants over dry ones, making liquids the most ideal carriers for baiting these ants. Linepithema humile was attracted to 25% sugar water, while C. peringueyi was attracted to both 25% sugar water and honey. Anoplolepis custodiens was attracted to tuna but was also attracted to 25% sugar water. Thus, future bait formulations should be tailor made to suit these specific food requirements if baits are to be successful in ant pest management. PMID:25373195

  16. Food preference and foraging activity of ants: recommendations for field applications of low-toxicity baits.

    PubMed

    Nyamukondiwa, Casper; Addison, Pia

    2014-04-10

    Control of ants using baits of low toxicity cannot be effective without knowledge of bait distribution patterns and bait station densities, which are determined by ants' foraging activities. Furthermore, the success of toxic baits also depends upon attractiveness of bait carriers. Here, we assessed ground and vine foraging activity and food preferences for the three ant species ( Linepithema humile (Mayr) (Hymenoptera: Formicidae), Anoplolepis custodiens (F. Smith) and Crematogaster peringueyi Emery) under field conditions. We found that L. humile's vineyard foraging activity was high and that movement of ant bait by C. peringueyi and A. custodiens in the vineyard was relatively low. Consequently, more bait stations need to be dispensed for more effective control of C. peringueyi and A. custodiens than for L. humile. Different bait densities are discussed for the various ant species. Food preference trials indicated that vineyard foraging ants preferred wet bait attractants over dry ones, making liquids the most ideal carriers for baiting these ants. Linepithema humile was attracted to 25% sugar water, while C. peringueyi was attracted to both 25% sugar water and honey. Anoplolepis custodiens was attracted to tuna but was also attracted to 25% sugar water. Thus, future bait formulations should be tailor made to suit these specific food requirements if baits are to be successful in ant pest management.

  17. Food worker experiences with and beliefs about working while ill.

    PubMed

    Carpenter, L Rand; Green, Alice L; Norton, Dawn M; Frick, Roberta; Tobin-D'Angelo, Melissa; Reimann, David W; Blade, Henry; Nicholas, David C; Egan, Jessica S; Everstine, Karen; Brown, Laura G; Le, Brenda

    2013-12-01

    Transmission of foodborne pathogens from ill food workers to diners in restaurants is an important cause of foodborne illness outbreaks. The U.S. Food and Drug Administration recommends that food workers with vomiting or diarrhea (symptoms of foodborne illness) be excluded from work. To understand the experiences and characteristics of workers who work while ill, workplace interviews were conducted with 491 food workers from 391 randomly selected restaurants in nine states that participated in the Environmental Health Specialists Network of the Centers for Disease Control and Prevention. Almost 60% of workers recalled working while ill at some time. Twenty percent of workers said that they had worked while ill with vomiting or diarrhea for at least one shift in the previous year. Factors significantly related to workers having said that they had worked while ill with vomiting or diarrhea were worker sex, job responsibilities, years of work experience, concerns about leaving coworkers short staffed, and concerns about job loss. These findings suggest that the decision to work while ill with vomiting or diarrhea is complex and multifactorial.

  18. Performance of the Species-Typical Alarm Response in Young Workers of the Ant Myrmica sabuleti (Hymenoptera: Formicidae) Is Induced by Interactions with Mature Workers

    PubMed Central

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants’ ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  19. Listening to food workers: Factors that impact proper health and hygiene practice in food service

    PubMed Central

    Clegg Smith, Katherine; Neff, Roni A.; Pollack, Keshia M.; Ensminger, Margaret

    2015-01-01

    Background Foodborne disease is a significant problem worldwide. Research exploring sources of outbreaks indicates a pronounced role for food workers' improper health and hygiene practice. Objective To investigate food workers' perceptions of factors that impact proper food safety practice. Method Interviews with food service workers in Baltimore, MD, USA discussing food safety practices and factors that impact implementation in the workplace. A social ecological model organizes multiple levels of influence on health and hygiene behavior. Results Issues raised by interviewees include factors across the five levels of the social ecological model, and confirm findings from previous work. Interviews also reveal many factors not highlighted in prior work, including issues with food service policies and procedures, working conditions (e.g., pay and benefits), community resources, and state and federal policies. Conclusion Food safety interventions should adopt an ecological orientation that accounts for factors at multiple levels, including workers' social and structural context, that impact food safety practice. PMID:26243248

  20. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination

    PubMed Central

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-01-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange. PMID:26224025

  1. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination

    NASA Astrophysics Data System (ADS)

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-07-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange.

  2. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination.

    PubMed

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-01-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange. PMID:26224025

  3. First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite protomognathus americanus.

    PubMed

    Achenbach, Alexandra; Foitzik, Susanne

    2009-04-01

    During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus. Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.

  4. Stable isotopes reveal links between human food inputs and urban ant diets

    PubMed Central

    Penick, Clint A.; Savage, Amy M.; Dunn, Robert R.

    2015-01-01

    The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes. We found that some—but not all—ant species living in Manhattan's most urbanized habitats had δ13C signatures associated with processed human foods. In particular, pavement ants (Tetramorium sp. E) had increased levels of δ13C similar to δ13C levels in human fast foods. The magnitude of this effect was positively correlated with urbanization. By contrast, we detected no differences in δ15N, suggesting Tetramorium feeds at the same trophic level despite shifting to human foods. This pattern persisted across the broader ant community; species in traffic islands used human resources more than park species. Our results demonstrate that the degree urban ants exploit human resources changes across the city and among species, and this variation could play a key role in community structure and ecosystem processes where human and animal food webs intersect. PMID:25833850

  5. Nest and food search behaviour in desert ants, Cataglyphis: a critical comparison.

    PubMed

    Pfeffer, Sarah E; Bolek, Siegfried; Wolf, Harald; Wittlinger, Matthias

    2015-07-01

    North African desert ants, Cataglyphis, use path integration to calculate a home vector during their foraging trips, constantly informing them about their position relative to the nest. This home vector is also used to find the way back to a productive feeding site the ant has encountered and thus memorized. When the animal fails to arrive at its goal after having run off the home or food vector, a systematic search is initiated. The basic search strategies are identical for nest and food searches, consisting of a search spiral superimposed by a random walk. While nest searches have been investigated in much detail, food site searches have received comparatively little attention. Here, we quantify and compare nest and food site searches recorded under similar conditions, particularly constant nest-feeder distance, and we observe notable differences in nest and food search performances. The parameters of nest searches are relatively constant and improve little with experience, although those small improvements had not been recognized previously. Food searches, by contrast, are more flexible and cover smaller or larger areas, mainly depending on the reliability of food encounter over several visits. Intriguingly, food site searches may be significantly more focussed than nest searches, although the nest should be the most important goal in an ant's life. These results demonstrate both adaptability and high accuracy of the ants' search programme.

  6. Food service workers' self-reported food preparation practices: an EHS-Net study.

    PubMed

    Green, Laura; Selman, Carol; Banerjee, Anyana; Marcus, Ruthanne; Medus, Carlota; Angulo, Frederick J; Radke, Vince; Buchanan, Sharunda

    2005-01-01

    This study was conducted by the Environmental Health Specialists Network (EHS-Net), a network of environmental health specialists and epidemiologists at federal and state health agencies, whose mission is to improve environmental health practice. One of EHS-Net's primary goals is to improve the understanding of the underlying causes of foodborne illness using a system-based approach. As part of this ongoing effort, EHS-Net analyzed data from a telephone survey of food service workers designed to increase our understanding of food preparation practices (a cause of foodborne illness) in restaurants. Results indicated that risky food preparation practices were commonly reported. Respondents said that at work they did not always wear gloves while touching ready-to-eat (RTE) food (60%), did not always wash their hands or change their gloves between handling raw meat and RTE food (23% and 33%), did not use a thermometer to check food temperatures (53%), and had worked while sick with vomiting or diarrhea (5%). Several factors were associated with safer food preparation practices. Workers responsible for food preparation reported washing their hands and wearing gloves when handling RTE food more often than workers not responsible for food preparation. Workers who cooked reported changing their gloves more often than workers who did not cook. Older workers and managers reported washing their hands more often than younger workers and non-managers. Workers in chain restaurants more frequently reported using thermometers than workers in independently owned restaurants. This study provides valuable information concerning the prevalence of food preparation practices and factors that may impact those practices. Additional research is needed to better understand those factors.

  7. Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food.

    PubMed

    Greene, Michael J; Pinter-Wollman, Noa; Gordon, Deborah M

    2013-01-01

    Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.

  8. A macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance.

    PubMed

    Kleineidam, C J; Obermayer, M; Halbich, W; Rössler, W

    2005-06-01

    Ants have a well-developed olfactory system, and pheromone communication is essential for regulating social life within their colonies. We compared the organization of primary olfactory centers (antennal lobes, ALs) in the brain of two closely related species of leaf-cutting ants (Atta vollenweideri, Atta sexdens). Both species express a striking size polymorphism associated with polyethism. We discovered that the ALs of large workers contain a substantially enlarged glomerulus (macroglomerulus, MG) at the entrance of the antennal nerve. This is the first description of an MG in non-sexual individuals of an insect. The location of the MG is laterally reversed in the two species, and workers of different size express a disproportional allometry of glomerular volumes. While ALs of large workers contain an MG, glomeruli in small workers are all similar in size. We further compared electroantennogram (EAG) responses to two common trail pheromone components of leaf-cutting ants: 4-methylpyrrol-2-carboxylate and 2-ethyl-3,6-dimethylpyrazine. At high concentrations the ratio of the EAG signals to 2-ethyl-3,6-dimethylpyrazine versus 4-methylpyrrol-2-carboxylate was significantly smaller in A. vollenweideri compared with the ratio of EAG signals to the same two components in A. sexdens. The differences in EAG signals and the species specific MG location in large workers provide correlative evidence that the MG may be involved in the detection of the trail pheromone. PMID:15843501

  9. Use of Seeds as Fungus Garden Substrate Changes the Organization of Labor Among Leaf-Cutting Ant Workers.

    PubMed

    Hastenreiter, I N; Sales, T A; Camargo, R S; Forti, L C; Lopes, J F S

    2015-08-01

    Seeds of different plant species constitute an alternative but also significant substrate that leaf-cutting ants use to cultivate their fungus garden. However, how they are processed inside the nest and if their use implies differential allocation of worker size classes are still poorly known. Using laboratory colonies of Acromyrmex subterraneus (Forel) as a model, the behaviors related to the processing of three different seeds (sesame, guava, and grape) as fungus substrate were listed. At the same time, we measured how each worker size class contributed to the execution of these behaviors by registering their respective frequency. It was found that medium-sized (1.2 > head width < 1.6 mm) and minimum-sized (head width <1.1 mm) workers assumed the role of incorporation for sesame and grape seeds, respectively. Major-sized workers (head width >1.7 mm) were concentrated on licking and holding guava seeds. Tegument removal was the only task observed that differs between treatment of seeds and treatment of leaves before their incorporation, as described in the literature. It was verified that different species of seeds imply a differential allocation of worker size classes and the inclusion or exclusion of some tasks from the behavioral repertoire. Regardless of the substrate type, leaf-cutting ant workers follow a coordinated and specialized procedure to cultivate the fungus garden but always maintain a high degree of cooperation. PMID:26050554

  10. Seasonality Directs Contrasting Food Collection Behavior and Nutrient Regulation Strategies in Ants

    PubMed Central

    Cook, Steven C.; Eubanks, Micky D.; Gold, Roger E.; Behmer, Spencer T.

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant. PMID:21966522

  11. Food searches and guiding structures in North African desert ants, Cataglyphis.

    PubMed

    Bolek, Siegfried; Wolf, Harald

    2015-06-01

    North African desert ants, Cataglyphis fortis, use path integration as their primary means of navigation. The ants also use landmarks when these are available to improve navigation accuracy. Extended landmarks, such as walls and channels, may serve further functions, for example, local guidance or triggering of local vectors. The roles of such structures were usually examined in homing animals but not during food searches. When searching for familiar feeding sites, Cataglyphis may show intriguing deviations from expected search performances. These may result from the presence of extended landmarks, namely experimental channels. Here we scrutinise this hypothesis of landmark guidance in food searches. We prevented the ants from seeing the channel walls by covering their eyes, except the dorsal rim area. This experiment was repeated in the open test field with an alley of black cylinders to extend our findings to a more normal foraging environment. Ants with covered eyes did not deviate from expected search performances, whereas ants with normal eyes extended their searches along the axis of the leading structures by 15-20%, in both channels and landmark alleys. This demonstrates that Cataglyphis orients along extended landmarks when searching for familiar food sources and alters its search pattern accordingly.

  12. Food Service Worker. Dietetic Support Personnel Achievement Test.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater.

    This guide contains a series of multiple-choice items and guidelines to assist instructors in composing criterion-referenced tests for use in the food service worker component of Oklahoma's Dietetic Support Personnel training program. Test items addressing each of the following occupational duty areas are provided: human relations; personal…

  13. Food Production Worker. Dietetic Support Personnel Achievement Test.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater.

    This guide contains a series of multiple-choice items and guidelines to assist instructors in composing criterion-referenced tests for use in the food production worker component of Oklahoma's Dietetic Support Personnel training program. Test items addressing each of the following occupational duty areas are provided: human relations; hygiene and…

  14. Food safety knowledge and behavior of emergency food relief organization workers: effects of food safety training intervention.

    PubMed

    Finch, Cristin; Daniel, Eileen

    2005-05-01

    The food safety knowledge and food-handling behaviors of 267 volunteer and staff workers in emergency food relief organizations in western New York State were assessed before and after food safety training. Training was voluntary and emphasized basic food safety and prevention of foodborne illness. Results from the pre-test showed major gaps in the knowledge and behaviors of those working with physically vulnerable populations in emergency food services. These gaps, particularly failure to use food thermometers and unsafe use of hands, could lead to outbreaks of foodborne disease. Independent-samples t-tests, used to compare pre- and post-test scores, indicated that workers' knowledge and reported behaviors significantly improved followin good safety training (p < .0001). There is a need for relevant and ongoing food safety education in this group.

  15. How Do Genomes Create Novel Phenotypes? Insights from the Loss of the Worker Caste in Ant Social Parasites

    PubMed Central

    Smith, Chris R.; Helms Cahan, Sara; Kemena, Carsten; Brady, Seán G.; Yang, Wei; Bornberg-Bauer, Erich; Eriksson, Ti; Gadau, Juergen; Helmkampf, Martin; Gotzek, Dietrich; Okamoto Miyakawa, Misato; Suarez, Andrew V.; Mikheyev, Alexander

    2015-01-01

    A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects. PMID:26226984

  16. How Do Genomes Create Novel Phenotypes? Insights from the Loss of the Worker Caste in Ant Social Parasites.

    PubMed

    Smith, Chris R; Helms Cahan, Sara; Kemena, Carsten; Brady, Seán G; Yang, Wei; Bornberg-Bauer, Erich; Eriksson, Ti; Gadau, Juergen; Helmkampf, Martin; Gotzek, Dietrich; Okamoto Miyakawa, Misato; Suarez, Andrew V; Mikheyev, Alexander

    2015-11-01

    A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects. PMID:26226984

  17. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers

    PubMed Central

    Groh, Claudia; Kelber, Christina; Grübel, Kornelia; Rössler, Wolfgang

    2014-01-01

    Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization. PMID:24807257

  18. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 7. Barriers to reduce contamination of food by workers.

    PubMed

    Todd, Ewen C D; Michaels, Barry S; Greig, Judy D; Smith, Debra; Holah, John; Bartleson, Charles A

    2010-08-01

    Contamination of food and individuals by food workers has been identified as an important contributing factor during foodborne illness investigations. Physical and chemical barriers to prevent microbial contamination of food are hurdles that block or reduce the transfer of pathogens to the food surface from the hands of a food worker, from other foods, or from the environment. In food service operations, direct contact of food by hands should be prevented by the use of barriers, especially when gloves are not worn. Although these barriers have been used for decades in food processing and food service operations, their effectiveness is sometimes questioned or their use may be ignored. Physical barriers include properly engineered building walls and doors to minimize the flow of outside particles and pests to food storage and food preparation areas; food shields to prevent aerosol contamination of displayed food by customers and workers; work clothing designated strictly for work (clothing worn outdoors can carry undesirable microorganisms, including pathogens from infected family members, into the work environment); and utensils such as spoons, tongs, and deli papers to prevent direct contact between hands and the food being prepared or served. Money and ready-to-eat foods should be handled as two separate operations, preferably by two workers. Chemical barriers include sanitizing solutions used to remove microorganisms (including pathogens) from objects or materials used during food production and preparation and to launder uniforms, work clothes, and soiled linens. However, laundering as normally practiced may not effectively eliminate viral pathogens. PMID:20819372

  19. Collective regulatory stock management and spatiotemporal dynamics of the food flow in ants.

    PubMed

    Buffin, Aurélie; Goldman, Serge; Deneubourg, Jean Louis

    2012-07-01

    The organization of complex societies requires constant information flow between individuals. The shape of the food web organizes itself according to the spatial distribution of the individuals and of the stocks. To understand how the spatial organization of the food stocks changes with the colony needs, we monitored the flow of radiolabeled sugar solution inside an ant nest at different degrees of starvation. The spatial dynamics of the food flow revealed stable patterns and fine-tuning regulation of the feeding process. The complex collective regulatory stock management task can be reproduced by a surprising simple model that integrates a positive and a negative feedback proportional to the number of ants that already received food. Spatial analysis of the food distribution showed that sucrose is heterogeneously stocked among individuals and also heterogeneously consumed. Furthermore, we observed a regular spatial structure, leading to centralization of the stocks: heavily loaded individuals being at the center of the cluster and weakly loaded individuals at its periphery. The centralization of both resources and information in self-organized systems might be a widespread phenomenon that deserves further studies.

  20. A queen pheromone induces workers to kill sexual larvae in colonies of the red imported fire ant (Solenopsis invicta)

    NASA Astrophysics Data System (ADS)

    Klobuchar, Emily; Deslippe, Richard

    2002-05-01

    We conducted five bioassays to study how queens control the execution of sexual larvae by workers in colonies of the red imported fire ant, Solenopsis invicta. In each assay, subset colonies were made from many large polygyne colonies, and the 20 sexual larvae they contained were monitored over time. Sexual larvae mostly survived in queenless colonies, but were mostly killed in colonies with a single dealated queen, regardless of whether or not the queen was fertilized. The larvae were also killed when fresh corpses of queens were added to queenless colonies. Whereas acetone extracts of queens did not produce a significant increase in killings, extracts in buffered saline induced workers to execute most sexual larvae, indicating successful extraction of an execution pheromone. We identified the probable storage location of the chemical as the poison sac, and found both fresh (1 day) and old (21 day) extracts of poison sacs to be equally effective in inducing executions. The pheromone is stable at room temperature, perhaps because venom alkaloids also present in the extracts keep the pheromone from degrading. It is apparently either proteinaceous or associated with a proteinaceous molecule, a novel finding, as no queen pheromone of a proteinaceous nature has been previously demonstrated in ants.

  1. A queen pheromone induces workers to kill sexual larvae in colonies of the red imported fire ant (Solenopsis invicta).

    PubMed

    Klobuchar, Emily A; Deslippe, Richard J

    2002-07-01

    We conducted five bioassays to study how queens control the execution of sexual larvae by workers in colonies of the red imported fire ant, Solenopsis invicta. In each assay, subset colonies were made from many large polygyne colonies, and the 20 sexual larvae they contained were monitored over time. Sexual larvae mostly survived in queenless colonies, but were mostly killed in colonies with a single dealated queen, regardless of whether or not the queen was fertilized. The larvae were also killed when fresh corpses of queens were added to queenless colonies. Whereas acetone extracts of queens did not produce a significant increase in killings, extracts in buffered saline induced workers to execute most sexual larvae, indicating successful extraction of an execution pheromone. We identified the probable storage location of the chemical as the poison sac, and found both fresh (1 day) and old (21 day) extracts of poison sacs to be equally effective in inducing executions. The pheromone is stable at room temperature, perhaps because venom alkaloids also present in the extracts keep the pheromone from degrading. It is apparently either proteinaceous or associated with a proteinaceous molecule, a novel finding, as no queen pheromone of a proteinaceous nature has been previously demonstrated in ants. PMID:12216859

  2. Growth and patterning are evolutionarily dissociated in the vestigial wing discs of workers of the red imported fire ant, Solenopsis invicta.

    PubMed

    Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab

    2007-12-15

    Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits.

  3. Missed Opportunities for Improving Nutrition Through Institutional Food: The Case for Food Worker Training

    PubMed Central

    Deutsch, Jonathan; Patinella, Stefania; Freudenberg, Nicholas

    2013-01-01

    The institutional food sector—including food served in schools, child care settings, hospitals, and senior centers—is a largely untapped resource for public health that may help to arrest increasing rates of obesity and diet-related health problems. To make this case, we estimated the reach of a diverse institutional food sector in 1 large municipality, New York City, in 2012, and explored the potential for improving institutional food by building the skills and nutritional knowledge of foodservice workers through training. Drawing on the research literature and preliminary data collected in New York City, we discuss the dynamics of nutritional decision-making in these settings. Finally, we identify opportunities and challenges associated with training the institutional food workforce to enhance nutrition and health. PMID:23865653

  4. Missed opportunities for improving nutrition through institutional food: the case for food worker training.

    PubMed

    Tsui, Emma K; Deutsch, Jonathan; Patinella, Stefania; Freudenberg, Nicholas

    2013-09-01

    The institutional food sector-including food served in schools, child care settings, hospitals, and senior centers-is a largely untapped resource for public health that may help to arrest increasing rates of obesity and diet-related health problems. To make this case, we estimated the reach of a diverse institutional food sector in 1 large municipality, New York City, in 2012, and explored the potential for improving institutional food by building the skills and nutritional knowledge of foodservice workers through training. Drawing on the research literature and preliminary data collected in New York City, we discuss the dynamics of nutritional decision-making in these settings. Finally, we identify opportunities and challenges associated with training the institutional food workforce to enhance nutrition and health.

  5. Effect of gland extracts on digging and residing preferences of red imported fire ant workers (Hymenoptera: Formicidae).

    PubMed

    Chen, Jian; Zhang, Guangmei

    2013-08-01

    There is evidence that ant-derived chemical stimuli are involved in regulating the digging behavior in Solenopsis invicta Buren. However, the source gland(s) and chemistry of such stimuli have never been revealed. In this study, extracts of mandibular, Dufour's, postpharyngeal, and poison glands were evaluated for their effect on ant digging and residing preferences of S. invicta workers from three colonies. In the intracolonial bioassays, workers showed significant digging preferences to mandibular gland extracts in 2 of 3 colonies and significant residing preferences in 1 of 3 colonies; significant digging preferences to Dufour's gland extracts in 1 of 3 colonies and significant residing preferences in 2 of 3 colonies. No digging and residing preferences were found for postpharyngeal and poison gland extracts. In intercolonial bioassays, significant digging and residing preferences were found for mandibular gland extracts in 3 of 6 colony combinations. Significant digging preferences to Dufour's gland extracts were found in 4 of 6 colony combinations and significant residing preferences in all 6 colony combinations. For postpharyngeal gland extracts, significant digging preferences were found only in 1 of 6 colonial combinations and no significant residing preferences were found. For poison gland extracts, no significant digging preferences were found; significant residing preferences were found in 1 of 6 colony combinations. However, a significant residing deterrence (negative residing preference index) was found for 2 of 6 colony combinations. Statistical analyses using data pooled from all colonies showed that mandibular and Dufour's gland extracts caused significant digging and residing preferences in both intracolonial and intercolonial bioassays but not postpharyngeal and poison gland extracts. By analyzing the data pooled from the same three colonies used for gland extract bioassays, it was found that, in no cases, workers showed significant digging and

  6. Division of Labor in the Hyperdiverse Ant Genus Pheidole Is Associated with Distinct Subcaste- and Age-Related Patterns of Worker Brain Organization

    PubMed Central

    Muscedere, Mario L.; Traniello, James F. A.

    2012-01-01

    The evolutionary success of ants and other social insects is considered to be intrinsically linked to division of labor among workers. The role of the brains of individual ants in generating division of labor, however, is poorly understood, as is the degree to which interspecific variation in worker social phenotypes is underscored by functional neurobiological differentiation. Here we demonstrate that dimorphic minor and major workers of different ages from three ecotypical species of the hyperdiverse ant genus Pheidole have distinct patterns of neuropil size variation. Brain subregions involved in sensory input (optic and antennal lobes), sensory integration, learning and memory (mushroom bodies), and motor functions (central body and subesophageal ganglion) vary significantly in relative size, reflecting differential investment in neuropils that likely regulate subcaste- and age-correlated task performance. Worker groups differ in brain size and display patterns of altered isometric and allometric subregion scaling that affect brain architecture independently of brain size variation. In particular, mushroom body size was positively correlated with task plasticity in the context of both age- and subcaste-related polyethism, providing strong, novel support that greater investment in this neuropil increases behavioral flexibility. Our findings reveal striking levels of developmental plasticity and evolutionary flexibility in Pheidole worker neuroanatomy, supporting the hypothesis that mosaic alterations of brain composition contribute to adaptive colony structure and interspecific variation in social organization. PMID:22363686

  7. Carbohydrate regulation in relation to colony growth in ants.

    PubMed

    Dussutour, A; Simpson, S J

    2008-07-01

    Ants and all social insects are faced with a nutritional challenge: the food entering the colony is brought by only a small number of its workers but is shared among all members of the colony. In this study, we investigated how ants maintain carbohydrates supply at both a collective and an individual level in response to changes in the concentration of available sucrose solution, colony demography and larval growth. We manipulated the concentration of sugar solutions available to ant colonies (dilute, medium and concentrated solutions) over extended periods and measured the capacity of colonies to maintain sugar supply through compensatory feeding. First, we demonstrated that ants regulated carbohydrate intake at a collective and individual level. Initially, ants consumed most and recruited fastest in response to more concentrated than to dilute sugar solutions, but over time this pattern reversed, such that the number of ants that fed and the volume ingested by each ant was a negative function of sugar concentration in the diet. Second, we found that ants became better at regulating their carbohydrate intake with the production of larvae in the nest. When the number of larvae was experimentally doubled, the ants regulated their consumption of carbohydrates more accurately than when the number of adult workers was doubled, suggesting that larvae play an important role in providing nutritional feedback to workers. Finally, we showed that ants defended a carbohydrate ;intake target' by allowing them to select among sugar solutions of different concentration.

  8. Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones.

    PubMed

    Feldmeyer, B; Elsner, D; Foitzik, S

    2014-01-01

    Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood-tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood-tending workers often develop ovaries and start to reproduce. Here, we make use of this ability in the ant Temnothorax longispinosus and compare gene expression patterns in the queens and three worker castes along a reproductive gradient. We found the largest expression differences between the queen and the worker castes (~2500 genes) and the smallest differences between infertile brood-tenders and foragers (~300 genes). The expression profile of fertile workers is more worker-like, but to a certain extent intermediate between the queen and the infertile worker castes. In contrast to the queen, a high number of differentially expressed genes in the worker castes are of unknown function, pointing to the derived status of hymenopteran workers within insects. PMID:24118315

  9. Effects of experimental seaweed deposition on lizard and ant predation in an island food web.

    PubMed

    Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W

    2011-01-28

    The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.

  10. Semiochemicals released by electrically stimulated red imported fire ants, Solenopsis invicta.

    PubMed

    Vander Meer, R K; Slowik, T J; Thorvilson, H G

    2002-12-01

    The red imported fire ant Solenopsis invicta Buren, has evolved sophisticated chemical communication systems that regulate the activities of the colony. Among these are recruitment pheromones that effectively attract and stimulate workers to follow a trail to food or alternative nesting sites. Alarm pheromones alert, activate, and attract workers to intruders or other disturbances. The attraction and accumulation of fire ant workers in electrical equipment may be explained by their release of pheromones that draw additional worker ants into the electrical contacts. We used chemical analysis and behavioral bioassays to investigate if semiochemicals were released by electrically shocked fire ants. Workers were subjected to a 120 V, alternating-current power source. In all cases, electrically stimulated workers released venom alkaloids as revealed by gas chromatography. We also demonstrated the release of alarm pheromones and recruitment pheromones that elicited attraction and orientation. Arrestant behavior was observed with the workers not electrically stimulated but near those that were, indicating release of unkown behavior-modifying substances from the electrically stimulated ants. It appears that fire ants respond to electrical stimulus by generally releasing exocrine gland products. The behaviors associated with these products support the hypothesis that the accumulation of fire ants in electrical equipment is the result of a foraging worker finding and closing electrical contacts, then releasing exocrine gland products that attract other workers to the site, who in turn are electrically stimulated. PMID:12564802

  11. Agricultural science and food policy for consumers and workers: recipes for public health successes or disasters?

    PubMed

    Watterson, A

    2000-01-01

    In the world of high speed globalization, the search for global food and water security has failed despite being driven by aggressive agribusiness and aided all too often by so-called Green Revolution research scientists and technologists. In the process, agricultural workers, rural communities, and food production workers face significant occupational and environmental hazards. Countervailing forces to the World Trade Organization (WTO) and agribusiness food strategies are needed. Critical to these forces will be Non-Governmental Organizations (NGOs) working toward non-toxic, nondestructive, community-based agriculture informed by integrated humanistic, scientifically cautious, worker-sensitive, and ecologically located principles.

  12. Food Safety Education for Students and Workers in School Gardens and University Farms

    ERIC Educational Resources Information Center

    Dzubak, John; Shaw, Angela; Strohbehn, Catherine; Naeve, Linda

    2016-01-01

    The number of school gardens and university farms is increasing in the United States. Produce grown in these venues is often sampled in the classroom or incorporated into the food chain. Food safety education for students and workers is needed to ensure that produce is safe. Two 1-hr food safety curricula were developed to inform K-12 students and…

  13. Physiological and subjective assessment of food grain handling workers in West Godavari district, India.

    PubMed

    Pradhan, Chandan K; Thakur, Sridhar; Chowdhury, Amal R

    2007-01-01

    There are many rice mills and food grain depots where a large number of workers are engaged for processing paddy and rice, storage and distribution. Lifting, carrying and depositing sacs of food grain are the major jobs carried out by these workers. The present study was undertaken to evaluate the workers with respect to their nutritional status, workload, energy expenditure and musculoskeletal pain or discomfort resulting out of work practice. Average peak heart rate of the depot and rice mill workers suggested the workload as moderate to very heavy. Their average energy expenditure values also indicated the workload as moderate to heavy. Subjective assessment of the workers showed the workload as heavy for 60.7% depot workers and 23.1% rice mill workers. Musculoskeletal pain or discomfort was maximally reported in knee by 59% depot workers whereas low back and knee was reported by 61.5% rice mill workers. Besides the weight of the sac, awkward postures like bending and twisting of trunk adopted frequently causes the problem. Further studies and rationalization of work method may improve the health and safety of the workers.

  14. Communal nutrition in ants.

    PubMed

    Dussutour, Audrey; Simpson, Stephen J

    2009-05-12

    Studies on nonsocial insects have elucidated the regulatory strategies employed to meet nutritional demands [1-3]. However, how social insects maintain the supply of an appropriate balance of nutrients at both a collective and an individual level remains unknown. Sociality complicates nutritional regulatory strategies [4-6]. First, the food entering a colony is collected by a small number of workers, which need to adjust their harvesting strategy to the demands for nutrients among individuals within the colony [4-7]. Second, because carbohydrates are used by the workers and proteins consumed by the larvae [7-14], nutritional feedbacks emanating from both must exist and be integrated to determine food exploitation by foragers [4-6, 15, 16]. Here, we show that foraging ants can solve nutritional challenges for the colony by making intricate adjustments to their feeding behavior and nutrient processing, acting both as a collective mouth and gut. The amount and balance of nutrients collected and the precision of regulation depend on the presence of larvae in the colony. Ants improved the macronutrient balance of collected foods by extracting carbohydrates and ejecting proteins. Nevertheless, processing excess protein shortened life span--an effect that was greatly ameliorated in the presence of larvae.

  15. Does farm worker health vary between localised and globalised food supply systems?

    PubMed

    Cross, Paul; Edwards, Rhiannon T; Opondo, Maggie; Nyeko, Philip; Edwards-Jones, Gareth

    2009-10-01

    Significant environmental benefits are claimed for local food systems, but these biophysical indicators are increasingly recognised as inadequate descriptors of supply chain ethics. Social factors such as health are also important indicators of good practice, and are recognised by the organic and local food movements as important to the development of rounded sustainable agricultural practices. This study compared the self-reported health status of farm workers in the United Kingdom, Spain, Kenya and Uganda who were supplying distant markets with fresh vegetables. Workers on Kenyan export horticulture farms reported significantly higher levels of physical health than did Kenyan non-export farm workers and workers in the other study countries. Mean health levels for farm workers in the United Kingdom were significantly lower than relevant population norms, indicating widespread levels of poor health amongst these workers. These results suggest that globalised supply chains can provide social benefits to workers, while local food systems do not always provide desirable social outcomes. The causal mechanisms of these observations probably relate more to the social conditions of workers than directly to income. PMID:19482357

  16. Differences in sNPF receptor-expressing neurons in brains of fire ant (Solenopsis invicta Buren) worker subcastes: indicators for division of labor and nutritional status?

    PubMed

    Castillo, Paula; Pietrantonio, Patricia V

    2013-01-01

    In the red imported fire ant, Solenopsis invicta Buren, the neuronal and molecular mechanisms related to worker division of labor are poorly understood. Workers from different subcastes (major, medium and minors) perform different tasks, which are loosely associated with their size. We hypothesized that the short neuropeptide F (sNPF) signaling system (NPY-like) could be involved in mechanisms of worker division of labor and sensing or responding to colony nutritional requirements. Thus, we investigated the expression of the short neuropeptide F receptor (sNPFR) in the brain and subesophageal ganglion (SEG) of workers from colonies with and without brood. Across worker subcastes a total of 9 clusters of immunoreactive sNPFR cells were localized in the brain and the subesophageal ganglion (SEG); some of these cells were similar to those observed previously in the queen. Worker brain sNPFR cell clusters were found in the protocerebrum near mushroom bodies, in the central complex and in the lateral horn. Other sNPFR immunoreactive cells were found at the edge of the antennal lobes. Across subcastes, we observed both a constant and a differential pattern of sNPFR clusters, with a higher number of sNPFR cells found in minor than in major workers. Those sNPFR cells detected in all worker subcastes appear to be involved in olfaction or SEG functions. The differential expression of clusters in subcastes suggests that sNPFR signaling is involved in regulating behaviors associated with specific subcastes and thus, division of labor. Some sNPFR cells appear to be involved in nutrient sensing and/or brood care, feeding behavior and locomotion. In colonies without brood, workers showed a lower cluster number, and an overall reduced sNPFR signal. Our results suggest the sNPF signaling system is a candidate for the neurobiological control of worker division of labor and sensing brood presence, perhaps correlating with protein requirements and availability.

  17. A list of and some comments about the trail pheromones of ants.

    PubMed

    Cerdá, Xim; van Oudenhove, Louise; Bernstein, Carlos; Boulay, Raphaël R

    2014-08-01

    Ants use many different chemical compounds to communicate with their nestmates. Foraging success depends on how efficiently ants communicate the presence of food and thus recruit workers to exploit the food resource. Trail pheromones, produced by different exocrine glands, are a key part of ant foraging strategies. By combing through the literature, we compiled a list of the identity and glandular origin of the chemical compounds found in the trail pheromones of 75 different ant species. Of the 168 compounds identified, more than 40% are amines. In the subfamily Myrmicinae, trail pheromones are mostly produced in the venom gland, while in the subfamily Formicinae, they come from the rectal gland. PMID:25233585

  18. Educating Immigrant Hispanic Foodservice Workers about Food Safety Using Visual-Based Training

    ERIC Educational Resources Information Center

    Rajagopal, Lakshman

    2013-01-01

    Providing food safety training to a diverse workforce brings with it opportunities and challenges that must be addressed. The study reported here provides evidence for benefits of using visual-based tools for food safety training when educating immigrant, Hispanic foodservice workers with no or minimal English language skills. Using visual tools…

  19. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height

    PubMed Central

    Grangier, Julien; Lester, Philip J.

    2011-01-01

    This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The ‘ant-dropping’ behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726

  20. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 8. Gloves as barriers to prevent contamination of food by workers.

    PubMed

    Todd, Ewen C D; Michaels, Barry S; Greig, Judy D; Smith, Debra; Bartleson, Charles A

    2010-09-01

    The role played by food workers and other individuals in the contamination of food has been identified as an important contributing factor leading to foodborne outbreaks. To prevent direct bare hand contact with food and food surfaces, many jurisdictions have made glove use compulsory for food production and preparation. When properly used, gloves can substantially reduce opportunities for food contamination. However, gloves have limitations and may become a source of contamination if they are punctured or improperly used. Experiments conducted in clinical and dental settings have revealed pinhole leaks in gloves. Although such loss of glove integrity can lead to contamination of foods and surfaces, in the food industry improper use of gloves is more likely than leakage to lead to food contamination and outbreaks. Wearing jewelry (e.g., rings) and artificial nails is discouraged because these items can puncture gloves and allow accumulation of microbial populations under them. Occlusion of the skin during long-term glove use in food operations creates the warm, moist conditions necessary for microbial proliferation and can increase pathogen transfer onto foods through leaks or exposed skin or during glove removal. The most important issue is that glove use can create a false sense of security, resulting in more high-risk behaviors that can lead to cross-contamination when employees are not adequately trained. PMID:20828485

  1. Using a Training Video to Improve Agricultural Workers' Knowledge of On-Farm Food Safety

    ERIC Educational Resources Information Center

    Mathiasen, Lisa; Morley, Katija; Chapman, Benjamin; Powell, Douglas

    2012-01-01

    A training video was produced and evaluated to assess its impact on the food safety knowledge of agricultural workers. Increasing food safety knowledge on the farm may help to improve the safety of fresh produce. Surveys were used to measure workers' food safety knowledge before and after viewing the video. Focus groups were used to determine…

  2. Multilocus genetic characterization of two ant vectors (Group II "Dirty 22" species) known to contaminate food and food products and spread foodborne pathogens.

    PubMed

    Sulaiman, Irshad M; Anderson, Mickey; Oi, David H; Simpson, Steven; Kerdahi, Khalil

    2012-08-01

    The U.S. Food and Drug Administration utilizes the presence of filth and extraneous materials as one of the criteria for implementing regulatory actions and assessing adulteration of food products of public health importance. Twenty-two prevalent pest species (also known as the ''Dirty 22'' species) have been considered by this agency as possible vehicles for the spread of foodborne diseases, and the presence of these species is considered an indicator of unsanitary conditions in food processing and storage facilities. In a previous study, we further categorized the Dirty 22 species into four groups: group I includes four cockroach species, group II includes two ant species, group III includes 12 fly species, and group IV includes four rodent species. Here, we describe the development of three nested PCR primer sets and multilocus genetic characterization by amplifying the small subunit rRNA, elongation factor 1-alpha, and wingless (WNT-1) genes of group II Dirty 22 ant species Monomorium pharaonis and Solenopsis molesta. These novel group II Dirty 22 species-specific nested PCR primer sets can be used when the specimens cannot be identified using conventional microscopic methods. These newly developed assays will provide correct identification of group II Dirty 22 ant species, and the information can be used in the control of foodborne pathogens.

  3. Current Cigarette Smoking Among Workers in Accommodation and Food Services--United States, 2011-2013.

    PubMed

    Syamlal, Girija; Jamal, Ahmed; Mazurek, Jacek M

    2015-07-31

    Tobacco use is the leading cause of preventable disease and death in the United States. One of the Healthy People 2020 objectives calls for reducing the proportion of U.S. adults who smoke cigarettes to ≤12% (objective TU-1.1). Despite progress in reducing smoking prevalence over the past several decades, nearly one in five U.S. adults, including millions of workers, still smoke cigarettes. During 2004-2010, nearly one fifth (19.6%) of U.S. working adults aged ≥18 years smoked cigarettes, and of all the industry sectors, current smoking prevalence among the accommodation and food services sector workers (30%) was the highest. CDC analyzed National Health Interview Survey (NHIS) data for 2011-2013 to estimate current cigarette smoking prevalence among adults working in the accommodation and food services sector, and found that these workers had higher cigarette smoking prevalence (25.9%) than all other workers (17.3%). Among workers in accommodation and food services sector, the highest smoking prevalences were observed among males, non-Hispanic whites, those aged 25-44 years, those with a high school diploma or a General Educational Development (GED) certificate and no college education, those with an annual family income <$35,000, those with no health insurance, and those working in the food services and drinking places industry. These results indicate a need to better understand the reasons for higher smoking prevalence observed among accommodation and food services workers (e.g., workplace culture), so that appropriate intervention strategies can be developed and implemented. Evidence suggests that smoke-free worksites and workplace cessation programs, including comprehensive worksite smoke-free policies, health promotion, access to smoking cessation programs, and increasing the cost of tobacco products, can substantially reduce smoking among workers.

  4. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren).

    PubMed

    Zhang, Baizhong; Zhang, Lei; Cui, Rukun; Zeng, Xinnian; Gao, Xiwu

    2016-01-01

    Both exogenous and endogenous compounds can induce the expression of cytochrome P450 genes. The insect cytochrome P450 genes related to insecticide resistance are likely to be expressed as the "first line of defense" when challenged with insecticides. In this study, four cytochrome P450 genes, SinvCYP6B1, SinvCYP6A1, SinvCYP4C1, and SinvCYP4G15, were firstly isolated from workers of the red imported fire ant (Solenopsis invicta) through rapid amplification of cDNA ends (RACE) and sequenced. The fipronil induction profiles of the four cytochrome P450 genes and the two previously isolated CYP4AB1 and CYP4AB2 were characterized in workers. The results revealed that the expression of SinvCYP6B1, SinvCYP6A1, CYP4AB2, and SinvCYP4G15, increased 1.4-fold and 1.3-fold more than those of acetone control, respectively, after 24 h exposure to fipronil at concentrations of 0.25 μg mL-1 (median lethal dose) and 0.56 μg mL-1 (90% lethal dose), while no significant induction of the expression of CYP4AB1 and SinvCYP4C1 was detected. Among these genes, SinvCYP6B1 was the most significantly induced, and its maximum expression was 3.6-fold higher than that in acetone control. These results might suggest that multiple cytochrome P450 genes are co-up-regulated in workers of the fire ant through induction mechanism when challenged with fipronil. These findings indicated that cytochrome P450 genes play an important role in the detoxification of insecticides and provide a theoretical basis for the mechanisms of insecticide metabolism in the fire ant. PMID:26982576

  5. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren)

    PubMed Central

    Zhang, Baizhong; Zhang, Lei; Cui, Rukun; Zeng, Xinnian; Gao, Xiwu

    2016-01-01

    Both exogenous and endogenous compounds can induce the expression of cytochrome P450 genes. The insect cytochrome P450 genes related to insecticide resistance are likely to be expressed as the “first line of defense” when challenged with insecticides. In this study, four cytochrome P450 genes, SinvCYP6B1, SinvCYP6A1, SinvCYP4C1, and SinvCYP4G15, were firstly isolated from workers of the red imported fire ant (Solenopsis invicta) through rapid amplification of cDNA ends (RACE) and sequenced. The fipronil induction profiles of the four cytochrome P450 genes and the two previously isolated CYP4AB1 and CYP4AB2 were characterized in workers. The results revealed that the expression of SinvCYP6B1, SinvCYP6A1, CYP4AB2, and SinvCYP4G15, increased 1.4-fold and 1.3-fold more than those of acetone control, respectively, after 24 h exposure to fipronil at concentrations of 0.25 μg mL−1 (median lethal dose) and 0.56 μg mL−1 (90% lethal dose), while no significant induction of the expression of CYP4AB1 and SinvCYP4C1 was detected. Among these genes, SinvCYP6B1 was the most significantly induced, and its maximum expression was 3.6-fold higher than that in acetone control. These results might suggest that multiple cytochrome P450 genes are co-up-regulated in workers of the fire ant through induction mechanism when challenged with fipronil. These findings indicated that cytochrome P450 genes play an important role in the detoxification of insecticides and provide a theoretical basis for the mechanisms of insecticide metabolism in the fire ant. PMID:26982576

  6. Mandibular gland secretions of meliponine worker bees: further evidence for their role in interspecific and intraspecific defence and aggression and against their role in food source signalling.

    PubMed

    Schorkopf, Dirk Louis P; Hrncir, Michael; Mateus, Sidnei; Zucchi, Ronaldo; Schmidt, Veronika M; Barth, Friedrich G

    2009-04-01

    Like ants and termites some species of stingless bees (Meliponini), which are very important pollinators in the tropics, use pheromone trails to communicate the location of a food source. We present data on the communicative role of mandibular gland secretions of Meliponini that resolve a recent controversy about their importance in the laying of such trails. Volatile constituents of the mandibular glands have been erroneously thought both to elicit aggressive/defensive behaviour and to signal food source location. We studied Trigona spinipes and Scaptotrigona aff. depilis ('postica'), two sympatric species to which this hypothesis was applied. Using extracts of carefully dissected glands instead of crude cephalic extracts we analysed the substances contained in the mandibular glands of worker bees. Major components of the extracts were 2-heptanol (both species), nonanal (T. spinipes), benzaldehyde and 2-tridecanone (S. aff. depilis). The effect of mandibular gland extracts and of individual components thereof on the behaviour of worker bees near their nest and at highly profitable food sources was consistent. Independent of the amount of mandibular gland extract applied, the bees overwhelmingly reacted with defensive behaviour and were never attracted to feeders scented with mandibular gland extract or any of the synthetic chemicals tested. Both bee species are capable of using mandibular gland secretions for intra- and interspecific communication of defence and aggression and share 2-heptanol as a major pheromone compound. While confirming the role of the mandibular glands in nest defence, our experiments provide strong evidence against their role in food source signalling. PMID:19329748

  7. Influence of interspecific competition on the recruitment behavior and liquid food transport in the tramp ant species Pheidole megacephala

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Breton, Julien; Suzzoni, Jean Pierre; Orivel, Jérôme; Saux-Moreau, Corrie

    2005-07-01

    This study was conducted on the reactions of Pheidole megacephala scouts when finding liquid food sources situated on territories marked by competing dominant ant species or on unmarked, control areas to see if the number of recruited nestmates is affected and if soldiers behave in ways adapted to the situation. We show that scouts recruit more nestmates, particularly soldiers, on marked rather than on unmarked areas. This recruitment allows P. megacephala to organize the defence and rapid depletion of these food sources prior to any contact with competitors. Soldiers can carry liquid foods both (1) in their crops like other Myrmicinae and (2), in a new finding concerning myrmicine ants, under their heads and thoraxes like certain poneromorph genera because the droplets adhere through surface tension strengths. Later, the liquids stored in the crop are distributed to nestmates through regurgitations during trophallaxis and the external droplets are distributed through “social buckets”, or the mode of liquid food transfer common in poneromorphs. Their flexibility to use or not use the latter technique, based on the situation, corroborates other reports that Pheidole soldiers have a relatively large behavioral repertoire.

  8. Fluid intake rates in ants correlate with their feeding habits.

    PubMed

    Paul, J; Roces, F

    2003-04-01

    This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the

  9. Usefulness of fire ant genetics in insecticide efficacy trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...

  10. Factors affecting the musculoskeletal disorders of workers in the frozen food manufacturing factories in Thailand.

    PubMed

    Thetkathuek, Anamai; Meepradit, Parvena; Jaidee, Wanlop

    2016-01-01

    The purpose of this research was to study factors affecting musculoskeletal disorders. The sample population of the study was 528 factory workers from the frozen food industry, as well as a controlled group of 255 office workers. The samples were collected during interviews using the Nordic questionnaire to assess musculoskeletal disorders, and to assess the risk by the rapid upper limb assessment and rapid entire body assessment techniques. The findings of the study were that most symptoms were found in the dissecting department, higher than in the controlled group. The details of the symptoms were, accordingly: elbow pain (adjusted odds ratio, 35.1; 95% CI [17.4, 70.9]). Regarding the risk of alcohol drinking, workers were exposed to more risks when alcohol was consumed. It is suggested that workers' health should be monitored regularly. People who work in a cold environment should be encouraged to wear body protection and to avoid drinking.

  11. Frequent summer nuptial flights of ants provide a primary food source for bats.

    PubMed

    Levin, Eran; Yom-Tov, Yoram; Barnea, Anat

    2009-04-01

    In many ant species, nuptial flight tends to be short in time and assumed to be synchronous across a large area. Here, we report that, in the upper Jordan Valley, northern Israel, massive nuptial flights of Carpenter ants (Camponotus sp.) occur frequently throughout the summer, and their alates form up to 90% of the diet of the greater mouse-tailed bat (Rhinopoma microphyllum) during this period. This fat and protein-rich diet enables female bats to lactate during summer, and the large amount of fat that both sexes accumulate may serve as an energy source for their following winter hibernation and posthibernation mating in early spring (March-April). We suggest that the annual movement of these bats to the Mediterranean region of Israel may have evolved in order to enable them to exploit the extremely nutritious forms of ant alates when the bats' energetic demands are highest.

  12. Frequent summer nuptial flights of ants provide a primary food source for bats

    NASA Astrophysics Data System (ADS)

    Levin, Eran; Yom-Tov, Yoram; Barnea, Anat

    2009-04-01

    In many ant species, nuptial flight tends to be short in time and assumed to be synchronous across a large area. Here, we report that, in the upper Jordan Valley, northern Israel, massive nuptial flights of Carpenter ants ( Camponotus sp.) occur frequently throughout the summer, and their alates form up to 90% of the diet of the greater mouse-tailed bat ( Rhinopoma microphyllum) during this period. This fat and protein-rich diet enables female bats to lactate during summer, and the large amount of fat that both sexes accumulate may serve as an energy source for their following winter hibernation and posthibernation mating in early spring (March-April). We suggest that the annual movement of these bats to the Mediterranean region of Israel may have evolved in order to enable them to exploit the extremely nutritious forms of ant alates when the bats’ energetic demands are highest.

  13. Frequent summer nuptial flights of ants provide a primary food source for bats.

    PubMed

    Levin, Eran; Yom-Tov, Yoram; Barnea, Anat

    2009-04-01

    In many ant species, nuptial flight tends to be short in time and assumed to be synchronous across a large area. Here, we report that, in the upper Jordan Valley, northern Israel, massive nuptial flights of Carpenter ants (Camponotus sp.) occur frequently throughout the summer, and their alates form up to 90% of the diet of the greater mouse-tailed bat (Rhinopoma microphyllum) during this period. This fat and protein-rich diet enables female bats to lactate during summer, and the large amount of fat that both sexes accumulate may serve as an energy source for their following winter hibernation and posthibernation mating in early spring (March-April). We suggest that the annual movement of these bats to the Mediterranean region of Israel may have evolved in order to enable them to exploit the extremely nutritious forms of ant alates when the bats' energetic demands are highest. PMID:19089399

  14. Detection and quantitation of Solenopsis invicta virus-2 genomic and intermediary replicating viral RNA in fire ant workers and larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time PCR (QPCR) method was developed to detect and quantify Solenopsis invicta virus-2 (SINV-2) infecting individual ants of Solenopsis invicta. The two-step method utilized a gene-specific oligonucleotide primer targeting an upstream region of the SINV-2 conserved domain of RNA...

  15. Alate susceptibility in ants

    PubMed Central

    Ho, Eddie K H; Frederickson, Megan E

    2014-01-01

    Pathogens are predicted to pose a particular threat to eusocial insects because infections can spread rapidly in colonies with high densities of closely related individuals. In ants, there are two major castes: workers and reproductives. Sterile workers receive no direct benefit from investing in immunity, but can gain indirect fitness benefits if their immunity aids the survival of their fertile siblings. Virgin reproductives (alates), on the other hand, may be able to increase their investment in reproduction, rather than in immunity, because of the protection they receive from workers. Thus, we expect colonies to have highly immune workers, but relatively more susceptible alates. We examined the survival of workers, gynes, and males of nine ant species collected in Peru and Canada when exposed to the entomopathogenic fungus Beauveria bassiana. For the seven species in which treatment with B. bassiana increased ant mortality relative to controls, we found workers were significantly less susceptible compared with both alate sexes. Female and male alates did not differ significantly in their immunocompetence. Our results suggest that, as with other nonreproductive tasks in ant colonies like foraging and nest maintenance, workers have primary responsibility for colony immunity, allowing alates to specialize on reproduction. We highlight the importance of colony-level selection on individual immunity in ants and other eusocial organisms. PMID:25540683

  16. Alate susceptibility in ants.

    PubMed

    Ho, Eddie K H; Frederickson, Megan E

    2014-11-01

    Pathogens are predicted to pose a particular threat to eusocial insects because infections can spread rapidly in colonies with high densities of closely related individuals. In ants, there are two major castes: workers and reproductives. Sterile workers receive no direct benefit from investing in immunity, but can gain indirect fitness benefits if their immunity aids the survival of their fertile siblings. Virgin reproductives (alates), on the other hand, may be able to increase their investment in reproduction, rather than in immunity, because of the protection they receive from workers. Thus, we expect colonies to have highly immune workers, but relatively more susceptible alates. We examined the survival of workers, gynes, and males of nine ant species collected in Peru and Canada when exposed to the entomopathogenic fungus Beauveria bassiana. For the seven species in which treatment with B. bassiana increased ant mortality relative to controls, we found workers were significantly less susceptible compared with both alate sexes. Female and male alates did not differ significantly in their immunocompetence. Our results suggest that, as with other nonreproductive tasks in ant colonies like foraging and nest maintenance, workers have primary responsibility for colony immunity, allowing alates to specialize on reproduction. We highlight the importance of colony-level selection on individual immunity in ants and other eusocial organisms. PMID:25540683

  17. Food intake and circadian rhythms in shift workers with a high workload.

    PubMed

    de Assis, Maria Alice Altenburg; Kupek, Emil; Nahas, Markus Vinícius; Bellisle, France

    2003-04-01

    Shift work is associated with nutritional and health problems. In the present study, the food intake of garbage collectors of the city of Florianopolis (Brazil) was investigated using a dietary survey method based on meal recording during 24 h and adapted for the Brazilian food context. Three different shifts (morning, afternoon, and night) were compared (n=22 per shift). Age, body weight and body mass index (BMI) were similar for all groups. Daily energy expenditure was high in all three shifts, especially in morning shift workers. No difference in daily energy intake was found, in spite of differences in food choices and circadian ingestion rhythms. Energy intake was high and close to levels previously reported in athletes. Several factors not associated with shifts had significant impact on ingestion: hour of the day, time since the last meal, age, and BMI. Ingested foods were analyzed in groups based on nutrient content. Shifts significantly influenced intake of starches, alcoholic drinks, and sweets. In different periods of the day, food and nutrient intake were considerably affected by shifts. The analysis of circadian distribution of food choices and nutrient intake is important in shift workers, because total daily intake may not reveal shift-associated differences.

  18. Food Safety Training Is Associated with Improved Knowledge and Behaviours among Foodservice Establishments' Workers

    PubMed Central

    Adesokan, Hezekiah Kehinde; Akinseye, Victor Oluwatoyin; Adesokan, Grace Abiodun

    2015-01-01

    Though several studies have evaluated the association between food safety training and behavior, little has investigated different training components in association with food handlers' performance. Foodservice workers (N = 211) with at least two years' experience were willing to participate and were selected from major foodservice establishments in Ibadan, southwestern Nigeria, and completed a survey to evaluate the association between training, training area, duration, and refresher training and food safety knowledge and practices. We observed an association between training and knowledge (P = 0.000) as well as practices (P = 0.05) of food safety while different training areas contributed similarly to food handlers' knowledge (P = 0.17) and practices (P = 0.08). However, there was a significant decline in knowledge (P = 0.01) and practices (P = 0.001) with an increase in training duration. Furthermore, foodservice employees with refresher training demonstrated significantly higher knowledge (P = 0.000) and practice (P = 0.003) levels than those without, being about 45 and 14 times more likely to, respectively, improve their knowledge (OR = 45; 95% CI: 3.47–584.34) and practice (OR = 13.5; 95% CI: 2.01–90.69). Researchers should always consider varying training components before making assertions regarding effectiveness of training on foodservice workers' behaviour. PMID:26904658

  19. Salmonella infections in food workers identified through routine Public Health Surveillance in Minnesota: impact on outbreak recognition.

    PubMed

    Medus, Carlota; Smith, Kirk E; Bender, Jeffrey B; Leano, Fe; Hedberg, Craig W

    2010-11-01

    The frequency of Salmonella-infected food workers identified through routine surveillance from 1997 to 2004 in Minnesota was determined in order to evaluate the impact of surveillance on the detection of outbreaks in restaurants and to quantify the duration of Salmonella shedding in stool. Of 4,976 culture-confirmed Salmonella cases reported to the Minnesota Department of Health, 110 (2.2%) were identified as food workers; this was less than one-half the number expected based on the incidence of Salmonella in the general population. Twenty food workers (18%) were associated with outbreaks. Twelve were involved in nine independent outbreaks at the restaurants where they worked. The identification of the index food worker in six of these outbreaks was critical to the initiation of outbreak investigations that revealed much larger problems. Among food workers who submitted specimens until at least one negative result was obtained (n = 69), the median duration of shedding was 22 days (range, 1 to 359 days). Among the four most common serotypes (Enteritidis, Typhimurium, Heidelberg, and Newport) the median duration of shedding was significantly longer for Salmonella Newport (80 days; P = 0.02) and for Salmonella Enteritidis (32 days; P = 0.04) than for Salmonella Heidelberg (8 days). Food workers should be considered an important source of Salmonella transmission, and those identified through surveillance should raise a high index of suspicion of a possible outbreak at their place of work. Food service managers need to be alert to Salmonella-like illnesses among food workers to facilitate prevention and control efforts, including exclusion of infected food workers or restriction of their duties.

  20. Trail pheromone disruption of red imported fire ant.

    PubMed

    Suckling, David M; Stringer, Lloyd D; Bunn, Barry; El-Sayed, Ashraf M; Vander Meer, Robert K

    2010-07-01

    The fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is considered one of the most aggressive and invasive species in the world. Toxic bait systems are used widely for control, but they also affect non-target ant species and cannot be used in sensitive ecosystems such as organic farms and national parks. The fire ant uses recruitment pheromones to organize the retrieval of large food resources back to the colony, with Z,E-alpha-farnesene responsible for the orientation of workers along trails. We prepared Z,E-alpha-farnesene, (91% purity) from extracted E,E-alpha-farnesene and demonstrated disruption of worker trail orientation after presentation of an oversupply of this compound from filter paper point sources (30 microg). Trails were established between queen-right colony cells and food sources in plastic tubs. Trail-following behavior was recorded by overhead webcam, and ants were digitized before and after presentation of the treatment, using two software approaches. The linear regression statistic, r(2) was calculated. Ants initially showed high linear trail integrity (r(2) = 0.75). Within seconds of presentation of the Z,E-alpha-farnesene treatment, the trailing ants showed little or no further evidence of trail following behavior in the vicinity of the pheromone source. These results show that trailing fire ants become disorientated in the presence of large amounts of Z,E-alpha-farnesene. Disrupting fire ant recruitment to resources may have a negative effect on colony size or other effects yet to be determined. This phenomenon was demonstrated recently for the Argentine ant, where trails were disrupted for two weeks by using their formulated trail pheromone, Z-9-hexadecenal. Further research is needed to establish the long term effects and control potential for trail disruption in S. invicta.

  1. Trail pheromone disruption of red imported fire ant.

    PubMed

    Suckling, David M; Stringer, Lloyd D; Bunn, Barry; El-Sayed, Ashraf M; Vander Meer, Robert K

    2010-07-01

    The fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is considered one of the most aggressive and invasive species in the world. Toxic bait systems are used widely for control, but they also affect non-target ant species and cannot be used in sensitive ecosystems such as organic farms and national parks. The fire ant uses recruitment pheromones to organize the retrieval of large food resources back to the colony, with Z,E-alpha-farnesene responsible for the orientation of workers along trails. We prepared Z,E-alpha-farnesene, (91% purity) from extracted E,E-alpha-farnesene and demonstrated disruption of worker trail orientation after presentation of an oversupply of this compound from filter paper point sources (30 microg). Trails were established between queen-right colony cells and food sources in plastic tubs. Trail-following behavior was recorded by overhead webcam, and ants were digitized before and after presentation of the treatment, using two software approaches. The linear regression statistic, r(2) was calculated. Ants initially showed high linear trail integrity (r(2) = 0.75). Within seconds of presentation of the Z,E-alpha-farnesene treatment, the trailing ants showed little or no further evidence of trail following behavior in the vicinity of the pheromone source. These results show that trailing fire ants become disorientated in the presence of large amounts of Z,E-alpha-farnesene. Disrupting fire ant recruitment to resources may have a negative effect on colony size or other effects yet to be determined. This phenomenon was demonstrated recently for the Argentine ant, where trails were disrupted for two weeks by using their formulated trail pheromone, Z-9-hexadecenal. Further research is needed to establish the long term effects and control potential for trail disruption in S. invicta. PMID:20549330

  2. Restaurant Salmonella Enteritidis outbreak associated with an asymptomatic infected food worker.

    PubMed

    Hedican, Erin; Hooker, Carol; Jenkins, Timothy; Medus, Carlota; Jawahir, Selina; Leano, Fe; Smith, Kirk

    2009-11-01

    Salmonella is the most common bacterial cause of foodborne outbreaks in the United States; approximately half of Salmonella outbreaks occur in restaurant settings. In February 2008, investigation of a cluster of Salmonella Enteritidis cases with indistinguishable pulsed-field gel electrophoresis (PFGE) patterns revealed that five cases had eaten at the same restaurant. Cases were identified through routine surveillance activities and by contacting meal companions of culture-confirmed cases. Well meal companions and well patrons contacted via check stubs served as controls. Illness histories and stool samples were collected from all restaurant employees. Sandwiches were the only menu item or ingredient significantly associated with illness (15 of 15 cases versus 17 of 37 controls; odds ratio, undefined; P < 0.001). None of the six restaurant employees reported experiencing recent gastrointestinal symptoms. The outbreak PFGE subtype of Salmonella Enteritidis was identified in two food workers. One of the positive employees began working at the restaurant shortly before the first exposure date reported by a case, and assisted in the preparation of sandwiches and other foods consumed by cases. The other positive employee rarely, if ever, handled food. The restaurant did not have a glove use policy. There was no evidence of ongoing transmission after exclusion of the positive food workers. This was a restaurant Salmonella Enteritidis outbreak associated with an asymptomatic infected food worker. Routine PFGE subtyping of Salmonella Enteritidis isolates, routine interviewing of cases, and an iterative approach to cluster investigations allowed for timely identification of the source of an outbreak of Salmonella Enteritidis infections.

  3. Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants.

    PubMed

    Kay, Adam D; Zumbusch, Taylor; Heinen, Justa L; Marsh, Tom C; Holway, David A

    2010-01-01

    Food availability often influences competitive outcomes through effects on consumer growth. Although it has received less attention, food availability may also affect competition through nutritional effects on behavior. One hypothesis linking nutrition and competition in ants posits that increased access to carbohydrates favors greater investment in worker traits that underlie behavioral dominance. We tested this hypothesis by varying dietary protein:carbohydrate (P:C) ratios and levels of interspecific interference for Argentine ants (Linepithema humile), a widespread invasive species. As predicted, colonies facing interference increased patrolling more when reared on low P:C diets; this result is the first demonstration of an interactive effect of nutrition and interference on ant colonies. Several results suggest that this dietary effect on patrolling was due primarily to changes in colony size rather than worker behavior. Colonies on lower P:C diets had lower worker mortality and larger final colony sizes. Diet had little effect on per capita patrolling, and worker behavior in performance assays depended more on previous exposure to interference than on diet. Our findings indicate that dietary P:C ratios can influence Argentine ant performance in a competitive environment and suggest a mechanism by which monopolization of carbohydrate-rich resources can help invasive ants displace native ant competitors.

  4. Timekeeping through social contacts: social synchronization of circadian locomotor activity rhythm in the carpenter ant Camponotus paria.

    PubMed

    Lone, Shahnaz Rahman; Sharma, Vijay Kumar

    2011-12-01

    In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: vsharma@jncasr.ac.in ).

  5. Timekeeping through social contacts: social synchronization of circadian locomotor activity rhythm in the carpenter ant Camponotus paria.

    PubMed

    Lone, Shahnaz Rahman; Sharma, Vijay Kumar

    2011-12-01

    In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: vsharma@jncasr.ac.in ). PMID:22080731

  6. Use of Visuals for Food Safety Education of Spanish-Speaking Foodservice Workers: A Case Study in Iowa

    ERIC Educational Resources Information Center

    Rajagopal, Lakshman

    2012-01-01

    Providing food safety training to an audience whose native language is not English is always a challenge. In the study reported here, minimal-text visuals in Spanish were used to train Hispanic foodservice workers about proper handwashing technique and glove use based on the 2005 Food Code requirements. Overall, results indicated that visuals…

  7. The first mesozoic ants.

    PubMed

    Wilson, E O; Carpenter, F M; Brown, W L

    1967-09-01

    Two worker ants preserved in amber of Upper Cretaceous age have been found in New Jersey. They are the first undisputed remains of social insects of Mesozoic age, extending the existence of social life in insects back to approximately 100 million years. They are also the earliest known fossils that can be assigned with certainty to aculeate Hymenoptera. The species, Sphecomyrma freyi, is considered to represent a new subfamily (Sphecomyrminae), more primitive than any previously known ant group. It forms a near-perfect link between certain nonsocial tiphiid wasps and the most primitive myrmecioid ants.

  8. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria.

    PubMed

    Cafaro, Matías J; Poulsen, Michael; Little, Ainslie E F; Price, Shauna L; Gerardo, Nicole M; Wong, Bess; Stuart, Alison E; Larget, Bret; Abbot, Patrick; Currie, Cameron R

    2011-06-22

    Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.

  9. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and

  10. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae).

    PubMed

    Zhang, Ning; Tang, Liang; Hu, Wei; Wang, Kun; Zhou, You; Li, Hong; Huang, Congling; Chun, Jiong; Zhang, Zhixiang

    2014-01-01

    In total, 29 compounds from sweet wormwood (Artemisia annua L.) oil were identified using gas chromatography-mass spectrometry. The five active components were D-camphor, linalool, cineole, α-terpineol, and L(-)-borneol. The effectiveness of A. annua oil, as well as d-camphor, linalool, cineole, α-terpineol, and L(-)-borneol, as fumigants, contact insecticides, and repellents, were tested on the red imported fire ant Solenopsis invicta Buren. The results indicated that A. annua oil has no significant topical toxicity; however, the spray contact test revealed that it has strong insecticidal activity and the inhibitory effect is stronger during closed exposure than during open exposure. In the fumigant test, cineole and D-camphor exhibited strong fumigant toxicity on minor and major S. invicta workers. They also caused 100% mortality at 5, 3, 2, and 1 mg/centrifuge tube but not at 0.5 mg/centrifuge tube. The mortality rates of linalool, α-terpineol, and L(-)-borneol exceeded 80% at 5, 3, and 2 mg/centrifuge tube. In the repellent test, cineole and d-camphor showed significant repellency at 100, 10, and 1 mg/kg. However, linalool, α-terpineol, and L(-)-borneol significantly facilitated digging at 10 and 1 mg/kg.

  11. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae).

    PubMed

    Zhang, Ning; Tang, Liang; Hu, Wei; Wang, Kun; Zhou, You; Li, Hong; Huang, Congling; Chun, Jiong; Zhang, Zhixiang

    2014-01-01

    In total, 29 compounds from sweet wormwood (Artemisia annua L.) oil were identified using gas chromatography-mass spectrometry. The five active components were D-camphor, linalool, cineole, α-terpineol, and L(-)-borneol. The effectiveness of A. annua oil, as well as d-camphor, linalool, cineole, α-terpineol, and L(-)-borneol, as fumigants, contact insecticides, and repellents, were tested on the red imported fire ant Solenopsis invicta Buren. The results indicated that A. annua oil has no significant topical toxicity; however, the spray contact test revealed that it has strong insecticidal activity and the inhibitory effect is stronger during closed exposure than during open exposure. In the fumigant test, cineole and D-camphor exhibited strong fumigant toxicity on minor and major S. invicta workers. They also caused 100% mortality at 5, 3, 2, and 1 mg/centrifuge tube but not at 0.5 mg/centrifuge tube. The mortality rates of linalool, α-terpineol, and L(-)-borneol exceeded 80% at 5, 3, and 2 mg/centrifuge tube. In the repellent test, cineole and d-camphor showed significant repellency at 100, 10, and 1 mg/kg. However, linalool, α-terpineol, and L(-)-borneol significantly facilitated digging at 10 and 1 mg/kg. PMID:25525106

  12. Trail pheromone of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae).

    PubMed

    Choe, Dong-Hwan; Villafuerte, David B; Tsutsui, Neil D

    2012-01-01

    The Argentine ant (Linepithema humile) is recognized as one of the world's most damaging invasive species. One reason for the ecological dominance of introduced Argentine ant populations is their ability to dominate food and habitat resources through the rapid mobilization and recruitment of thousands of workers. More than 30 years ago, studies showed that (Z)-9-hexadecenal strongly attracted Argentine ant workers in a multi-choice olfactometer, suggesting that (Z)-9-hexadecenal might be the trail pheromone, or a component of a trail pheromone mixture. Since then, numerous studies have considered (Z)-9-hexadecenal as the key component of the Argentine ant trails. Here, we report the first chemical analyses of the trails laid by living Argentine ants and find that (Z)-9-hexadecenal is not present in a detectible quantity. Instead, two iridoids, dolichodial and iridomyrmecin, appear to be the primary chemical constituents of the trails. Laboratory choice tests confirmed that Argentine ants were attracted to artificial trails comprised of these two chemicals significantly more often than control trails. Although (Z)-9-hexadecenal was not detected in natural trails, supplementation of artificial dolichodial+iridomyrmecin trails with an extremely low concentraion of (Z)-9-hexadecenal did increase the efficacy of the trail-following behavior. In stark contrast with previous dogma, our study suggests that dolichodial and iridomyrmecin are major components of the Argentine ant trail pheromone. (Z)-9-hexadecenal may act in an additive manner with these iridoids, but it does not occur in detectable quantities in Argentine ant recruitment trails. PMID:23028739

  13. Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material.

    PubMed

    Richard, Freddie-Jeanne; Mora, Philippe; Errard, Christine; Rouland, Corinne

    2005-07-01

    Leaf-cutting ants (tribe Attini) are a unique group of ants that cultivate a fungus that serves as a main source of their food. The fungus is grown on fresh leaves that are harvested by workers. We examine the respective contribution of ants and their symbiotic fungus in the degradation of plant material by examining the digestive capacities of seven Attini species in the genera Atta and Acromyrmex. The results show that both, the ants and their mutualistic fungi, have complementary enzymatic activities. Ants are specialized in the degradation of low molecular weight substrates (oligosaccharides and heterosides) whereas the fungus displays high polysaccharidase activity. The two genera Atta and Acromyrmex are not distinguished by a specific enzymatic activity. The seven different mutualistic associations examined display a similar enzymatic profile but have quantitative differences in substrate degradation activities. The respective contribution of ants and the fungus garden in plant degradation are discussed.

  14. Direct homing behaviour in the ant Tetramorium caespitum (Formicidae, Myrmicinae).

    PubMed

    Shen; Xu; Hankes

    1998-06-01

    Direct homing refers to the behaviour whereby an ant with food runs in an almost straight line to the nest. We determined whether non-polarized light acts as a directional cue in the direct homing behaviour of the grass ant, Tetramorium caespitum. We carried out tests (1) under a blue sky or in total overcast conditions in the field, and (2) with a view of the sun or with a non-polarized light within a box in the laboratory. The ants' paths were recorded, and then analysed by means of circular and linear statistics. Ant workers with food were able to home directly under a blue sky, under totally overcast skies, and even under non-polarized lighting. In a fifth test we displaced the ants at the beginning of the homing trip; they returned to the presumed nest location along a path that ran parallel to the true homing vector, as if they had not been displaced. The results suggest that the ants home by dead reckoning, that is, they can measure directional changes and distances travelled during the outward trip, and integrate them into a mean home vector for direct homing depending on an external light-based reference system, that is, either the polarized skylight pattern or non-polarized lighting. Copyright 1998 The Association for the Study of Animal Behaviour. Copyright 1998 The Association for the Study of Animal Behaviour.

  15. Honey Ants.

    ERIC Educational Resources Information Center

    Conway, John R.

    1984-01-01

    Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)

  16. Coming out of the woods: do termites need a specialized worker caste to search for new food sources?

    NASA Astrophysics Data System (ADS)

    Rupf, Thomas; Roisin, Yves

    2008-09-01

    Most small-colony termites live confined within a single piece of wood on which they feed and do not possess permanent workers: Tasks are done by developmentally flexible immatures (pseudergates). By contrast, large-colony termites possess a specialized (true) worker caste and forage outside their nest for food. To shed light on possible transitional steps between these contrasting patterns of social organization, we studied an atypical Rhinotermitidae, Prorhinotermes inopinatus. In this species, despite the absence of a true worker caste, soldiers, pseudergates, and neotenic reproductives may leave the nest and explore their surroundings. Although evidence presented in this study indicates that termites recognize unknown areas, there is no directional recruitment toward them. The discovery of a food source, i.e., a piece of wood, is followed by the establishment of a long-lasting trail between the nest and the food source. A large fraction of the colony, including neotenic reproductives, ultimately migrates into the piece of wood. Our results thus demonstrate that multiple features of external foraging behavior can evolve independently of the existence of a true worker caste in termites. We suggest that large colonies with true workers, like those of most Rhinotermitidae, may easily have evolved from a Prorhinotermes-like pattern if submitted to increasing selective pressures for worker efficiency in a stable environment.

  17. The Organization of Foraging in the Fire Ant, Solenopsis invicta

    PubMed Central

    Tschinkel, Walter R.

    2011-01-01

    Although natural selection in ants acts most strongly at the colony, or superorganismal level, foraging patterns have rarely been studied at that level, focusing instead on the behavior of individual foragers or groups of foragers. The experiments and observations in this paper reveal in broad strokes how colonies of the fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), allocate their available labor to foraging, how they disperse that force within their territory, and how this force changes with colony size, season and worker age. Territory area is positively related to colony size and the number of foragers, more so during the spring than fall. Changes of colony size and territory area are driven by seasonal variation of sexual and worker production, which in turn drive seasonal variation of worker age-distribution. During spring sexual production, colonies shrink because worker production falls below replacement. This loss is proportional to colony size, causing forager density in the spring to be negatively related to colony and territory size. In the fall, colonies emphasize worker production, bringing colony size back up. However, because smaller colonies curtailed spring worker production less than larger ones, their fall forager populations are proportionally greater, causing them to gain territory at the expense of large colonies. Much variation of territory area remains unexplained and can probably be attributed to pressure from neighboring colonies. Boundaries between territories are characterized by “no ants' zones” mostly devoid of fire ants. The forager population can be divided into a younger group of recruitable workers that wait for scouts to activate them to help retrieve large food finds. About one-third of the recruits wait near openings in the foraging tunnels that underlie the entire territory, while two-thirds wait in the nest. Recruitment to food is initially very rapid and local from the foraging tunnels, while sustained

  18. [Prevalence of intestinal parasites among workers in food sector in Van region].

    PubMed

    Kurtoğlu, Muhammet Güzel; Körkoca, Hanifi; Ciçek, Mutalip; Cengiz, Zeynep Taş

    2007-01-01

    Stool and cellophane tape specimens were taken for parasitological examination from 739 people who work in food sector and applied to the public health lab of the Van Health Administration for porter examination. Parasites were determined at 131 people (17.71%) of 739 worker whom samples were investigated. Ninety-five people had one, 30 people had two, 5 people had three and one person had four parasite species. Parasites determined in the study were 19.08% helminthes and 80.91% protozoon. In this study, 1.21% Ascaris lumbricoides, 0.81% Enterobius vermicularis, 0.67% Hymenolepis nana, 0.40% Trichuris trichiura, 0.27% Taenia saginata, 4.87% Blastocystis hominis, 3.24% Entamoeba coli, 2.84% Giardia intestinalis, 2.02% Iodamoeba bütschlii, 0.67% Endolimax nana, 0.27% Entamoeba histolytica/Entamoeba dispar, 0.27% Chilomastix mesnili, 0.13% Entamoeba hartmanni were found. PMID:18224624

  19. Polyacrylamide hydrogels: an effective tool for delivering liquid baits to pest ants (Hymenoptera: Formicidae).

    PubMed

    Buczkowski, Grzegorz; Roper, Elray; Chin, Darren

    2014-04-01

    Ant management in urban and natural areas often relies on toxic baits. Liquid baits are highly attractive to pest ants because they mimic natural food sources such as honeydew and nectar, the principal dietary components of many ants. However, liquid bait use has been limited owing to the lack of bait dispensers that are effective, inexpensive, and easy to service. The current study evaluated the potential of water-storing crystals (polyacrylamide spheres) to effectively deliver liquid thiamethoxam baits to laboratory colonies of Argentine ants, Linepithema humile Mayr. Results of laboratory trials show that bait crystals saturated in 25% sucrose solution containing 0.007% thiamethoxam are highly attractive to Argentine ants and highly effective against all castes and life stages, including workers, queens, and brood. Fresh bait crystals were highly effective and required approximately 2 d to kill all workers and approximately 6 d to achieve complete mortality in queens and brood. Results of bait aging tests show that the crystals lose approximately 70% of moisture in 8 h and the duration of outdoor exposure has a significant effect on moisture loss and subsequently bait acceptance and bait efficacy. A gradual decrease in mortality was observed for all castes and life stages as bait age increased. In general, fresh baits and those aged for < 8 h retained their efficacy and caused substantial mortality. Baits aged longer than 8 h were substantially less attractive and less effective. Horizontal transfer tests examined the transfer of thiamethoxam from live treated donors to live untreated recipients. The results show that donor ants that obtain thiamethoxam by feeding on bait crystals effectively transfer it to untreated recipient ants. The level of secondary mortality depended on the donor:recipient ratio, with approximately 40% recipient worker mortality with the 1:5 ratio and 15% recipient worker mortality with 1:10 or 1:20 ratios. However, no queens died in any

  20. Polyacrylamide hydrogels: an effective tool for delivering liquid baits to pest ants (Hymenoptera: Formicidae).

    PubMed

    Buczkowski, Grzegorz; Roper, Elray; Chin, Darren

    2014-04-01

    Ant management in urban and natural areas often relies on toxic baits. Liquid baits are highly attractive to pest ants because they mimic natural food sources such as honeydew and nectar, the principal dietary components of many ants. However, liquid bait use has been limited owing to the lack of bait dispensers that are effective, inexpensive, and easy to service. The current study evaluated the potential of water-storing crystals (polyacrylamide spheres) to effectively deliver liquid thiamethoxam baits to laboratory colonies of Argentine ants, Linepithema humile Mayr. Results of laboratory trials show that bait crystals saturated in 25% sucrose solution containing 0.007% thiamethoxam are highly attractive to Argentine ants and highly effective against all castes and life stages, including workers, queens, and brood. Fresh bait crystals were highly effective and required approximately 2 d to kill all workers and approximately 6 d to achieve complete mortality in queens and brood. Results of bait aging tests show that the crystals lose approximately 70% of moisture in 8 h and the duration of outdoor exposure has a significant effect on moisture loss and subsequently bait acceptance and bait efficacy. A gradual decrease in mortality was observed for all castes and life stages as bait age increased. In general, fresh baits and those aged for < 8 h retained their efficacy and caused substantial mortality. Baits aged longer than 8 h were substantially less attractive and less effective. Horizontal transfer tests examined the transfer of thiamethoxam from live treated donors to live untreated recipients. The results show that donor ants that obtain thiamethoxam by feeding on bait crystals effectively transfer it to untreated recipient ants. The level of secondary mortality depended on the donor:recipient ratio, with approximately 40% recipient worker mortality with the 1:5 ratio and 15% recipient worker mortality with 1:10 or 1:20 ratios. However, no queens died in any

  1. Ant allergens and hypersensitivity reactions in response to ant stings.

    PubMed

    Potiwat, Rutcharin; Sitcharungsi, Raweerat

    2015-12-01

    Hypersensitivity reactions caused by ant stings are increasingly recognized as an important cause of death by anaphylaxis. Only some species of ants ( e.g. Solenopsis spp., Myrmecia spp., and Pachycondyla spp.) cause allergic reactions. Ant species are identified by evaluating the morphologic structures of worker ants or by molecular techniques. Ant venom contains substances, including acids and alkaloids, that cause toxic reactions, and those from Solenopsis invicta or the imported fire ant have been widely studied. Piperidine alkaloids and low protein contents can cause local reactions (sterile pustules) and systemic reactions (anaphylaxis). Imported fire ant venoms are cross-reactive; for example, the Sol i 1 allergen from S. invicta has cross-reactivity with yellow jacket phospholipase. The Sol i 3 allergen is a member of the antigen 5 family that has amino acid sequence identity with vespid antigen 5. The clinical presentations of ant hypersensitivity are categorized into immediate and delayed reactions: immediate reactions, such as small local reactions, large local reactions, and systemic reactions, occur within 1-4 hours after the ant stings, whereas delayed reactions, such as serum sickness and vasculitis, usually occur more than 4 hours after the stings. Tools for the diagnosis of ant hypersensitivity are skin testing, serum specific IgE, and sting challenge tests. Management of ant hypersensitivity can be divided into immediate (epinephrine, corticosteroids), symptomatic (antihistamines, bronchodilators), supportive (fluid resuscitation, oxygen therapy), and preventive (re-sting avoidance and immunotherapy) treatments.

  2. Ant allergens and hypersensitivity reactions in response to ant stings.

    PubMed

    Potiwat, Rutcharin; Sitcharungsi, Raweerat

    2015-12-01

    Hypersensitivity reactions caused by ant stings are increasingly recognized as an important cause of death by anaphylaxis. Only some species of ants ( e.g. Solenopsis spp., Myrmecia spp., and Pachycondyla spp.) cause allergic reactions. Ant species are identified by evaluating the morphologic structures of worker ants or by molecular techniques. Ant venom contains substances, including acids and alkaloids, that cause toxic reactions, and those from Solenopsis invicta or the imported fire ant have been widely studied. Piperidine alkaloids and low protein contents can cause local reactions (sterile pustules) and systemic reactions (anaphylaxis). Imported fire ant venoms are cross-reactive; for example, the Sol i 1 allergen from S. invicta has cross-reactivity with yellow jacket phospholipase. The Sol i 3 allergen is a member of the antigen 5 family that has amino acid sequence identity with vespid antigen 5. The clinical presentations of ant hypersensitivity are categorized into immediate and delayed reactions: immediate reactions, such as small local reactions, large local reactions, and systemic reactions, occur within 1-4 hours after the ant stings, whereas delayed reactions, such as serum sickness and vasculitis, usually occur more than 4 hours after the stings. Tools for the diagnosis of ant hypersensitivity are skin testing, serum specific IgE, and sting challenge tests. Management of ant hypersensitivity can be divided into immediate (epinephrine, corticosteroids), symptomatic (antihistamines, bronchodilators), supportive (fluid resuscitation, oxygen therapy), and preventive (re-sting avoidance and immunotherapy) treatments. PMID:26708389

  3. Parasitoid secretions provoke ant warfare.

    PubMed

    Thomas, J A; Knapp, J J; Akino, T; Gerty, S; Wakamura, S; Simcox, D J; Wardlaw, J C; Elmes, G W

    2002-05-30

    Insect social parasites are extreme specialists that typically use mimicry or stealth to enter ant colonies to exploit the rich, but fiercely protected, resources within their nests. Here we show how a parasitic wasp (parasitoid) contrives to reach its host, itself an endangered species of social parasite that lives inside the brood chambers of ant nests, by releasing semiochemicals to induce in-fighting between worker ants, locking the colony in combat and leaving it underprotected. Four of these chemicals are new to biology and have the potential to control pest species by inducing different agonistic behaviours in ants. PMID:12037556

  4. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Bartleson, Charles A; Michaels, Barry S

    2008-11-01

    In this article, the fourth in a series reviewing the role of food workers in foodborne outbreaks, background information on the presence of enteric pathogens in the community, the numbers of organisms required to initiate an infection, and the length of carriage are presented. Although workers have been implicated in outbreaks, they were not always aware of their infections, either because they were in the prodromic phase before symptoms began or because they were asymptomatic carriers. Pathogens of fecal, nose or throat, and skin origin are most likely to be transmitted by the hands, highlighting the need for effective hand hygiene and other barriers to pathogen contamination, such as no bare hand contact with ready-to-eat food. The pathogens most likely to be transmitted by food workers are norovirus, hepatitis A virus, Salmonella, Shigella, and Staphylococcus aureus. However, other pathogens have been implicated in worker-associated outbreaks or have the potential to be implicated. In this study, the likelihood of pathogen involvement in foodborne outbreaks where infected workers have been implicated was examined, based on infectious dose, carriage rate in the community, duration of illness, and length of pathogen excretion. Infectious dose estimates are based on volunteer studies (mostly early experiments) or data from outbreaks. Although there is considerable uncertainty associated with these data, some pathogens appear to be able to infect at doses as low as 1 to 100 units, including viruses, parasites, and some bacteria. Lengthy postsymptomatic shedding periods and excretion by asymptomatic individuals of many enteric pathogens is an important issue for the hygienic management of food workers. PMID:19044283

  5. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 5. Sources of contamination and pathogen excretion from infected persons.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Bartleson, Charles A; Michaels, Barry S

    2008-12-01

    In this article, the fifth in a series reviewing the role of food workers in foodborne outbreaks, background information on the routes of infection for food workers is considered. Contamination most frequently occurs via the fecal-oral route, when pathogens are present in the feces of ill, convalescent, or otherwise colonized persons. It is difficult for managers of food operations to identify food workers who may be excreting pathogens, even when these workers report their illnesses, because workers can shed pathogens during the prodrome phase of illness or can be long-term excretors or asymptomatic carriers. Some convalescing individuals excreted Salmonella for 102 days. Exclusion policies based on stool testing have been evaluated but currently are not considered effective for reducing the risk of enteric disease. A worker may exhibit obvious signs of illness, such as vomiting, but even if the ill worker immediately leaves the work environment, residual vomitus can contaminate food, contact surfaces, and fellow workers unless the clean-up process is meticulous. Skin infections and nasopharyngeal or oropharyngeal staphylococcal or streptococcal secretions also have been linked frequently to worker-associated outbreaks. Dermatitis, rashes, and painful hand lesions may cause workers to reduce or avoid hand washing. Regardless of the origin of the contamination, pathogens are most likely to be transmitted through the hands touching a variety of surfaces, highlighting the need for effective hand hygiene and the use of barriers throughout the work shift. PMID:19244919

  6. Ants recognize foes and not friends.

    PubMed

    Guerrieri, Fernando J; Nehring, Volker; Jørgensen, Charlotte G; Nielsen, John; Galizia, C Giovanni; d'Ettorre, Patrizia

    2009-07-01

    Discriminating among individuals and rejecting non-group members is essential for the evolution and stability of animal societies. Ants are good models for studying recognition mechanisms, because they are typically very efficient in discriminating 'friends' (nest-mates) from 'foes' (non-nest-mates). Recognition in ants involves multicomponent cues encoded in cuticular hydrocarbon profiles. Here, we tested whether workers of the carpenter ant Camponotus herculeanus use the presence and/or absence of cuticular hydrocarbons to discriminate between nest-mates and non-nest-mates. We supplemented the cuticular profile with synthetic hydrocarbons mixed to liquid food and then assessed behavioural responses using two different bioassays. Our results show that (i) the presence, but not the absence, of an additional hydrocarbon elicited aggression and that (ii) among the three classes of hydrocarbons tested (unbranched, mono-methylated and dimethylated alkanes; for mono-methylated alkanes, we present a new synthetic pathway), only the dimethylated alkane was effective in eliciting aggression. Our results suggest that carpenter ants use a fundamentally different mechanism for nest-mate recognition than previously thought. They do not specifically recognize nest-mates, but rather recognize and reject non-nest-mates bearing odour cues that are novel to their own colony cuticular hydrocarbon profile. This begs for a reappraisal of the mechanisms underlying recognition systems in social insects.

  7. Ants recognize foes and not friends.

    PubMed

    Guerrieri, Fernando J; Nehring, Volker; Jørgensen, Charlotte G; Nielsen, John; Galizia, C Giovanni; d'Ettorre, Patrizia

    2009-07-01

    Discriminating among individuals and rejecting non-group members is essential for the evolution and stability of animal societies. Ants are good models for studying recognition mechanisms, because they are typically very efficient in discriminating 'friends' (nest-mates) from 'foes' (non-nest-mates). Recognition in ants involves multicomponent cues encoded in cuticular hydrocarbon profiles. Here, we tested whether workers of the carpenter ant Camponotus herculeanus use the presence and/or absence of cuticular hydrocarbons to discriminate between nest-mates and non-nest-mates. We supplemented the cuticular profile with synthetic hydrocarbons mixed to liquid food and then assessed behavioural responses using two different bioassays. Our results show that (i) the presence, but not the absence, of an additional hydrocarbon elicited aggression and that (ii) among the three classes of hydrocarbons tested (unbranched, mono-methylated and dimethylated alkanes; for mono-methylated alkanes, we present a new synthetic pathway), only the dimethylated alkane was effective in eliciting aggression. Our results suggest that carpenter ants use a fundamentally different mechanism for nest-mate recognition than previously thought. They do not specifically recognize nest-mates, but rather recognize and reject non-nest-mates bearing odour cues that are novel to their own colony cuticular hydrocarbon profile. This begs for a reappraisal of the mechanisms underlying recognition systems in social insects. PMID:19364750

  8. Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation.

    PubMed

    Orona-Tamayo, Domancar; Wielsch, Natalie; Blanco-Labra, Alejandro; Svatos, Ales; Farías-Rodríguez, Rodolfo; Heil, Martin

    2013-08-01

    Myrmecophytic Acacia species produce food bodies (FBs) to nourish ants of the Pseudomyrmex ferrugineus group, with which they live in an obligate mutualism. We investigated how the FBs are protected from exploiting nonmutualists. Two-dimensional gel electrophoresis of the FB proteomes and consecutive protein sequencing indicated the presence of several Kunitz-type protease inhibitors (PIs). PIs extracted from Acacia FBs were biologically active, as they effectively reduced the trypsin-like and elastase-like proteolytic activity in the guts of seed-feeding beetles (Prostephanus truncatus and Zabrotes subfasciatus), which were used as nonadapted herbivores representing potential exploiters. By contrast, the legitimate mutualistic consumers maintained high proteolytic activity dominated by chymotrypsin 1, which was insensitive to the FB PIs. Larvae of an exploiter ant (Pseudomyrmex gracilis) taken from Acacia hosts exhibited lower overall proteolytic activity than the mutualists. The proteases of this exploiter exhibited mainly elastase-like and to a lower degree chymotrypsin 1-like activity. We conclude that the mutualist ants possess specifically those proteases that are least sensitive to the PIs in their specific food source, whereas the congeneric exploiter ant appears partly, but not completely, adapted to consume Acacia FBs. By contrast, any consumption of the FBs by nonadapted exploiters would effectively inhibit their digestive capacities. We suggest that the term 'exclusive rewards' can be used to describe situations similar to the one that has evolved in myrmecophytic Acacia species, which reward mutualists with FBs but safeguard the reward from exploitation by generalists by making the FBs difficult for the nonadapted consumer to use.

  9. No sex in fungus-farming ants or their crops.

    PubMed

    Himler, Anna G; Caldera, Eric J; Baer, Boris C; Fernández-Marín, Hermógenes; Mueller, Ulrich G

    2009-07-22

    Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent-offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant-fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.

  10. Food safety knowledge, attitude, and practice toward compliance with abattoir laws among the abattoir workers in Malaysia

    PubMed Central

    Abdullahi, Auwalu; Hassan, Azmi; Kadarman, Norizhar; Saleh, Ahmadu; Baraya, Yusha’u Shu’aibu; Lua, Pei Lin

    2016-01-01

    Purpose Foodborne diseases are common in the developing countries due to the predominant poor food handling and sanitation practices, particularly as a result of inadequate food safety laws, weak regulatory structures, and inadequate funding as well as a lack of appropriate education for food-handlers. The most frequently involved foods in disease outbreaks are of animal origin. However, in spite of the adequate legislation and laws governing the abattoir operation in Malaysia, compliance with food safety requirements during meat processing and waste disposal is inadequate. Therefore, the present study was designed to assess the food safety knowledge, attitude, and practice toward compliance with abattoir laws among the workers in Terengganu, Malaysia. Materials and methods A cross-sectional survey was conducted using simple random sampling technique in the six districts of Terengganu: two districts were used for the pilot study and the remaining four were used for the main study. One hundred sixty-five abattoir workers from the selected districts were interviewed using a structured questionnaire. Results The mean and standard deviation of knowledge, attitude, and practice scores of the workers were 6.02 and 1.954, 45.16 and 4.496, and 18.03 and 3.186, respectively. The majority of the workers (38.8%) had a low level of knowledge and 91.7% had a positive attitude, while 77.7% had a good practice of compliance. Sex had a significant association with the level of knowledge (P<0.001) and practice (P=0.044) among the workers. The females had a higher level of knowledge than the males, while the males had a better practice of compliance than females. Similarly, knowledge also had a significant (P=0.009) association with the level of practice toward compliance with abattoir laws among the workers. Conclusion The abattoir workers had a positive attitude and good practice, but a low level of knowledge toward compliance with the abattoir laws. Therefore, public awareness

  11. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)

    PubMed Central

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497

  12. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.

    PubMed

    Bologna, Audrey; Detrain, Claire

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.

  13. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.

    PubMed

    Bologna, Audrey; Detrain, Claire

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161

  14. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors

    PubMed Central

    Keller, Roberto A; Peeters, Christian; Beldade, Patrícia

    2014-01-01

    The concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head–thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants’ ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001 PMID:24399458

  15. Ants can learn to forage on one-way trails.

    PubMed

    Ribeiro, Pedro Leite; Helene, André Frazão; Xavier, Gilberto; Navas, Carlos; Ribeiro, Fernando Leite

    2009-01-01

    The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues -- chemical, visual or any other -- are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication. PMID:19337369

  16. Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta.

    PubMed

    Qiu, Hua-Long; Lu, Li-Hua; Zalucki, M P; He, Yu-Rong

    2016-07-01

    In social insects, social behavior may be changed in a way that preventing the spread of pathogens. We infected workers of the ant Solenopsis invicta with an entomopathogenic fungus Metarhizium anisopliae and then videotaped and/or measured worker feeding and trophallactic behavior. Results showed that fungal infected S. invicta enhanced their preference for bitter alkaloid chemical quinine on 3days after inoculation, which might be self-medication of S. invicta by ingesting more alkaloid substances in response to pathogenic infection. Furthermore, infected ants devoted more time to trophallactic behavior with their nestmates on 3days post inoculation, in return receiving more food. Increased interactions between exposed ants and their naive nestmates suggest the existence of social immunity in S. invicta. Overall, our study indicates that S. invicta may use behavioral defenses such as self-medication and social immunity in response to a M. anisopliae infection. PMID:27234423

  17. The role of motivation in the performance of conditioned reflex switching of a maze skill in response to substitution of food reward quality in ants of the species Myrmica rubra.

    PubMed

    Udalova, G P; Karas', A Ya

    2006-11-01

    The characteristics of learning in ants - active Myrmica rubra foragers - were studied in a maze at different levels of colony carbohydrate food need with reinforcement consisting of carbohydrate (sugar syrup) or protein (pupae of Lasius niger ants). Measures of the maze skill during learning reinforced with syrup were somewhat worse than those during learning reinforced with pupae, especially in terms of time-based measures. Ants were able to modify the acquired conditioned reflex reaction when the quality of reinforcement changed. At high levels of food need (" hungry" colony), substitution of syrup with larvae and vice versa was followed by transformation of the previously formed skill; this occurred at both experimental periods (training and testing). At low levels of motivation ("sated colony"), the optimized maze habit formed with protein reinforcement was replaced in the test with carbohydrate reinforcement by a "stochastic," unoptimized behavior with a dominance of investigative activity. These experiments demonstrated that conditioned reflex switching can occur in higher social insects - ants - in which the different forms depend on the level of colony need for food and, respectively, on the level of social food-related motivation of forager ants. The special importance of using the switch activating the corresponding motivational system before changing the reinforcement food quality is emphasized.

  18. Cost effectiveness of vaccinating food service workers against hepatitis A infection.

    PubMed

    Jacobs, R J; Grover, S F; Meyerhoff, A S; Paivana, T A

    2000-06-01

    Foodborne transmission is an important means of hepatitis A infection that may be reduced through vaccination of food service workers (FSWs). Several states are considering actions to encourage or mandate FSW vaccination, but the cost effectiveness of such policies has not been assessed. We estimated the clinical and economic consequences of vaccinating FSWs from the 10 states with the highest reported rates of hepatitis A. A decision analytic model was used to predict the effects of vaccinating FSWs at age 20 years. It was assumed all FSWs would receive one dose of inactivated hepatitis A vaccine, and 50% would receive the second recommended dose. Parameter estimates were obtained from published reports and Centers for Disease Control and Prevention databases. The primary endpoint was cost per year of life saved (YOLS). Secondary endpoints were symptomatic infections, days of illness, deaths, and costs of hepatitis A treatment, public health intervention, and work loss. Each endpoint was considered separately for FSWs and patrons. We estimate vaccination of 100,000 FSWs would cost $8.1 million but reduce the costs of hepatitis A treatment, public health intervention, and work loss by $3.0 million, $2.3 million, and $3.1 million, respectively. Vaccination would prevent approximately 2,500 symptomatic infections, 93,000 days of illness, and 8 deaths. A vaccination policy would reduce societal costs while costing the health system $13,969 per YOLS, a ratio that exceeds generally accepted standards of cost effectiveness. PMID:10852572

  19. Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Stringer, Lloyd D; Suckling, David Maxwell; Baird, David; Vander Meer, Robert K; Christian, Sheree J; Lester, Philip J

    2011-10-01

    Cost-effective detection of invasive ant colonies before establishment in new ranges is imperative for the protection of national borders and reducing their global impact. We examined the sampling efficiency of food-baits and pitfall traps (baited and nonbaited) in detecting isolated red imported fire ant (Solenopsis invicta Buren) nests in multiple environments in Gainesville, FL. Fire ants demonstrated a significantly higher preference for a mixed protein food type (hotdog or ground meat combined with sweet peanut butter) than for the sugar or water baits offered. Foraging distance success was a function of colony size, detection trap used, and surveillance duration. Colony gyne number did not influence detection success. Workers from small nests (0- to 15-cm mound diameter) traveled no >3 m to a food source, whereas large colonies (>30-cm mound diameter) traveled up to 17 m. Baited pitfall traps performed best at detecting incipient ant colonies followed by nonbaited pitfall traps then food baits, whereas food baits performed well when trying to detect large colonies. These results were used to create an interactive model in Microsoft Excel, whereby surveillance managers can alter trap type, density, and duration parameters to estimate the probability of detecting specified or unknown S. invicta colony sizes. This model will support decision makers who need to balance the sampling cost and risk of failure to detect fire ant colonies.

  20. [Evaluation of Brazilian public policies to promote food security and fight hunger, 1995-2002. 2 - the Workers' Nutrition Program].

    PubMed

    Pacheco Santos, Leonor Maria; Nazaré Araújo, Maria da Purificação; Martins, Maísa Cruz; Veloso, Iracema Santos; Assunção, Marilena Pacheco; Chaves dos Santos, Sandra Maria

    2007-08-01

    This study evaluated the Workers' Nutrition Program in Brazil from 1995 to 2002, from a structure-process-results perspective. The methodology involved documental research and a case study in 45 municipalities in the State of Bahia, resulting in 2,389 household interviews. In relation to structure, we analyzed the program's normative evolution until 2002. As for nutritional recommendations, the program shifted from insufficient calorie supply in the 1980s to a positive association between overweight and employment in companies adopting the Workers' Nutrition Program. In Bahia, overall program coverage was insufficient among the 5,120 adults 20 years or older who were interviewed. A significant difference was observed in access to food benefits among workers in the interior of the State (6.1%) as compared to the State capital, Salvador (26.1%). However, targeting was adequate: all workers benefiting from the program in the interior and 92.4% of those in Salvador earned less than five times the minimum wage (approximately US dollars 950/month). It is necessary to improve the program's coverage in the target population in order to raise workers' awareness about their rights and the actions developed by the program.

  1. The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    PubMed Central

    Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702

  2. The effect of diet and opponent size on aggressive interactions involving caribbean crazy ants (Nylanderia fulva).

    PubMed

    Horn, Katherine C; Eubanks, Micky D; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702

  3. The effect of diet and opponent size on aggressive interactions involving caribbean crazy ants (Nylanderia fulva).

    PubMed

    Horn, Katherine C; Eubanks, Micky D; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.

  4. Ant benefits in a seed dispersal mutualism.

    PubMed

    Gammans, Nicola; Bullock, James M; Schönrogge, Karsten

    2005-11-01

    Myrmecochorous plant seeds have nutrient rich appendages, elaiosomes, which induce some ant species to carry the seeds back to their nest where the elaiosome is consumed and the seed is discarded unharmed. The benefits to plants of dispersal of their seeds in this way have been well documented, but the benefits to the ants from consuming the elaiosomes have rarely been measured and are less clear. Ant benefits from myrmecochory were investigated in a laboratory experiment using the ant Myrmica ruginodis and seeds of Ulex species. To separate the effects of elaiosome consumption on the development of newly produced larvae versus existing larvae, ten 'Queenright' colonies containing a queen were compared to ten 'Queenless' colonies. Six measures of colony fitness over a complete annual cycle were taken: sexual production, larval weight and number, pupal weight and number, and worker survival. Queenless colonies fed with elaiosomes produced 100.0+/-29.3 (mean +/- SE) of larvae compared to non-elaiosome fed colonies which produced 49.6+/-19.0; an increase of 102%. Larval weight increased in both Queenright and Queenless colonies. In colonies fed with elaiosomes, larvae weighed 1.02+/-0.1 mg, but in non-elaiosome fed colonies larvae weighed 0.69+/-0.1 mg; an increase of 48%. The food supplement provided by Ulex elaiosomes was trivial in energetic terms, under the conditions of an ample diet, suggesting that these effects might be due to the presence of essential nutrients. Chemical analysis of Ulex elaiosomes showed the presence of four essential fatty acids and four essential sterols for ants. PMID:16049717

  5. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants

    PubMed Central

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161

  6. Tournaments and slavery in a desert ant.

    PubMed

    Hölldobler, B

    1976-05-28

    Many species of ants engage in physical fighting when territorial borders are challenged. In contrast, colonies of the honeypot ant species Myrmecocystus mimicus conduct ritualized tournaments, in which hundreds of ants perform highly stereotyped display fights. Opposing colonies summon their worker forces to the tournament area by means of an alarm-recruitment system. When one colony is considerably stronger than the other, the tournament quickly ends, and the weaker colony is raided and its ants "enslaved." This is the first example of intraspecific slavery recorded in ants.

  7. A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Céréghino, Régis; Roux, Olivier; Hérault, Bruno; Rossi, Vivien; Guerrero, Roberto J.; Delabie, Jacques H. C.; Orivel, Jérôme; Boulay, Raphaël

    2010-10-01

    Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia ( Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca- Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees’ fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non- Cecropia tree.

  8. Food Production, Management, and Services Programs. Food Service Worker. Performance Objectives and Criterion-Referenced Test Items.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    To assist instructors in implementing Missouri's Vocational Instructional Management System into the Food Production, Management, and Services Programs, this guide sets forth the competencies identified and validated by occupational food service instructors and personnel from the food service industry. A minimum of two performance objectives per…

  9. Ant Tower

    NASA Astrophysics Data System (ADS)

    Mlot, Nathan; Shinotsuka, Sho; Hu, David

    2010-11-01

    Ants walk via adhesive drops of fluid extruded by their feet. They also use these drops as mortar to build structures such as rafts, bridges and towers, each composed of thousands of ants linked together. We investigate experimentally the construction of triangular ant towers braced by hydrophobic walls. Particular attention is paid to the relationship between tower height and contact angle hysteresis of the wall. We rationalize tower height according to ant adhesion, and tower shape according to the constraints on a column of constant strength.

  10. Food insecurity, HIV/AIDS pandemic and sexual behaviour of female commercial sex workers in Lagos metropolis, Nigeria.

    PubMed

    Oyefara, J L

    2007-08-01

    This study examined the role of hunger and food insecurity in the sexual behaviour of female commercial sex workers in Lagos metropolis, Nigeria within the context of HIV/AIDS. In addition, the study investigated the prevalence of sexually transmitted infections (STIs) and induced abortion among the respondents. Cross-sectional survey and in-depth interview research methods were adopted to generate both quantitative and qualitative data from the respondents. Findings of the study showed that 35.0% of the respondents joined the sex industry because of poverty and lack of other means of getting daily food. While all the respondents had knowledge about the existence of HIV/AIDS, 82.0% of them identified sexual intercourse as a major route of HIV transmission. There was a significant relationship between poverty, food insecurity and consistent use of condoms by female sex workers at P<0.01. Specifically, only 24.7% of the respondents used condoms regularly in every sexual act. Consequently, 51.6% had previous cases of STIs. The most prevalent STI among the respondents was gonorrhea, with 76.4% prevalence among ever infected female sex workers. This was followed by syphilis with a prevalence of 21.1%. In addition, 59.1% of the sample had become pregnant while on the job and 93.1% of these pregnancies were aborted through induced abortion. In conclusion, hunger and malnutrition were the factors that pushed young women into prostitution in Nigeria and these same factors hindered them from practicing safe sex within the sex industry. Thus, it is recommended that the Nigerian government should develop programmes that will reduce hunger and food insecurity, in order to reduce rapid transmission of HIV infection in the country.

  11. Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia.

    PubMed

    Johansson, Therese; Gibb, Heloise

    2012-01-01

    Forest management alters species behaviours, distributions and interactions. To evaluate forestry effects on ant foraging performance, we compared the quality and quantity of honeydew harvested by ants among clear-cuts, middle-aged and mature spruce-dominated stands in boreal forests in Sweden. Honeydew quality was examined using honeydew collected by squeezing the gasters of laden Formica aquilonia workers. We used fifteen laden individuals at each study site (four replicates of each stand age) and analysed honeydew chemical composition with gas chromatography-mass spectroscopy. To compare the quantity of honeydew collected by individual ants, we collected and weighed five ants moving up and five ants moving down each of ten trees at the twelve sites (totally 1200 ants). The concentration of trehalose in honeydew was lower in clear-cuts compared with middle aged and mature stands, and similar trends were shown for sucrose, raffinose and melezitose, indicating poorer honeydew quality on clear cuts. Concentrations of the amino acid serine were higher on clear-cuts. The same trend occurred for glutamine, suggesting that increased N-uptake by the trees after clear cutting is reflected in the honeydew of aphids. Ants in mature stands had larger heads and carried proportionally more honeydew and may therefore be more efficient foragers. Human alternation of habitats through clear-cutting thus affects food quality and worker condition in F. aquilonia. This is the first study to show that honeydew quality is affected by anthropogenic disturbances, likely contributing to the reduction in size and abundance of F. aquilonia workers and mounds after clear cutting.

  12. Nesting habits shape feeding preferences and predatory behavior in an ant genus.

    PubMed

    Dejean, Alain; Labrière, Nicolas; Touchard, Axel; Petitclerc, Frédéric; Roux, Olivier

    2014-04-01

    We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey's hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.

  13. Nesting habits shape feeding preferences and predatory behavior in an ant genus.

    PubMed

    Dejean, Alain; Labrière, Nicolas; Touchard, Axel; Petitclerc, Frédéric; Roux, Olivier

    2014-04-01

    We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey's hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate. PMID:24566996

  14. Nesting habits shape feeding preferences and predatory behavior in an ant genus

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Labrière, Nicolas; Touchard, Axel; Petitclerc, Frédéric; Roux, Olivier

    2014-04-01

    We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey's hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.

  15. Arboreal Ants Use the “Velcro® Principle” to Capture Very Large Prey

    PubMed Central

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Roux, Olivier; Céréghino, Régis; Orivel, Jérôme; Boulay, Raphaël

    2010-01-01

    Plant-ants live in a mutualistic association with host plants known as “myrmecophytes” that provide them with a nesting place and sometimes with extra-floral nectar (EFN) and/or food bodies (FBs); the ants can also attend sap-sucking Hemiptera for their honeydew. In return, plant-ants, like most other arboreal ants, protect their host plants from defoliators. To satisfy their nitrogen requirements, however, some have optimized their ability to capture prey in the restricted environment represented by the crowns of trees by using elaborate hunting techniques. In this study, we investigated the predatory behavior of the ant Azteca andreae which is associated with the myrmecophyte Cecropia obtusa. We noted that up to 8350 ant workers per tree hide side-by-side beneath the leaf margins of their host plant with their mandibles open, waiting for insects to alight. The latter are immediately seized by their extremities, and then spread-eagled; nestmates are recruited to help stretch, carve up and transport prey. This group ambush hunting technique is particularly effective when the underside of the leaves is downy, as is the case for C. obtusa. In this case, the hook-shaped claws of the A. andreae workers and the velvet-like structure of the underside of the leaves combine to act like natural Velcro® that is reinforced by the group ambush strategy of the workers, allowing them to capture prey of up to 13,350 times the mean weight of a single worker. PMID:20593032

  16. Food Service Worker. Instructional Modules for Food Management, Production and Services. Modules 1-17. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Tennessee Univ., Knoxville. Dept. of Vocational-Technical Education.

    These 17 teacher modules are part of a curriculum dealing with food management, production, and services that was developed for use in secondary and postsecondary vocational programs in Tennessee. Covered in the individual modules are food service careers, math skills, reading and converting recipes, work simplification, self-development,…

  17. The Effects of industrial workers' food choice attribute on sugar intake pattern and job satisfaction with Structural Equcation Model

    PubMed Central

    Park, Young Il

    2016-01-01

    BACKGROUND/OBJECTIVES This research analyzes the effects of the food choices of industrial workers according to their sugar intake pattern on their job satisfaction through the construction of a model on the relationship between sugar intake pattern and job satisfaction. SUBJECTS/METHODS Surveys were collected from May to July 2015. A statistical analysis of the 775 surveys from Kyungsangnam-do was conducted using SPSS13.0 for Windows and SEM was performed using the AMOS 5.0 statistics package. RESULTS The reliability of the data was confirmed by an exploratory factor analysis through a Cronbach's alpha coefficient, and the measurement model was proven to be appropriate by a confirmatory factor analysis in conjunction with AMOS. The results of factor analysis on food choice, sugar intake pattern and job satisfaction were categorized into five categories. The reliability of these findings was supported by a Cronbach's alpha coefficient of 0.6 and higher for all factors except confection (0.516) and dairy products (0.570). The multicollinearity results did not indicate a problem between the variables since the highest correlation coefficient was 0.494 (P < 0.01). In an attempt to study the sugar intake pattern in accordance with the food choices and job satisfaction of industrial workers, a structural equation model was constructed and analyzed. CONCLUSIONS All tests confirmed that the model satisfied the recommended levels for the goodness of fit index, and thus, the overall research model was proven to be appropriate. PMID:27478555

  18. Routing Vehicles with Ants

    NASA Astrophysics Data System (ADS)

    Tan, Wen Fang; Lee, Lai Soon; Majid, Zanariah Abdul; Seow, Hsin Vonn

    Routing vehicles involve the design of an optimal set of routes for a fleet of vehicles to serve a number of customers with known demands. This research develops an Ant Colony Optimization for the vehicle routing with one central depot and identical vehicles. The procedure simulates the behavior of real ants that always find the shortest path between their nest and a food source through a form of communication, pheromone trail. Finally, preliminary results on the learning of the algorithm testing on benchmark data set will be presented in this paper.

  19. [The role of motivation in the performance of a conditioned switching-over of the maze habit in ants Myrmica rubra after a change in the quality of the food reinforcement].

    PubMed

    Udalova, G P; Karas', A Ia

    2005-01-01

    Active foragers Myrmica rubra were trained in a maze under conditions of different levels of colony need in food with carbohydrate (sugar syrup) or protein (ants Lasius niger pupae) reinforcement. Acquisition of the maze habit was better under conditions of reinforcement with pupae, especially by its time indices. Ants were able to modify the acquired habit when the reinforcement quality was changed. It was shown that learning was possible only when the colony and after a change pupae for the syrup was "hungry". Under these conditions, after a change of the syrup for pupae or visa versa the previously acquired optimum habit was transferred. Several hours later, with satiation of the colony, food reactions learned with protein reinforcement switched-over to "stochastic" non-optimized behavior with the dominance of exploratory reactions. Thus, it was shown that higher social insects ants were capable for conditioned switching-over. Different forms of this phenomenon depended on the level of the colony need in food and, consequently, on the level of the social food motivation of foragers ants.

  20. 9 CFR 354.121 - Ante-mortem inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Ante-mortem inspection. 354.121 Section 354.121 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures; Ante-Mortem Inspections § 354.121 Ante-mortem inspection. An ante-mortem inspection of...

  1. Introduced fire ants can exclude native ants from critical mutualist-provided resources.

    PubMed

    Wilder, Shawn M; Barnum, Thomas R; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2013-05-01

    Animals frequently experience resource imbalances in nature. For ants, one resource that may be particularly valuable for both introduced and native species is high-carbohydrate honeydew from hemipteran mutualists. We conducted field and laboratory experiments: (1) to test if red imported fire ants (Solenopsis invicta) competed with native ants for access to mutualisms with aphids, and (2) to quantify the effects of aphid honeydew presence or absence on colony growth of native ants. We focused on native dolichoderine ants (Formicidae, Dolichoderinae) because they are abundant ants that have omnivorous diets that frequently include mutualist-provided carbohydrates. At two sites in the southeastern US, native dolichoderine ants were far less frequent, and fire ants more frequent, at carbohydrate baits than would be expected based on their frequency in pitfall traps. A field experiment confirmed that a native ant species, Dorymyrmex bureni, was only found tending aphids when populations of S. invicta were suppressed. In the laboratory, colonies of native dolichoderine ants with access to both honeydew and insect prey had twice as many workers and over twice as much brood compared to colonies fed only ad libitum insect prey. Our results provide the first experimental evidence that introduced ants compete for access to mutualist-provided carbohydrates with native ants and that these carbohydrates represent critical resources for both introduced and native ants. These results challenge traditional paradigms of arthropod and ant nutrition and contribute to growing evidence of the importance of nutrition in mediating ecological interactions.

  2. Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides

    PubMed Central

    Tanga, Chrysantus M.; Ekesi, Sunday; Govender, Prem; Nderitu, Peterson W.; Mohamed, Samira A.

    2015-01-01

    The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ± 1.27%) compared to “ant-tended” treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in “ant-excluded” treatment were significantly higher compared to “ant-tended” treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem. PMID:26703741

  3. Ants, Wasps, and Bees (Hymenoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stinging wasps, bees, and ants are a problem for farm workers, particularly at harvest when these insects are attracted to ripe fruits. Researchers at the USDA-ARS Yakima Agricultural Research Laboratory, Wapato, WA, together with personnel at Oral Roberts University compiled available information o...

  4. Mimicry and eavesdropping enable a new form of social parasitism in ants.

    PubMed

    Powell, Scott; Del-Claro, Kleber; Feitosa, Rodrigo M; Brandão, Carlos Roberto F

    2014-10-01

    Social parasitism is defined by the exploitation of the social mechanisms of one society by another whole society. Here, we use quantitative ecological data and experiments to identify the components of a new form of social parasitism by the recently discovered "mirror turtle ant," Cephalotes specularis. We show that C. specularis workers visually mimic and actively avoid contact with foragers of the hyperaggressive host ant Crematogaster ampla, allowing them to move freely in the extensive and otherwise defended foraging networks of host colonies. Workers from parasite colonies have immediate access to these networks by nesting exclusively within host territories, and 89% of all potential host territories were parasitized. Inside the network, parasite workers eavesdrop on the host's trail pheromones to locate and exploit food resources that are defended by the host to the exclusion of all other ants. Experiments demonstrated the unprecedented capacity of the parasite for superior foraging performance on its host's pheromone trails than on trails of its own. Considered together, the apparent Batesian-Wallacian mimicry, pheromone-based interceptive eavesdropping, kleptoparasitism, and xenobiotic nesting ecology displayed by C. specularis within the territory and foraging network of a host ant represents a novel adaptive syndrome for social exploitation. PMID:25226185

  5. Farm Workers in the '90s: Where Do We Stand? Food First Action Alert.

    ERIC Educational Resources Information Center

    Cunningham, Shea

    During the 1980s, the rise of independent farm labor contractors and Republican labor policies led to a deterioration in the economic well-being of farmworkers and their families. Delays in the implementation of new safeguards under the Worker Protection Standards Act have resulted in continuing exposure to pesticides, causing such exposure to…

  6. Food Service Worker. Instructional Modules for Food Management, Production and Services. Modules 18-34. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Tennessee Univ., Knoxville. Dept. of Vocational-Technical Education.

    These 17 teacher modules are part of a curriculum dealing with food management, production, and services that was developed for use in secondary and postsecondary vocational programs in Tennessee. Covered in the individual modules are hand cutlery, breakfast items, grain products, vegetables, salad dressing, meats, stock, soups, sauces, garnishes,…

  7. Roles for Schools and School Social Workers in Improving Child Food Security

    ERIC Educational Resources Information Center

    Fram, Maryah Stella; Frongillo, Edward A.; Fishbein, Eliza M.; Burke, Michael P.

    2014-01-01

    Food insecurity is associated with a range of child developmental, behavioral, and emotional challenges, all of which can inhibit a child's school success. Schools offer a number of formal and informal services aimed at reducing food insecurity, but the problems associated with identifying children in need, addressing issues of stigma, and…

  8. Factors affecting the regurgitation behaviour of the ant Lasius flavus (Formicidae) to the guest beetle Claviger testaceus (Pselaphidae).

    PubMed

    Cammaerts, R

    1996-12-01

    Workers of regularly fed Lasius flavus ants regurgitate ingluvial food on the mouthparts of the guest beetle Claviger testaceus in response to the licking of particular secretions of the myrmecophile. These regurgitations typically occur with the workers' mandibles joined and antennae immobile, in a U-shaped position, even if the colony's diet consists exclusively of insect meat or of a low-concentrated (2.5%) sugar solution. In addition, when the dietary sugar concentration exceeds 5%, workers may disgorge spontaneously, with mandibles spread apart and antennae folded backwards, the funiculi divergent. Replete (i.e., over-fed) ants present the same spontaneous behaviour. The ratio of the number of régurgitations to the number of licking sessions on the Claviger's mouthparts is the highest in workers with a moderately filled crop. Such workers therefore provide the beetle with the greatest number of regurgitations. Repletes and, of course, starving workers provide less regurgitations to the beetle. The quantity of liquid food regurgitated on the Claviger also appears to be maximum in workers with a moderately filled crop. The workers' regurgitation rate is higher in laboratory colonies collected from the field and kept for some months than in colonies only recently collected. This effect may be linked to the overall age of the worker populations of the laboratory nests. The presence of a queen does not affect the workers' regurgitation rate. However, her presence does increase the number of workers' licking sessions in mature colonies only recently settled in a laboratory and, consequently, increases to some extent the number of regurgitations on the beetle.

  9. Fermat's principle of least time predicts refraction of ant trails at substrate borders.

    PubMed

    Oettler, Jan; Schmid, Volker S; Zankl, Niko; Rey, Olivier; Dress, Andreas; Heinze, Jürgen

    2013-01-01

    Fermat's principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat's principle when forced to travel on two surfaces that differentially affected the ants' walking speed. Workers of the little fire ant, Wasmannia auropunctata, established "refracted" pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat's principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals. PMID:23527263

  10. For ant-protected plants, the best defense is a hungry offense.

    PubMed

    Ness, J H; Morris, W F; Bronstein, Judith L

    2009-10-01

    Animal foraging has been characterized as an attempt to maximize the intake of carbon and nitrogen at appropriate ratios. Plant species in over 90 families produce carbohydrate-rich extrafloral nectar (EFN), a resource attractive to ants and other omnivorous insects. This attraction can benefit the plant if those arthropods subsequently attack herbivores. This protective response has been attributed to the increased visitation and "ownership" of plants that provide a predictable source of fuel. Here, we propose and test an alternative (but non-mutually exclusive) hypothesis, that access to C-rich carbohydrates increases the ants' desire for N-rich protein and hence the likelihood that they will attack herbivorous insects on the host plant. This "deficit hypothesis" would be rejected if (1) EFN were itself a sufficiently balanced food source in terms of C and N, (2) ant dietary preferences were similar in the presence vs. absence of EFN, (3) protein-hungry ants were not more predaceous, or (4) ants provided access to protein were more aggressive toward potential prey items than were ants provided access to carbohydrates. We test these predictions in a protective mutualism between a guild of desert ants and the barrel cactus Ferocactus wislizeni. C:N ratios of EFN exceeded that of ants or potential prey items by an order of magnitude (i.e., EFN is an N-poor food for ants). Baiting studies demonstrated that plant-tending ant species recruited more workers to N-rich protein baits than to C-rich sugar baits; this difference was more pronounced when the ants had access to F. wislizeni EFN. From these data, we infer that protein is a valuable resource and that its relative value increases when carbohydrates are readily available. Moreover, ant colonies provided access to supplemental carbohydrates responded more aggressively to surrogate herbivores than did control colonies (to which no additional resources were provided) or colonies provided protein. These results

  11. Fast and Flexible: Argentine Ants Recruit from Nearby Trails

    PubMed Central

    Flanagan, Tatiana P.; Pinter-Wollman, Noa M.; Moses, Melanie E.; Gordon, Deborah M.

    2013-01-01

    Argentine ants (Linepithema humile) live in groups of nests connected by trails to each other and to stable food sources. In a field study, we investigated whether some ants recruit directly from established, persistent trails to food sources, thus accelerating food collection. Our results indicate that Argentine ants recruit nestmates to food directly from persistent trails, and that the exponential increase in the arrival rate of ants at baits is faster than would be possible if recruited ants traveled from distant nests. Once ants find a new food source, they walk back and forth between the bait and sometimes share food by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in other distributed systems, which facilitates a quick response to changes in available resources. PMID:23967129

  12. From Kitchen Peelings to Spill the Beans: Empowering NESB Workers at P&O Prepared Foods.

    ERIC Educational Resources Information Center

    O'Brien, Paula

    1996-01-01

    A workplace education program was devised for volunteer employees from non-English-speaking backgrounds (NESB) at a food processing plant in Brisbane, Australia. Changing work conditions resulted in increased demands upon employees' language and literacy skills. (Author/JOW)

  13. Correlates of high fat/calorie food intake in a worksite population: the Healthy Worker Project.

    PubMed

    Shah, M; French, S A; Jeffery, R W; McGovern, P G; Forster, J L; Lando, H A

    1993-01-01

    Behavioral and sociodemographic correlates of high fat/calorie food consumption were examined in a population-based sample of working adults (N = 2038 men; N = 2335 women). Relative weight, dieting history, and cigarette smoking were significantly related to total energy intake from high fat/calorie foods. Relative weight was positively related to the intake of meat, eggs, fried potatoes, and fats. Current dieting to lose weight was associated with a lower intake of all foods, except alcohol and fats. These foods were unrelated to dieting status in men and positively related to dieting status in women. Physical activity and smoking were related to higher intake of high fat/calorie foods. Smokers consumed fewer sweet foods than nonsmokers, however. These results underscore the importance of controlling for dieting status, as well as other behavioral and demographic variables, in population studies of dietary intake. They also suggest factors that may be important in the etiology of unhealthy eating patterns and potential targets for dietary intervention.

  14. Significance of the tropical fire ant Solenopsis geminata (hymenoptera: formicidae) as part of the natural enemy complex responsible for successful biological control of many tropical irrigated rice pests.

    PubMed

    Way, M J; Heong, K L

    2009-10-01

    The tropical fire ant Solenopsis geminata (Fabricius) often nests very abundantly in the earthen banks (bunds) around irrigated rice fields in the tropics. Where some farmers habitually drain fields to the mud for about 3-4 days, the ants can quickly spread up to about 20 m into the fields where they collect food, including pest prey such as the eggs and young of the apple snail Pomacea caniculata (Lamarck) and insects such as lepidopterous larvae and hoppers, notably Nilaparvata lugens (Stäl) the brown planthopper (Bph) and green leafhoppers Nephotettix spp. Even in drained fields, the activity of S. geminata is restricted by rainfall in the wet season. The relatively few ant workers that forage characteristically into drained fields and on to the transplanted clumps of rice plants (hills) kill the normally few immigrant Bph adults but are initially slower acting than other species of the natural enemy complex. However, larger populations of Bph are fiercely attacked and effectively controlled by rapidly recruited ant workers; whereas, in the absence of the ant, the other natural enemies are inadequate. In normal circumstances, there is no ant recruitment in response to initially small populations of immigrant Bph and no evidence of incompatibility between ant foragers and other natural enemies such as spiders. However, when many ants are quickly and aggressively recruited to attack large populations of Bph, they temporarily displace some spiders from infested hills. It is concluded that, in suitable weather conditions and even when insecticides kill natural enemies within the rice field, periodic drainage that enables S. geminata to join the predator complex is valuable for ant-based control of pests such as snails and Lepidoptera, and especially against relatively large populations of Bph. Drainage practices to benefit ants are fully compatible with recent research, which shows that periodic drainage combats problems of 'yield decline' in intensively irrigated

  15. Public Health Implication of Artificial Finger Nails Used by Health Workers and Food Handlers in Port Harcourt, Nigeria

    NASA Astrophysics Data System (ADS)

    Wachukwu, C. K.; Abbey, S. D.; Ollor, A. O.; Obilor, N. L.

    This study was undertaken to determine if artificial fingernails could contribute or serve as vehicles for transmission of food poisoning and nosocomial pathogens. Three hundred and fifty apparently healthy individuals were used. Of this number, 150 subjects were health care workers, while 200 subjects were unprofessional food handlers. Both groups were randomly selected for this study. Their artificial fingernails were swabbed and examined microbiologically by culturing them on different media. Oral interviews were also used to assess the social and educational status of subjects. Four genera of bacteria were isolated and identified, such as Staphylococcus sp., Escherichia coli, Proteus sp. and Pseudomonas sp. Among the organism identified, Staph aureus (41.7%) was predominant and frequently occurring, followed by E. coli (7.4%). From this study, it could be deduced that artificial fingernails could serve as means for transmission of pathogens to foods and causing nosocomial infections on patients. Hence, use of artificial or overgrown fingernails should be discouraged to avoid disease epidemics.

  16. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants

    PubMed Central

    Schoenian, Ilka; Spiteller, Michael; Ghaste, Manoj; Wirth, Rainer; Herz, Hubert; Spiteller, Dieter

    2011-01-01

    Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A1–A4, valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary meta-bolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants. PMID:21245311

  17. Gamergates in the Australian ant subfamily Myrmeciinae

    NASA Astrophysics Data System (ADS)

    Dietemann, Vincent; Peeters, Christian; Hölldobler, Bert

    2004-09-01

    Ant workers can mate and reproduce in a few hundreds of species belonging to the phylogenetically basal poneromorph subfamilies (sensu Bolton 2003). We report the first occurrence of gamergates (i.e. mated reproductive workers) in a myrmeciomorph subfamily. In a colony of Myrmecia pyriformis that was collected without a queen, workers continued to be produced over a period of 3 years in the laboratory. Behavioural observations and ovarian dissections indicated that three workers were mated and produced the diploid offspring. The Myrmeciinae are thus another taxon in which the selective benefits of sexual reproduction by workers can be investigated.

  18. Insecticide Transfer Efficiency and Lethal Load in Argentine Ants

    DOE PAGES

    Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.; Rust, M. K.; Eastmond, D. A.; Vogel, J. S.

    2015-07-03

    Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), butmore » dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.« less

  19. Insecticide Transfer Efficiency and Lethal Load in Argentine Ants

    SciTech Connect

    Hooper-Bui, L. M.; Kwok, E S.C.; Buchholz, B. A.; Rust, M. K.; Eastmond, D. A.; Vogel, J. S.

    2015-07-03

    Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), but dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). Moreover, the distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. The bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.

  20. Insecticide transfer efficiency and lethal load in Argentine ants

    NASA Astrophysics Data System (ADS)

    Hooper-Bui, L. M.; Kwok, E. S. C.; Buchholz, B. A.; Rust, M. K.; Eastmond, D. A.; Vogel, J. S.

    2015-10-01

    Trophallaxis between individual worker ants and the toxicant load in dead and live Argentine ants (Linepithema humile) in colonies exposed to fipronil and hydramethylnon experimental baits were examined using accelerator mass spectrometry (AMS). About 50% of the content of the crop containing trace levels of 14C-sucrose, 14C-hydramethylnon, and 14C-fipronil was shared between single donor and recipient ants. Dead workers and queens contained significantly more hydramethylnon (122.7 and 22.4 amol/μg ant, respectively) than did live workers and queens (96.3 and 10.4 amol/μg ant, respectively). Dead workers had significantly more fipronil (420.3 amol/μg ant) than did live workers (208.5 amol/μg ant), but dead and live queens had equal fipronil levels (59.5 and 54.3 amol/μg ant, respectively). The distribution of fipronil differed within the bodies of dead and live queens; the highest amounts of fipronil were recovered in the thorax of dead queens whereas live queens had the highest levels in the head. Resurgence of polygynous ant colonies treated with hydramethylnon baits may be explained by queen survival resulting from sublethal doses due to a slowing of trophallaxis throughout the colony. Bait strategies and dose levels for controlling insect pests need to be based on the specific toxicant properties and trophic strategies for targeting the entire colony.

  1. Selective isolation of dematiaceous fungi from the workers of Atta laevigata (Formicidae: Attini).

    PubMed

    Guedes, F L A; Attili-Angelis, D; Pagnocca, F C

    2012-01-01

    Leaf-cutting ants (Formicidae: Attini) are considered pests in agriculture for their impact in human crops, as they utilize leaf fragments to raise their fungal mutualist (Agaricales: Lepiotaceae). Basically, the basidiomycetous fungus is cultivated to supply food to adult workers and broads; in return, the ants protect it against natural enemies. However, recent studies have claimed that other microorganisms are associated to ant nests where a wide range of interactions may take place. To investigate the occurrence of dematiaceous fungi on the cuticle of Atta laevigata ants, 30 workers were sampled from an adult nest located in the surroundings of the Center for the Studies of Social Insects, UNESP-Rio Claro, SP, Brazil. The use of selective techniques to avoid high-sporulation fungi has been recommended and was tested in this study. To favor the isolation of the desired fungi, heads and cuticle scrapings of ant bodies were inoculated on Mycosel agar and incubated for 3 weeks at 35°C. Morphological and molecular methods were used to identify the filamentous fungi recovered. From 56 isolates, 19 were hyaline filamentous species, and among the remaining 37, some are mentioned as phyto-associated fungi like Alternaria arborescens, Bipolaris sorokiniana, Bipolaris eleusines, Bipolaris zeae, Curvularia trifolii, and Paraphaeosphaeria michotii. These species are reported from A. laevigata bodies for the first time. None of the isolation trials revealed the presence of the parasite Escovopsis or entomopathogenic fungi. The possible spread of the fungi in nature by the ants is discussed.

  2. An ants-eye view of an ant-plant protection mutualism

    PubMed Central

    Lanan, M. C.; Bronstein, J. L.

    2013-01-01

    Ant protection of extrafloral nectar-secreting plants (EFN plants) is a common form of mutualism found in most habitats around the world. However, very few studies have considered these mutualisms from the ant, rather than the plant, perspective. In particular, a whole-colony perspective that takes into account the spatial structure and nest arrangement of the ant colonies that visit these plants has been lacking, obscuring when and how colony-level foraging decisions might affect tending rates on individual plants. Here, we experimentally demonstrate that recruitment of Crematogaster opuntiae (Buren) ant workers to the extrafloral nectar-secreting cactus Ferocactus wislizeni (Englem) is not independent between plants up to 5m apart. Colony territories of C. opuntiae are large, covering areas of up to 5000m2, and workers visit between five and thirty-four extrafloral nectar-secreting barrel cacti within the territories. These ants are highly polydomous, with up to twenty nest entrances dispersed throughout the territory and interconnected by trail networks. Our study demonstrates that worker recruitment is not independent within large polydomous ant colonies, highlighting the importance of considering colonies rather than individual workers as the relevant study unit within ant/plant protection mutualisms PMID:23515612

  3. The first record of a fly of the family Milichiidae (Diptera) interacting with an ant of the genus Polyrhachis Smith, 1857 (Hymenoptera: Formicidae)

    PubMed Central

    Fayle, Tom Maurice

    2014-01-01

    Abstract Flies in the family Milichiidae are often myrmecophilic. We document the first record of a fly from this family interacting with an ant of the genus Polyrhachis. In lowland riparian rainforest in Sabah, Malaysia, we observed a female of the genus Milichia following an ant of the species of P. illaudata, and repeatedly attempting to make close contact. Our observation suggests that the dipteran may have been attempting to feed kleptoparasitically from the Polyrhachis worker, since members of this ant genus often feed on liquid carbohydrate-rich food resources. This is the first time an interaction has been observed between a fly of this family and an ant of this widespread old world tropical genus. PMID:25425942

  4. North American Invasion of the Tawny Crazy Ant (Nylanderia fulva) Is Enabled by Pheromonal Synergism from Two Separate Glands.

    PubMed

    Zhang, Qing-He; McDonald, Danny L; Hoover, Doreen R; Aldrich, Jeffrey R; Schneidmiller, Rodney G

    2015-09-01

    A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest. PMID:26315627

  5. Multi-phase defense by the big-headed ant, Pheidole obtusospinosa, against raiding army ants.

    PubMed

    Huang, Ming H

    2010-01-01

    Army ants are well known for their destructive raids of other ant colonies. Some known defensive strategies include nest evacuation, modification of nest architecture, blockade of nest entrances using rocks or debris, and direct combat outside the nest. Since army ants highly prefer Pheidole ants as prey in desert habitats, there may be strong selective pressure on Pheidole to evolve defensive strategies to better survive raids. In the case of P. obtusospinosa Pergande (Hymenoptera: Formicidae), the worker caste system includes super majors in addition to smaller majors and minor workers. Interestingly, P. obtusospinosa and the six other New World Pheidole species described to have polymorphic major workers are all found in the desert southwest and adjacent regions of Mexico, all co-occurring with various species of Neivamyrmex army ants. Pheidole obtusospinosa used a multi-phase defensive strategy against army ant raids that involved their largest major workers. During army ant attacks, these super majors were involved in blocking the nest entrance with their enlarged heads. This is the first description of defensive head-blocking by an ant species that lacks highly modified head morphology, such as a truncated or disc-shaped head. P. obtusospinosa super majors switched effectively between passive headblocking at the nest entrance and aggressive combat outside the nest. If this multi-phase strategy is found to be used by other Pheidole species with polymorphic majors in future studies, it is possible that selective pressure by army ant raids may have been partially responsible for the convergent evolution of this extra worker caste.

  6. Paralyzing Action from a Distance in an Arboreal African Ant Species

    PubMed Central

    Rifflet, Aline; Tene, Nathan; Orivel, Jerome; Treilhou, Michel; Dejean, Alain; Vetillard, Angelique

    2011-01-01

    Due to their prowess in interspecific competition and ability to catch a wide range of arthropod prey (mostly termites with which they are engaged in an evolutionary arms race), ants are recognized as a good model for studying the chemicals involved in defensive and predatory behaviors. Ants' wide diversity of nesting habits and relationships with plants and prey types implies that these chemicals are also very diverse. Using the African myrmicine ant Crematogaster striatula as our focal species, we adopted a three-pronged research approach. We studied the aggressive and predatory behaviors of the ant workers, conducted bioassays on the effect of their Dufour gland contents on termites, and analyzed these contents. (1) The workers defend themselves or eliminate termites by orienting their abdominal tip toward the opponent, stinger protruded. The chemicals emitted, apparently volatile, trigger the recruitment of nestmates situated in the vicinity and act without the stinger having to come into direct contact with the opponent. Whereas alien ants competing with C. striatula for sugary food sources are repelled by this behavior and retreat further and further away, termites defend their nest whatever the danger. They face down C. striatula workers and end up by rolling onto their backs, their legs batting the air. (2) The bioassays showed that the toxicity of the Dufour gland contents acts in a time-dependent manner, leading to the irreversible paralysis, and, ultimately, death of the termites. (3) Gas chromatography-mass spectrometry analyses showed that the Dufour gland contains a mixture of mono- or polyunsaturated long-chain derivatives, bearing functional groups like oxo-alcohols or oxo-acetates. Electrospray ionization-mass spectrometry showed the presence of a molecule of 1584 Da that might be a large, acetylated alkaloid capable of splitting into smaller molecules that could be responsible for the final degree of venom toxicity. PMID:22194854

  7. Tandem carrying, a new foraging strategy in ants: description, function, and adaptive significance relative to other described foraging strategies

    NASA Astrophysics Data System (ADS)

    Guénard, Benoit; Silverman, Jules

    2011-08-01

    An important aspect of social insect biology lies in the expression of collective foraging strategies developed to exploit food. In ants, four main types of foraging strategies are typically recognized based on the intensity of recruitment and the importance of chemical communication. Here, we describe a new type of foraging strategy, "tandem carrying", which is also one of the most simple recruitment strategies, observed in the Ponerinae species Pachycondyla chinensis. Within this strategy, workers are directly carried individually and then released on the food resource by a successful scout. We demonstrate that this recruitment is context dependent and based on the type of food discovered and can be quickly adjusted as food quality changes. We did not detect trail marking by tandem-carrying workers. We conclude by discussing the importance of tandem carrying in an evolutionary context relative to other modes of recruitment in foraging and nest emigration.

  8. Ants use odour cues to exploit fig-fig wasp interactions

    NASA Astrophysics Data System (ADS)

    Schatz, Bertrand; Hossaert-McKey, Martine

    2010-01-01

    Fig wasps may constitute a relatively abundant food source for ants associated with the fig-fig wasp nursery pollination mutualism. We found previously that a Mediterranean ant species detects fig wasps by chemical signals. In this paper we want to test the generality of this finding by studying two tropical ants, Oecophylla smaragdina and Crematogaster sp., preying on fig wasps on the dioecious Ficus fistulosa in Brunei (Borneo). Behavioural tests in a Y-tube olfactometer showed that these two ants were attracted both to odours emitted by receptive figs and to those emitted by fig wasps (male and female of the pollinator, and a non-pollinating fig wasp) used here as a kairomone. Naïve workers were not attracted to fig wasps, suggesting that olfactory learning may play a role in prey detection. We also found that O. smaragdina was much more likely to be present on figs of male trees (where fig wasps are more abundant), and that the abundance of this ant species varied strongly with developmental phase of figs on individual trees. Moreover, its aggressiveness was also strongly influenced by the nature of the object presented in our behavioural tests, the site of the test and the developmental phase of the fig tested. Investigation on the chemical and behavioural ecology of the different interacting species provides important insights into the intricate relationships supported by the fig-fig wasp mutualism.

  9. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies.

  10. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants.

    PubMed

    Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs. PMID:25853549

  11. Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    PubMed Central

    Fayle, Tom M.; Scholtz, Olivia; Dumbrell, Alex J.; Russell, Stephen; Segar, Simon T.; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs. PMID:25853549

  12. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants.

    PubMed

    Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.

  13. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.

    PubMed

    Detrain, Claire; Prieur, Jacques

    2014-05-01

    Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose.

  14. The Ants Have It!

    ERIC Educational Resources Information Center

    Daugherty, Belinda

    2001-01-01

    Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)

  15. To drink or grasp? How bullet ants (Paraponera clavata) differentiate between sugars and proteins in liquids.

    PubMed

    Jandt, Jennifer; Larson, Hannah K; Tellez, Peter; McGlynn, Terrence P

    2013-12-01

    Flexibility in behavior can increase the likelihood that a forager may respond optimally in a fluctuating environment. Nevertheless, physiological or neuronal constraints may result in suboptimal responses to stimuli. We observed foraging workers of the giant tropical ant (also referred to as the "bullet ant"), Paraponera clavata, as they reacted to liquid solutions with varying concentrations of sugar and protein. We show that when protein/sucrose concentration is high, many bullet ants will often try to grasp at the droplet, rather than gather it by drinking. Because P. clavata actively hunt for prey, fixed action patterns and rapid responses to protein may be adaptively important, regardless of the medium in which it is presented. We conclude that, in P. clavata, food-handling decisions are made in response to the nutrient content of the food rather than the texture of the food. Further, we suggest that colonies that maintain a mixture of individuals with consistent fixed or flexible behavioral responses to food-handling decisions may be better adapted to fluctuating environmental conditions, and we propose future studies that could address this.

  16. To drink or grasp? How bullet ants ( Paraponera clavata) differentiate between sugars and proteins in liquids

    NASA Astrophysics Data System (ADS)

    Jandt, Jennifer; Larson, Hannah K.; Tellez, Peter; McGlynn, Terrence P.

    2013-12-01

    Flexibility in behavior can increase the likelihood that a forager may respond optimally in a fluctuating environment. Nevertheless, physiological or neuronal constraints may result in suboptimal responses to stimuli. We observed foraging workers of the giant tropical ant (also referred to as the "bullet ant"), Paraponera clavata, as they reacted to liquid solutions with varying concentrations of sugar and protein. We show that when protein/sucrose concentration is high, many bullet ants will often try to grasp at the droplet, rather than gather it by drinking. Because P. clavata actively hunt for prey, fixed action patterns and rapid responses to protein may be adaptively important, regardless of the medium in which it is presented. We conclude that, in P. clavata, food-handling decisions are made in response to the nutrient content of the food rather than the texture of the food. Further, we suggest that colonies that maintain a mixture of individuals with consistent fixed or flexible behavioral responses to food-handling decisions may be better adapted to fluctuating environmental conditions, and we propose future studies that could address this.

  17. The Pied Piper: A Parasitic Beetle's Melodies Modulate Ant Behaviours.

    PubMed

    Di Giulio, Andrea; Maurizi, Emanuela; Barbero, Francesca; Sala, Marco; Fattorini, Simone; Balletto, Emilio; Bonelli, Simona

    2015-01-01

    Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants' activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus) are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can "speak" three different "languages", each similar to sounds produced by different ant castes (workers, soldiers, queen). Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants. PMID:26154266

  18. Spatiotemporal chemotactic model for ant foraging

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramanian; Laurent, Thomas; Kumar, Manish; Bertozzi, Andrea L.

    2014-12-01

    In this paper, we present a generic theoretical chemotactic model that accounts for certain emergent behaviors observed in ant foraging. The model does not have many of the constraints and limitations of existing models for ants colony dynamics and takes into account the distinctly different behaviors exhibited in nature by ant foragers in search of food and food ferrying ants. Numerical simulations based on the model show trail formation in foraging ant colonies to be an emergent phenomenon and, in particular, replicate behavior observed in experiments involving the species P. megacephala. The results have broader implications for the study of randomness in chemotactic models. Potential applications include the developments of novel algorithms for stochastic search in engineered complex systems such as robotic swarms.

  19. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  20. Melissotarsus ants are likely able to digest plant polysaccharides.

    PubMed

    Mony, Ruth; Dejean, Alain; Bilong, Charles Félix Bilong; Kenne, Martin; Rouland-Lefèvre, Corinne

    2013-10-01

    Melissotarsus ants have an extremely specialized set of behaviours. Both workers and gynes tunnel galleries in their host tree bark. Workers walk with their mesothoracic legs pointing upwards and tend Diaspididae hemiptera for their flesh. The ants use their forelegs to plug the galleries with silk that they secrete themselves. We hypothesised that the ants' energetic needs for nearly constant gallery digging could be satisfied through the absorption of host tree tissues; so, using basic techniques, we examined the digestive capacities of workers from two species. We show that workers are able to degrade oligosaccharides and heterosides as well as, to a lesser degree, polysaccharides. This is one of the rare reports on ants able to digest plant polysaccharides other than starch.

  1. Haemolymph sugar levels in a nectar-feeding ant: dependence on metabolic expenditure and carbohydrate deprivation.

    PubMed

    Schilman, Pablo E; Roces, Flavio

    2008-02-01

    In nectar-feeding insects, sugars are an important source of fuel and energy storage. Here, we analyzed the haemolymph sugar levels in foragers of the ant Camponotus rufipes trained to collect nectar from an artificial feeder, and their dependence on the metabolic rate during feeding. The main sugar found was trehalose, followed by glucose and traces of fructose and sucrose. In foragers, trehalose level was independent of their activity and metabolic rate while feeding. Carbohydrate deprivation of the colony had a strong effect on the haemolymph sugar levels of workers, with a significant decrease in trehalose and glucose with increasing starvation. We also found a correlation between haemolymph sugar levels and behavioral states, with immobile workers having higher trehalose and fructose levels than active ones. It is suggested that under food deprivation, inside-nest workers initially stay completely immobile as a strategy to save energy, and only become active and start to search for food when the trehalose levels decrease even more. Based on a conservative estimation, well-fed ants could travel up to 500 m, or spend more than 20 h inactive at 25 degrees C, using only the energy provided by the haemolymph trehalose, before reaching the levels found in starved nest-mates.

  2. Differential Recruitment of Camponotus femoratus (Fabricius) Ants in Response to Ant Garden Herbivory.

    PubMed

    Vicente, R E; Dáttilo, W; Izzo, T J

    2014-12-01

    Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants' capability in discerning plants' chemical compounds (innate attraction) or by ants' learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant's learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.

  3. Red legs and golden gasters: Batesian mimicry in Australian ants.

    PubMed

    Merrill, D N; Elgar, M A

    2000-05-01

    There are numerous reports of invertebrates that are visual mimics of ants, but no formal reports of mimicry of an ant, by an ant. Two endemic Australian ants, Myrmecia fulvipes and Camponotus bendigensis are remarkably similar in colour and size; both are generally black but have red legs and golden gasters. The density and hue of the pubescence of each ant's gaster are relatively uncommon in ants, but are very rare when combined with the black forebody and red legs. The ants are similarly sized but are smaller than other species closely related to M. fulvipes. The range of C. bendigensis lies entirely within that of M. fulvipes, and both species excavate ground nests in open woodland. Finally, workers of both species are crepuscular and forage solitarily. These data suggest that the relatively benign formicine C. bendigensis is a Batesian mimic of the formidable myrmeciine M. fulvipes.

  4. Do Leaf Cutting Ants Cut Undetected? Testing the Effect of Ant-Induced Plant Defences on Foraging Decisions in Atta colombica

    PubMed Central

    Kost, Christian; Tremmel, Martin; Wirth, Rainer

    2011-01-01

    Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this “induced defence hypothesis,” we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the “induced defence hypothesis” and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses. PMID:21799831

  5. Do leaf cutting ants cut undetected? Testing the effect of ant-induced plant defences on foraging decisions in Atta colombica.

    PubMed

    Kost, Christian; Tremmel, Martin; Wirth, Rainer

    2011-01-01

    Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this "induced defence hypothesis," we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the "induced defence hypothesis" and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses.

  6. Impacts of residual insecticide barriers on perimeter-invading ants, with particular reference to the odorous house ant, Tapinoma sessile.

    PubMed

    Scharf, Michael E; Ratliff, Catina R; Bennett, Gary W

    2004-04-01

    Three liquid insecticide formulations were evaluated as barrier treatments against perimeter-invading ants at a multifamily housing complex in West Lafayette, IN. Several ant species were present at the study site, including (in order of abundance) pavement ant, Tetramorium caespitum (L.); honey ant, Prenolepis imparis (Say); odorous house ant, Tapinoma sessile (Say); thief ant, Solenopsis molesta (Say); acrobat ant, Crematogaster ashmeadi (Mayr); crazy ant, Paratrechina longicornis (Latrielle), field ants, Formica spp.; and carpenter ant Camponotus pennsylvanicus (DeGeer). Studies began in May 2001 and concluded 8 wk later in July. Individual replicate treatments were placed 0.61 in (2 feet) up and 0.92 m (3 feet) out from the ends of 46.1 by 10.1-m (151 by 33-foot) apartment buildings. Ant sampling was performed with 10 placements of moist cat food for 1 h within treatment zones, followed by capture and removal of recruited ants for later counting. All treatments led to substantial reductions in ant numbers relative to untreated controls. The most effective treatment was fipronil, where 2% of before-treatment ant numbers were present at 8 wk after treatment. Both imidacloprid and cyfluthrin barrier treatments had efficacy comparative with fipronil, but to 4 and 2 wk, respectively. Odorous house ants were not sampled before treatment. Comparisons of ant species composition between treatments and controls revealed an increase in odorous house ant frequencies at 1-8 wk after treatment in treated locations only. These results demonstrate efficacy for both nonrepellent and repellent liquid insecticides as perimeter treatments for pest ants. In addition, our findings with odorous house ant highlight an apparent invasive-like characteristic of this species that may contribute to its dramatic increase in structural infestation rates in many areas of the United States.

  7. Impacts of residual insecticide barriers on perimeter-invading ants, with particular reference to the odorous house ant, Tapinoma sessile.

    PubMed

    Scharf, Michael E; Ratliff, Catina R; Bennett, Gary W

    2004-04-01

    Three liquid insecticide formulations were evaluated as barrier treatments against perimeter-invading ants at a multifamily housing complex in West Lafayette, IN. Several ant species were present at the study site, including (in order of abundance) pavement ant, Tetramorium caespitum (L.); honey ant, Prenolepis imparis (Say); odorous house ant, Tapinoma sessile (Say); thief ant, Solenopsis molesta (Say); acrobat ant, Crematogaster ashmeadi (Mayr); crazy ant, Paratrechina longicornis (Latrielle), field ants, Formica spp.; and carpenter ant Camponotus pennsylvanicus (DeGeer). Studies began in May 2001 and concluded 8 wk later in July. Individual replicate treatments were placed 0.61 in (2 feet) up and 0.92 m (3 feet) out from the ends of 46.1 by 10.1-m (151 by 33-foot) apartment buildings. Ant sampling was performed with 10 placements of moist cat food for 1 h within treatment zones, followed by capture and removal of recruited ants for later counting. All treatments led to substantial reductions in ant numbers relative to untreated controls. The most effective treatment was fipronil, where 2% of before-treatment ant numbers were present at 8 wk after treatment. Both imidacloprid and cyfluthrin barrier treatments had efficacy comparative with fipronil, but to 4 and 2 wk, respectively. Odorous house ants were not sampled before treatment. Comparisons of ant species composition between treatments and controls revealed an increase in odorous house ant frequencies at 1-8 wk after treatment in treated locations only. These results demonstrate efficacy for both nonrepellent and repellent liquid insecticides as perimeter treatments for pest ants. In addition, our findings with odorous house ant highlight an apparent invasive-like characteristic of this species that may contribute to its dramatic increase in structural infestation rates in many areas of the United States. PMID:15154488

  8. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  9. Regulation of ants' foraging to resource productivity.

    PubMed Central

    Mailleux, Anne-Catherine; Deneubourg, Jean-Louis; Detrain, Claire

    2003-01-01

    We investigate the behavioural rule used by ant societies to adjust their foraging response to the honeydew productivity of aphids. When a scout finds a single food source, the decision to lay a recruitment trail is an all-or-none response based on the opportunity for this scout to ingest a desired volume acting as a threshold. Here, we demonstrate, through experimental and theoretical approaches, the generic value of this recruitment rule that remains valid when ants have to forage on multiple small sugar feeders to reach their desired volume. Moreover, our experiments show that when ants decide to recruit nest-mates they lay trail marks of equal intensity, whatever the number of food sources visited. A model based on the 'desired volume' rule of recruitment as well as on experimentally validated parameter values was built to investigate how ant societies adjust their foraging response to the honeydew productivity profile of aphids. Simulations predict that, with such recruiting rules, the percentage of recruiting ants is directly related to the total production of honeydew. Moreover, an optimal number of foragers exists that maximizes the strength of recruitment, this number being linearly related to the total production of honeydew by the aphid colony. The 'desired volume' recruitment rule that should be generic for all ant species is enough to explain how ants optimize trail recruitment and select aphid colonies or other liquid food resources according to their productivity profile. PMID:12908982

  10. Regulation of ants' foraging to resource productivity.

    PubMed

    Mailleux, Anne-Catherine; Deneubourg, Jean-Louis; Detrain, Claire

    2003-08-01

    We investigate the behavioural rule used by ant societies to adjust their foraging response to the honeydew productivity of aphids. When a scout finds a single food source, the decision to lay a recruitment trail is an all-or-none response based on the opportunity for this scout to ingest a desired volume acting as a threshold. Here, we demonstrate, through experimental and theoretical approaches, the generic value of this recruitment rule that remains valid when ants have to forage on multiple small sugar feeders to reach their desired volume. Moreover, our experiments show that when ants decide to recruit nest-mates they lay trail marks of equal intensity, whatever the number of food sources visited. A model based on the 'desired volume' rule of recruitment as well as on experimentally validated parameter values was built to investigate how ant societies adjust their foraging response to the honeydew productivity profile of aphids. Simulations predict that, with such recruiting rules, the percentage of recruiting ants is directly related to the total production of honeydew. Moreover, an optimal number of foragers exists that maximizes the strength of recruitment, this number being linearly related to the total production of honeydew by the aphid colony. The 'desired volume' recruitment rule that should be generic for all ant species is enough to explain how ants optimize trail recruitment and select aphid colonies or other liquid food resources according to their productivity profile.

  11. Fermat’s Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders

    PubMed Central

    Zankl, Niko; Rey, Olivier; Dress, Andreas; Heinze, Jürgen

    2013-01-01

    Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the ants’ walking speed. Workers of the little fire ant, Wasmannia auropunctata, established “refracted” pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals. PMID:23527263

  12. Monoculture of Leafcutter Ant Gardens

    PubMed Central

    Mueller, Ulrich G.; Scott, Jarrod J.; Ishak, Heather D.; Cooper, Michael; Rodrigues, Andre

    2010-01-01

    Background Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection. PMID:20844760

  13. Pseudacteon decapitating fly parasitism rates in fire ant colonies around Gainesville, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to assess the impacts of phorid flies on fire ants in the Gainesville area, we collected 3 g of worker ants from 36 colonies. A total of 672 parasitized workers were recovered from the 36 colony samples. Confirmed parasitism rates ranged from 0-5% with an average of about 0.5%. Including c...

  14. Uncovering the complexity of ant foraging trails.

    PubMed

    Czaczkes, Tomer J; Grüter, Christoph; Jones, Sam M; Ratnieks, Francis L W

    2012-01-01

    The common garden ant Lasius niger use both trail pheromones and memory of past visits to navigate to and from food sources. In a recent paper we demonstrated a synergistic effect between route memory and trail pheromones: the presence of trail pheromones results in experienced ants walking straighter and faster. We also found that experienced ants leaving a pheromone trail deposit less pheromone. Here we focus on another finding of the experiment: the presence of cuticular hydrocarbons (CHCs), which are used as home range markers by ants, also affects pheromone deposition behavior. When walking on a trail on which CHCs are present but trail pheromones are not, experienced foragers deposit less pheromone on the outward journey than on the return journey. The regulatory mechanisms ants use during foraging and recruitment behavior is subtle and complex, affected by multiple interacting factors such as route memory, travel direction and the presence trail pheromone and home-range markings. PMID:22482017

  15. Nest architecture shapes the collective behaviour of harvester ants.

    PubMed

    Pinter-Wollman, Noa

    2015-10-01

    Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness. PMID:26490416

  16. Nest architecture shapes the collective behaviour of harvester ants

    PubMed Central

    Pinter-Wollman, Noa

    2015-01-01

    Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness. PMID:26490416

  17. Nest architecture shapes the collective behaviour of harvester ants.

    PubMed

    Pinter-Wollman, Noa

    2015-10-01

    Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.

  18. Acoustical mimicry in a predatory social parasite of ants.

    PubMed

    Barbero, F; Bonelli, S; Thomas, J A; Balletto, E; Schönrogge, K

    2009-12-01

    Rapid, effective communication between colony members is a key attribute that enables ants to live in dominant, fiercely protected societies. Their signals, however, may be mimicked by other insects that coexist as commensals with ants or interact with them as mutualists or social parasites. We consider the role of acoustics in ant communication and its exploitation by social parasites. Social parasitism has been studied mainly in the butterfly genus Maculinea, the final instar larvae of which are host-specific parasites of Myrmica ants, preying either on ant grubs (predatory Maculinea) or being fed by trophallaxis (cuckoo Maculinea). We found similar significant differences between the stridulations of model queen and worker ant castes in both Myrmica sabuleti and Myrmica scabrinodis to that previously reported for Myrmica schencki. However, the sounds made by queens of all three Myrmica species were indistinguishable, and among workers, stridulations did not differ significantly in two of three species-pairs tested. Sounds recorded from the predatory caterpillars and pupae of Maculinea arion had similar or closer patterns to the acoustics of their host Myrmica sabuleti than those previously reported for the cuckoo Maculinea rebeli and its host Myrmica schencki, even though Maculinea rebeli caterpillars live more intimately with their host. We conclude that chemical mimicry enables Maculinea larvae to be accepted as colony members by worker ants, but that caterpillars and pupae of both predatory and cuckoo butterflies employ acoustical mimicry of queen ant calls to elevate their status towards the highest attainable position within their host's social hierarchy. PMID:19946088

  19. Plant defences against ants provide a pathway to social parasitism in butterflies.

    PubMed

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio

    2015-07-22

    Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.

  20. Plant defences against ants provide a pathway to social parasitism in butterflies.

    PubMed

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio

    2015-07-22

    Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773

  1. Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger.

    PubMed

    Czaczkes, Tomer J; Grüter, Christoph; Ellis, Laura; Wood, Elizabeth; Ratnieks, Francis L W

    2013-01-15

    Ants are central place foragers and use multiple information sources to navigate between the nest and feeding sites. Individual ants rapidly learn a route, and often prioritize memory over pheromone trails when tested on a simple trail with a single bifurcation. However, in nature, ants often forage at locations that are reached via more complex routes with multiple trail bifurcations. Such routes may be more difficult to learn, and thus ants would benefit from additional information. We hypothesized that trail pheromones play a more significant role in ant foraging on complex routes, either by assisting in navigation or route learning or both. We studied Lasius niger workers foraging on a doubly bifurcating trail with four end points. Route learning was slower and errors greater on alternating (e.g. left-right) versus repeating routes (e.g. left-left), with error rates of 32 and 3%, respectively. However, errors on alternating routes decreased by 30% when trail pheromone was present. Trail pheromones also aid route learning, leading to reduced errors in subsequent journeys without pheromone. If an experienced forager makes an error when returning to a food source, it reacts by increasing pheromone deposition on the return journey. In addition, high levels of trail pheromone suppress further pheromone deposition. This negative feedback mechanism may act to conserve pheromone or to regulate recruitment. Taken together, these results demonstrate further complexity and sophistication in the foraging system of ant colonies, especially in the role of trail pheromones and their relationship with learning and the use of private information (memory) in a complex environment. PMID:22972897

  2. The ant, Aphaenogaster picea, benefits from plant elaiosomes when insect prey is scarce.

    PubMed

    Clark, Robert E; King, Joshua R

    2012-12-01

    Myrmecochory is a facultative, mutualistic interaction in which ants receive a protein-rich food reward (elaiosome) in return for dispersing plant seeds. In North American northeastern hardwood forests, Aphaenogaster ants are the primary genus dispersing myrmecochorous plants. In these forests, myrmecochores occur in plant guilds of understory spring ephemerals or seasonal greens. This mutualism has been demonstrated for Aphaenogaster rudis (Emery) and individual plant species, but it has not been demonstrated for other Aphaenogaster species or guilds of myrmecochores as they naturally occur. Aphaenogaster picea (Wheeler) colonies were fed three treatments over 5 mo: 1) a mixture of only elaiosomes from an entire plant guild, 2) a diet of only insect protein and 3) a combination diet of both elaiosomes and insect protein. This experiment investigated two potential hypotheses through which elaiosomes can benefit ants: 1) elaiosome proteins can substitute for protein nutritional requirements when ants are prey-limited, and 2) elaiosome nutrition can supplement insect protein when prey is ample. First, a mixture of elaiosomes from four myrmecochorous plant species provided to A. picea colonies was sufficient to maintain worker production, larval growth, and fat stores when no other food was available. A. picea colonies consuming elaiosomes as their only protein source could be sustained for a growing season (5 mo). Second, colonies fed both elaiosomes and protein did not yield more productive colonies than a control diet of just insect protein. These results support the hypothesis that myrmecochory is indeed a facultative mutualism in which ants take advantage of the protein content of elaiosomes when it is favorable, but when they are not limited by insect prey they do not gain any additional benefit from elaiosomes. PMID:23321086

  3. How ants drop out: ant abundance on tropical mountains.

    PubMed

    Longino, John T; Branstetter, Michael G; Colwell, Robert K

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  4. How Ants Drop Out: Ant Abundance on Tropical Mountains

    PubMed Central

    Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  5. Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata

    NASA Astrophysics Data System (ADS)

    Muscedere, Mario L.; Traniello, James F. A.; Gronenberg, Wulfila

    2011-09-01

    Although several neurobiological and genetic correlates of aging and behavioral development have been identified in social insect workers, little is known about how other age-related physiological processes, such as muscle maturation, contribute to task performance. We examined post-eclosion growth of three major muscles of the head capsule in major and minor workers of the ant Pheidole dentata using workers of different ages with distinct task repertoires. Mandible closer muscle fibers, which provide bite force and are thus critical for the use of the mandibles for biting and load carrying, fill the posterio-lateral portions of the head capsule in mature, older workers of both subcastes. Mandible closer fibers of newly eclosed workers, in contrast, are significantly thinner in both subcastes and grow during at least the next 6 days in minor workers, suggesting this muscle has reduced functionality for a substantial period of adult life and thus constrains task performance capability. Fibers of the antennal muscles and the pharynx dilator, which control antennal movements and food intake, respectively, also increase significantly in thickness with age. However, these fibers are only slightly thinner in newly eclosed workers and attain their maximum thickness over a shorter time span in minors. The different growth rates of these functionally distinct muscles likely have consequences for how adult P. dentata workers, particularly minors, develop their full and diverse task repertoire as they age. Workers may be capable of feeding and interacting socially soon after eclosion, but require a longer period of development to effectively use their mandibles, which enable the efficient performance of tasks ranging from nursing to foraging and defense.

  6. The Effects of Colony Structure and Resource Abundance on Food Dispersal in Tapinoma sessile (Hymenoptera: Formicidae)

    PubMed Central

    VanWeelden, M. T.; Bennett, G.; Buczkowski, G.

    2015-01-01

    The odorous house ant, Tapinoma sessile (Say) (Hymenoptera: Formicidae), exhibits a high degree of variation in colony spatial structure which may have direct and indirect effects on foraging. Protein marking and mark–release–recapture techniques were utilized to examine the effect of colony spatial structure on food dispersal. Sucrose water spiked with rabbit IgG protein was presented to colonies with varying spatial configurations in laboratory and field experiments. In monodomous lab colonies, the rate and extent of food dispersal was rapid due to a decrease in foraging area. In polydomous colonies, food dispersal was slower because conspecifics were forced to forage and share food over longer distances. However, over time, food was present in all extremities of the colony. Experiments conducted in the field produced similar results, with nests in close proximity to food yielding higher percentages of workers scoring positive for the marker. However, the percentage of workers possessing the marker decreased over time. Results from this study provide experimental data on mechanisms of food dispersal in monodomous and polydomous colonies of ants, and may be important for increasing the efficacy of management strategies against T. sessile and other pest ant species. PMID:25688088

  7. The effects of colony structure and resource abundance on food dispersal in Tapinoma sessile (Hymenoptera: Formicidae).

    PubMed

    VanWeelden, M T; Bennett, G; Buczkowski, G

    2015-01-01

    The odorous house ant, Tapinoma sessile (Say) (Hymenoptera: Formicidae), exhibits a high degree of variation in colony spatial structure which may have direct and indirect effects on foraging. Protein marking and mark-release-recapture techniques were utilized to examine the effect of colony spatial structure on food dispersal. Sucrose water spiked with rabbit IgG protein was presented to colonies with varying spatial configurations in laboratory and field experiments. In monodomous lab colonies, the rate and extent of food dispersal was rapid due to a decrease in foraging area. In polydomous colonies, food dispersal was slower because conspecifics were forced to forage and share food over longer distances. However, over time, food was present in all extremities of the colony. Experiments conducted in the field produced similar results, with nests in close proximity to food yielding higher percentages of workers scoring positive for the marker. However, the percentage of workers possessing the marker decreased over time. Results from this study provide experimental data on mechanisms of food dispersal in monodomous and polydomous colonies of ants, and may be important for increasing the efficacy of management strategies against T. sessile and other pest ant species. PMID:25688088

  8. An overlooked mandibular-rubbing behavior used during recruitment by the African weaver ant, Oecophylla longinoda.

    PubMed

    Roux, Olivier; Billen, Johan; Orivel, Jérôme; Dejean, Alain

    2010-01-01

    In Oecophylla, an ant genus comprising two territorially dominant arboreal species, workers are known to (1) use anal spots to mark their territories, (2) drag their gaster along the substrate to deposit short-range recruitment trails, and (3) drag the extruded rectal gland along the substrate to deposit the trails used in long-range recruitment. Here we study an overlooked but important marking behavior in which O. longinoda workers first rub the underside of their mandibles onto the substrate, and then--in a surprising posture--tilt their head and also rub the upper side of their mandibles. We demonstrate that this behavior is used to recruit nestmates. Its frequency varies with the rate at which a new territory, a sugary food source, a prey item, or an alien ant are discovered. Microscopy analyses showed that both the upper side and the underside of the mandibles possess pores linked to secretory glands. So, by rubbing their mandibles onto the substrate, the workers probably spread a secretion from these glands that is involved in nestmate recruitment. PMID:20126536

  9. The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    PubMed Central

    Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.

    2011-01-01

    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285

  10. Learning of colonial odor in the ant Cataglyphis niger (Hymenoptera; Formicidae).

    PubMed

    Nowbahari, Elise

    2007-05-01

    Ants learn the odors of members of their colony early in postnatal life, but their ability to learn to recognize noncolony conspecifics and heterospecifics has never been explored. We used a habituation-discrimination paradigm to assess individual recognition in adult Formicine ants, Cataglyphis niger. Pairs of workers from different colonies were placed together for repeated trials, and their ability to discriminate the ant that they encountered from another familiar or unfamiliar ant was observed. Some ants were isolated between encounters, and others were returned to their home colonies. Our results suggest for the first time in ants that C. niger adults learn about individual ants that they have encountered and recognize them in subsequent encounters. Ants are less aggressive toward non-nestmates after they are familiar with one another, but they are aggressive again when they encounter an unfamiliar individual. Learning about non-nestmates does not interfere with an ant's memory of members from its own colony. PMID:17688182

  11. Response of Argentine ants and red imported fire ants to permethrin-impregnated plastic strips: foraging rates, colonization of potted soil, and differential mortality.

    PubMed

    Costa, Heather S; Greenberg, Les; Klotz, John; Rust, Michael K

    2005-12-01

    This study investigated the effects of the permethrin-impregnated plastic on ant mortality and foraging rates, and tested its potential for preventing ants from colonizing potted soil. Direct exposure to the plastic for as short as 1 min caused significant mortality of both red imported fire ants, Solenopsis invicta Buren, and Argentine ants, Linepithema humile (Mayr); however, red imported fire ants were more susceptible than Argentine ants. Knockdown of virtually all ants initially occurred within 15 min after exposure. However, some moribund ants recovered from the effects within 24 h. For example, after 1 min of direct exposure to the permethrin-impregnated plastic, 70% of Argentine ants and 5% of red imported fire ants recovered from the treatment. In established colonies of Argentine ants, significantly fewer ants foraged for food up posts treated with the plastic compared with untreated posts. In addition, colonies responded to introduction of the treatment by significantly reducing their overall foraging rates, even on untreated posts. When pots filled with moistened soil were introduced into established ant colonies, 82% of Argentine ants and 99% of red imported fire ants moved into the soil. In contrast, when a 1-cm-wide coil of the plastic was placed under the pot, no ants moved into the soil. The potential for use of these materials in nursery production is discussed. PMID:16539136

  12. Ecological stoichiometry of ants in a New World rain forest.

    PubMed

    Davidson, Diane W

    2005-01-01

    C:N stoichiometry was investigated in relation to diet (delta(15)N), N-deprivation, and worker body size for a diverse assemblage of tropical Amazonian ants. Relative nitrogen (N) deprivation was assayed for 54 species as an exchange ratio (ER), defined as SUCmin/AAmin, or the minimum sucrose concentration, divided by the minimum amino acid concentration, accepted as food by >/=50% of tested workers. On average, N-deprivation (ER) was almost fivefold greater for N-omnivorous and N-herbivorous (N-OH) taxa than for N-carnivores. In two-way ANOVAs at three taxonomic levels (species and species groups, genera, and tribes), higher ER was associated with small body size and (marginally) with less carnivorous diets. ERs did not differ systematically between trophobiont-tending and "leaf-foraging" functional groups, but specialized wound-feeders and coccid-tenders were prominent among high ER taxa. Paradoxically, some high ER taxa were among the most predatory members of their genera or subfamilies. Biomass % N was lower in N-OH taxa than in carnivores and varied inversely with N-deprivation (log ER) in the former taxa only. In an expanded data set, N-content increased allometrically in N-OHs, N-carnivores, and all ants combined, and with carnivory in large-bodied ants only. Exceptional taxa included small-bodied and predaceous Wasmannia, with high % N despite high ER, and Linepithema, with the lowest % N despite high delta(15)N. Patterns in C:N stoichiometry are explained largely at the genus level and above by elemental composition of alarm/defensive/offensive chemical weaponry and, perhaps in some cases, by reduced N investment in cuticle in taxa with high surface:volume ratios. Several consequences of C:N stoichiometry identify Azteca, and possibly Crematogaster, as taxa preadapted for their roles as prominent associates of myrmecophytes. C:N stoichiometry of ants should be incorporated into models of strategic colony design and examined in a phylogenetic context as

  13. Ecological stoichiometry of ants in a New World rain forest.

    PubMed

    Davidson, Diane W

    2005-01-01

    C:N stoichiometry was investigated in relation to diet (delta(15)N), N-deprivation, and worker body size for a diverse assemblage of tropical Amazonian ants. Relative nitrogen (N) deprivation was assayed for 54 species as an exchange ratio (ER), defined as SUCmin/AAmin, or the minimum sucrose concentration, divided by the minimum amino acid concentration, accepted as food by >/=50% of tested workers. On average, N-deprivation (ER) was almost fivefold greater for N-omnivorous and N-herbivorous (N-OH) taxa than for N-carnivores. In two-way ANOVAs at three taxonomic levels (species and species groups, genera, and tribes), higher ER was associated with small body size and (marginally) with less carnivorous diets. ERs did not differ systematically between trophobiont-tending and "leaf-foraging" functional groups, but specialized wound-feeders and coccid-tenders were prominent among high ER taxa. Paradoxically, some high ER taxa were among the most predatory members of their genera or subfamilies. Biomass % N was lower in N-OH taxa than in carnivores and varied inversely with N-deprivation (log ER) in the former taxa only. In an expanded data set, N-content increased allometrically in N-OHs, N-carnivores, and all ants combined, and with carnivory in large-bodied ants only. Exceptional taxa included small-bodied and predaceous Wasmannia, with high % N despite high ER, and Linepithema, with the lowest % N despite high delta(15)N. Patterns in C:N stoichiometry are explained largely at the genus level and above by elemental composition of alarm/defensive/offensive chemical weaponry and, perhaps in some cases, by reduced N investment in cuticle in taxa with high surface:volume ratios. Several consequences of C:N stoichiometry identify Azteca, and possibly Crematogaster, as taxa preadapted for their roles as prominent associates of myrmecophytes. C:N stoichiometry of ants should be incorporated into models of strategic colony design and examined in a phylogenetic context as

  14. The ant raft

    NASA Astrophysics Data System (ADS)

    Mlot, Nathan; Hu, David; Equabai, Solomon

    2009-11-01

    To survive floods, fire ants link their arms together to assemble a raft with their own bodies. Because ants are nearly as dense as water, this cooperative behavior requires that a portion of the ant colony must sacrifice itself by remaining underwater to support the colony's weight. Surprisingly, few ants drown during this process due to a striking metamorphosis of the raft: as we show using time-lapse photography, the raft morphs from a spherical to a pancake shape. This pancake configuration--a monolayer of floating ants supporting their dry counterparts--allows all ants to both breathe and remain united as a colony. Data is presented in the form of the dimensions and the rates of formation of the ant raft. We use the statics of small floating bodies to account for the equilibrium raft size as a function of the initial mass and density of the ants.

  15. Diaspore trait preferences of dispersing ants.

    PubMed

    Reifenrath, Kerstin; Becker, Christine; Poethke, Hans Joachim

    2012-09-01

    Elaiosomes of myrmecochorous plant seeds are known to enhance the attraction of diaspore-dispersing ants by serving as a nutritional reward. However, it remained unclear which (nutritional) compounds affect diaspore preferences of ants. We hypothesized that apart from elaiosome/seed-size ratio, volume, and physical surface of diaspores, the quantity and the composition of fatty acids, amino acids, and sugars strongly influence the diaspore preferences of different species. Chemical (nutritional) profiles as well as structural properties of seeds with and without elaiosomes were analyzed and correlated with observed seed choice behavior of ants. Cafeteria experiments in the field confirmed the enhanced attractiveness of elaiosome-bearing seeds for all three ant species tested (Lasius fuliginosus, Myrmica ruginodis, and Temnothorax nylanderi), although seeds lacking elaiosomes also were transported. In multiple-choice cafeteria experiments with simultaneously offered diaspores of 16 plant species with and without elaiosome and with highly varying structural and chemical properties, all three ant species showed distinct preferences for certain diaspore species. Correlation analyses confirmed that the presence of an elaiosome represents the crucial factor that favors ant diaspore dispersal. In addition, the composition and the content of free amino acids, and to varying degrees fatty acids, were found to significantly affect preferences of each ant species, whereas the effect of single fatty acids acting as chemical triggers for diaspore transport by ants, as supposed by several studies, was not confirmed. In conclusion, although at least some diaspore species lacking elaiosomes attract ants for diaspore removal services by presenting nutritional seed coats, the production of elaiosomes seems to provide a worthwhile investment. Elaiosomes ensure rapid diaspore detection and removal due to chemical cue compounds and by offering a highly nutritional food supply, probably

  16. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  17. Fatty Amines from Little Black Ants, Monomorium minimum, and Their Biological Activities Against Red Imported Fire Ants, Solenopsis invicta.

    PubMed

    Wang, Lei; Chen, Jian

    2015-08-01

    Red imported fire ants, Solenopsis invicta, are significant invasive pests. Certain native ant species can compete with S. invicta, such as the little black ant, Monomorium minimum. Defensive secretions may contribute to the competition capacity of native ants. The chemistry of ant defensive secretions in the genus Monomorium has been subjected to extensive research. The insecticidal alkaloids, 2,5-dialkyl-pyrrolidines and 2,5-dialkyl-pyrrolines have been reported to dominate the venom of M. minimum. In this study, analysis of defensive secretions of workers and queens of M. minimum revealed two primary amines, decylamine and dodecylamine. Neither amine has been reported previously from natural sources. Toxicity and digging suppression by these two amines against S. invicta were examined. Decylamine had higher toxicity to S. invicta workers than dodecylamine, a quicker knockdown effect, and suppressed the digging behavior of S. invicta workers at lower concentration. However, the amount of fatty amines in an individual ant was not enough to knockdown a fire ant or suppress its digging behavior. These amines most likely work in concert with other components in the chemical defense of M. minimum.

  18. Insect communication: 'no entry' signal in ant foraging.

    PubMed

    Robinson, Elva J H; Jackson, Duncan E; Holcombe, Mike; Ratnieks, Francis L W

    2005-11-24

    Forager ants lay attractive trail pheromones to guide nestmates to food, but the effectiveness of foraging networks might be improved if pheromones could also be used to repel foragers from unrewarding routes. Here we present empirical evidence for such a negative trail pheromone, deployed by Pharaoh's ants (Monomorium pharaonis) as a 'no entry' signal to mark an unrewarding foraging path. This finding constitutes another example of the sophisticated control mechanisms used in self-organized ant colonies. PMID:16306981

  19. Ant colony optimization algorithm for continuous domains based on position distribution model of ant colony foraging.

    PubMed

    Liu, Liqiang; Dai, Yuntao; Gao, Jinyu

    2014-01-01

    Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm. PMID:24955402

  20. Ant Colony Optimization Algorithm for Continuous Domains Based on Position Distribution Model of Ant Colony Foraging

    PubMed Central

    Liu, Liqiang; Dai, Yuntao

    2014-01-01

    Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm. PMID:24955402

  1. A mathematical model of foraging in a dynamic environment by trail-laying Argentine ants.

    PubMed

    Ramsch, Kai; Reid, Chris R; Beekman, Madeleine; Middendorf, Martin

    2012-08-01

    Ants live in dynamically changing environments, where food sources become depleted and alternative sources appear. Yet most mathematical models of ant foraging assume that the ants' foraging environment is static. Here we describe a mathematical model of ant foraging in a dynamic environment. Our model attempts to explain recent empirical data on dynamic foraging in the Argentine ant Linepithema humile (Mayr). The ants are able to find the shortest path in a Towers of Hanoi maze, a complex network containing 32,768 alternative paths, even when the maze is altered dynamically. We modify existing models developed to explain ant foraging in static environments, to elucidate what possible mechanisms allow the ants to quickly adapt to changes in their foraging environment. Our results suggest that navigation of individual ants based on a combination of one pheromone deposited during foraging and directional information enables the ants to adapt their foraging trails and recreates the experimental results. PMID:22575583

  2. How to be an ant on figs

    NASA Astrophysics Data System (ADS)

    Bain, Anthony; Harrison, Rhett D.; Schatz, Bertrand

    2014-05-01

    Mutualistic interactions are open to exploitation by one or other of the partners and a diversity of other organisms, and hence are best understood as being embedded in a complex network of biotic interactions. Figs participate in an obligate mutualism in that figs are dependent on agaonid fig wasps for pollination and the wasps are dependent on fig ovules for brood sites. Ants are common insect predators and abundant in tropical forests. Ants have been recorded on approximately 11% of fig species, including all six subgenera, and often affect the fig-fig pollinator interaction through their predation of either pollinating and parasitic wasps. On monoecious figs, ants are often associated with hemipterans, whereas in dioecious figs ants predominantly prey on fig wasps. A few fig species are true myrmecophytes, with domatia or food rewards for ants, and in at least one species this is linked to predation of parasitic fig wasps. Ants also play a role in dispersal of fig seeds and may be particularly important for hemi-epiphytic species, which require high quality establishment microsites in the canopy. The intersection between the fig-fig pollinator and ant-plant systems promises to provide fertile ground for understanding mutualistic interactions within the context of complex interaction networks.

  3. Queen sex pheromone of the slave-making ant, Polyergus breviceps.

    PubMed

    Greenberg, Les; Tröger, Armin G; Francke, Wittko; McElfresh, J Steven; Topoff, Howard; Aliabadi, Ali; Millar, Jocelyn G

    2007-05-01

    Workers of the slave-making ant, Polyergus breviceps, raid nests of Formica ants and return with Formica pupae that mature into worker ants in the slave-makers' colony. These Formica workers then tend the Polyergus brood, workers, and reproductives. During raids in the mating season, winged virgin Polyergus queens accompany the workers in the raiding columns. During the raid, the virgin queens release a pheromone that attracts males that quickly mate with the queens. We report the identification, synthesis, and bioassay of the sex attractant pheromone of the queens as an approximately 1:6 ratio of (R)-3-ethyl-4-methylpentan-1-ol and methyl 6-methylsalicylate. The ants produce exclusively the (R)-enantiomer of the alcohol, and the (S)-enantiomer has no biological activity, neither inhibiting nor increasing attraction to blends of methyl 6-methylsalicylate with the (R)-enantiomer. PMID:17393281

  4. Bacterial associates of arboreal ants and their putative functions in an obligate ant-plant mutualism.

    PubMed

    Eilmus, Sascha; Heil, Martin

    2009-07-01

    Bacterial communities are highly diverse and have great ecological importance. In the present study, we used an in silico analysis of terminal restriction fragments (tRF) to characterize the bacterial community of the plant ant Pseudomyrmex ferrugineus. This species is an obligate inhabitant of Acacia myrmecophytes and feeds exclusively on plant-derived food sources. Ants are the dominant insect group in tropical rain forests. Associations of ants with microbes, which contribute particularly to the ants' nitrogen nutrition, could allow these insects to live on mostly or entirely plant-based diets and could thus contribute to the explanation of the high abundances that are reached by tropical ants. We found tRF patterns representing at least 30 prokaryotic taxa, of which the Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Proteobacteria, and Spirochaetes comprised 93%. Because most bacterial taxa were found in all ant-derived samples studied and because the bacteria detected on the ants' host plant revealed little overlap with this community, we regard our results as reliably representing the bacterial community that is associated with P. ferrugineus. Genera with a likely function as ant symbionts were Burkholderia, Pantoea, Weissella, and several members of the Enterobacteriaceae. The presence of these and various other groups was confirmed via independent PCR and cultivation approaches. Many of the bacteria that we detected belong to purportedly N-fixing taxa. Bacteria may represent important further partners in ant-plant mutualisms, and their influences on ant nutrition can contribute to the extraordinary abundance and evolutionary success of tropical arboreal ants. PMID:19447959

  5. Identifying the transition between single and multiple mating of queens in fungus-growing ants.

    PubMed Central

    Villesen, Palle; Murakami, Takahiro; Schultz, Ted R; Boomsma, Jacobus J

    2002-01-01

    Obligate mating of females (queens) with multiple males has evolved only rarely in social Hymenoptera (ants, social bees, social wasps) and for reasons that are fundamentally different from those underlying multiple mating in other animals. The monophyletic tribe of ('attine') fungus-growing ants is known to include evolutionarily derived genera with obligate multiple mating (the Acromyrmex and Atta leafcutter ants) as well as phylogenetically basal genera with exclusively single mating (e.g. Apterostigma, Cyphomyrmex, Myrmicocrypta). All attine genera share the unique characteristic of obligate dependence on symbiotic fungus gardens for food, but the sophistication of this symbiosis differs considerably across genera. The lower attine genera generally have small, short-lived colonies and relatively non-specialized fungal symbionts (capable of living independently of their ant hosts), whereas the four evolutionarily derived higher attine genera have highly specialized, long-term clonal symbionts. In this paper, we investigate whether the transition from single to multiple mating occurred relatively recently in the evolution of the attine ants, in conjunction with the novel herbivorous 'leafcutter' niche acquired by the common ancestor of Acromyrmex and Atta, or earlier, at the transition to rearing specialized long-term clonal fungi in the common ancestor of the larger group of higher attines that also includes the genera Trachymyrmex and Sericomyrmex. We use DNA microsatellite analysis to provide unambiguous evidence for a single, late and abrupt evolutionary transition from exclusively single to obligatory multiple mating. This transition is historically correlated with other evolutionary innovations, including the extensive use of fresh vegetation as substrate for the fungus garden, a massive increase in mature colony size and morphological differentiation of the worker caste. PMID:12184823

  6. Patterns of reproduction in slave-making ants

    PubMed Central

    Herbers, J. M.; Stuart, R. J.

    1998-01-01

    Sex ratios in slave-making ants have been posed as important test cases for the hypothesis that eusociality evolved via kin selection in insects. Trivers and Hare proposed that sex ratios in slave-makers should reflect the queen's interests whereas sex ratios in free-living host ants should reflect the workers' interests. We analyse patterns of allocation to males versus females, as well as allocation to growth versus reproduction for slave-making ants in the tribe Formicoxenini. We find little support for the hypothesis of exclusive queen control; instead, our results implicate queen–worker conflict in slave-making ants, both over male allocation ratios and over allocation to growth versus reproduction.

  7. Efforts to eradicate yellow crazy ants on Johnston Atoll: Results from Crazy Ant Strike Team IX, December 2014-June 2015

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Donmoyer, Kevin; Kropidlowski, Stephan; Pollock, Amanda

    2015-01-01

    The ecologically destructive yellow crazy ant (YCA; Anoplolepis gracilipes) was first detected on Johnston Atoll in January 2010. Within eight months, the U.S. Fish and Wildlife Service had mobilized its first crazy ant strike team (CAST), a group of biologists dedicated to testing and identifying insecticidal baits to be used to eradicate the ant on the atoll. During December 2014‒May 2015 CAST IX focused on testing hydrogel crystals saturated with sucrose solution (25%) carrying the insecticides thiamethoxam and dinotefuran against YCA. A series of experiments, including artificial nest box trials, and field-based palatability trials and eradication tests on small (500 m2 or 0.05 ha) and large plots (2500 m2 or 0.25 ha), were conducted to test concentrations of thiamethoxam ranging from 0.0005% to 0.01%, and dinotefuran at 0.05%. Additionally, the cat food-based matrix containing dinotefuran (0.05%), the standard bait used to suppress YCA on Johnston since 2011, and textured vegetable protein (TVP) carrying dinotefuran at 0.1% and 0.05% were included in large plot tests. Nest box trials were inconclusive due to a consistent loss of queen and worker ants in control boxes, so they were discontinued. Palatability trials suggested higher dosages of thiamethoxam (0.005 and 0.01%) were less attractive than lower dosages (0.0005 and 0.001%) and controls (sucrose only), but small and large plot experiments failed to identify a thiamethoxam concentration that was consistently effective at killing YCA. In contrast, hydrogel containing dinotefuran was consistently effective, killing >95% of YCA on small and large plots. As expected, the cat food bait effectively reduced YCA abundances, but was slightly less effective than hydrogel containing dinotefuran over time. Three successive, approximately weekly treatments of large plots with hydrogel bait, or other baits followed by hydrogel bait, suggest an increasing overall effectiveness, with no aversion of YCA to the bait

  8. Ant- and Ant-Colony-Inspired ALife Visual Art.

    PubMed

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  9. Ant- and Ant-Colony-Inspired ALife Visual Art.

    PubMed

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior. PMID:26280070

  10. Operant conditioning in the ant Myrmica sabuleti.

    PubMed

    Cammaerts, M C

    2004-11-30

    Operant conditioning could be obtained in the ant Myrmica sabuleti by presenting to the workers, during a six-day period, an apparatus containing either sugared water or meat as a reward. The conditioning obtained using sugared water as a reward was short lasting. A reconditioning was more persistent and lasted four hours. The ants' response was very precise, since they exhibited it only in front of an apparatus identical to that used during the training phase. Operant conditioning obtained using meat as a reward was more pronounced than that obtained by using sugared water, probably because meat is more valuable as a reward than sugar for the species studied, which is essentially a carnivorous one. Such a conditioning was rather persistent. Indeed, a first operant conditioning obtained by using meat as a reward could still be detected after seven hours, and a reconditioning was still significant after eight hours. One day after this eight-hour period without rewarding the ants, the response was higher again and a further day later, it was still significant. Since the operant conditioning is easy to perform and quantify and since the ants' response is very precise, such a conditioning can be used for further studying M. sabuleti workers' visual perception.

  11. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes

    PubMed Central

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich

    2015-01-01

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649

  12. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.

    PubMed

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

    2015-02-22

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved.

  13. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  14. Electroantennogram and behavioral responses of the imported fire ant, Solenopsis invicta Buren, to an alarm pheromone component and its analogues.

    PubMed

    Guan, Di; Lu, Yong-Yue; Liao, Xiao-Lan; Wang, Lei; Chen, Li

    2014-12-10

    A characteristic behavior in ants is to move rapidly to emission sources of alarm pheromones. The addition of ant alarm pheromones to bait is expected to enhance its attractiveness. To search for candidate compounds for bait enhancement in fire ant control, 13 related alkylpyrazine analogues in addition to synthetic alarm pheromone component were evaluated for electroantennogram (EAG) and behavioral activities in Solenopsis invicta. Most compounds elicited dose-dependent EAG and behavioral responses. There exists a correlation between the EAG and behavioral responses. Among the 14 tested alkylpyrazines, three compounds, 2-ethyl-3,6(5)-dimethyl pyrazine (1), 2,3,5-trimethylpyrazine (7), and 2,3-diethyl-5-methylpyrazine (12), elicited significant alarm responses at a dose range of 0.1-1000 ng. Further bait discovery bioassay with the three most active alkylpyrazines demonstrated that food bait accompanied by sample-treated filter paper disk attracted significantly more fire ant workers in the first 15 min period. EAG and behavioral bioassays with pure pheromone isomers accumulated by semi-preparative high-performance liquid chromatography demonstrated that 2-ethyl-3,6-dimethylpyrazine was significantly more active than 2-ethyl-3,5-dimethylpyrazine. PMID:25415443

  15. Ecological consequences of traffic organisation in ant societies

    NASA Astrophysics Data System (ADS)

    Burd, Martin

    2006-12-01

    Many species of ants engage in social foraging in which traffic develops over pathways defined by pheromones or physical roads cleared through debris. Worker ants from the same colony have a common underlying evolutionary interest in their collective performance. Thus, ant traffic makes an interesting comparison to other kinds of cellular or organismal traffic composed of elements with varying degrees of shared or disparate goals. Recent studies have revealed how small-scale interactions among ants amplify to create large-scale traffic structure, such as segregation of counterflows. However, much less is known about the ecological costs and benefits of different kinds of traffic organization. The common assumption that maximum traffic flux provides maximum ecological benefit needs closer scrutiny. Ant traffic provides a potentially useful model system for experimental study of crowd panics, and for assessing the role of transport networks in creating scaling relationships between the size and activity rates of the entities they serve.

  16. 9 CFR 354.123 - Segregation of suspects on ante-mortem inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Segregation of suspects on ante-mortem inspection. 354.123 Section 354.123 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Inspection Procedures; Ante-Mortem Inspections § 354.123 Segregation of suspects on ante-mortem...

  17. 9 CFR 354.123 - Segregation of suspects on ante-mortem inspection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Segregation of suspects on ante-mortem inspection. 354.123 Section 354.123 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Inspection Procedures; Ante-Mortem Inspections § 354.123 Segregation of suspects on ante-mortem...

  18. 9 CFR 309.18 - Official marks and devices for purposes of ante-mortem inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purposes of ante-mortem inspection. 309.18 Section 309.18 Animals and Animal Products FOOD SAFETY AND... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.18 Official marks and devices for purposes of ante-mortem inspection. (a) All livestock required by this part to...

  19. Kin-informative recognition cues in ants.

    PubMed

    Nehring, Volker; Evison, Sophie E F; Santorelli, Lorenzo A; d'Ettorre, Patrizia; Hughes, William O H

    2011-07-01

    Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation--social insect colonies--because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought.

  20. The effects of fire on ant trophic assemblage and sex allocation

    PubMed Central

    Caut, Stephane; Jowers, Michael J; Arnan, Xavier; Pearce-Duvet, Jessica; Rodrigo, Anselm; Cerda, Xim; Boulay, Raphaël R

    2014-01-01

    Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground-dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire-induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire-resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein-rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment. Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the

  1. Ant Homing Ability Is Not Diminished When Traveling Backwards.

    PubMed

    Ardin, Paul B; Mangan, Michael; Webb, Barbara

    2016-01-01

    Ants are known to be capable of homing to their nest after displacement to a novel location. This is widely assumed to involve some form of retinotopic matching between their current view and previously experienced views. One simple algorithm proposed to explain this behavior is continuous retinotopic alignment, in which the ant constantly adjusts its heading by rotating to minimize the pixel-wise difference of its current view from all views stored while facing the nest. However, ants with large prey items will often drag them home while facing backwards. We tested whether displaced ants (Myrmecia croslandi) dragging prey could still home despite experiencing an inverted view of their surroundings under these conditions. Ants moving backwards with food took similarly direct paths to the nest as ants moving forward without food, demonstrating that continuous retinotopic alignment is not a critical component of homing. It is possible that ants use initial or intermittent retinotopic alignment, coupled with some other direction stabilizing cue that they can utilize when moving backward. However, though most ants dragging prey would occasionally look toward the nest, we observed that their heading direction was not noticeably improved afterwards. We assume ants must use comparison of current and stored images for corrections of their path, but suggest they are either able to chose the appropriate visual memory for comparison using an additional mechanism; or can make such comparisons without retinotopic alignment. PMID:27147991

  2. Ant plant herbivore interactions in the neotropical cerrado savanna

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo S.; Freitas, André V. L.

    2004-12-01

    The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant plant herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant plant butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.

  3. Ant Homing Ability Is Not Diminished When Traveling Backwards

    PubMed Central

    Ardin, Paul B.; Mangan, Michael; Webb, Barbara

    2016-01-01

    Ants are known to be capable of homing to their nest after displacement to a novel location. This is widely assumed to involve some form of retinotopic matching between their current view and previously experienced views. One simple algorithm proposed to explain this behavior is continuous retinotopic alignment, in which the ant constantly adjusts its heading by rotating to minimize the pixel-wise difference of its current view from all views stored while facing the nest. However, ants with large prey items will often drag them home while facing backwards. We tested whether displaced ants (Myrmecia croslandi) dragging prey could still home despite experiencing an inverted view of their surroundings under these conditions. Ants moving backwards with food took similarly direct paths to the nest as ants moving forward without food, demonstrating that continuous retinotopic alignment is not a critical component of homing. It is possible that ants use initial or intermittent retinotopic alignment, coupled with some other direction stabilizing cue that they can utilize when moving backward. However, though most ants dragging prey would occasionally look toward the nest, we observed that their heading direction was not noticeably improved afterwards. We assume ants must use comparison of current and stored images for corrections of their path, but suggest they are either able to chose the appropriate visual memory for comparison using an additional mechanism; or can make such comparisons without retinotopic alignment. PMID:27147991

  4. The ecological benefits of larger colony size may promote polygyny in ants.

    PubMed

    Boulay, R; Arnan, X; Cerdá, X; Retana, J

    2014-12-01

    How polygyny evolved in social insect societies is a long-standing question. This phenomenon, which is functionally similar to communal breeding in vertebrates, occurs when several queens come together in the same nest to lay eggs that are raised by workers. As a consequence, polygyny drastically reduces genetic relatedness among nestmates. It has been suggested that the short-term benefits procured by group living may outweigh the costs of sharing the same nesting site and thus contribute to organisms rearing unrelated individuals. However, tests of this hypothesis are still limited. To examine the evolutionary emergence of polygyny, we reviewed the literature to build a data set containing life-history traits for 149 Palearctic ant species and combined this data set with a reconstructed phylogeny. We show that monogyny is the ancestral state and that polygyny has evolved secondarily and independently throughout the phylogenetic tree. The occurrence of polygyny is significantly correlated with larger colony size, dependent colony founding and ecological dominance. Although polydomy (when a colony simultaneously uses several connected nests) tends to occur more frequently in polygynous species, this trend is not significant when phylogenetic history is accounted for. Overall, our results indicate that polygyny may have evolved in ants in spite of the reduction in nestmate relatedness because large colony size provides immediate ecological advantages, such as the more efficient use of temporal food resources. We suggest that the competitive context of ant communities may have provided the conditions necessary for the evolution of polygyny in some clades.

  5. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants.

    PubMed

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-11-01

    In plant-ant-hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  6. A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin.

    PubMed

    Dejean, Alain; Orivel, Jérôme; Azémar, Frédéric; Hérault, Bruno; Corbara, Bruno

    2016-01-01

    In myrmecophilous Lepidoptera, mostly lycaenids and riodinids, caterpillars trick ants into transporting them to the ant nest where they feed on the brood or, in the more derived "cuckoo strategy", trigger regurgitations (trophallaxis) from the ants and obtain trophic eggs. We show for the first time that the caterpillars of a moth (Eublemma albifascia; Noctuidae; Acontiinae) also use this strategy to obtain regurgitations and trophic eggs from ants (Oecophylla longinoda). Females short-circuit the adoption process by laying eggs directly on the ant nests, and workers carry just-hatched caterpillars inside. Parasitized colonies sheltered 44 to 359 caterpillars, each receiving more trophallaxis and trophic eggs than control queens. The thus-starved queens lose weight, stop laying eggs (which transport the pheromones that induce infertility in the workers) and die. Consequently, the workers lay male-destined eggs before and after the queen's death, allowing the colony to invest its remaining resources in male production before it vanishes. PMID:27021621

  7. A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin.

    PubMed

    Dejean, Alain; Orivel, Jérôme; Azémar, Frédéric; Hérault, Bruno; Corbara, Bruno

    2016-03-29

    In myrmecophilous Lepidoptera, mostly lycaenids and riodinids, caterpillars trick ants into transporting them to the ant nest where they feed on the brood or, in the more derived "cuckoo strategy", trigger regurgitations (trophallaxis) from the ants and obtain trophic eggs. We show for the first time that the caterpillars of a moth (Eublemma albifascia; Noctuidae; Acontiinae) also use this strategy to obtain regurgitations and trophic eggs from ants (Oecophylla longinoda). Females short-circuit the adoption process by laying eggs directly on the ant nests, and workers carry just-hatched caterpillars inside. Parasitized colonies sheltered 44 to 359 caterpillars, each receiving more trophallaxis and trophic eggs than control queens. The thus-starved queens lose weight, stop laying eggs (which transport the pheromones that induce infertility in the workers) and die. Consequently, the workers lay male-destined eggs before and after the queen's death, allowing the colony to invest its remaining resources in male production before it vanishes.

  8. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 9. Washing and drying of hands to reduce microbial contamination.

    PubMed

    Todd, Ewen C D; Michaels, Barry S; Smith, Debra; Greig, Judy D; Bartleson, Charles A

    2010-10-01

    During various daily activities at home and work, hands quickly become contaminated. Some activities increase the risk of finger contamination by pathogens more than others, such as the use of toilet paper to clean up following a diarrheal episode, changing the diaper of a sick infant, blowing a nose, or touching raw food materials. Many foodborne outbreak investigation reports have identified the hands of food workers as the source of pathogens in the implicated food. The most convenient and efficient way of removing pathogens from hands is through hand washing. Important components of hand washing are potable water for rinsing and soaps to loosen microbes from the skin. Hand washing should occur after any activity that soils hands and certainly before preparing, serving, or eating food. Antimicrobial soaps are marginally more effective than plain soaps, but constant use results in a buildup of the antimicrobial compound on the skin. The time taken to wash hands and the degree of friction generated during lathering are more important than water temperature for removing soil and microorganisms. However, excessive washing and scrubbing can cause skin damage and infections. Drying hands with a towel removes pathogens first by friction during rubbing with the drying material and then by wicking away the moisture into that material. Paper rather than cloth towels should be encouraged, although single-use cloth towels are present in the washrooms of higher class hotels and restaurants. Warm air dryers remove moisture and any surface microorganisms loosened by washing from hands by evaporation while the hands are rubbed together vigorously; however, these dryers take too long for efficient use. The newer dryers with high-speed air blades can achieve dryness in 10 to 15 s without hand rubbing. PMID:21067683

  9. A model for collective dynamics in ant raids.

    PubMed

    Ryan, Shawn D

    2016-05-01

    Ant raiding, the process of identifying and returning food to the nest or bivouac, is a fascinating example of collective motion in nature. During such raids ants lay pheromones to form trails for others to find a food source. In this work a coupled PDE/ODE model is introduced to study ant dynamics and pheromone concentration. The key idea is the introduction of two forms of ant dynamics: foraging and returning, each governed by different environmental and social cues. The model accounts for all aspects of the raiding cycle including local collisional interactions, the laying of pheromone along a trail, and the transition from one class of ants to another. Through analysis of an order parameter measuring the orientational order in the system, the model shows self-organization into a collective state consisting of lanes of ants moving in opposite directions as well as the transition back to the individual state once the food source is depleted matching prior experimental results. This indicates that in the absence of direct communication ants naturally form an efficient method for transporting food to the nest/bivouac. The model exhibits a continuous kinetic phase transition in the order parameter as a function of certain system parameters. The associated critical exponents are found, shedding light on the behavior of the system near the transition. PMID:26304617

  10. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi

    NASA Astrophysics Data System (ADS)

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  11. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi.

    PubMed

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  12. Can the Argentine ant ( Linepithema humile Mayr) replace native ants in myrmecochory?

    NASA Astrophysics Data System (ADS)

    Gómez, Crisanto; Oliveras, Jordi

    2003-04-01

    We analyse the influence of the Argentine ant ( Linepithema humile Mayr) on the seed dispersal process of the myrmecochorous plants Euphorbia characias, E. biumbellata, Genista linifolia, G. triflora, G. monspessulana and Sarothamnus arboreus. The observations were made in two study plots of Mediterranean cork-oak secondary forest (invaded and non-invaded by L. humile). The presence of L. humile implies the displacement of all native ant species that disperse seeds. Seed transports in the non-invaded zone were carried out by eight ant species. In the invaded zone, L. humile workers removed and transported seeds to the nest. In vertebrate exclusion trials, we observed the same level of seed removal in the invaded and non-invaded zones. Two findings could explain this result. Although mean time to seed localization was higher for native ants (431.7 s) than that for L. humile (150.5 s), the mean proportion of seeds transported after being detected was higher (50.1%) in non-invaded than in invaded (16.8%) zones. The proportion of seeds removed and transported into an ant nest after an ant-seed interaction had dramatically reduced from non-invaded (41.9%) to invaded (7.4%) zones. The levels of seed dispersal by ants found prior to invasion are unlikely to be maintained in invaded zones. However, total replacement of seed dispersal function is possible if contact iteration finally offers similar levels or quantities of seeds reaching the nests. The results obtained confirm that the Argentine ant invasion may affect myrmecochory dramatically in the Mediterranean biome.

  13. The effect of disturbance on an ant-plant mutualism.

    PubMed

    Piovia-Scott, Jonah

    2011-06-01

    Protective ant-plant mutualisms-where plants provide food or shelter to ants and ants protect the plants from herbivores-are a common feature in many ecological communities, but few studies have examined the effect of disturbance on these interactions. Disturbance may affect the relationship between plants and their associated ant mutualists by increasing the plants' susceptibility to herbivores, changing the amount of reward provided for the ants, and altering the abundance of ants and other predators. Pruning was used to simulate the damage to buttonwood mangrove (Conocarpus erectus) caused by hurricanes. Pruned plants grew faster than unpruned plants, produced lower levels of physical anti-herbivore defenses (trichomes, toughness), and higher levels of chemical defenses (tannins) and extrafloral nectaries. Thus, simulated hurricane damage increased plant growth and the amount of reward provided to ant mutualists, but did not have consistent effects on other anti-herbivore defenses. Both herbivores and ants increased in abundance on pruned plants, indicating that the effects of simulated hurricane damage on plant traits were propagated to higher trophic levels. Ant-exclusion led to higher leaf damage on both pruned and upruned plants. The effect of ant-exclusion did not differ between pruned and unpruned plants, despite the fact that pruned plants had higher ant and herbivore densities, produced more extrafloral nectaries, and had fewer physical defenses. Another common predator, clubionid spiders, increased in abundance on pruned plants from which ants had been excluded. I suggest that compensatory predation by these spiders diminished the effect of ant-exclusion on pruned plants.

  14. Recruitment strategies and colony size in ants.

    PubMed

    Planqué, Robert; van den Berg, Jan Bouwe; Franks, Nigel R

    2010-01-01

    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony's organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used--even if the ants' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology. PMID:20694195

  15. Social facilitation of eclosion in the fire ant, Solenopsis invicta.

    PubMed

    Lamon, B; Topoff, H

    1985-09-01

    In colonies of the fire ant, Solenopsis invicta, eclosion is facilitated by adult workers which strip away and consume the pupal cuticle. This stage-specific social interaction involves chemical stimuli which are present at the onset of eclosion, concurrent with the initiation of gross movements and separation of the pupal cuticle. Fire ant workers retrieved inanimate objects treated with an extract of eclosing pupae and placed them in the colony brood chamber with the appropriate age group where they were tended by several workers. The facilitation of eclosion by adult colony members appears to be an obligatory process in the development of this species; pupae denied the aid of adult workers during eclosion are unable to remove the pupal cuticle and rapidly succumb. PMID:4065426

  16. Spectacular Batesian mimicry in ants.

    PubMed

    Ito, Fuminori; Hashim, Rosli; Huei, Yek Sze; Kaufmann, Eva; Akino, Toshiharu; Billen, Johan

    2004-10-01

    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.

  17. Spectacular Batesian mimicry in ants

    NASA Astrophysics Data System (ADS)

    Ito, Fuminori; Hashim, Rosli; Huei, Yek Sze; Kaufmann, Eva; Akino, Toshiharu; Billen, Johan

    2004-10-01

    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.

  18. Body size, colony size, abundance, and ecological impact of exotic ants in Florida's upland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With hundreds of species established in new localities around the world, ants are an important, widely distributed, and growing group of exotic animals. The success of many established exotic ants is hypothesized to be related to competitive advantages associated with smaller workers and larger col...

  19. Release and establishment of the little decapitating fly Pseudacteon cultellatus on imported fire ants in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The little decapitating fly Pseudacteon cultellatus from Argentina was released as a self-sustaining biological control agent against the red imported fire ant, Solenopsis invicta, in Florida to parasitize small fire ant workers associated with multiple-queen colonies. This fly appears to be establi...

  20. Ant Colonies Do Not Trade-Off Reproduction against Maintenance.

    PubMed

    Kramer, Boris H; Schrempf, Alexandra; Scheuerlein, Alexander; Heinze, Jürgen

    2015-01-01

    The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a "superorganism" where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms. PMID:26383861

  1. Ant Colonies Do Not Trade-Off Reproduction against Maintenance

    PubMed Central

    Scheuerlein, Alexander; Heinze, Jürgen

    2015-01-01

    The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a “superorganism” where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms. PMID:26383861

  2. Ant Colonies Do Not Trade-Off Reproduction against Maintenance.

    PubMed

    Kramer, Boris H; Schrempf, Alexandra; Scheuerlein, Alexander; Heinze, Jürgen

    2015-01-01

    The question on how individuals allocate resources into maintenance and reproduction is one of the central questions in life history theory. Yet, resource allocation into maintenance on the organismic level can only be measured indirectly. This is different in a social insect colony, a "superorganism" where workers represent the soma and the queen the germ line of the colony. Here, we investigate whether trade-offs exist between maintenance and reproduction on two levels of biological organization, queens and colonies, by following single-queen colonies of the ant Cardiocondyla obscurior throughout the entire lifespan of the queen. Our results show that maintenance and reproduction are positively correlated on the colony level, and we confirm results of an earlier study that found no trade-off on the individual (queen) level. We attribute this unexpected outcome to the existence of a positive feedback loop where investment into maintenance (workers) increases the rate of resource acquisition under laboratory conditions. Even though food was provided ad libitum, variation in productivity among the colonies suggests that resources can only be utilized and invested into additional maintenance and reproduction by the colony if enough workers are available. The resulting relationship between per-capita and colony productivity in our study fits well with other studies conducted in the field, where decreasing per-capita productivity and the leveling off of colony productivity have been linked to density dependent effects due to competition among colonies. This suggests that the absence of trade-offs in our laboratory study might also be prevalent under natural conditions, leading to a positive association of maintenance, (= growth) and reproduction. In this respect, insect colonies resemble indeterminate growing organisms.

  3. Commercial agrochemical applications in vineyards do not influence ant communities.

    PubMed

    Chong, Chee Seng; Hoffmann, Ary A; Thomson, Linda J

    2007-12-01

    Ants have been widely used as bioindicators for various terrestrial monitoring and assessment programs but are seldom considered in evaluation of nontarget pesticide effect. Much chemical assessment has been biased toward laboratory and bioassay testing for control of specific pest ant species. Several field studies that did explore the nontarget impacts of pesticides on ants have reported contradictory findings. To address the impact of chemical applications on ants, we tested the response of epigeal ant assemblages and community structure to three pesticide gradients (cumulative International Organization for Biological and Integrated Control toxicity rating, chlorpyrifos use rate, and sulfur use rate) in 19 vineyards. Ordination analyses using nonmetric multidimensional scaling detected community structures at species and genus levels, but the structures were not explained by any pesticide variables. There was no consistent pattern in species and genus percentage complementarities and ant assemblages along pesticide gradients. In contrast, ant community structure was influenced by the presence of shelterbelts near the sampling area. Reasons for the resilience of ants to pesticides are given and assessment at the colony level instead of workers abundance is suggested. The presence of Linepithema humile (Mayr) is emphasized. PMID:18284765

  4. Colony-level impacts of parasitoid flies on fire ants.

    PubMed Central

    Mehdiabadi, Natasha J; Gilbert, Lawrence E

    2002-01-01

    The red imported fire ant is becoming a global ecological problem, having invaded the United States, Puerto Rico, New Zealand and, most recently, Australia. In its established areas, this pest is devastating natural biodiversity. Early attempts to halt fire ant expansion with pesticides actually enhanced its spread. Phorid fly parasitoids from South America have now been introduced into the United States as potential biological control agents of the red imported fire ant, but the impact of these flies on fire ant populations is currently unknown. In the laboratory, we show that an average phorid density of as little as one attacking fly per 200 foraging ants decreased colony protein consumption nearly twofold and significantly reduced numbers of large-sized workers 50 days later. The high impact of a single phorid occurred mainly because ants decreased foraging rates in the presence of the flies. Our experiments, the first (to our knowledge) to link indirect and direct effects of phorids on fire ants, demonstrate that colonies can be stressed with surprisingly low parasitoid densities. We interpret our findings with regard to the more complex fire ant-phorid interactions in the field. PMID:12204130

  5. Pheromonal Control of Dealation and Oogenesis in Virgin Queen Fire Ants

    NASA Astrophysics Data System (ADS)

    Fletcher, David J. C.; Blum, Murray S.

    1981-04-01

    In the fire ant Solenopsis invicta, sexually mature virgin females are prevented from shedding their wings and becoming functional egg layers by the presence of the mated queen. Experimental data suggest that this inhibitory effect results from the action of a relatively nonvolatile primer pheromone (or pheromones) produced by the mated queen and distributed by the workers. Target ants are both virgin queens and workers.

  6. Implications of stridulation behavior in the red and black imported fire ants, Solenopsis invicta Buren and Solenopsis richteri Forel, and their hybrid

    NASA Astrophysics Data System (ADS)

    Marquess, Jake

    Stridulation elicits a variety of behavioral responses in the Formicidae: distress, alarm and recruitment of nestmates. The intent of my research is to broaden the understanding of stridulation by investigating the morphology, multiple behaviors in which stridulation has been observed, and the behavioral response to the playback of these stridulatory signals in two closely related species, Solenopsis invicta, S. richteri, and their hybrid. A SEM examination of head width and the stridulatory organs of imported fire ant workers found the number of ridges on the "file" ( pars striden) to be positively correlated with body size. The increase in ridge number in relation to body size suggests that the number of pulses in each pulse train of the stridulation signal should increase as body size increases. Stridulation was not correlated with excavation behavior, but grinding, an incidental sound resulting from soil excavation, is a reliable indicator of excavation behavior. Absence of stridulation upon initial discovery of the food source and low amount of stridulation observed with ten or less ants present at the food source indicates that stridulation does not serve as an initial short range recruitment signal to nearby nestmates. Furthermore, over 90% of the total stridulation observed was recorded with 30 or more ants present at the food source. Finally, the time between calls decreased and the number of stridulations increased as more ants arrived at the food source. Stridulation in dyadic encounters between ants occurs almost exclusively during non-nestmate conspecitic interactions. Restrained ants or "defenders" accounted for 92.9% of the total stridulation observed compared to just 3.4% for "attackers." Restraint between the head and thorax or "neck" evoked the highest level of stridulation in majors. Stridulation during non-nestmate interactions is size specific, as trials involving majors had nearly twice as much stridulation (88.3%), than trials with mediums

  7. Multilocus genetic characterization of two ant vectors (Group II ‘‘Dirty 22’’ species) known to contaminate food and food products and spread foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Food and Drug Administration utilizes the presence of filth and extraneous materials as one of the criteria for implementing regulatory actions and assessing adulteration of food products of public health importance. Twenty-two prevalent pest species (also known as the ‘‘Dirty 22’’ species)...

  8. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  9. Social coercion of larval development in an ant species.

    PubMed

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults. PMID:26874941

  10. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  11. [Pathogenic bacteria dissemination by ants (Hymenoptera: Formicidae) in two hospitals in northeast Brazil].

    PubMed

    Fontana, Renato; Wetler, Rita M da C; Aquino, Renata S S; Andrioli, João L; Queiroz, Guilherme R G; Ferreira, Sônia L; Nascimento, Ivan C do; Delabie, Jacques H C

    2010-01-01

    Nosocomial infections bring a high risk to the health of hospital patients and employees. Ants are common organisms in Brazilian hospitals, where they can act as dispersers of opportunistic microorganisms in places they forage. The occurrence of multi-resistant bacteria carried by ants was analyzed in two public hospitals (HA and HB) in southeastern Bahia, Brazil. In these two hospitals 132 workers belonging to three ant species were collected. The bacteria associated to these ants were identified and their susceptibility to antibiotics was evaluated. More than half (57.3%) of ants collected in HA were associated with some kind of bacteria, with 26.7% of them being opportunist bacteria, while 84,2% of the ants from HB presented associated bacteria growth, with 61.4% of them being opportunist bacteria. Twenty four species of bacteria were isolated. The Gram-positive bacilli of the genus Bacillus were the most frequent, followed by the Gram-positive cocci, Gram-negative bacilli (family Enterobacteriaceae) and Gram-negative non-fermenters bacilli. The profile of sensitivity of the bacterial isolates to drugs pointed out the existence of multi-resistant isolates carried by ants. For the first time, are reported cases of the same bacterial resistant isolates taken form homospecific ant workers that point out the importance of ants to bacteria dissemination and proliferation in a hospital. Our results suggest that the risk of contamination presented by these ants is similar to the one of any other mechanical vector of bacterial dissemination.

  12. The Pied Piper: A Parasitic Beetle’s Melodies Modulate Ant Behaviours

    PubMed Central

    Di Giulio, Andrea; Maurizi, Emanuela; Barbero, Francesca; Sala, Marco; Fattorini, Simone; Balletto, Emilio; Bonelli, Simona

    2015-01-01

    Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants’ activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus) are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can “speak” three different “languages”, each similar to sounds produced by different ant castes (workers, soldiers, queen). Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants. PMID:26154266

  13. Social prophylaxis through distant corpse removal in ants

    NASA Astrophysics Data System (ADS)

    Diez, Lise; Deneubourg, Jean-Louis; Detrain, Claire

    2012-10-01

    Living in groups raises important issues concerning waste management and related sanitary risks. Social insects such as ants live at high densities with genetically related individuals within confined and humid nests, all these factors being highly favorable for the spread of pathogens. Therefore, in addition to individual immunity, a social prophylaxis takes place, namely, by the removal of risky items such as corpses and their rejection at a distance from the ant nest. In this study, we investigate how Myrmica rubra workers manage to reduce encounters between potentially hazardous corpses and nestmates. Using both field and laboratory experiments, we describe how the spatial distribution and the removal distance of waste items vary as a function of their associated sanitary risks (inert item vs. corpse). In the field, corpse-carrying ants walked in a rather linear way away from the nest entrance and had an equal probability of choosing any direction. Therefore, they did not aggregate corpses in dedicated areas but scattered them in the environment. In both field and laboratory experiments, ants carrying corpses dropped their load in more remote—and less frequented—areas than workers carrying inert items. However, for equidistant areas, ants did not avoid dropping corpses at a location where they perceived area marking as a cue of high occupancy level by nestmates. Our results suggest that ants use distance to the nest rather than other occupancy cues to limit sanitary risks associated with dead nestmates.

  14. Polygyny and polyandry in small ant societies.

    PubMed

    Kellner, K; Trindl, A; Heinze, J; D'Ettorre, P

    2007-06-01

    Social insects, ants in particular, show considerable variation in queen number and mating frequency resulting in a wide range of social structures. The dynamics of reproductive conflicts in insect societies are directly connected to the colony kin structure, thus, the study of relatedness patterns is essential in order to understand the evolutionary resolution of these conflicts. We studied colony kin structure and mating frequencies in two closely related Neotropical ant species Pachycondyla inversa and Pachycondyla villosa. These represent interesting model systems because queens found new colonies cooperatively but, unlike many other ant species, they may still co-exist when the colony becomes mature (primary polygyny). By using five specific and highly variable microsatellite markers, we show that in both species queens usually mate with two or more males and that cofounding queens are always unrelated. Polygynous and polyandrous colonies are characterized by a high genetic diversity, with a mean relatedness coefficient among worker nestmates of 0.27 (+/- 0.03 SE) for P. inversa and 0.31 (+/- 0.05 SE) for P. villosa. However, relatedness among workers of the same matriline is high (0.60 +/- 0.03 in P. inversa, 0.62 +/- 0.08 in P. villosa) since males that mated with the same queen are on average closely related. Hence, we have found a new taxon in social Hymenoptera with high queen-mating frequencies and with intriguing mating and dispersal patterns of the sexuals. PMID:17561897

  15. Consuming fire ants reduces northern bobwhite survival and weight gain

    USGS Publications Warehouse

    Myers, P.E.; Allen, Craig R.; Birge, Hannah E.

    2014-01-01

    Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.

  16. Caste-specific compounds in male carpenter ants.

    PubMed

    Brand, J M; Duffield, R M; Macconnell, J G; Blum, M S; Fales, H M

    1973-01-26

    Three caste-specific substances new to arthropod glandular secretions occur in the mandibular glands of male ants of five species in the genus Camponotus. These volatile compounds, which are not found in alate females or workers, have been identified as methyl 6-methyl salicylate, 2,4-dimethyl-2-hexenoic acid, and methyl anthranilate. The free acid has not been described previously.

  17. Taxonomy and distribution of the ant Cataglyphis setipes (Hymenoptera: Formicidae)

    PubMed Central

    Bharti, Himender

    2015-01-01

    Abstract Taxonomy and distribution of the ant species Cataglyphis setipes (Forel, 1894) is herewith detailed. C. setipes is redescribed, based on workers, queens, and males. Photomontage images of all castes are provided. Information on the distribution and ecology of this species is also given. A key to the Indian species of Cataglyphis is presented. PMID:25859129

  18. Hybridization in East African swarm-raiding army ants

    PubMed Central

    2011-01-01

    Background Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites. Results While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a "Dorylus molestus-like" and a "Dorylus wilverthi-like" form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. Conclusions We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony. PMID:21859477

  19. General Dissection of Female Ant Reproductive System and Brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissection of the reproductive system of ant workers and queens can be useful for answering many questions. Observations of ovarian status in both female castes can be used to identify relationships between other factors and the ovaries, determine whether an individual has laid eggs, and, with more ...

  20. Field techniques for sampling ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  1. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa.

    PubMed

    Dietemann, Vincent; Peeters, Christian; Liebig, Jürgen; Thivet, Virginie; Hölldobler, Bert

    2003-09-01

    In many species of social insects, the cuticular hydrocarbons of adults vary with both colony identity and individual physiology (oogenesis). Such variations have been shown in some ants and social wasps to function in nestmate recognition, but as yet there is no demonstration of their use by workers to recognize egg layers. We report that in the ant Myrmecia gulosa, workers can discriminate queens and fertile workers from infertile individuals based on distinctive blends of long-chained hydrocarbons present both on the cuticle and in the postpharyngeal gland. The purified hydrocarbon fraction of cuticular extracts from queens elicited high interest in workers, unlike the nonhydrocarbon fraction. However, both fractions were necessary to trigger a response of maximal intensity. In contrast, extracts of mandibular and Dufour glands from queens or infertile workers were not treated differentially by workers. We suggest that cuticular hydrocarbons function as pheromones allowing for recognition of the queen as well as egg-laying workers. PMID:12920186

  2. Effect of Trail Bifurcation Asymmetry and Pheromone Presence or Absence on Trail Choice by Lasius niger Ants.

    PubMed

    Forster, Antonia; Czaczkes, Tomer J; Warner, Emma; Woodall, Tom; Martin, Emily; Ratnieks, Francis L W; Herberstein, M

    2014-08-01

    During foraging, ant workers are known to make use of multiple information sources, such as private information (personal memory) and social information (trail pheromones). Environmental effects on foraging, and how these interact with other information sources, have, however, been little studied. One environmental effect is trail bifurcation asymmetry. Ants forage on branching trail networks and must often decide which branch to take at a junction (bifurcation). This is an important decision, as finding food sources relies on making the correct choices at bifurcations. Bifurcation angle may provide important information when making this choice. We used a Y-maze with a pivoting 90° bifurcation to study trail choice of Lasius niger foragers at varying branch asymmetries (0°, [both branches 45° from straight ahead], 30° [branches at 30° and 60° from straight ahead], 45°, 60° and 90° [one branch straight ahead, the other at 90°]). The experiment was carried out either with equal amounts of trail pheromone on both branches of the bifurcation or with pheromone present on only one branch. Our results show that with equal pheromone, trail asymmetry has a significant effect on trail choice. Ants preferentially follow the branch deviating least from straight, and this effect increases as asymmetry increases (47% at 0°, 54% at 30°, 57% at 45°, 66% at 60° and 73% at 90°). However, when pheromone is only present on one branch, the graded effect of asymmetry disappears. Overall, however, there is an effect of asymmetry as the preference of ants for the pheromone-marked branch over the unmarked branch is reduced from 65%, when it is the less deviating branch, to 53%, when it is the more deviating branch. These results demonstrate that trail asymmetry influences ant decision-making at bifurcations and that this information interacts with trail pheromone presence in a non-hierarchical manner. PMID:25400307

  3. Effect of Trail Bifurcation Asymmetry and Pheromone Presence or Absence on Trail Choice by Lasius niger Ants.

    PubMed

    Forster, Antonia; Czaczkes, Tomer J; Warner, Emma; Woodall, Tom; Martin, Emily; Ratnieks, Francis L W; Herberstein, M

    2014-08-01

    During foraging, ant workers are known to make use of multiple information sources, such as private information (personal memory) and social information (trail pheromones). Environmental effects on foraging, and how these interact with other information sources, have, however, been little studied. One environmental effect is trail bifurcation asymmetry. Ants forage on branching trail networks and must often decide which branch to take at a junction (bifurcation). This is an important decision, as finding food sources relies on making the correct choices at bifurcations. Bifurcation angle may provide important information when making this choice. We used a Y-maze with a pivoting 90° bifurcation to study trail choice of Lasius niger foragers at varying branch asymmetries (0°, [both branches 45° from straight ahead], 30° [branches at 30° and 60° from straight ahead], 45°, 60° and 90° [one branch straight ahead, the other at 90°]). The experiment was carried out either with equal amounts of trail pheromone on both branches of the bifurcation or with pheromone present on only one branch. Our results show that with equal pheromone, trail asymmetry has a significant effect on trail choice. Ants preferentially follow the branch deviating least from straight, and this effect increases as asymmetry increases (47% at 0°, 54% at 30°, 57% at 45°, 66% at 60° and 73% at 90°). However, when pheromone is only present on one branch, the graded effect of asymmetry disappears. Overall, however, there is an effect of asymmetry as the preference of ants for the pheromone-marked branch over the unmarked branch is reduced from 65%, when it is the less deviating branch, to 53%, when it is the more deviating branch. These results demonstrate that trail asymmetry influences ant decision-making at bifurcations and that this information interacts with trail pheromone presence in a non-hierarchical manner.

  4. Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen.

    PubMed

    Defossez, Emmanuel; Djiéto-Lordon, Champlain; McKey, Doyle; Selosse, Marc-André; Blatrix, Rumsaïs

    2011-05-01

    In ant-plant symbioses, plants provide symbiotic ants with food and specialized nesting cavities (called domatia). In many ant-plant symbioses, a fungal patch grows within each domatium. The symbiotic nature of the fungal association has been shown in the ant-plant Leonardoxa africana and its protective mutualist ant Petalomyrmex phylax. To decipher trophic fluxes among the three partners, food enriched in (13)C and (15)N was given to the ants and tracked in the different parts of the symbiosis up to 660 days later. The plant received a small, but significant, amount of nitrogen from the ants. However, the ants fed more intensively the fungus. The pattern of isotope enrichment in the system indicated an ant behaviour that functions specifically to feed the fungus. After 660 days, the introduced nitrogen was still present in the system and homogeneously distributed among ant, plant and fungal compartments, indicating efficient recycling within the symbiosis. Another experiment showed that the plant surface absorbed nutrients (in the form of simple molecules) whether or not it is coated by fungus. Our study provides arguments for a mutualistic status of the fungal associate and a framework for investigating the previously unsuspected complexity of food webs in ant-plant mutualisms.

  5. Yellow jackets may be an underestimated component of an ant-seed mutualism

    USGS Publications Warehouse

    Bale, M.T.; Zettler, J.A.; Robinson, B.A.; Spira, T.P.; Allen, C.R.

    2003-01-01

    Yellow jackets (Hymenoptera: Vespidae) are attracted to the typically ant-dispersed seeds of trilliums and will take seeds from ants in the genus Aphaenogaster. To determine if yellow jacket, Vespula maculifrons (Buysson), presence interferes with seed foraging by ants, we presented seeds of Trillium discolor Wray to three species (A. texana carolinensis Wheeler, Formica schaufussi Mayr, and Solenopsis invicta Buren) of seed-carrying ants in areas where vespids were present or excluded. We found that interspecific aggression between yellow jackets and ants is species specific. Vespid presence decreased average foraging time and increased foraging efficiency of two of the three ant species studied, a situation that might reflect competition for a limited food source. We also found that yellow jackets removed more seeds than ants, suggestive that vespids are important, albeit underestimated, components of ant-seed mutualisms.

  6. Disease Dynamics in a Specialized Parasite of Ant Societies

    PubMed Central

    Andersen, Sandra B.; Ferrari, Matthew; Evans, Harry C.; Elliot, Simon L.; Boomsma, Jacobus J.; Hughes, David P.

    2012-01-01

    Coevolution between ant colonies and their rare specialized parasites are intriguing, because lethal infections of workers may correspond to tolerable chronic diseases of colonies, but the parasite adaptations that allow stable coexistence with ants are virtually unknown. We explore the trade-offs experienced by Ophiocordyceps parasites manipulating ants into dying in nearby graveyards. We used field data from Brazil and Thailand to parameterize and fit a model for the growth rate of graveyards. We show that parasite pressure is much lower than the abundance of ant cadavers suggests and that hyperparasites often castrate Ophiocordyceps. However, once fruiting bodies become sexually mature they appear robust. Such parasite life-history traits are consistent with iteroparity– a reproductive strategy rarely considered in fungi. We discuss how tropical habitats with high biodiversity of hyperparasites and high spore mortality has likely been crucial for the evolution and maintenance of iteroparity in parasites with low dispersal potential. PMID:22567151

  7. Communal peeing: a new mode of flood control in ants

    NASA Astrophysics Data System (ADS)

    Maschwitz, Ulrich; Moog, J.

    The behavioral response of the obligate bamboo-nesting ant Cataulacus muticus to nest flooding was studied in a perhumid tropical rainforest in Malaysia and in the laboratory. The hollow internodes of giant bamboo, in which C. muticus exclusively nests, are prone to flooding by heavy rains. The ants showed a two-graded response to flooding. During heavy rain workers block the nest entrances with their heads to reduce water influx. However, rainwater may still intrude into the nest chamber. The ants respond by drinking the water, leaving the nest and excreting water droplets on the outer stem surface. This cooperative 'peeing' behavior is a new survival mechanism adaptive to the ants' nesting ecology. Laboratory experiments conducted with two other Cataulacus species, C. catuvolcus colonizing small dead twigs and C. horridus inhabiting rotten wood, did not reveal any form of water-bailing behavior.

  8. Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta

    PubMed Central

    Zhang, Wei; Wanchoo, Arun; Ortiz-Urquiza, Almudena; Xia, Yuxian; Keyhani, Nemat O.

    2016-01-01

    Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness. PMID:27765943

  9. Sick ants become unsociable.

    PubMed

    Bos, N; Lefèvre, T; Jensen, A B; d'Ettorre, P

    2012-02-01

    Parasites represent a severe threat to social insects, which form high-density colonies of related individuals, and selection should favour host traits that reduce infection risk. Here, using a carpenter ant (Camponotus aethiops) and a generalist insect pathogenic fungus (Metarhizium brunneum), we show that infected ants radically change their behaviour over time to reduce the risk of colony infection. Infected individuals (i) performed less social interactions than their uninfected counterparts, (ii) did not interact with brood anymore and (iii) spent most of their time outside the nest from day 3 post-infection until death. Furthermore, infected ants displayed an increased aggressiveness towards non-nestmates. Finally, infected ants did not alter their cuticular chemical profile, suggesting that infected individuals do not signal their physiological status to nestmates. Our results provide evidence for the evolution of unsociability following pathogen infection in a social animal and suggest an important role of inclusive fitness in driving such evolution.

  10. Sick ants become unsociable.

    PubMed

    Bos, N; Lefèvre, T; Jensen, A B; d'Ettorre, P

    2012-02-01

    Parasites represent a severe threat to social insects, which form high-density colonies of related individuals, and selection should favour host traits that reduce infection risk. Here, using a carpenter ant (Camponotus aethiops) and a generalist insect pathogenic fungus (Metarhizium brunneum), we show that infected ants radically change their behaviour over time to reduce the risk of colony infection. Infected individuals (i) performed less social interactions than their uninfected counterparts, (ii) did not interact with brood anymore and (iii) spent most of their time outside the nest from day 3 post-infection until death. Furthermore, infected ants displayed an increased aggressiveness towards non-nestmates. Finally, infected ants did not alter their cuticular chemical profile, suggesting that infected individuals do not signal their physiological status to nestmates. Our results provide evidence for the evolution of unsociability following pathogen infection in a social animal and suggest an important role of inclusive fitness in driving such evolution. PMID:22122288

  11. Fire Ant Bites

    MedlinePlus

    ... and the patient will develop difficulty breathing in addition to weakness. Patients who develop anaphylaxis and have a significant history of systemic reactions to fire ant stings should be checked for ...

  12. How do ants stick out their tongues?

    PubMed

    Paul, Jürgen; Roces, Flavio; Hölldobler, Bert

    2002-10-01

    The mouthparts are very important tools for almost any task performed by ants. In particular, the labiomaxillary complex is essential for food intake. In the present study we investigated the anatomical design of the labiomaxillary complex in various ant species, focusing on movement mechanisms. Six labial and six maxillary muscles with different functions control the several joints and ensure the proper performance of the labiomaxillary complex. According to our measurements of sarcomere lengths, muscle fiber lengths and diameters, and the relative muscle volumes, the labial and maxillary muscles feature rather slow than fast muscle characteristics and do not seem to be specialized for specific tasks. Since glossa protractor muscles are absent, the protraction of the glossa, the distal end of the labium, is a nonmuscular movement. By histological measurements of hemolymph volumes we could exclude a pressure-driven mechanism. Additional experiments showed that, upon relaxation of the glossa retractor muscles, the glossa protracts elastically. This elastic mechanism possibly sets an upper limit to licking frequency, thus influencing food intake rates and ultimately foraging behavior. In contrast to many other elastic mechanisms among arthropods, glossa protraction in ants is based on a mechanism where elasticity works as an actual antagonist to muscles. We compared the design of the labiomaxillary complex of ants with that of the honeybee and suggest an elastic mechanism for glossa protraction in honeybees as well.

  13. How to coexist with fire ants: the roles of behaviour and cuticular compounds.

    PubMed

    Roux, Olivier; Rossi, Vivien; Céréghino, Régis; Compin, Arthur; Martin, Jean-Michel; Dejean, Alain

    2013-09-01

    Because territoriality is energetically costly, territorial animals frequently respond less aggressively to neighbours than to strangers, a reaction known as the "dear enemy phenomenon" (DEP). The contrary, the "nasty neighbour effect" (NNE), occurs mainly for group-living species defending resource-based territories. We studied the relationships between supercolonies of the pest fire ant Solenopsis saevissima and eight ant species able to live in the vicinity of its nests plus Eciton burchellii, an army ant predator of other ants. The workers from all of the eight ant species behaved submissively when confronted with S. saevissima (dominant) individuals, whereas the contrary was never true. Yet, S. saevissima were submissive towards E. burchellii workers. Both DEP and NNE were observed for the eight ant species, with submissive behaviours less frequent in the case of DEP. To distinguish what is due to chemical cues from what can be attributed to behaviour, we extracted cuticular compounds from all of the nine ant species compared and transferred them onto a number of S. saevissima workers that were then confronted with untreated conspecifics. The cuticular compounds from three species, particularly E. burchellii, triggered greater aggressiveness by S. saevissima workers, while those from the other species did not. PMID:23644041

  14. Interactions Increase Forager Availability and Activity in Harvester Ants

    PubMed Central

    Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B.; Gordon, Deborah M.

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724

  15. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724

  16. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  17. Ant traffic rules.

    PubMed

    Fourcassié, Vincent; Dussutour, Audrey; Deneubourg, Jean-Louis

    2010-07-15

    Many animals take part in flow-like collective movements. In most species, however, the flow is unidirectional. Ants are one of the rare group of organisms in which flow-like movements are predominantly bidirectional. This adds to the difficulty of the task of maintaining a smooth, efficient movement. Yet, ants seem to fare well at this task. Do they really? And if so, how do such simple organisms succeed in maintaining a smooth traffic flow, when even humans experience trouble with this task? How does traffic in ants compare with that in human pedestrians or vehicles? The experimental study of ant traffic is only a few years old but it has already provided interesting insights into traffic organization and regulation in animals, showing in particular that an ant colony as a whole can be considered as a typical self-organized adaptive system. In this review we will show that the study of ant traffic can not only uncover basic principles of behavioral ecology and evolution in social insects but also provide new insights into the study of traffic systems in general. PMID:20581264

  18. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon

    2010-02-01

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone. PMID:20145982

  19. Taxonomic revision of the Neotropical Myrmicinae ant genus Blepharidatta Wheeler.

    PubMed

    Brandão, Carlos Roberto F; Feitosa, Rodrigo M; Diniz, Jorge L M

    2015-01-01

    We revise the taxonomy of the exclusively Neotropical Myrmicinae ant genus Blepharidatta (Attini), redescribing the known species (B. brasiliensis and B. conops), and describing two new species, B. delabiei sp. n. (Brazil: Bahia) and B. fernandezi sp. n. (Colombia: Amazonas). We also describe worker sting apparatuses, larvae, males, and ergatoid gynes of all species, except for B. fernandezi, known only from few worker specimens; we provide a key for identifying workers, present distribution maps for all species and summarize the knowledge on the biology of Blepharidatta species. PMID:26623844

  20. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.

  1. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation. PMID:24334742

  2. Nectar foraging behaviour is affected by ant body size in Camponotus mus.

    PubMed

    Medan, Violeta; Josens, Roxana B

    2005-08-01

    The nectivorous ant Camponotus mus shows a broad size variation within the worker caste. Large ants can ingest faster and larger loads than small ones. Differences in physiological abilities in fluid ingestion due to the insect size could be related to differences in decision-making according to ant size during nectar foraging. Sucrose solutions of different levels of sugar concentration (30% or 60%w/w), viscosity (high or low) or flow rate (ad libitum or 1microl/min) were offered in combination to analyse the behavioural responses to each of these properties separately. Differences were found depending on ant body size and the property compared. A regulated flow produced smaller crop loads for medium and large ants compared to the same solution given ad libitum. All foragers remained longer times feeding at the regulated flow source but larger ants often made longer interruptions. When sugar concentration was constant but viscosity was high, only large ants increased feeding time. Constant viscosity with different sugar concentration determined longer feeding time and bigger loads for the most concentrated solution for small but not for large ants. Small ants reached similar crop loads in a variety of conditions while large ants did not. These differences could be evidence of a possible specialization for nectar foraging based on ant body size.

  3. All-Optical Implementation of the Ant Colony Optimization Algorithm.

    PubMed

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I; Soci, Cesare

    2016-01-01

    We report all-optical implementation of the optimization algorithm for the famous "ant colony" problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098

  4. All-Optical Implementation of the Ant Colony Optimization Algorithm

    PubMed Central

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-01-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098

  5. All-Optical Implementation of the Ant Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-05-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

  6. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs.

  7. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. PMID:27252407

  8. Sex allocation conflict in ants: when the queen rules.

    PubMed

    Rosset, Hervé; Chapuisat, Michel

    2006-02-01

    Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.

  9. Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests.

    PubMed

    Youngsteadt, Elsa; Nojima, Satoshi; Häberlein, Christopher; Schulz, Stefan; Schal, Coby

    2008-03-25

    Seed dispersal mutualisms are essential for the survival of diverse plant species and communities worldwide. Among invertebrates, only ants have a major role in seed dispersal, and thousands of plant species produce seeds specialized for ant dispersal in "diffuse" multispecies interactions. An outstanding but poorly understood ant-seed mutualism occurs in the Amazonian rainforest, where arboreal ants collect seeds of several epiphyte species and cultivate them in nutrient-rich nests, forming abundant and conspicuous hanging gardens known as ant-gardens (AGs). AG ants and plants are dominant members of lowland Amazonian ecosystems, and their interaction is both specific and obligate, but the means by which ants locate, recognize, and accept their mutualist seeds while rejecting other seeds is unknown. Here we address the chemical and behavioral basis of the AG interaction. We show that workers of the AG ant Camponotus femoratus are attracted to odorants emanating from seeds of the AG plant Peperomia macrostachya, and that chemical cues also elicit seed-carrying behavior. We identify five compounds from P. macrostachya seeds that, as a blend, attract C. femoratus workers. This report of attractive odorants from ant-dispersed seeds illustrates the intimacy and complexity of the AG mutualism and begins to illuminate the chemical basis of this important and enigmatic interaction. PMID:18212122

  10. Sucking pump activity in feeding behaviour regulation in carpenter ants.

    PubMed

    Falibene, Agustina; Gontijo, Alberto de Figueiredo; Josens, Roxana

    2009-06-01

    Modulation of liquid feeding-rate would allow insects to ingest more food in the same time when this was required. Ants can vary nectar intake rate by increasing sucking pump frequency according to colony requirements. We analysed electrical signals generated by sucking pump activity of ants during drinking solutions of different sucrose concentrations and under different carbohydrate-deprivation levels. Our aim was to define parameters that characterize the recordings and analyse their relationship with feeding behaviour. Signals showed that the initial and final frequencies of sucking pump activity, as well as the difference between them were higher in sugar-deprived ants. However, these parameters were not influenced by sucrose solution concentration, which affected the number of pump contractions and the volume per contraction. Unexpectedly, we found two different responses in feeding behaviour of starved and non-starved ants depending on concentration. Starved ants drank dilute solutions for the same length of time as non-starved ants but ingested higher volumes. While drinking the concentrated solutions, starved ants drank the same volume, but did so in a shorter time than the non-starved ones. Despite these differences, for each analysed concentration the total number of pump contractions remained constant independently of sugar-deprivation level. These results are discussed in the frame of feeding regulation and decision making in ant foraging behaviour. PMID:19217950

  11. Path efficiency of ant foraging trails in an artificial network.

    PubMed

    Vittori, Karla; Talbot, Grégoire; Gautrais, Jacques; Fourcassié, Vincent; Araújo, Aluizio F R; Theraulaz, Guy

    2006-04-21

    In this paper we present an individual-based model describing the foraging behavior of ants moving in an artificial network of tunnels in which several interconnected paths can be used to reach a single food source. Ants lay a trail pheromone while moving in the network and this pheromone acts as a system of mass recruitment that attracts other ants in the network. The rules implemented in the model are based on measures of the decisions taken by ants at tunnel bifurcations during real experiments. The collective choice of the ants is estimated by measuring their probability to take a given path in the network. Overall, we found a good agreement between the results of the simulations and those of the experiments, showing that simple behavioral rules can lead ants to find the shortest paths in the network. The match between the experiments and the model, however, was better for nestbound than for outbound ants. A sensitivity study of the model suggests that the bias observed in the choice of the ants at asymmetrical bifurcations is a key behavior to reproduce the collective choice observed in the experiments. PMID:16199059

  12. Microbiota associated with tramp ants in a Brazilian University Hospital.

    PubMed

    Teixeira, Maxelle M; Pelli, Afonso; Santos, Vitorino M Dos; Reis, Maria das G

    2009-01-01

    Our aim was to study the fauna of ants in the Hospital Universitário of the Universidade Federal do Triângulo Mineiro, municipality of Uberaba, Minas Gerais State, Brazil, as well as to identify the microorganisms the ants carry and their patterns of resistance to antibiotics. Sterile tubes (traps) containing honey were used to attract the ants. Traps were exposed for 3h, and those which attracted ants were considered the test group, while the ones that did not attract the insects constituted the control group. Only the ant species Tapinoma melanocephalum (Fabricius) was sampled. Sixty microorganisms were isolated from the sampled ants, including seven Gram-positive bacilli, 14 Gram-negative bacilli, 22 Gram-positive cocci and 17 filamentous fungi. Pseudomonas, Staphylococcus and Group D Streptococcus were the microorganisms with the highest resistance to the tested antibiotics. The ants should be considered an important vector of infections as they carry several pathogenic microorganisms, spreading them on the surface of sterile materials, equipment and uncontaminated food. It is impossible to define the exact role of ants in nosocomial infections at this moment; however, this issue must be better studied and special attention must be given by the commissions of Nosocomial Infection Control.

  13. Sucking pump activity in feeding behaviour regulation in carpenter ants.

    PubMed

    Falibene, Agustina; Gontijo, Alberto de Figueiredo; Josens, Roxana

    2009-06-01

    Modulation of liquid feeding-rate would allow insects to ingest more food in the same time when this was required. Ants can vary nectar intake rate by increasing sucking pump frequency according to colony requirements. We analysed electrical signals generated by sucking pump activity of ants during drinking solutions of different sucrose concentrations and under different carbohydrate-deprivation levels. Our aim was to define parameters that characterize the recordings and analyse their relationship with feeding behaviour. Signals showed that the initial and final frequencies of sucking pump activity, as well as the difference between them were higher in sugar-deprived ants. However, these parameters were not influenced by sucrose solution concentration, which affected the number of pump contractions and the volume per contraction. Unexpectedly, we found two different responses in feeding behaviour of starved and non-starved ants depending on concentration. Starved ants drank dilute solutions for the same length of time as non-starved ants but ingested higher volumes. While drinking the concentrated solutions, starved ants drank the same volume, but did so in a shorter time than the non-starved ones. Despite these differences, for each analysed concentration the total number of pump contractions remained constant independently of sugar-deprivation level. These results are discussed in the frame of feeding regulation and decision making in ant foraging behaviour.

  14. Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae).

    PubMed

    Hojo, Masaru K; Wada-Katsumata, Ayako; Akino, Toshiharu; Yamaguchi, Susumu; Ozaki, Mamiko; Yamaoka, Ryohei

    2009-02-01

    The exploitation of parental care is common in avian and insect 'cuckoos' and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N. fusca caterpillars chemically mimic host larvae, or some particular castes of the host ant, so that the caterpillars are accepted and cared for by the host workers. Behaviourally, it was observed that the host workers enthusiastically tended glass dummies coated with the cuticular chemicals of larvae or males and those of N. fusca caterpillars living together. Cuticular chemical analyses revealed that N. fusca caterpillars grown in a host ant nest acquired a colony-specific blend of cuticular hydrocarbons (CHCs). Furthermore, the CHC profiles of the N. fusca caterpillars were particularly close to those of the males rather than those of the host larvae and the others. We suggest that N. fusca caterpillars exploit worker care by matching their cuticular profile to that of the host males, since the males are fed by trophallaxis with workers in their natal nests for approximately ten months. PMID:18842547

  15. Slowing them down will make them lose: a role for attine ant crop fungus in defending pupae against infections?

    PubMed

    Armitage, Sophie A O; Fernández-Marín, Hermógenes; Boomsma, Jacobus J; Wcislo, William T

    2016-09-01

    Fungus-growing ants (Attini) have evolved an obligate dependency upon a basidiomycete fungus that they cultivate as their food. Less well known is that the crop fungus is also used by many attine species to cover their eggs, larvae and pupae. The adaptive functional significance of this brood covering is poorly understood. One hypothesis to account for this behaviour is that it is part of the pathogen protection portfolio when many thousands of sister workers live in close proximity and larvae and pupae are not protected by cells, as in bees and wasps, and are immobile. We performed behavioural observations on brood covering in the leaf-cutting ant Acromyrmex echinatior, and we experimentally manipulated mycelial cover on pupae and exposed them to the entomopathogenic fungus Metarhizium brunneum to test for a role in pathogen resistance. Our results show that active mycelial brood covering by workers is a behaviourally plastic trait that varies temporally, and across life stages and castes. The presence of a fungal cover on the pupae reduced the rate at which conidia appeared and the percentage of pupal surface that produced pathogen spores, compared to pupae that had fungal cover experimentally removed or naturally had no mycelial cover. Infected pupae with mycelium had higher survival rates than infected pupae without the cover, although this depended upon the time at which adult sister workers were allowed to interact with pupae. Finally, workers employed higher rates of metapleural gland grooming to infected pupae without mycelium than to infected pupae with mycelium. Our results imply that mycelial brood covering may play a significant role in suppressing the growth and subsequent spread of disease, thus adding a novel layer of protection to their defence portfolio. PMID:27136600

  16. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 11. Use of antiseptics and sanitizers in community settings and issues of hand hygiene compliance in health care and food industries.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Michaels, Barry S; Bartleson, Charles A; Smith, Debra; Holah, John

    2010-12-01

    Hand washing with soap is a practice that has long been recognized as a major barrier to the spread of disease in food production, preparation, and service and in health care settings, including hospitals, child care centers, and elder care facilities. Many of these settings present multiple opportunities for spread of pathogens within at-risk populations, and extra vigilance must be applied. Unfortunately, hand hygiene is not always carried out effectively, and both enteric and respiratory diseases are easily spread in these environments. Where water is limited or frequent hand hygiene is required on a daily basis, such as for many patients in hospitals and astronauts in space travel, instant sanitizers or sanitary wipes are thought to be an effective way of preventing contamination and spread of organisms among coworkers and others. Most concerns regarding compliance are associated with the health care field, but the food industry also must be considered. Specific reasons for not washing hands at appropriate times are laziness, time pressure, inadequate facilities and supplies, lack of accountability, and lack of involvement by companies, managers, and workers in supporting proper hand washing. To facilitate improvements in hand hygiene, measurement of compliant and noncompliant actions is necessary before implementing any procedural changes. Training alone is not sufficient for long-lasting improvement. Multiactivity strategies also must include modification of the organization culture to encourage safe hygienic practices, motivation of employees willing to use peer pressure on noncompliant coworkers, a reward and/or penalty system, and an operational design that facilitates regular hand hygiene.

  17. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 11. Use of antiseptics and sanitizers in community settings and issues of hand hygiene compliance in health care and food industries.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Michaels, Barry S; Bartleson, Charles A; Smith, Debra; Holah, John

    2010-12-01

    Hand washing with soap is a practice that has long been recognized as a major barrier to the spread of disease in food production, preparation, and service and in health care settings, including hospitals, child care centers, and elder care facilities. Many of these settings present multiple opportunities for spread of pathogens within at-risk populations, and extra vigilance must be applied. Unfortunately, hand hygiene is not always carried out effectively, and both enteric and respiratory diseases are easily spread in these environments. Where water is limited or frequent hand hygiene is required on a daily basis, such as for many patients in hospitals and astronauts in space travel, instant sanitizers or sanitary wipes are thought to be an effective way of preventing contamination and spread of organisms among coworkers and others. Most concerns regarding compliance are associated with the health care field, but the food industry also must be considered. Specific reasons for not washing hands at appropriate times are laziness, time pressure, inadequate facilities and supplies, lack of accountability, and lack of involvement by companies, managers, and workers in supporting proper hand washing. To facilitate improvements in hand hygiene, measurement of compliant and noncompliant actions is necessary before implementing any procedural changes. Training alone is not sufficient for long-lasting improvement. Multiactivity strategies also must include modification of the organization culture to encourage safe hygienic practices, motivation of employees willing to use peer pressure on noncompliant coworkers, a reward and/or penalty system, and an operational design that facilitates regular hand hygiene. PMID:21219754

  18. The native ant, Tapinoma melanocephalum, improves the survival of an invasive mealybug, Phenacoccus solenopsis, by defending it from parasitoids

    PubMed Central

    Feng, Dong-Dong; Michaud, J.P.; Li, Pan; Zhou, Zhong-Shi; Xu, Zai-Fu

    2015-01-01

    Mutualistic ants can protect their partners from natural enemies in nature. Aenasius bambawalei is an important parasitoid of the the invasive mealybug Phenacoccus solenopsis. We hypothesized that mutualism between native ants and mealybugs would favor survival of mealybugs. To test this, we examined effects of tending by the native mutualistic ant Tapinoma melanocephalum on growth of P. solenopsis colonies on Chinese hibiscus, Hibiscus rosa-sinensis, in a field setting. Ant workers with access to honeydew of mealybugs lived much longer than those provisioned only with water in the laboratory, and number of ant workers foraging increased significantly with growth of mealybug colonies in the field. In later observations, there were significant differences in densities of mealybugs between ant-tended and -excluded treatments. Survival rate of mealybugs experiencing parasitoid attack was significantly higher on ant-tended plants than on ant-excluded plants. When the parasitoid was excluded, there was no difference in survival rate of mealybugs between ant-tended and -excluded plants. In most cases, ants directly attacked the parasitoid, causing the parasitoid to take evasive action. We conclude that native ants such as T. melanocephalum have the potential to facilitate invasion and spread of P. solenopsis in China by providing them with protection from parasitoids. PMID:26503138

  19. The native ant, Tapinoma melanocephalum, improves the survival of an invasive mealybug, Phenacoccus solenopsis, by defending it from parasitoids.

    PubMed

    Feng, Dong-Dong; Michaud, J P; Li, Pan; Zhou, Zhong-Shi; Xu, Zai-Fu

    2015-01-01

    Mutualistic ants can protect their partners from natural enemies in nature. Aenasius bambawalei is an important parasitoid of the the invasive mealybug Phenacoccus solenopsis. We hypothesized that mutualism between native ants and mealybugs would favor survival of mealybugs. To test this, we examined effects of tending by the native mutualistic ant Tapinoma melanocephalum on growth of P. solenopsis colonies on Chinese hibiscus, Hibiscus rosa-sinensis, in a field setting. Ant workers with access to honeydew of mealybugs lived much longer than those provisioned only with water in the laboratory, and number of ant workers foraging increased significantly with growth of mealybug colonies in the field. In later observations, there were significant differences in densities of mealybugs between ant-tended and -excluded treatments. Survival rate of mealybugs experiencing parasitoid attack was significantly higher on ant-tended plants than on ant-excluded plants. When the parasitoid was excluded, there was no difference in survival rate of mealybugs between ant-tended and -excluded plants. In most cases, ants directly attacked the parasitoid, causing the parasitoid to take evasive action. We conclude that native ants such as T. melanocephalum have the potential to facilitate invasion and spread of P. solenopsis in China by providing them with protection from parasitoids. PMID:26503138

  20. Fungus-growing ants.

    PubMed

    Weber, N A

    1966-08-01

    Fungus-growing ants (Attini) are in reality unique fungus-culturing insects.There are several hundred species in some dozen genera, of which Acromyrmex and Atta are the conspicuous leaf-cutters. The center of their activities is the fungus garden, which is also the site of the queen and brood. The garden, in most species, is made from fresh green leaves or other vegetal material. The ants forage for this, forming distinct trails to the vegetation that is being harvested. The cut leaves or other substrate are brought into the nest and prepared for the fungus. Fresh leaves and flowers are cut into pieces a millimeter or two in diameter; the ants form them into a pulpy mass by pinching them with the mandibles and adding saliva. Anal droplets are deposited on the pieces, which are then forced into place in the garden. Planting of the fungus is accomplished by an ant's picking up tufts of the adjacent mycelium and dotting the surface of the new substrate with it. The combination of salivary and anal secretions, together with the constant care given by the ants, facilitates the growth of the ant fungus only, despite constant possibilities for contamination. When the ants are removed, alien fungi and other organisms flourish. A mature nest of Atta Sexdens may consist of 2000 chambers, some temporarily empty, some with refuse, and the remainder with fungus gardens. Thousands of kilograms of fresh leaves will have been used. A young laboratory colony of Atta cephalotes will use 1 kilogram of fresh leaves for one garden. The attines are the chief agents for introducing organic matter into the soil in tropical rain forests; this matter becomes the nucleus for a host of other organisms, including nematodes and arthropods, after it is discarded by the ants. One ant species cultures a yeast; all others grow a mycelium. In the higher species the mycelium forms clusters of inflated hyphae. Mycologists accept as valid two names for confirmed fruiting stages: Leucocoprinus ( or

  1. Exploration versus exploitation in polydomous ant colonies.

    PubMed

    Cook, Zoe; Franks, Daniel W; Robinson, Elva J H

    2013-04-21

    In socially foraging species resource information can be shared between individuals, increasing foraging success. In ant colonies, nestmate recruitment allows high exploitation rates at known resources however, to maximise foraging efficiency this must be balanced with searching for new resources. Many ant species form colonies inhabiting two or more spatially separated but socially connected nests: this type of organisation is known as polydomy. Polydomous colonies may benefit from increased foraging efficiency by carrying out dispersed-central place foraging. However, decentralisation of the colony may affect recruitment success by limiting interaction between ants based in separate nests. We use an agent-based model which compares the foraging success of monodomous and polydomous colonies in different food environments, incorporating recruitment through pheromone trails and group foraging. In contrast to previous results we show that polydomy is beneficial in some but not all cases. Polydomous colonies discover resources at a higher rate, making them more successful when food is highly dispersed, but their relative success can be lowered by limitations on recruitment success. Monodomous colonies can have higher foraging efficiency than polydomous colonies by exploiting food more rapidly. The results show the importance of interactions between recruitment strategy, colony size, and colony organisation. PMID:23380232

  2. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  3. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  4. Opposable spines facilitate fine and gross object manipulation in fire ants

    NASA Astrophysics Data System (ADS)

    Cassill, Deby; Greco, Anthony; Silwal, Rajesh; Wang, Xuefeng

    2007-04-01

    Ants inhabit diverse terrestrial biomes from the Sahara Desert to the Arctic tundra. One factor contributing to the ants’ successful colonization of diverse geographical regions is their ability to manipulate objects when excavating nests, capturing, transporting and rendering prey or grooming, feeding and transporting helpless brood. This paper is the first to report the form and function of opposable spines on the foretarsi of queens and workers used during fine motor and gross motor object manipulation in the fire ant, Solenopsis invicta. In conjunction with their mandibles, queens and workers used their foretarsi to grasp and rotate eggs, push or pull thread-like objects out of their way or push excavated soil pellets behind them for disposal by other workers. Opposable spines were found on the foretarsi of workers from seven of eight other ant species suggesting that they might be a common feature in the Formicidae.

  5. Flexible weighing of olfactory and vector information in the desert ant Cataglyphis fortis.

    PubMed

    Buehlmann, Cornelia; Hansson, Bill S; Knaden, Markus

    2013-06-23

    Desert ants, Cataglyphis fortis, are equipped with remarkable skills that enable them to navigate efficiently. When travelling between the nest and a previously visited feeding site, they perform path integration (PI), but pinpoint the nest or feeder by following odour plumes. Homing ants respond to nest plumes only when the path integrator indicates that they are near home. This is crucial, as homing ants often pass through plumes emanating from foreign nests and do not discriminate between the plume of their own and that of a foreign nest, but should absolutely avoid entering a wrong nest. Their behaviour towards food odours differs greatly. Here, we show that in ants on the way to food, olfactory information outweighs PI information. Although PI guides ants back to a learned feeder, the ants respond to food odours independently of whether or not they are close to the learned feeding site. This ability is beneficial, as new food sources-unlike foreign nests-never pose a threat but enable ants to shorten distances travelled while foraging. While it has been shown that navigating C. fortis ants rely strongly on PI, we report here that the ants retained the necessary flexibility in the use of PI.

  6. Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae)

    NASA Astrophysics Data System (ADS)

    Djiéto-Lordon, Champlain; Dejean, Alain; Gibernau, Marc; Hossaert-McKey, Martine; McKey, Doyle

    2004-10-01

    Barteria nigritana is a myrmecophyte tree of Lower Guinea coastal vegetation. Unlike the more specialised B. fistulosa, which harbours a single host-specific mutualistic ant, B. nigritana is associated with several opportunistic ants. Such symbiotic, yet opportunistic, ant-plant associations have been little studied. On 113 clumps of B. nigritana, we censused ant associates and herbivores and compared herbivory on plants occupied by different ants. In addition to these correlative data, protection conferred by different ant species was compared by herbivore-placement experiments. Identity of ant associate changed predictably over plant ontogeny. Pheidole megacephala was restricted to very small plants; saplings were occupied by either Oecophylla longinoda or Crematogaster sp., and the latter species was the sole occupant of larger trees. Damage by caterpillars of the nymphalid butterfly Acraea zetes accounted for much of the herbivory to leaves. Ant species differed in the protection provided to hosts. While P. megacephala provided no significant protection, plants occupied by O. longinoda and Crematogaster sp. suffered less damage than did unoccupied plants or those occupied by P. megacephala. Furthermore, O. longinoda provided more effective protection than did Crematogaster sp. Herbivore-placement experiments confirmed these results. Workers of O. longinoda killed or removed all larval instars of A. zetes. Crematogaster preyed on only the two first larval instars, and P. megacephala preyed mainly on eggs, only rarely attacking the two first larval instars. Opportunistic ants provided significant protection to this relatively unspecialised myrmecophyte. The usual associate of mature trees was not the species that provided most protection.

  7. Ant-based computing.

    PubMed

    Michael, Loizos

    2009-01-01

    A biologically and physically plausible model for ants and pheromones is proposed. It is argued that the mechanisms described in this model are sufficiently powerful to reproduce the necessary components of universal computation. The claim is supported by illustrating the feasibility of designing arbitrary logic circuits, showing that the interactions of ants and pheromones lead to the expected behavior, and presenting computer simulation results to verify the circuits' working. The conclusions of this study can be taken as evidence that coherent deterministic and centralized computation can emerge from the collective behavior of simple distributed Markovian processes such as those followed by biological ants, but also, more generally, by artificial agents with limited computational and communication abilities. PMID:19239348

  8. The origin of the attine ant-fungus mutualism.

    PubMed

    Mueller, U G; Schultz, T R; Currie, C R; Adams, R M; Malloch, D

    2001-06-01

    Cultivation of fungus for food originated about 45-65 million years ago in the ancestor of fungus-growing ants (Formicidae, tribe Attini), representing an evolutionary transition from the life of a hunter-gatherer of arthropod prey, nectar, and other plant juices, to the life of a farmer subsisting on cultivated fungi. Seven hypotheses have been suggested for the origin of attine fungiculture, each differing with respect to the substrate used by the ancestral attine ants for fungal cultivation. Phylogenetic information on the cultivated fungi, in conjunction with information on the nesting biology of extant attine ants and their presumed closest relatives, reveal that the attine ancestors probably did not encounter their cultivars-to-be in seed stores (von Ihering 1894), in rotting wood (Forel 1902), as mycorrhizae (Garling 1979), on arthropod corpses (von Ihering 1894) or ant faeces in nest middens (Wheeler 1907). Rather, the attine ant-fungus mutualism probably arose from adventitious interactions with fungi that grew on walls of nests built in leaf litter (Emery 1899), or from a system of fungal myrmecochory in which specialized fungi relied on ants for dispersal (Bailey 1920) and in which the ants fortuitously vectored these fungi from parent to offspring nests prior to a true fungicultural stage. Reliance on fungi as a dominant food source has evolved only twice in ants: first in the attine ants, and second in some ant species in the solenopsidine genus Megalomyrmex that either coexist as trophic parasites in gardens of attine hosts or aggressively usurp gardens from them. All other known ant-fungus associations are either adventitious or have nonnutritional functions (e.g., strengthening of carton-walls in ant nests). There exist no unambiguous reports of facultative mycophagy in ants, but such trophic ant-fungus interactions would most likely occur underground or in leaf litter and thus escape easy observation. Indirect evidence of fungivory can be deduced

  9. The Ants Go Marching Millions by Millions: Invasive Ant Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  10. The ants go marching millions by millions: invasive ant research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  11. Multiple endosymbionts in populations of the ant Formica cinerea

    PubMed Central

    2010-01-01

    Background Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations. Results We found three endosymbiotic bacteria; 19% of the nests were infected by Wolbachia, 3.8% by Cardinium and 33% by Serratia. There was significant variation among the populations regarding the proportion of nests infected by Serratia, Wolbachia and the pooled set of all the endosymbionts. Some individuals and colonies carried two of the bacteria, the frequency of double infections agreeing with the random expectation. The proportion of infected ants (individuals or colonies) did not correlate significantly with the population level relatedness values. The difference in the prevalence of Wolbachia between population pairs correlated significantly with the genetic distance (microsatellites) of the populations. Conclusions The discovery of several endosymbionts and co-infections by Wolbachia and Cardinium demonstrate the importance of screening several endosymbionts when evaluating their possible effects on social life and queen-worker conflicts over sex allocation. The low prevalence of Wolbachia in F. cinerea departs from the pattern observed in many other Formica ants in which all workers have been infected. It is likely that the strain of Wolbachia in F. cinerea differs from those in other

  12. The trail pheromone of the venomous samsum ant, Pachycondyla sennaarensis.

    PubMed

    Mashaly, Ashraf Mohamed Ali; Ahmed, Ashraf Mohamed; Al-Abdullah, Mosa Abdullah; Al-Khalifa, Mohamed Saleh

    2011-01-01

    Ant species use branching networks of pheromone trails for orientation between nest and resources. The current study demonstrated that workers of the venomous samsum ant, Pachycondyla sennaarensis (Mayr) (Hymenoptera: Formicidae: Ponerinae), employ recruitment trail pheromones discharged from the Dufour's gland. Secretions of other abdomen complex glands, as well as hindgut gland secretions, did not evoke trail following. The optimum concentration of trail pheromone was found to be 0.1 gland equivalent/40 cm trail. This concentration demonstrated effective longevity for about one hour. This study also showed that P. sennaarensis and Tapinoma simrothi each respond to the trail pheromones of the other species as well as their own. PMID:21529253

  13. The trail pheromone of the venomous samsum ant, Pachycondyla sennaarensis.

    PubMed

    Mashaly, Ashraf Mohamed Ali; Ahmed, Ashraf Mohamed; Al-Abdullah, Mosa Abdullah; Al-Khalifa, Mohamed Saleh

    2011-01-01

    Ant species use branching networks of pheromone trails for orientation between nest and resources. The current study demonstrated that workers of the venomous samsum ant, Pachycondyla sennaarensis (Mayr) (Hymenoptera: Formicidae: Ponerinae), employ recruitment trail pheromones discharged from the Dufour's gland. Secretions of other abdomen complex glands, as well as hindgut gland secretions, did not evoke trail following. The optimum concentration of trail pheromone was found to be 0.1 gland equivalent/40 cm trail. This concentration demonstrated effective longevity for about one hour. This study also showed that P. sennaarensis and Tapinoma simrothi each respond to the trail pheromones of the other species as well as their own.

  14. The Trail Pheromone of the Venomous Samsum Ant, Pachycondyla sennaarensis

    PubMed Central

    Mashaly, Ashraf Mohamed Ali; Ahmed, Ashraf Mohamed; Al—Abdullah, Mosa Abdullah; Al—Khalifa, Mohamed Saleh

    2011-01-01

    Ant species use branching networks of pheromone trails for orientation between nest and resources. The current study demonstrated that workers of the venomous samsum ant, Pachycondyla sennaarensis (Mayr) (Hymenoptera: Formicidae: Ponerinae), employ recruitment trail pheromones discharged from the Dufour's gland. Secretions of other abdomen complex glands, as well as hindgut gland secretions, did not evoke trail following. The optimum concentration of trail pheromone was found to be 0.1 gland equivalent/40 cm trail. This concentration demonstrated effective longevity for about one hour. This study also showed that P. sennaarensis and Tapinoma simrothi each respond to the trail pheromones of the other species as well as their own. PMID:21529253

  15. Army ants: an evolutionary bestseller?

    PubMed

    Berghoff, Stefanie M

    2003-09-01

    Army ants are characterized by a complex combination of behavioral and morphological traits. Molecular data now indicate that army ant behavior has a unique evolutionary origin and has been conserved for over more than 100 million years.

  16. Effects of the ant Formica fusca on the transmission of microsporidia infecting gypsy moth larvae.

    PubMed

    Goertz, Dörte; Hoch, Gernot

    2013-06-01

    Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey. PMID:23926361

  17. Serotonin depresses feeding behaviour in ants.

    PubMed

    Falibene, Agustina; Rössler, Wolfgang; Josens, Roxana

    2012-01-01

    Feeding behaviour is a complex functional system that relies on external signals and the physiological state of the animal. This is also the case in ants as they vary their feeding behaviour according to food characteristics, environmental conditions and - as they are social insects - to the colony's requirements. The biogenic amine serotonin (5-HT) was shown to be involved in the control and modulation of many actions and processes related to feeding in both vertebrates and invertebrates. In this study, we investigated whether 5-HT affects nectar feeding in ants by analysing its effect on the sucking-pump activity. Furthermore, we studied 5-HT association with tissues and neuronal ganglia involved in feeding regulation. Our results show that 5-HT promotes a dose-dependent depression of sucrose feeding in Camponotus mus ants. Orally administered 5-HT diminished the intake rate by mainly decreasing the volume of solution taken per pump contraction, without modifying the sucrose acceptance threshold. Immunohistochemical studies all along the alimentary canal revealed 5-HT-like immunoreactive processes on the foregut (oesophagus, crop and proventriculus), while the midgut and hindgut lacked 5-HT innervation. Although the frontal and suboesophageal ganglia contained 5-HT immunoreactive cell bodies, serotonergic innervation in the sucking-pump muscles was absent. The results are discussed in the frame of a role of 5-HT in feeding control in ants.

  18. Calibration of vector navigation in desert ants.

    PubMed

    Collett, M; Collett, T S; Wehner, R

    1999-09-23

    Desert ants (Cataglyphis sp.) monitor their position relative to the nest using a form of dead reckoning [1] [2] [3] known as path integration (PI) [4]. They do this with a sun compass and an odometer to update an accumulator that records their current position [1]. Ants can use PI to return to the nest [2] [3]. Here, we report that desert ants, like honeybees [5] and hamsters [6], can also use PI to approach a previously visited food source. To navigate to a goal using only PI information, a forager must recall a previous state of the accumulator specifying the goal, and compare it with the accumulator's current state [4]. The comparison - essentially vector subtraction - gives the direction to the goal. This whole process, which we call vector navigation, was found to be calibrated at recognised sites, such as the nest and a familiar feeder, throughout the life of a forager. If a forager was trained around a one-way circuit in which the result of PI on the return route did not match the result on the outward route, calibration caused the ant's trajectories to be misdirected. We propose a model of vector navigation to suggest how calibration could produce such trajectories.

  19. Colony Fusion in a Parthenogenetic Ant, Pristomyrmex punctatus

    PubMed Central

    Satow, Show; Satoh, Toshiyuki; Hirota, Tadao

    2013-01-01

    In the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae), all young workers lay a small number of eggs parthenogenetically. Some colonies consist of monoclonal individuals that provide high inclusive fitness, according to the kin selection theory. However, in some populations, a majority of the colonies contain multiple lineages. Intracolonial genetic variation of parthenogenetic ants cannot be explained by the multiple mating of single founderesses or by the foundation of a colony by multiple foundresses, which are the usual causes of genetically diverse colonies in social insects. Here, we hypothesized that the fusion of established colonies might facilitate the formation of multiclonal colonies. Colony fusion decreases indirect benefits because of the reduction in intracolonial relatedness. However, when suitable nesting places for overwintering are scarce, colony fusion provides a strategy for the survival of colonies. Here, ants derived from different colonies were allowed to encounter one another in a container with just one nesting place. Initially, high aggression was observed; however, after several days, no aggression was observed and the ants shared the nest. When the fused colonies were allowed to transfer to two alternative nests, ants from different colonies occupied the same nest. This study highlights the importance of limiting the number of nesting places in order to understand the genetic diversity of parthenogenetic ant colonies. PMID:23895053

  20. Ant Colonies Prefer Infected over Uninfected Nest Sites

    PubMed Central

    Pontieri, Luigi; Vojvodic, Svjetlana; Graham, Riley; Pedersen, Jes Søe; Linksvayer, Timothy A.

    2014-01-01

    During colony relocation, the selection of a new nest involves exploration and assessment of potential sites followed by colony movement on the basis of a collective decision making process. Hygiene and pathogen load of the potential nest sites are factors worker scouts might evaluate, given the high risk of epidemics in group-living animals. Choosing nest sites free of pathogens is hypothesized to be highly efficient in invasive ants as each of their introduced populations is often an open network of nests exchanging individuals (unicolonial) with frequent relocation into new nest sites and low genetic diversity, likely making these species particularly vulnerable to parasites and diseases. We investigated the nest site preference of the invasive pharaoh ant, Monomorium pharaonis, through binary choice tests between three nest types: nests containing dead nestmates overgrown with sporulating mycelium of the entomopathogenic fungus Metarhizium brunneum (infected nests), nests containing nestmates killed by freezing (uninfected nests), and empty nests. In contrast to the expectation pharaoh ant colonies preferentially (84%) moved into the infected nest when presented with the choice of an infected and an uninfected nest. The ants had an intermediate preference for empty nests. Pharaoh ants display an overall preference for infected nests during colony relocation. While we cannot rule out that the ants are actually manipulated by the pathogen, we propose that this preference might be an adaptive strategy by the host to “immunize” the colony against future exposure to the same pathogenic fungus. PMID:25372856

  1. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  2. Ant Brood Function as Life Preservers during Floods

    PubMed Central

    Purcell, Jessica; Avril, Amaury; Jaffuel, Geoffrey; Bates, Sarah; Chapuisat, Michel

    2014-01-01

    Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating ‘rafts’ to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting. PMID:24586600

  3. Dispersal Polymorphisms in Invasive Fire Ants.

    PubMed

    Helms, Jackson A; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types-claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32-38% lower flight muscle ratios, 55-63% higher wing loading, and 32-33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants.

  4. Dispersal Polymorphisms in Invasive Fire Ants.

    PubMed

    Helms, Jackson A; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types-claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32-38% lower flight muscle ratios, 55-63% higher wing loading, and 32-33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants. PMID:27082115

  5. Dispersal Polymorphisms in Invasive Fire Ants

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types—claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32–38% lower flight muscle ratios, 55–63% higher wing loading, and 32–33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants. PMID:27082115

  6. Current and potential ant impacts in the Pacific region

    USGS Publications Warehouse

    Loope, Lloyd L.; Krushelnycky, Paul D.

    2007-01-01

    . They generally have multiple queens per colony, are unicolonial (lacking internest aggression), quickly recruit to food items, thrive in a variety of habitats including disturbed areas, and can be highly aggressive to other ant species (McGlynn 1999). Hawaii’s arthropod fauna evolved in the absence of ants and has been observed by many biologists to be highly vulnerable to displacement by non-native ants. Pacific island biotas have also very likely suffered greatly from displacement by ants. However, in contrast to Hawaii, virtually nothing has been published on effects of non-native ants on native arthropod fauna elsewhere on Pacific islands, with the exception of the Galapagos archipelago, which may have at least four species of endemic ants (Lubin 1984, Nishida and Evenhuis 2000) and New Caledonia (Jourdan et al. 2001, Le Breton et al. 2005). In addition, many ant species in the Pacific have long been a nuisance for humans, and significant agricultural impacts have occurred from ants tending hemipteran insects of crop plants.

  7. The adaptive significance of inquiline parasite workers.

    PubMed Central

    Sumner, Seirian; Nash, David R; Boomsma, Jacobus J

    2003-01-01

    Social parasites exploit the socially managed resources of their host's society. Inquiline social parasites are dependent on their host throughout their life cycle, and so many of the traits inherited from their free-living ancestor are removed by natural selection. One trait that is commonly lost is the worker caste, the functions of which are adequately fulfilled by host workers. The few inquiline parasites that have retained a worker caste are thought to be at a transitional stage in the evolution of social parasitism, and their worker castes are considered vestigial and non-adaptive. However, this idea has not been tested. Furthermore, whether inquiline workers have an adaptive role outside the usual worker repertoire of foraging, brood care and colony maintenance has not been examined. In this paper, we present data that suggest that workers of the inquiline ant Acromyrmex insinuator play a vital role in ensuring the parasite's fitness. We show that the presence of these parasite workers has a positive effect on the production of parasite sexuals and a negative effect on the production of host sexuals. This suggests that inquiline workers play a vital role in suppressing host queen reproduction, thus promoting the rearing of parasite sexuals. To our knowledge, these are the first experiments on inquiline workers and the first to provide evidence that inquiline workers have an adaptive role. PMID:12816646

  8. Fire Ant Allergy

    MedlinePlus

    ... In extreme cases, a rapid fall in blood pressure may result in shock and loss of consciousness. Symptoms of anaphylaxis require emergency medical treatment. Given the severity of a potential reaction, an accurate diagnosis for fire ant allergy is key to being prepared for ...

  9. Tiny, Powerful, Awesome Ants!

    ERIC Educational Resources Information Center

    Tate, Kathleen

    2007-01-01

    Peering through a thematic science lens--elementary students embarked on a one-week study of ants during a month-long summer school program. This integrated unit addressed reading and writing skills while developing the science-process skills of observation, inferring, and communicating in a motivating and authentic way. Pre- and post-assessments…

  10. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants.

    PubMed

    Adams, Rachelle M M; Jones, Tappey H; Longino, John T; Weatherford, Robert G; Mueller, Ulrich G

    2015-04-01

    Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.

  11. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants.

    PubMed

    Adams, Rachelle M M; Jones, Tappey H; Longino, John T; Weatherford, Robert G; Mueller, Ulrich G

    2015-04-01

    Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources. PMID:25833216

  12. Association between Pseudonocardia symbionts and Atta leaf-cutting ants suggested by improved isolation methods.

    PubMed

    Marsh, Sarah E; Poulsen, Michael; Gorosito, Norma B; Pinto-Tomás, Adrián; Masiulionis, Virginia E; Currie, Cameron R

    2013-03-01

    Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. We obtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled. The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulose medium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while some strains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolates fell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest that Pseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont and exploring its role is necessary to shed further light on the association.

  13. How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners.

    PubMed

    Kautz, Stefanie; Lumbsch, H Thorsten; Ward, Philip S; Heil, Martin

    2009-04-01

    Mutualisms often involve reciprocal adaptations of both partners. Acacia ant-plants defended by symbiotic Pseudomyrmex ant mutualists secrete sucrose-free extrafloral nectar, which is unattractive to generalists. We aimed to investigate whether this extrafloral nectar can also exclude exploiters, that is nondefending ant species. Mutualist workers discriminated against sucrose whereas exploiters and generalists with no affinity toward Acacia myrmecophytes preferred sucrose, because mutualist workers lacked the sucrose-cleaving enzyme invertase, which is present in workers of the other two groups. Sucrose uptake induced invertase activity in workers of parasites and generalists, but not mutualists, and in larvae of all species: the mutualists loose invertase during their ontogeny. This reduced metabolic capacity ties the mutualists to their plant hosts, but it does not completely prevent the mutualism from exploitation. We therefore investigated whether the exploiters studied here are cheaters (i.e., have evolved from former mutualists) or parasites (exploiters with no mutualistic ancestor). A molecular phylogeny demonstrates that the exploiter species did not evolve from former mutualists, and no evidence for cheaters was found. We conclude that being specialized to their partner can prevent mutualists from becoming cheaters, whereas other mechanisms are required to stabilize a mutualism against the exploitation by parasites.

  14. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants ( Formica rufa group)

    PubMed Central

    Kadochová, Štěpánka; Frouz, Jan

    2014-01-01

    Temperature influences every aspect of ant biology, especially metabolic rate, growth and development. Maintenance of high inner nest temperature increases the rate of sexual brood development and thereby increases the colony fitness. Insect societies can achieve better thermoregulation than solitary insects due to the former’s ability to build large and elaborated nests and display complex behaviour. In ants and termites the upper part of the nest, the mound, often works as a solar collector and can also have an efficient ventilation system. Two thermoregulatory strategies could be applied. Firstly the ants use an increased thermal gradient available in the mound for brood relocation. Nurse workers move the brood according to the thermal gradients to ensure the ideal conditions for development. A precise perception of temperature and evolution of temperature preferences are needed to make the correct choices. A second thermoregulatory strategy used by mound nesting ants is keeping a high temperature inside large nests. The unique thermal and insulation properties of the nest material help to maintain stable conditions, which is the case of the Wood ant genus Formica. Ants can regulate thermal loss by moving nest aggregation and alternating nest ventilation. Metabolic heat produced by ant workers or associated micro organisms is an important additional source of heat which helps to maintain thermal homeostasis in the nest. PMID:24715967

  15. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants ( Formica rufa group).

    PubMed

    Kadochová, Stěpánka; Frouz, Jan

    2013-01-01

    Temperature influences every aspect of ant biology, especially metabolic rate, growth and development. Maintenance of high inner nest temperature increases the rate of sexual brood development and thereby increases the colony fitness. Insect societies can achieve better thermoregulation than solitary insects due to the former's ability to build large and elaborated nests and display complex behaviour. In ants and termites the upper part of the nest, the mound, often works as a solar collector and can also have an efficient ventilation system. Two thermoregulatory strategies could be applied. Firstly the ants use an increased thermal gradient available in the mound for brood relocation. Nurse workers move the brood according to the thermal gradients to ensure the ideal conditions for development. A precise perception of temperature and evolution of temperature preferences are needed to make the correct choices. A second thermoregulatory strategy used by mound nesting ants is keeping a high temperature inside large nests. The unique thermal and insulation properties of the nest material help to maintain stable conditions, which is the case of the Wood ant genus Formica. Ants can regulate thermal loss by moving nest aggregation and alternating nest ventilation. Metabolic heat produced by ant workers or associated micro organisms is an important additional source of heat which helps to maintain thermal homeostasis in the nest. PMID:24715967

  16. Cotton Rats Alter Foraging in Response to an Invasive Ant

    PubMed Central

    Darracq, Andrea K.; Conner, L. Mike; Brown, Joel S.; McCleery, Robert A.

    2016-01-01

    We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [–]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [–] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [–] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat’s fitness and translate into lowered population abundances. PMID:27655320

  17. Snapshot memories and landmark guidance in wood ants.

    PubMed

    Durier, Virginie; Graham, Paul; Collett, Thomas S

    2003-09-16

    Insects are thought to pinpoint a place by using memorized "snapshots," i.e., two-dimensional retinotopic views of the surrounding landmarks recorded when at the place (reviewed in ). Insects then reach the place by moving until their current view matches their snapshot. To determine when snapshots are recalled, and how differences between view and snapshot are translated into appropriate movements, we analyzed the approaches of wood ants to a feeding site that was located in the center of an array of two or three cylinders. In ants, contrary to flying hymenopterans, body orientation and direction of travel are collinear, so that an ant approaching an object always looks at it with frontal visual field. On their way to a food site, ants fixated and approached a cylinder predominantly when its angular size was smaller than when viewed from the food site. This finding implies that ants store snapshots at this place while fixating landmarks with frontal retina, so simplifying the later alignment of snapshots with their current view. It also means that ants recall snapshots well in advance of reaching the place. Although snapshots are centered on a landmark, we show that they extend at least 120 degrees into the periphery.

  18. Ants Can Expect the Time of an Event on Basis of Previous Experiences.

    PubMed

    Cammaerts, Marie-Claire; Cammaerts, Roger

    2016-01-01

    Working on three ant species of the genus Myrmica, M. ruginodis, M. rubra, and M. sabuleti, we showed that foragers can expect the subsequent time at which food will be available on the basis of the previous times at which food was present. The ants acquired this expectative ability right after having experienced two time shifts of food delivery. Moreover, the ants' learning score appeared to be a logarithmic function of time (i.e., of the number of training days). This ability to expect subsequent times at which an event will occur may be an advantageous ethological trait. PMID:27403457

  19. Ants Can Expect the Time of an Event on Basis of Previous Experiences

    PubMed Central

    Cammaerts, Roger

    2016-01-01

    Working on three ant species of the genus Myrmica, M. ruginodis, M. rubra, and M. sabuleti, we showed that foragers can expect the subsequent time at which food will be available on the basis of the previous times at which food was present. The ants acquired this expectative ability right after having experienced two time shifts of food delivery. Moreover, the ants' learning score appeared to be a logarithmic function of time (i.e., of the number of training days). This ability to expect subsequent times at which an event will occur may be an advantageous ethological trait. PMID:27403457

  20. [Indian workers in Oman].

    PubMed

    Longuenesse, E

    1985-01-01

    savings. Working and living conditions are difficult: the hours are long, the weather is hot, housing conditions are primitive and provide no relief from the heat, the food supply is the minimum required, and almost no diversions are available. There are no unions even among Omani workers, and troublemakers are quickly repatriated. The Indian embassy occasionally intercedes for workers, brief work stoppages may occur if pay is delayed, and some conflicts are settled individually. Resistence among Indian workers may take less visible forms, especially absenteeism and requests for leave.

  1. Ants and the fossil record.

    PubMed

    LaPolla, John S; Dlussky, Gennady M; Perrichot, Vincent

    2013-01-01

    The dominance of ants in the terrestrial biosphere has few equals among animals today, but this was not always the case. The oldest ants appear in the fossil record 100 million years ago, but given the scarcity of their fossils, it is presumed they were relatively minor components of Mesozoic insect life. The ant fossil record consists of two primary types of fossils, each with inherent biases: as imprints in rock and as inclusions in fossilized resins (amber). New imaging technology allows ancient ant fossils to be examined in ways never before possible. This is particularly helpful because it can be difficult to distinguish true ants from non-ants in Mesozoic fossils. Fossil discoveries continue to inform our understanding of ancient ant morphological diversity, as well as provide insights into their paleobiology.

  2. Foraging ants trade off further for faster: use of natural bridges and trunk trail permanency in carpenter ants.

    PubMed

    Loreto, Raquel G; Hart, Adam G; Pereira, Thairine M; Freitas, Mayara L R; Hughes, David P; Elliot, Simon L

    2013-10-01

    Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants (Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.

  3. Foraging ants trade off further for faster: use of natural bridges and trunk trail permanency in carpenter ants

    NASA Astrophysics Data System (ADS)

    Loreto, Raquel G.; Hart, Adam G.; Pereira, Thairine M.; Freitas, Mayara L. R.; Hughes, David P.; Elliot, Simon L.

    2013-10-01

    Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants ( Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.

  4. Foraging ants trade off further for faster: use of natural bridges and trunk trail permanency in carpenter ants.

    PubMed

    Loreto, Raquel G; Hart, Adam G; Pereira, Thairine M; Freitas, Mayara L R; Hughes, David P; Elliot, Simon L

    2013-10-01

    Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants (Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration. PMID:24022667

  5. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms. PMID:26590597

  6. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.

  7. GC-MS for characterization and identification of ant semiochemicals.

    PubMed

    Eliyahu, Dorit

    2009-07-01

    Living in a predominantly dark environment, ants rely mostly on chemical signals for communication. Trail and alarm pheromones are the most widely studied and best characterized of all ant semiochemicals, but other such compounds can influence a variety of other behaviors, including reproductive activities, sexual development, nest mate and caste recognition, and defense. A typical worker body contains more than 10 different semiochemical-producing glands, and the surface of the cuticle is covered with lipids that serve as recognition signals. The methods of choice for collection and identification of ant semiochemicals should be determined based on results of behavioral analyses. These can indicate the source (e.g., glandular, cuticular) and the nature (volatile vs. nonvolatile) of the chemical. This protocol presents a number of different methods for collecting lipid semiochemicals. These can be followed by gas chromatography (GC) coupled with mass spectrometry (MS) to better characterize, and possibly identify, the semiochemical in question. PMID:20147214

  8. Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior

    PubMed Central

    Li, Qiye; Wang, Zongji; Lian, Jinmin; Schiøtt, Morten; Jin, Lijun; Zhang, Pei; Zhang, Yanyan; Nygaard, Sanne; Peng, Zhiyu; Zhou, Yang; Deng, Yuan; Zhang, Wenwei; Boomsma, Jacobus J.; Zhang, Guojie

    2014-01-01

    Eusocial insects have evolved the capacity to generate adults with distinct morphological, reproductive and behavioural phenotypes from the same genome. Recent studies suggest that RNA editing might enhance the diversity of gene products at the post-transcriptional level, particularly to induce functional changes in the nervous system. Using head samples from the leaf-cutting ant Acromyrmex echinatior, we compare RNA editomes across eusocial castes, identifying ca. 11,000 RNA editing sites in gynes, large workers and small workers. Those editing sites map to 800 genes functionally enriched for neurotransmission, circadian rhythm, temperature response, RNA splicing and carboxylic acid biosynthesis. Most A. echinatior editing sites are species specific, but 8–23% are conserved across ant subfamilies and likely to have been important for the evolution of eusociality in ants. The level of editing varies for the same site between castes, suggesting that RNA editing might be a general mechanism that shapes caste behaviour in ants. PMID:25266559

  9. Nest- and colony-mate recognition in polydomous colonies of meat ants ( Iridomyrmex purpureus)

    NASA Astrophysics Data System (ADS)

    van Wilgenburg, E.; Ryan, D.; Morrison, P.; Marriott, P. J.; Elgar, M. A.

    2006-07-01

    Workers of polydomous colonies of social insects must recognize not only colony-mates residing in the same nest but also those living in other nests. We investigated the impact of a decentralized colony structure on colony- and nestmate recognition in the polydomous Australian meat ant ( Iridomyrmex purpureus). Field experiments showed that ants of colonies with many nests were less aggressive toward alien conspecifics than those of colonies with few nests. In addition, while meat ants were almost never aggressive toward nestmates, they were frequently aggressive when confronted with an individual from a different nest within the same colony. Our chemical analysis of the cuticular hydrocarbons of workers using a novel comprehensive two-dimensional gas chromatography technique that increases the number of quantifiable compounds revealed both colony- and nest-specific patterns. Combined, these data indicate an incomplete transfer of colony odor between the nests of polydomous meat ant colonies.

  10. Nest- and colony-mate recognition in polydomous colonies of meat ants (Iridomyrmex purpureus).

    PubMed

    van Wilgenburg, E; Ryan, D; Morrison, P; Marriott, P J; Elgar, M A

    2006-07-01

    Workers of polydomous colonies of social insects must recognize not only colony-mates residing in the same nest but also those living in other nests. We investigated the impact of a decentralized colony structure on colony- and nestmate recognition in the polydomous Australian meat ant (Iridomyrmex purpureus). Field experiments showed that ants of colonies with many nests were less aggressive toward alien conspecifics than those of colonies with few nests. In addition, while meat ants were almost never aggressive toward nestmates, they were frequently aggressive when confronted with an individual from a different nest within the same colony. Our chemical analysis of the cuticular hydrocarbons of workers using a novel comprehensive two-dimensional gas chromatography technique that increases the number of quantifiable compounds revealed both colony- and nest-specific patterns. Combined, these data indicate an incomplete transfer of colony odor between the nests of polydomous meat ant colonies.

  11. Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites.

    PubMed

    Dyer, L A; Dodson, C D; Beihoffer, J; Letourneau, D K

    2001-03-01

    Ant-plant mutualisms may provide indirect evidence for costs of antiherbivore defenses when plants demonstrate trade-offs between allocating resources and energy into ant attractants versus chemical defenses. We tested the hypothesis that ecological trade-offs in defenses are present in Piper cenocladum. This plant possesses two distinct defenses: food bodies that attract predatory ants that destroy herbivore eggs and amides that deter herbivores. Previous studies have demonstrated that the food bodies in P. cenocladum are an effective defense because the ants deter herbivory by specialist herbivores. Amides in other Piper species have been shown to have toxic qualities, but we tested the additional hypothesis that these amides have an actual defensive function in P. cenocladum. To test for ecological trade-offs between the two putative defenses, fragments of P. cenocladum were examined for the presence of amides both when the plant was producing food bodies and when it was not producing food bodies. Plants with active ant colonies had redundant defenses, producing food bodies and high levels of amides at the same time, but we detected a trade-off in that they had significantly lower levels of amides than did plants with no ants. To test for the defensive value of P. cenocladum amides, we used an ant bioassay and we examined herbivory results from previous experiments with plants that had variable levels of amides. These tests demonstrated that amides are deterrent to omnivorous ants, leaf cutting ants, and orthopterans. In contrast, the resident Pheidole bicornis ants are effective at deterring herbivory by specialist herbivores that oviposit eggs on the plant but not at deterring herbivory by nonresident omnivores. We concluded that although both amides and food body production appear to be costly, redundancy in defenses is necessary to avoid damage by a complex suit of herbivores.

  12. Ant mimicry by an aphid parasitoid, Lysiphlebus fabarum.

    PubMed

    Rasekh, Arash; Michaud, J P; Kharazi-Pakdel, Aziz; Allahyari, Hossein

    2010-01-01

    In Iran, Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae) is a uniparental parasitoid of the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae), that possesses various highly evolved adaptations for foraging within ant-tended aphid colonies. Direct observations and video recordings were used to analyze the behavior of individual females foraging for A. fabae on bean leaf disks in open arenas in the laboratory. Females exploited aphids as hosts and as a source of food, allocating within-patch time as follows: resting - 10.4%, grooming - 8.2%, searching - 11.5%, antennation (host recognition) - 7.5%, antennation (honeydew solicitation mimicking ants) - 31.9%, abdominal bending (attack preparation) 19.7%, probing with the ovipositor (attack) - 10.8%. The mean handling time for each aphid encountered was 2.0 ± 0.5 min. Females encountered an average of 47.4 ± 6.4 aphids per hour, but laid only 1.2 eggs per hour. The ovipositor insertion time for parasitism ranged from 2 sec to longer than a minute, but most insertions did not result in an egg being laid. A. fabae defensive behaviors included kicking, raising and swiveling the body, and attempts to smear the attacker with cornicle secretions, sometimes with lethal results. Food deprivation for 4-6 h prior to testing increased the frequency of ant mimcry by L. fabarum. Females also used ant-like antennation to reduce A. fabae defensive behavior, e.g. the frequency of kicking. L. fabarum attacks primed A. fabae to be more responsive to subsequent honeydew solicitation, such that experienced females improved their feeding success by alternating between the roles of parasitoid and ant mimic. These results reveal the possibility for mutualisms to evolve between L. fabarum and the ant species that tend A. fabae, since L. fabarum receive ant protection for their progeny and may benefit the ants by improving A. fabae responsiveness to honeydew solicitation.

  13. 9 CFR 312.4 - Official ante-mortem inspection marks and devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official ante-mortem inspection marks and devices. 312.4 Section 312.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... ante-mortem inspection marks and devices. The official marks and devices used in connection with...

  14. How patrollers set foraging direction in harvester ants.

    PubMed

    Greene, Michael J; Gordon, Deborah M

    2007-12-01

    Recruitment to food or nest sites is well known in ants; the recruiting ants lay a chemical trail that other ants follow to the target site, or they walk with other ants to the target site. Here we report that a different process determines foraging direction in the harvester ant Pogonomyrmex barbatus. Each day, the colony chooses from among up to eight distinct foraging trails; colonies use different trails on different days. Here we show that the patrollers regulate the direction taken by foragers each day by depositing Dufour's secretions onto a sector of the nest mound about 20 cm long and leading to the beginning of a foraging trail. The patrollers do not recruit foragers all the way to food sources, which may be up to 20 m away. Fewer foragers traveled along a trail if patrollers had no access to the sector of the nest mound leading to that trail. Adding Dufour's gland extract to patroller-free sectors of the nest mound rescued foraging in that direction, while poison gland extract did not. We also found that in the absence of patrollers, most foragers used the direction they had used on the previous day. Thus, the colony's 30-50 patrollers act as gatekeepers for thousands of foragers and choose a foraging direction, but they do not recruit and lead foragers all the way to a food source. PMID:18171176

  15. Temperature limits trail following behaviour through pheromone decay in ants

    NASA Astrophysics Data System (ADS)

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.

  16. Temperature limits trail following behaviour through pheromone decay in ants.

    PubMed

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures. PMID:22038287

  17. Ancestral developmental potential facilitates parallel evolution in ants.

    PubMed

    Rajakumar, Rajendhran; San Mauro, Diego; Dijkstra, Michiel B; Huang, Ming H; Wheeler, Diana E; Hiou-Tim, Francois; Khila, Abderrahman; Cournoyea, Michael; Abouheif, Ehab

    2012-01-01

    Complex worker caste systems have contributed to the evolutionary success of advanced ant societies; however, little is known about the developmental processes underlying their origin and evolution. We combined hormonal manipulation, gene expression, and phylogenetic analyses with field observations to understand how novel worker subcastes evolve. We uncovered an ancestral developmental potential to produce a "supersoldier" subcaste that has been actualized at least two times independently in the hyperdiverse ant genus Pheidole. This potential has been retained and can be environmentally induced throughout the genus. Therefore, the retention and induction of this potential have facilitated the parallel evolution of supersoldiers through a process known as genetic accommodation. The recurrent induction of ancestral developmental potential may facilitate the adaptive and parallel evolution of phenotypes.

  18. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  19. Non-transferable signals on ant queen eggs

    NASA Astrophysics Data System (ADS)

    D'Ettorre, Patrizia; Tofilski, Adam; Heinze, Jürgen; Ratnieks, Francis L. W.

    2006-03-01

    How biological systems resolve internal conflicts is a major evolutionary question. Social insect workers cooperate but also pursue individual interests, such as laying male eggs. The rewards of this individual selfishness can be reduced by policing, such as by killing worker-laid eggs. However, selfish individuals may evade policing. What factors prevent individuals from being able to evade policing? In the ant Pachycondyla inversa, workers kill (police) worker-laid eggs. Because the colony keeps eggs in piles and worker-laid and queen-laid eggs are chemically distinct, worker-laid eggs might become more acceptable once placed in the egg pile by odour transfer from touching queen-laid eggs. Here, we show that such “cue scrambling” does not occur. Worker-laid eggs that were sandwiched between three queen-laid eggs for 45 min were not more acceptable in a policing bioassay than control worker-laid eggs. Chemical analyses also showed that the surface hydrocarbon profile of these eggs was unchanged. Policing, therefore, is stable against this potential cheating mechanism probably because queen-laid eggs are made chemically distinct using chemicals, that are not easily transferred by physical contact.

  20. Convergent evolution, superefficient teams and tempo in Old and New World army ants

    PubMed Central

    Franks, N. R.; Sendova-Franks, A. B.; Simmons, J.; Mogie, M.

    1999-01-01

    Swarm raiding army ants, with hundreds of thousands or millions of workers per colony, have evolved convergently in the Old World and New World tropics. Here we demonstrate for the first time, to our knowledge, superefficient foraging teams in Old World army ants and we compare them quantitatively with such teams in New World army ants. Colonies of Dorylus wilverthi in the Old World and Eciton burchelli in the New World retrieve almost identical sizes of prey item and the overall size range of their workers is very similar. However, 98% of D. wilverthi workers are within the size range of the smallest 25% of E. burchelli workers. In E. burchelli larger workers specialize in prey retrieval, whereas in D. wilverthi workers form many more teams than in E. burchelli. Such teams compensate for the relative rarity of larger workers in Dorylus. The proportions of prey items retrieved by teams in Dorylus and Eciton are 39% and 5%, respectively. The percentages of all prey biomass retrieved by teams in Dorylus and Eciton are 64% and 13%, respectively. Working either as single porters or teams, Dorylus carry more per unit ant weight than do Eciton, but Eciton are swifter. However, these different ergonomic factors counterbalance one another, so that performance at the colony level is remarkably, although by no means completely, similar between the Old and New World species. The remaining differences are attributable to adaptations in worker and colony tempo associated with the recovery dynamics of their prey populations. Our comparative analysis provides a unique perspective on worker-level and colony-level adaptations and is a special test of the theory of worker caste distributions.

  1. A carbohydrate-rich diet increases social immunity in ants.

    PubMed

    Kay, Adam D; Bruning, Abbie J; van Alst, Andy; Abrahamson, Tyler T; Hughes, W O H; Kaspari, Michael

    2014-03-01

    Increased potential for disease transmission among nest-mates means living in groups has inherent costs. This increased potential is predicted to select for disease resistance mechanisms that are enhanced by cooperative exchanges among group members, a phenomenon known as social immunity. One potential mediator of social immunity is diet nutritional balance because traits underlying immunity can require different nutritional mixtures. Here, we show how dietary protein-carbohydrate balance affects social immunity in ants. When challenged with a parasitic fungus Metarhizium anisopliae, workers reared on a high-carbohydrate diet survived approximately 2.8× longer in worker groups than in solitary conditions, whereas workers reared on an isocaloric, high-protein diet survived only approximately 1.3× longer in worker groups versus solitary conditions. Nutrition had little effect on social grooming, a potential mechanism for social immunity. However, experimentally blocking metapleural glands, which secrete antibiotics, completely eliminated effects of social grouping and nutrition on immunity, suggesting a causal role for secretion exchange. A carbohydrate-rich diet also reduced worker mortality rates when whole colonies were challenged with Metarhizium. These results provide a novel mechanism by which carbohydrate exploitation could contribute to the ecological dominance of ants and other social groups.

  2. The genome of the fire ant Solenopsis invicta

    PubMed Central

    Wurm, Yannick; Wang, John; Riba-Grognuz, Oksana; Corona, Miguel; Nygaard, Sanne; Hunt, Brendan G.; Ingram, Krista K.; Falquet, Laurent; Nipitwattanaphon, Mingkwan; Gotzek, Dietrich; Dijkstra, Michiel B.; Oettler, Jan; Comtesse, Fabien; Shih, Cheng-Jen; Wu, Wen-Jer; Yang, Chin-Cheng; Thomas, Jerome; Beaudoing, Emmanuel; Pradervand, Sylvain; Flegel, Volker; Cook, Erin D.; Fabbretti, Roberto; Stockinger, Heinz; Long, Li; Farmerie, William G.; Oakey, Jane; Boomsma, Jacobus J.; Pamilo, Pekka; Yi, Soojin V.; Heinze, Jürgen; Goodisman, Michael A. D.; Farinelli, Laurent; Harshman, Keith; Hulo, Nicolas; Cerutti, Lorenzo; Xenarios, Ioannis; Shoemaker, DeWayne; Keller, Laurent

    2011-01-01

    Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species. PMID:21282665

  3. The genome of the fire ant Solenopsis invicta.

    PubMed

    Wurm, Yannick; Wang, John; Riba-Grognuz, Oksana; Corona, Miguel; Nygaard, Sanne; Hunt, Brendan G; Ingram, Krista K; Falquet, Laurent; Nipitwattanaphon, Mingkwan; Gotzek, Dietrich; Dijkstra, Michiel B; Oettler, Jan; Comtesse, Fabien; Shih, Cheng-Jen; Wu, Wen-Jer; Yang, Chin-Cheng; Thomas, Jerome; Beaudoing, Emmanuel; Pradervand, Sylvain; Flegel, Volker; Cook, Erin D; Fabbretti, Roberto; Stockinger, Heinz; Long, Li; Farmerie, William G; Oakey, Jane; Boomsma, Jacobus J; Pamilo, Pekka; Yi, Soojin V; Heinze, Jürgen; Goodisman, Michael A D; Farinelli, Laurent; Harshman, Keith; Hulo, Nicolas; Cerutti, Lorenzo; Xenarios, Ioannis; Shoemaker, Dewayne; Keller, Laurent

    2011-04-01

    Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.

  4. Distributed nestmate recognition in ants

    PubMed Central

    Esponda, Fernando; Gordon, Deborah M.

    2015-01-01

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response. PMID:25833853

  5. Distributed nestmate recognition in ants.

    PubMed

    Esponda, Fernando; Gordon, Deborah M

    2015-05-01

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.

  6. Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection.

    PubMed

    Hölldobler, Bert

    2016-01-01

    The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents.

  7. Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection.

    PubMed

    Hölldobler, Bert

    2016-01-01

    The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents. PMID:26986740

  8. Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection

    PubMed Central

    Hölldobler, Bert

    2016-01-01

    The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents. PMID:26986740

  9. Nestmate and kin recognition in interspecific mixed colonies of ants.

    PubMed

    Carlin, N F; Hölldobler, B

    1983-12-01

    Recognition of nestmates and discrimination against aliens is the rule in the social insects. The principal mechanism of nestmate recognition in carpenter ants (Camponotus) appears to be odor labels or "discriminators" that originate from the queen and are distributed among, and learned by, all adult colony members. The acquired odor labels are sufficiently powerful to produce indiscriminate acceptance among workers of different species raised together in artificially mixed colonies and rejection of genetic sisters reared by different heterospecific queens.

  10. Nestmate and kin recognition in interspecific mixed colonies of ants.

    PubMed

    Carlin, N F; Hölldobler, B

    1983-12-01

    Recognition of nestmates and discrimination against aliens is the rule in the social insects. The principal mechanism of nestmate recognition in carpenter ants (Camponotus) appears to be odor labels or "discriminators" that originate from the queen and are distributed among, and learned by, all adult colony members. The acquired odor labels are sufficiently powerful to produce indiscriminate acceptance among workers of different species raised together in artificially mixed colonies and rejection of genetic sisters reared by different heterospecific queens. PMID:17776248

  11. Worker Education.

    ERIC Educational Resources Information Center

    Yiziang, Zeng; And Others

    1988-01-01

    Describes worker education in China as an important part of the national educational plan and an indispensible foundation for the work of developing enterprisers. Basic tasks are the development of the mind, preparation of specialists, improving workers, and modernization of socialist enterprises. (JOW)

  12. Design development scopes towards occupational wellness of women workers: specific reference to local agro based food processing industries in NE India.

    PubMed

    Bhattacharyya, Nandita; Chakrabarti, Debkumar

    2012-01-01

    Women workers constitute one of the most vulnerable segments of the country's labour force. They often face different workplace health challenges than men do. They are engaged in a range of work that extends from heavy, monotonous, repetitive jobs, which are in many times experienced with low-paid and involves in long hours of work. Women's workplace health problems are frequently compounded by getting more of the same at home--the "double jeopardy" of domestic work. Specific issues to improve the workers motivation leading to enhancement of productivity and improving occupational health and safety were addressed. Context specific application of ergonomics principles were studied in the process of designing of work related equipment of local fruit processing units, as well as in tea industry, covering 180 subjects selected purposively. Ergonomic risk factors prevailed among the workers associates productivity and relevant health issues were quantified using QEC, RULA. NMQ was used to gather data on prevalence of CTDs among the workers. Pineapple peeling, tea leaves plucking were found highly labour intensive, done manually. Postures scores found were very high. WRMSDs were prevalent among the workers. Scope for ergonomic design intervention was observed to improve productivity and occupational health.

  13. Design development scopes towards occupational wellness of women workers: specific reference to local agro based food processing industries in NE India.

    PubMed

    Bhattacharyya, Nandita; Chakrabarti, Debkumar

    2012-01-01

    Women workers constitute one of the most vulnerable segments of the country's labour force. They often face different workplace health challenges than men do. They are engaged in a range of work that extends from heavy, monotonous, repetitive jobs, which are in many times experienced with low-paid and involves in long hours of work. Women's workplace health problems are frequently compounded by getting more of the same at home--the "double jeopardy" of domestic work. Specific issues to improve the workers motivation leading to enhancement of productivity and improving occupational health and safety were addressed. Context specific application of ergonomics principles were studied in the process of designing of work related equipment of local fruit processing units, as well as in tea industry, covering 180 subjects selected purposively. Ergonomic risk factors prevailed among the workers associates productivity and relevant health issues were quantified using QEC, RULA. NMQ was used to gather data on prevalence of CTDs among the workers. Pineapple peeling, tea leaves plucking were found highly labour intensive, done manually. Postures scores found were very high. WRMSDs were prevalent among the workers. Scope for ergonomic design intervention was observed to improve productivity and occupational health. PMID:23151732

  14. Polymorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina.

    PubMed

    Kamhi, J Frances; Nunn, Kelley; Robson, Simon K A; Traniello, James F A

    2015-07-22

    Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood.Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems. PMID:26136448

  15. Polymorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina

    PubMed Central

    Kamhi, J. Frances; Nunn, Kelley; Robson, Simon K. A.; Traniello, James F. A.

    2015-01-01

    Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood. Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems. PMID:26136448

  16. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus.

    PubMed

    Mankowski, M E; Morrell, J J

    2004-01-01

    After scanning electron microscopy indicated that the infrabuccal pockets of carpenter ants (Camponotus vicinus) contained numerous yeast-like cells, yeast associations were examined in six colonies of carpenter ants from two locations in Benton County in western Oregon. Samples from the infrabuccal-pocket contents and worker ant exoskeletons, interior galleries of each colony, and detritus and soil around the colonies were plated on yeast-extract/ malt-extract agar augmented with 1 M hydrochloric acid and incubated at 25 C. Yeasts were identified on the basis of morphological characteristics and physiological attributes with the BIOLOG(®) microbial identification system. Yeast populations from carpenter ant nest material and material surrounding the nest differed from those obtained from the infrabuccal pocket. Debaryomyces polymorphus was isolated more often from the infrabuccal pocket than from other material. This species has also been isolated from other ant species, but its role in colony nutrition is unknown.

  17. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus.

    PubMed

    Mankowski, M E; Morrell, J J

    2004-01-01

    After scanning electron microscopy indicated that the infrabuccal pockets of carpenter ants (Camponotus vicinus) contained numerous yeast-like cells, yeast associations were examined in six colonies of carpenter ants from two locations in Benton County in western Oregon. Samples from the infrabuccal-pocket contents and worker ant exoskeletons, interior galleries of each colony, and detritus and soil around the colonies were plated on yeast-extract/ malt-extract agar augmented with 1 M hydrochloric acid and incubated at 25 C. Yeasts were identified on the basis of morphological characteristics and physiological attributes with the BIOLOG(®) microbial identification system. Yeast populations from carpenter ant nest material and material surrounding the nest differed from those obtained from the infrabuccal pocket. Debaryomyces polymorphus was isolated more often from the infrabuccal pocket than from other material. This species has also been isolated from other ant species, but its role in colony nutrition is unknown. PMID:21148849

  18. Olfactive detection of fig wasps as prey by the ant Crematogaster scutellaris (Formicidae; Myrmicinae).

    PubMed

    Schatz, Bertrand; Anstett, Marie-Charlotte; Out, Welmoed; Hossaert-McKey, Martine

    2003-10-01

    In the species-specific and obligate mutualism between the fig (Ficus carica) and its pollinator (the fig wasps Blastophaga psenes), a third participant, the ant Crematogaster scutellaris, is a predator of the wasps. Here, we ask how ant workers can rapidly localise such prey, whose availability is limited in time and space. Using a Y-tube olfactometer, we tested ant response to odours emitted by different types of figs (receptive female, ripe female or male figs) and by fig wasps (pollinators or non-pollinators). We demonstrate that ants were significantly attracted only to odours emitted by pollinators, either alone or associated with odours of male figs (releasing wasps). Detection of prey odour by ants is an important trait that can explain their observed high rate of predation on pollinators, and could have important implications on the stability of the fig/fig wasp mutualism. PMID:14564404

  19. Nest site selection and induced response in a dominant arboreal ant species

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme; Gibernau, Marc

    2008-09-01

    It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.

  20. Evaluating the role of reproductive constraints in ant social evolution

    PubMed Central

    Khila, Abderrahman; Abouheif, Ehab

    2010-01-01

    The reproductive division of labour is a key feature of eusociality in ants, where queen and worker castes show dramatic differences in the development of their reproductive organs. To understand the developmental and genetic basis underlying this division of labour, we performed a molecular analysis of ovary function and germ cell development in queens and workers. We show that the processes of ovarian development in queens have been highly conserved relative to the fruitfly Drosophila melanogaster. We also identify specific steps during oogenesis and embryogenesis in which ovarian and germ cell development have been evolutionarily modified in the workers. These modifications, which we call ‘reproductive constraints’, are often assumed to represent neutral degenerations that are a consequence of social evolutionary forces. Based on our developmental and functional analysis of these constraints, however, we propose and discuss the alternative hypothesis that reproductive constraints represent adaptive proximate mechanisms or traits for maintaining social harmony in ants. We apply a multi-level selection framework to help understand the role of these constraints in ant social evolution. A complete understanding of how cooperation, conflict and developmental systems evolve in social groups requires a ‘socio-evo-devo’ approach that integrates social evolutionary and developmental biology. PMID:20083637

  1. Evaluating the role of reproductive constraints in ant social evolution.

    PubMed

    Khila, Abderrahman; Abouheif, Ehab

    2010-02-27

    The reproductive division of labour is a key feature of eusociality in ants, where queen and worker castes show dramatic differences in the development of their reproductive organs. To understand the developmental and genetic basis underlying this division of labour, we performed a molecular analysis of ovary function and germ cell development in queens and workers. We show that the processes of ovarian development in queens have been highly conserved relative to the fruitfly Drosophila melanogaster. We also identify specific steps during oogenesis and embryogenesis in which ovarian and germ cell development have been evolutionarily modified in the workers. These modifications, which we call 'reproductive constraints', are often assumed to represent neutral degenerations that are a consequence of social evolutionary forces. Based on our developmental and functional analysis of these constraints, however, we propose and discuss the alternative hypothesis that reproductive constraints represent adaptive proximate mechanisms or traits for maintaining social harmony in ants. We apply a multi-level selection framework to help understand the role of these constraints in ant social evolution. A complete understanding of how cooperation, conflict and developmental systems evolve in social groups requires a 'socio-evo-devo' approach that integrates social evolutionary and developmental biology.

  2. Emergency measures: Adaptive response to pathogen intrusion in the ant nest.

    PubMed

    Diez, Lise; Urbain, Laure; Lejeune, Philippe; Detrain, Claire

    2015-07-01

    Ants have developed prophylactic and hygienic behaviours in order to limit risks of pathogenic outbreaks inside their nest, which are often called social immunity. Here, we test whether ants can adapt the "social immune response" to the level of pathogenic risk in the colony. We challenged Myrmica rubra colonies with dead nestmates that had either died from being frozen or from infection by the fungus Metarhizium anisopliae. Ant survival was compromised by the presence of the fungus-bearing corpses: workers died faster with a significantly lower survival from the 4th day compared to workers challenged with freeze-killed corpses. When faced with fungus-bearing corpses, workers responded quickly by increasing hygienic behaviours: they spent more time cleaning the nest, moving the corpses, and self-grooming. Ants in fungus-threatened colonies also decreased contact rates with other workers, and moved corpses further in the corners of the nest than in colonies in contact with non-infected corpses. These results show that ant colonies are able to assess the risk level associated with the presence of corpses in the nest, and adjust their investment in terms of hygienic behaviour. PMID:25939763

  3. Mechanics of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks.

  4. Mechanics of fire ant aggregations.

    PubMed

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks. PMID:26501413

  5. Specialized myrmecophily at the ecological dawn of modern ants.

    PubMed

    Parker, Joseph; Grimaldi, David A

    2014-10-20

    Myrmecophiles--species that depend on ant societies--include some of the most morphologically and behaviorally specialized animals known. Remarkable adaptive characters enable these creatures to bypass fortress-like security, integrate into colony life, and exploit abundant resources and protection inside ant nests. Such innovations must result from intimate coevolution with hosts, but a scarcity of definitive fossil myrmecophiles obscures when and how this lifestyle arose. Here, we report the earliest known morphologically specialized and apparently obligate myrmecophile, in Early Eocene (∼ 52 million years old) Cambay amber from India. Protoclaviger trichodens gen. et sp. nov. is a stem-group member of Clavigeritae, a speciose supertribe of pselaphine rove beetles (Coleoptera: Staphylinidae) heavily modified for myrmecophily via reduced mouthparts for trophallaxis with worker ants, brush-like trichomes that exude appeasement compounds, and fusions of many body and antennal segments. Protoclaviger captures a transitional stage in the evolutionary development of this novel body plan, most evident in its still-distinct abdominal tergites. The Cambay paleobiota marks one of the first occurrences in the fossil record of a significant presence of modern ants. Protoclaviger reveals that sophisticated social parasites were nest intruders throughout, and probably before, the ascent of ants to ecological dominance, with ancient groups such as Clavigeritae primed to radiate as their hosts became increasingly ubiquitous.

  6. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica.

    PubMed

    Wada-Katsumata, Ayako; Yamaoka, Ryohei; Aonuma, Hitoshi

    2011-05-15

    In ants, including Formica japonica, trophallaxis and grooming are typical social behaviors shared among nestmates. After depriving ants of either food or nestmates and then providing them with either food or nestmates, a behavioral change in type and frequency of social interactions was observed. We hypothesized that starvation and isolation affected levels of brain biogenic amines including dopamine (DA) and octopamine (OA) - neuromediators modifying various insect behaviors - and tested the relationship between brain biogenic amines and social behaviors of stressed ants. Ants starved for 7 days contained lower brain DA levels and they did not perform trophallaxis toward nestmates. Feeding starved ants sucrose solution re-established trophallaxis but not brain DA levels. The performance of trophallaxis induced recovery of brain DA content to the level of untreated ants. Ants that were isolated for 2 days displayed markedly increased OA levels, which following nestmate interactions, returned to levels similar to those of control (non-isolated) ants and ants isolated for 1 h. We conclude that: (1) starvation reduced brain DA level but had no significant effect on brain OA (trophallaxis recovered the brain DA levels), and (2) isolation increased brain OA level but had no effect on brain DA (trophallaxis and grooming events recovered the brain OA levels). We suggest that social interactions with nestmates influenced brain biogenic amine homeostasis in stressed F. japonica.

  7. [Foraging intensity of ants in Solenopsis invicta Buren (Hymenoptera: Formiciddae) invaded and un-invaded habitats].

    PubMed

    Wu, Bi-Qiu; Lu, Yong-Yue; Zeng, Ling; Song, Zhen-Dong; Liang, Guang-Wen

    2009-10-01

    By the methods of bait (honey, peanut oil, sausage, and mealworm larvae) trap, this paper studied the searching time, recruitment time, and recruitment number of ants in 3 typical habitats invaded and un-invaded by red imported fire ant (Solenopsis invicta) in South China, and analyzed the effects of S. invicta invasion on the foraging intensity of native ants. In S. invicta invaded lawn, the searching time of ants for mealworm larvae and peanut oil was significantly shorter, compared with that in S. invicta un-invaded area. Less difference was observed in the searching time for the 4 baits between S. invicta invaded and un-invaded wasteland, but the recruitment time for peanut oil was significantly longer in invaded than in un-invaded area. The searching time and recruitment time of the ants for the 4 baits had less difference between the invaded and un-invaded litchi orchard. 30 min after setting bait traps, the recruitment number of S. invicta workers on peanut oil, mealworm larvae, and sausage in invaded lawn, and on peanut oil in invaded wasteland was larger than that of native ants, but no significant difference was found in the recruitment number of S. invicta workers and native ants on the baits in invaded litchi orchard.

  8. Range expansion induces variation in a behavioural trait in an ant-plant mutualism

    NASA Astrophysics Data System (ADS)

    Vittecoq, Marion; Djiéto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2012-01-01

    Climate oscillations produce dramatic changes in species distribution, even in the tropics. The ant-plant Leonardoxa africana africana hosts and feeds the ant Petalomyrmex phylax, which provides protection against herbivores in return. Both partners of this symbiosis present a recent southward range expansion. To test whether the higher investment in sexuals (and thus lower investment in protective workers) previously documented on the colonization front is compensated by a more effective protective behaviour, we compared ant behavioural investment in plant defence between two populations, one in the core of the range and one on the colonization front. We induced ant patrolling activity by artificially damaging leaflets and measured this activity by counting patrolling ants and calculating the increase relative to constitutive patrolling activity measured on control (undamaged) leaflets. Contrary to our expectation, ant behavioural investment in plant defence was lower on the colonization front. Thus, production of fewer workers is not compensated by more protective behaviour of each. Instead, both traits contribute to a phenotype that is less mutualistic as a whole. By favouring increased allocation to dispersal, range expansion can shape ant behavioural traits and potentially the outcome of mutualism.

  9. Graveyards on the Move: The Spatio-Temporal Distribution of Dead Ophiocordyceps-Infected Ants

    PubMed Central

    Pontoppidan, Maj-Britt; Himaman, Winanda; Hywel-Jones, Nigel L.; Boomsma, Jacobus J.; Hughes, David P.

    2009-01-01

    Parasites are likely to play an important role in structuring host populations. Many adaptively manipulate host behaviour, so that the extended phenotypes of these parasites and their distributions in space and time are potentially important ecological variables. The fungus Ophiocordyceps unilateralis, which is pan-tropical in distribution, causes infected worker ants to leave their nest and die under leaves in the understory of tropical rainforests. Working in a forest dynamic plot in Southern Thailand we mapped the occurrence of these dead ants by examining every leaf in 1,360 m2 of primary rainforest. We established that high density aggregations exist (up to 26 dead ants/m2), which we coined graveyards. We further established that graveyards are patchily distributed in a landscape with no or very few O. unilateralis-killed ants. At some, but not all, spatial scales of analysis the density of dead ants correlated with temperature, humidity and vegetation cover. Remarkably, having found 2243 dead ants inside graveyards we only found 2 live ants of the principal host, ant Camponotus leonardi, suggesting that foraging host ants actively avoid graveyards. We discovered that the principal host ant builds nests in high canopy and its trails only occasionally descend to the forest floor where infection occurs. We advance the hypothesis that rare descents may be a function of limited canopy access to tree crowns and that resource profitability of such trees is potentially traded off against the risk of losing workers due to infection when forest floor trails are the only access routes. Our work underscores the need for an integrative approach that recognises multiple facets of parasitism, such as their extended phenotypes. PMID:19279680

  10. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    PubMed

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  11. Thelytokous parthenogenesis by queens in the dacetine ant Pyramica membranifera (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Ito, Fuminori; Touyama, Yoshifumi; Gotoh, Ayako; Kitahiro, Shungo; Billen, Johan

    2010-08-01

    Thelytokous parthenogenesis in which diploid females are produced from unfertilized eggs, was recently reported for some ant species. Here, we document thelytokous reproduction by queens in the polygynous species Pyramica membranifera. Queens that emerged in the laboratory were kept with or without workers under laboratory conditions. Independent colony founding was successful for a few queens if prey was provided. All artificial colonies, which started with a newly emerged queen and workers produced new workers and some of the colonies also produced female sexuals. Some of the female sexuals shed their wings in the laboratory and started formation of new polygynous colonies. Workers had no ovaries and thus, were obligatorily sterile.

  12. Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen

    PubMed Central

    Defossez, Emmanuel; Djiéto-Lordon, Champlain; McKey, Doyle; Selosse, Marc-André; Blatrix, Rumsaïs

    2011-01-01

    In ant–plant symbioses, plants provide symbiotic ants with food and specialized nesting cavities (called domatia). In many ant–plant symbioses, a fungal patch grows within each domatium. The symbiotic nature of the fungal association has been shown in the ant-plant Leonardoxa africana and its protective mutualist ant Petalomyrmex phylax. To decipher trophic fluxes among the three partners, food enriched in 13C and 15N was given to the ants and tracked in the different parts of the symbiosis up to 660 days later. The plant received a small, but significant, amount of nitrogen from the ants. However, the ants fed more intensively the fungus. The pattern of isotope enrichment in the system indicated an ant behaviour that functions specifically to feed the fungus. After 660 days, the introduced nitrogen was still present in the system and homogeneously distributed among ant, plant and fungal compartments, indicating efficient recycling within the symbiosis. Another experiment showed that the plant surface absorbed nutrients (in the form of simple molecules) whether or not it is coated by fungus. Our study provides arguments for a mutualistic status of the fungal associate and a framework for investigating the previously unsuspected complexity of food webs in ant–plant mutualisms. PMID:20980297

  13. Ants adjust their pheromone deposition to a changing environment and their probability of making errors.

    PubMed

    Czaczkes, Tomer J; Heinze, Jürgen

    2015-07-01

    Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately.

  14. Ants adjust their pheromone deposition to a changing environment and their probability of making errors.

    PubMed

    Czaczkes, Tomer J; Heinze, Jürgen

    2015-07-01

    Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. PMID:26063845

  15. The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree.

    PubMed

    Brightwell, Robert J; Silverman, Jules

    2011-10-01

    Mutualisms and facilitations can fundamentally change the relationship between an organism's realized and fundamental niche. Invasive species may prove particularly suitable models for investigating this relationship as many are dependent on finding new partners for successful establishment. We conducted field-based experiments testing whether a native tree facilitates the successful survival of the invasive Argentine ant, Linepithema humile (Mayr), through unfavorable winter conditions in the southeastern United States. We found Argentine ant nests aggregated around the native loblolly pine, Pinus taeda L., during the winter months. The bark of this tree absorbed enough radiant solar energy to reach temperatures suitable for Argentine ant foraging even when ambient temperatures should have curtailed all foraging. Conversely, foraging ceased when the trunk was shaded. The sun-warmed bark of this tree gave the Argentine ant access to a stable honeydew resource. Argentine ants were not found on or near deciduous trees even though bark temperatures were warm enough to permit Argentine ant foraging on cold winter days. Augmenting deciduous trees with sucrose water through the winter months lead to Argentine ant nests remaining at their base and Argentine ants foraging on the tree. The Argentine ant requires both foraging opportunity and a reliable winter food source to survive through unfavorable winter conditions in the southeastern United States. The loblolly pine provided both of these requirements extending the realized niche of Argentine ants beyond its fundamental niche.

  16. Species-Specific Effects of Ant Inhabitants on Bromeliad Nutrition.

    PubMed

    Gonçalves, Ana Z; Oliveira, Rafael S; Oliveira, Paulo S; Romero, Gustavo Q

    2016-01-01

    Predator activities may lead to the accumulation of nutrients in specific areas of terrestrial habitats where they dispose of prey carcasses. In their feeding sites, predators may increase nutrient availability in the soil and favor plant nutrition and growth. However, the translocation of nutrients from one habitat to another may depend on predator identity and diet, as well as on the amount of prey intake. Here we used isotopic (15N) and physiological methods in greenhouse experiments to evaluate the effects of the identity of predatory ants (i.e., the consumption of prey and nest sites) on the nutrition and growth of the bromeliad Quesnelia arvensis. We showed that predatory ants with protein-based nutrition (i.e., Odontomachus hastatus, Gnamptogenys moelleri) improved the performance of their host bromeliads (i.e., increased foliar N, production of soluble proteins and growth). On the other hand, the contribution of Camponotus crassus for the nutritional status of bromeliads did not differ from bromeliads without ants, possibly because this ant does not have arthropod prey as a preferred food source. Our results show, for the first time, that predatory ants can translocate nutrients from one habitat to another within forests, accumulating nutrients in their feeding sites that become available to bromeliads. Additionally, we highlight that ant contribution to plant nutrition may depend on predator identity and its dietary requirements. Nest debris may be especially important for epiphytic and terrestrial bromeliads in nutrient-poor environments.

  17. Species-Specific Effects of Ant Inhabitants on Bromeliad Nutrition

    PubMed Central

    Gonçalves, Ana Z.; Oliveira, Rafael S.; Oliveira, Paulo S.; Romero, Gustavo Q.

    2016-01-01

    Predator activities may lead to the accumulation of nutrients in specific areas of terrestrial habitats where they dispose of prey carcasses. In their feeding sites, predators may increase nutrient availability in the soil and favor plant nutrition and growth. However, the translocation of nutrients from one habitat to another may depend on predator identity and diet, as well as on the amount of prey intake. Here we used isotopic (15N) and physiological methods in greenhouse experiments to evaluate the effects of the identity of predatory ants (i.e., the consumption of prey and nest sites) on the nutrition and growth of the bromeliad Quesnelia arvensis. We showed that predatory ants with protein-based nutrition (i.e., Odontomachus hastatus, Gnamptogenys moelleri) improved the performance of their host bromeliads (i.e., increased foliar N, production of soluble proteins and growth). On the other hand, the contribution of Camponotus crassus for the nutritional status of bromeliads did not differ from bromeliads without ants, possibly because this ant does not have arthropod prey as a preferred food