Science.gov

Sample records for antagonizing wnt erk

  1. Wnt antagonism initiates cardiogenesis in Xenopus laevis

    PubMed Central

    Schneider, Valerie A.; Mercola, Mark

    2001-01-01

    Heart induction in Xenopus occurs in paired regions of the dorsoanterior mesoderm in response to signals from the Spemann organizer and underlying dorsoanterior endoderm. These tissues together are sufficient to induce heart formation in noncardiogenic ventral marginal zone mesoderm. Similarly, in avians the underlying definitive endoderm induces cardiogenesis in precardiac mesoderm. Heart-inducing factors in amphibians are not known, and although certain BMPs and FGFs can mimic aspects of cardiogenesis in avians, neither can induce the full range of activities elicited by the inducing tissues. Here we report that the Wnt antagonists Dkk-1 and Crescent can induce heart formation in explants of ventral marginal zone mesoderm. Other Wnt antagonists, including the frizzled domain-containing proteins Frzb and Szl, lacked this activity. Unlike Wnt antagonism, inhibition of BMP signaling did not promote cardiogenesis. Ectopic expression of GSK3β, which inhibits β-catenin-mediated Wnt signaling, also induced cardiogenesis in ventral mesoderm. Analysis of Wnt proteins expressed during gastrulation revealed that Wnt3A and Wnt8, but not Wnt5A or Wnt11, inhibited endogenous heart induction. These results indicate that diffusion of Dkk-1 and Crescent from the organizer initiate cardiogenesis in adjacent mesoderm by establishing a zone of low Wnt3A and Wnt8 activity. PMID:11159911

  2. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells

    PubMed Central

    Yuzugullu, Haluk; Benhaj, Khemais; Ozturk, Nuri; Senturk, Serif; Celik, Emine; Toylu, Asli; Tasdemir, Nilgun; Yilmaz, Mustafa; Erdal, Esra; Akcali, Kamil Can; Atabey, Nese; Ozturk, Mehmet

    2009-01-01

    Background β-catenin mutations that constitutively activate the canonical Wnt signaling have been observed in a subset of hepatocellular carcinomas (HCCs). These mutations are associated with chromosomal stability, low histological grade, low tumor invasion and better patient survival. We hypothesized that canonical Wnt signaling is selectively activated in well-differentiated, but repressed in poorly differentiated HCCs. To this aim, we characterized differentiation status of HCC cell lines and compared their expression status of Wnt pathway genes, and explored their activity of canonical Wnt signaling. Results We classified human HCC cell lines into "well-differentiated" and "poorly differentiated" subtypes, based on the expression of hepatocyte lineage, epithelial and mesenchymal markers. Poorly differentiated cell lines lost epithelial and hepatocyte lineage markers, and overexpressed mesenchymal markers. Also, they were highly motile and invasive. We compared the expression of 45 Wnt pathway genes between two subtypes. TCF1 and TCF4 factors, and LRP5 and LRP6 co-receptors were ubiquitously expressed. Likewise, six Frizzled receptors, and canonical Wnt3 ligand were expressed in both subtypes. In contrast, canonical ligand Wnt8b and noncanonical ligands Wnt4, Wnt5a, Wnt5b and Wnt7b were expressed selectively in well- and poorly differentiated cell lines, respectively. Canonical Wnt signaling activity, as tested by a TCF reporter assay was detected in 80% of well-differentiated, contrary to 14% of poorly differentiated cell lines. TCF activity generated by ectopic mutant β-catenin was weak in poorly differentiated SNU449 cell line, suggesting a repressive mechanism. We tested Wnt5a as a candidate antagonist. It strongly inhibited canonical Wnt signaling that is activated by mutant β-catenin in HCC cell lines. Conclusion Differential expression of Wnt ligands in HCC cells is associated with selective activation of canonical Wnt signaling in well

  3. EGF-reduced Wnt5a transcription induces epithelial-mesenchymal transition via Arf6-ERK signaling in gastric cancer cells

    PubMed Central

    Zhang, Yujie; Du, Jun; Zheng, Jianchao; Liu, Jiaojing; Xu, Rui; Shen, Tian; Zhu, Yichao; Chang, Jun; Wang, Hong; Zhang, Zhihong; Meng, Fanqing; Wang, Yan; Chen, Yongchang; Xu, Yong; Gu, Luo

    2015-01-01

    Wnt5a, a ligand for activating the non-canonical Wnt signaling pathway, is commonly associated with Epithelial-to-mesenchymal transition (EMT) in cancer cell metastasis. Here, we show that downregulation of Wnt5a mRNA and protein by EGF is necessary for EGF-induced EMT in gastric cancer SGC-7901 cells. To further explore the mechanisms, we investigated the effect of EGF signaling on Wnt5a expression. EGF increased Arf6 and ERK activity, while blockade of Arf6 activation repressed ERK activity, up-regulated Wnt5a expression and repressed EMT in response to EGF. We also demonstrate that EGF inactivated Wnt5a transcription by direct recruitment of ERK to the Wnt5a promoter. On the other hand, inhibition of ERK phosphorylation resulted in decreased movement of ERK from the cytoplasm to the nucleus, following rescued Wnt5a mRNA and protein expression and favored an epithelial phenotype of SGC-7901 cells. In addition, we notice that kinase-dead, nuclear-localised ERK has inhibitory effect on Wnt5a transcription. Analysis of gastric cancer specimens revealed an inverse correlation between P-ERK and Wnt5a protein levels and an association between Wnt5a expression and better prognosis. These findings indicate that Wnt5a is a potential suppressor of EMT and identify a novel Arf6/ERK signaling pathway for EGF-regulated Wnt5a expression at transcriptional level of gastric cancer cells. PMID:25779663

  4. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.

    PubMed

    Abedini, Atefeh; Zamberlam, Gustavo; Lapointe, Evelyne; Tourigny, Catherine; Boyer, Alexandre; Paquet, Marilène; Hayashi, Kanako; Honda, Hiroaki; Kikuchi, Akira; Price, Christopher; Boerboom, Derek

    2016-04-01

    Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation ofWnt5a(but notWnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genesin vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signalingviathe WNT/Ca(2+)or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both β-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decreaseviaa glycogen synthase kinase-3β-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.-Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.

  5. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling

    PubMed Central

    Abedini, Atefeh; Zamberlam, Gustavo; Lapointe, Evelyne; Tourigny, Catherine; Boyer, Alexandre; Paquet, Marilène; Hayashi, Kanako; Honda, Hiroaki; Kikuchi, Akira; Price, Christopher; Boerboom, Derek

    2015-01-01

    Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation of Wnt5a (but not Wnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genes in vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signaling via the WNT/Ca2+ or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both β-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decrease via a glycogen synthase kinase-3β-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.—Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. PMID:26667040

  6. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    SciTech Connect

    Li, Guofeng; Xu, Jingren; Li, Zengchun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  7. Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism

    PubMed Central

    Sahoo, Pabitra K.; Murawala, Prayag; Sawale, Pravin T.; Sahoo, Manas R.; Tripathi, Mukesh M.; Gaikwad, Swati R.; Seshadri, Vasudevan; Joseph, Jomon

    2012-01-01

    Summary Cells often respond to diverse environmental stresses by inducing stress granules (SGs) as an adaptive mechanism. SGs are generally assembled as a result of aggregation of mRNAs stalled in a translational pre-initiation complex, mediated by a set of RNA-binding proteins such as G3BP and TIA-1. SGs may serve as triage centres for storage, translation re-initiation or degradation of specific mRNAs. However, the mechanism involved in the modulation of their assembly/disassembly is unclear. Here we report that Wnt signalling negatively regulates SG assembly through Dishevelled (Dvl), a cytoplasmic Wnt effector. Overexpression of Dvl2, an isoform of Dvl, leads to impairment of SG assembly through a DEP domain dependent mechanism. Intriguingly, the Dvl2 mutant K446M, which corresponds to an analogous mutation in Drosophila Dishevelled DEP domain (dsh1) that results in defective PCP pathway, fails to antagonize SG assembly. Furthermore, we show that Dvl2 exerts the antagonistic effect on SG assembly through a mechanism involving Rac1-mediated inhibition of RhoA. Dvl2 interacts with G3BP, a downstream component of Ras signalling involved in SG assembly, and functional analysis suggests a model wherein the Dvl-Rac1-RhoA axis regulates G3BP's SG-nucleating activity. Collectively, these results define an antagonistic effect of Wnt signalling on SG assembly, and reveal a novel role for Wnt/Dvl pathway in the modulation of mRNA functions. PMID:23213403

  8. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    PubMed

    Vieira, Gabriella Cunha; Chockalingam, S; Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O; Gabb, Peter David; Malik, Karim

    2015-11-24

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.

  9. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    PubMed

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  10. Wnt5a-Dopamine D2 Receptor Interactions Regulate Dopamine Neuron Development via Extracellular Signal-regulated Kinase (ERK) Activation*

    PubMed Central

    Yoon, Sehyoun; Choi, Mi-hyun; Chang, Min Seok; Baik, Ja-Hyun

    2011-01-01

    The dopamine D2 receptor (D2R) plays an important role in mesencephalic dopaminergic neuronal development, particularly coupled with extracellular signal-regulated kinase (ERK) activation. Wnt5a protein is known to regulate the development of dopaminergic neurons. We analyzed the effect of Wnt5a on dopaminergic neuron development in mesencephalic primary cultures from wild-type (WT) and D2R knock-out (D2R−/−) mice. Treatment with Wnt5a increased the number and neuritic length of dopamine neurons in primary mesencephalic neuronal cultures from WT mice, but not from D2R−/− mice. The effect of Wnt5a was completely blocked by treatment with D2R antagonist or inhibitors of MAPK or EGFR. Wnt5a-mediated ERK activation in mesencephalic neuronal cultures was inhibited by treatment of D2R antagonist and EGFR inhibitors in WT mice. However, these regulations were not observed for D2R−/− mice. Co-immunoprecipitation and displacement of [3H]spiperone from D2R by Wnt5a demonstrated that Wnt5a could bind with D2R. This interaction was confirmed by GST pulldown assays demonstrating that the domain including transmembrane domain 4, second extracellular loop, and transmembrane domain 5 of D2R binds to Wnt5a. These results suggest that the interaction between D2R and Wnt5a has an important role in dopamine neuron development in association with EGFR and the ERK pathway. PMID:21454669

  11. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    PubMed Central

    2012-01-01

    Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2) axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions Thus, WNT-5A-induced and G

  12. ZnRF3 Induces Apoptosis of Gastric Cancer Cells by Antagonizing Wnt and Hedgehog Signaling.

    PubMed

    Qin, Hongzhen; Cai, Aizhen; Xi, Hongqing; Yuan, Jing; Chen, Lin

    2015-11-01

    A large proportion of malignant cancers of the stomach are gastric adenocarcinoma type. In spite of many studies, the molecular basis for this cancer is still unclear. Deregulated cell proliferative signaling via Wnt/β-catenin and Hedgehog pathways is considered important in the pathogenesis of many cancers including the gastric cancer. Recent studies identified ZnRF3 protein, which is a E3-ubiquitin ligase and which is either deleted or mutated in cancers, to inhibit Wnt signaling. However, the significance of ZnRF3 in the control of gastric cancer and whether it also regulates Hedgehog signaling pathway, is not known. In the present study, we assessed the expression of ZnRF3 in gastric tumors and paracancerous tissues from 58 patients (44 male and 14 female) of different ages and related this to patient survival. We observed a clear relationship between ZnRF3 expression in paracancerous tissue and tumor size. Also, ZnRF3 expression was much higher in tumors from aged patients. Male patients showed higher mortality than the females. Mechanistic studies using normal gastric cells (GES1) and gastric cancer cells (MGC-803) infected with either AdZnRF3 or AdGFP viral vectors, revealed that ZnRF3 overexpression causes significantly more apoptosis and lowered proliferation of cancer cells. ZnRF3 overexpression led to greatly reduced levels of Lgr5, a component of Wnt signaling and also Gli1, a component of Hedgehog signaling. Thus, ZnRF3 negatively influences both the Wnt and Hedgehog proliferative pathways, and probably this way it negatively regulates cancer progression. These results suggest the importance of normal ZnRF3 function in checking the progression of cancer cell growth and indicate that a lack of this protein can lead to poorer clinical outcomes for gastric cancer patients.

  13. Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States.

    PubMed

    Pedersen, Elisabeth A; Menon, Rajasree; Bailey, Kelly M; Thomas, Dafydd G; Van Noord, Raelene A; Tran, Jenny; Wang, Hongwei; Qu, Ping Ping; Hoering, Antje; Fearon, Eric R; Chugh, Rashmi; Lawlor, Elizabeth R

    2016-09-01

    Ewing sarcomas are characterized by the presence of EWS/ETS fusion genes in the absence of other recurrent genetic alterations and mechanisms of tumor heterogeneity that contribute to disease progression remain unclear. Mutations in the Wnt/β-catenin pathway are rare in Ewing sarcoma but the Wnt pathway modulator LGR5 is often highly expressed, suggesting a potential role for the axis in tumor pathogenesis. We evaluated β-catenin and LGR5 expression in Ewing sarcoma cell lines and tumors and noted marked intra- and inter-tumor heterogeneity. Tumors with evidence of active Wnt/β-catenin signaling were associated with increased incidence of tumor relapse and worse overall survival. Paradoxically, RNA sequencing revealed a marked antagonism of EWS/ETS transcriptional activity in Wnt/β-catenin-activated tumor cells. Consistent with this, Wnt/β-catenin-activated cells displayed a phenotype that was reminiscent of Ewing sarcoma cells with partial EWS/ETS loss of function. Specifically, activation of Wnt/β-catenin induced alterations to the actin cytoskeleton, acquisition of a migratory phenotype, and upregulation of EWS/ETS-repressed genes. Notably, activation of Wnt/β-catenin signaling led to marked induction of tenascin C (TNC), an established promoter of cancer metastasis, and an EWS/ETS-repressed target gene. Loss of TNC function in Ewing sarcoma cells profoundly inhibited their migratory and metastatic potential. Our studies reveal that heterogeneous activation of Wnt/β-catenin signaling in subpopulations of tumor cells contributes to phenotypic heterogeneity and disease progression in Ewing sarcoma. Significantly, this is mediated, at least in part, by inhibition of EWS/ETS fusion protein function that results in derepression of metastasis-associated gene programs. Cancer Res; 76(17); 5040-53. ©2016 AACR.

  14. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells

    PubMed Central

    Kretzschmar, Kai; Cottle, Denny L; Schweiger, Pawel J; Watt, Fiona M

    2015-01-01

    Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin. PMID:26121213

  15. MAPK/ERK and Wnt/{beta}-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    SciTech Connect

    Jin, Caixia; Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong; Gerber, David A.

    2011-06-17

    Highlights: {yields} Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1{sup +} HPC proliferation and colony formation. {yields} Activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. {yields} Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1{sup +} HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1{sup +} HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  16. Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells

    PubMed Central

    Taipaleenmäki, Hanna; Farina, Nicholas H.; van Wijnen, Andre J.; Stein, Janet L.

    2016-01-01

    Wnt signaling is implicated in bone formation and activated in breast cancer cells promoting primary and metastatic tumor growth. A compelling question is whether osteogenic miRNAs that increase Wnt activity for bone formation are aberrantly expressed in breast tumor cells to support metastatic bone disease. Here we report that miR-218-5p is highly expressed in bone metastases from breast cancer patients, but is not detected in normal mammary epithelial cells. Furthermore, inhibition of miR-218-5p impaired the growth of bone metastatic MDA-MB-231 cells in the bone microenvironment in vivo. These findings indicate a positive role for miR-218-5p in bone metastasis. Bioinformatic and biochemical analyses revealed a positive correlation between aberrant miR-218-5p expression and activation of Wnt signaling in breast cancer cells. Mechanistically, miR-218-5p targets the Wnt inhibitors Sclerostin (SOST) and sFRP-2, which highly enhances Wnt signaling. In contrast, delivery of antimiR-218-5p decreased Wnt activity and the expression of metastasis-related genes, including bone sialoprotein (BSP/IBSP), osteopontin (OPN/SPP1) and CXCR-4, implicating a Wnt/miR-218-5p regulatory network in bone metastatic breast cancer. Furthermore, miR-218-5p also mediates the Wnt-dependent up-regulation of PTHrP, a key cytokine promoting cancer-induced osteolysis. Antagonizing miR-218-5p reduced the expression of PTHrP and Rankl, inhibited osteoclast differentiation in vitro and in vivo, and prevented the development of osteolytic lesions in a preclinical metastasis model. We conclude that pathological elevation of miR-218-5p in breast cancer cells activates Wnt signaling to enhance metastatic properties of breast cancer cells and cancer-induced osteolytic disease, suggesting that miR-218-5p could be an attractive therapeutic target for preventing disease progression. PMID:27738322

  17. 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade.

    PubMed

    Al Rahim, Md; Nakajima, Akira; Saigusa, Daisuke; Tetsu, Naomi; Maruyama, Yuji; Shibuya, Masatoshi; Yamakoshi, Hiroyuki; Tomioka, Yoshihisa; Iwabuchi, Yoshiharu; Ohizumi, Yasushi; Yamakuni, Tohru

    2009-08-18

    The biochemical and pharmacological activities of nobiletin, including neurotrophic and memory-enhancing action, in both in vitro and in vivo systems are well established. However, whether its metabolites do have such beneficial effects like nobiletin remains to be examined. Here we, for the first time, report that 2-(4-hydroxy-3-methoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (4'-demethylnobiletin), a major metabolite of nobiletin identified in the urine of rats and mice, stimulates the phosphorylation of ERK and CREB and enhances CRE-mediated transcription by activating a PKA/MEK/ERK pathway, like nobiletin, in cultured hippocampal neurons. Since NMDA receptor-mediated ERK signaling is involved in memory processing, including associative memories, we also examined whether 4'-demethylnobiletin, by activating ERK signaling, could restore learning impairment. Chronic intraperitoneal (ip) treatment of the mice with 10 or 50 mg of 4'-demethylnobiletin/kg rescued the NMDA receptor antagonist MK-801-induced learning impairment, accompanied by improvement of the MK-801-induced decrease in the level of ERK phosphorylation in the hippocampus of the animals. Consistently, 4'-demethylnobiletin also restored MK-801-induced inhibition of NMDA-stimulated phosphorylation of not only ERK but also PKA substrates in cultured rat hippocampal neurons. Moreover, we actually detected 4'-demethylnobiletin in the brain of mice following acute ip administration, demonstrating that the metabolite can cross the blood-brain barrier to reach the brain and thereby exert its effects to reverse learning impairment. Therefore, these results suggest that 4'-demethylnobiletin, a bioactive metabolite of nobiletin, may serve as a potential therapeutic agent, at least, for memory disorders associated with a dysregulated NMDA receptor ERK signaling, like nobiletin.

  18. The human HECA interacts with cyclins and CDKs to antagonize Wnt-mediated proliferation and chemoresistance of head and neck cancer cells

    SciTech Connect

    Dowejko, Albert; Bauer, Richard; Bauer, Karin; Mueller-Richter, Urs D.A.; Reichert, Torsten E.

    2012-03-10

    antagonizes Wnt-mediated cell proliferation through interaction with major cell cycle factors. Black-Right-Pointing-Pointer Modulating HECA level confers benefits for engaging tumor cells with cisplatin.

  19. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  20. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation*

    PubMed Central

    Li, Qiuling; Li, Yuewei; Gu, Bingnan; Fang, Lei; Zhou, Pengbo; Bao, Shilai; Huang, Lan; Dai, Xing

    2015-01-01

    Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression. PMID:26170450

  1. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways

    PubMed Central

    Fathi, Ezzatollah; Farahzadi, Raheleh

    2017-01-01

    Zinc ion as an essential trace element and electromagnetic fields (EMFs) has been reported to be involved in the regulation of bone metabolism. The aim of this study was to elucidate the effects of zinc sulphate (ZnSO4) on the osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) in the presence of EMF as a strategy in osteoporosis therapy. Alkaline phophatase (ALP) activity measurement, calcium assay and expression of several osteoblastic marker genes were examined to assess the effect of ZnSO4 on the osteogenic differentiation of ADSCs under EMF. The expression of cAMP and PKA was evaluated by ELISA. The expression of β-catenin, Wnt1, Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5) and reduced dickkopf1 (DKK1) genes were used to detect the Wnt/β-catenin pathway. It was found that ZnSO4, in the presence of EMF, resulted in an increase in the expression of osteogenic genes, ALP activity and calcium levels. EMF, in the presence of ZnSO4, increased the cAMP level and protein kinase A (PKA) activity. Treatment of ADSCs with (MAPK)/ERK kinase 1/2 inhibitor, or PKA inhibitor, significantly inhibited the promotion of osteogenic markers, indicating that the induction of osteogenesis was dependent on the ERK and PKA signaling pathways. Real-time PCR analysis showed that ZnSO4, in the presence of EMF, increased the mRNA expressions of β-catenin, Wnt1, Wnt3a, LRP5 and DKK1. In this study, it was shown that 0.432 μg/ml ZnSO4, in the presence of 50 Hz, 20 mT EMF, induced the osteogenic differentiation of ADSCs via PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PMID:28339498

  2. Wnt signaling in cancer

    PubMed Central

    Zhan, T; Rindtorff, N; Boutros, M

    2017-01-01

    Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches. PMID:27617575

  3. Secreted and Transmembrane Wnt Inhibitors and Activators

    PubMed Central

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  4. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling

    PubMed Central

    Wu, Jiayi; Chang, Paul; Kolber-Simonds, Donna; Ackermann, Karen; Twine, Natalie C.; Shie, Jue-Lon; Miu, Jingzang Tao; Huang, Kuan-Chun; Moniz, George A.; Nomoto, Kenichi

    2015-01-01

    Inhibition of Poly(ADP-ribose) Polymerase1 (PARP1) impairs DNA damage repair, and early generation PARP1/2 inhibitors (olaparib, niraparib, etc.) have demonstrated clinical proof of concept for cancer treatment. Here, we describe the development of the novel PARP inhibitor E7449, a potent PARP1/2 inhibitor that also inhibits PARP5a/5b, otherwise known as tankyrase1 and 2 (TNKS1 and 2), important regulators of canonical Wnt/β-catenin signaling. E7449 inhibits PARP enzymatic activity and additionally traps PARP1 onto damaged DNA; a mechanism previously shown to augment cytotoxicity. Cells deficient in DNA repair pathways beyond homologous recombination were sensitive to E7449 treatment. Chemotherapy was potentiated by E7449 and single agent had significant antitumor activity in BRCA-deficient xenografts. Additionally, E7449 inhibited Wnt/β-catenin signaling in colon cancer cell lines, likely through TNKS inhibition. Consistent with this possibility, E7449 stabilized axin and TNKS proteins resulting in β-catenin de-stabilization and significantly altered expression of Wnt target genes. Notably, hair growth mediated by Wnt signaling was inhibited by E7449. A pharmacodynamic effect of E7449 on Wnt target genes was observed in tumors, although E7449 lacked single agent antitumor activity in vivo, a finding typical for selective TNKS inhibitors. E7449 antitumor activity was increased through combination with MEK inhibition. Particularly noteworthy was the lack of toxicity, most significantly the lack of intestinal toxicity reported for other TNKS inhibitors. E7449 represents a novel dual PARP1/2 and TNKS1/2 inhibitor which has the advantage of targeting Wnt/β-catenin signaling addicted tumors. E7449 is currently in early clinical development. PMID:26513298

  5. Antagonizing canonical Wnt signaling pathway by recombinant human sFRP4 purified from E. coli and its implications in cancer therapy.

    PubMed

    Ghoshal, Archita; Ghosh, Siddhartha Sankar

    2016-07-01

    The Wnt signaling pathway plays a predominant role in aberrant proliferation in myriad of cancers. In non-cancerous cells, Wnts are blocked by the secreted frizzled-related proteins (sFRPs) that are generally downregulated in cancer cells. We have purified and characterized bacterially expressed glutathione S-transferase-tagged SFRP4 from a novel clone generated from human cell origin. Cervical cancer (HeLa) and lung cancer (A549) cells, in which Wnt and associated genes were found to be expressed, were treated with the purified recombinant sFRP4, which revealed a significant dose-dependent cell growth inhibition up to 40 %. The current investigation on functionality of this bacterially produced recombinant sFRP4 in arresting cancer cell proliferation is the first of its kind, where G2/M phase arrest and early apoptosis were evident. Increase in phosphorylated β-catenin in sFRP4 treatment indicated inhibition of Wnt pathway, which was further confirmed by downregulation of pro-proliferative genes, namely cyclin D1, c-myc, and survivin. Functional activity of recombinant sFRP4 was further exploited in co-therapy module with chemotherapeutic drugs to decipher molecular events. Collectively, our study on purified recombinant sFRP4 from bacterial host holds great promise in targeting Wnt signaling for exploring new strategies to combat cancer.

  6. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids

    PubMed Central

    Bassani, Barbara; Bartolini, Desirèe; Pagani, Arianna; Principi, Elisa; Zollo, Massimo; Noonan, Douglas M.; Albini, Adriana; Bruno, Antonino

    2016-01-01

    Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4

  7. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-β-catenin signaling pathways.

    PubMed

    Tang, Shifu; Hou, Yixuan; Zhang, Hailong; Tu, Gang; Yang, Li; Sun, Yifan; Lang, Lei; Tang, Xi; Du, Yan-E; Zhou, Mingli; Yu, Tenghua; Xu, Liyun; Wen, Siyang; Liu, Chunming; Liu, Manran

    2015-01-01

    Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the β-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21(Cip1) level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.

  8. TGF-β1 antagonizes TNF-α induced up-regulation of matrix metalloproteinase 3 in nucleus pulposus cells: role of the ERK1/2 pathway.

    PubMed

    Yang, Hao; Gao, Fei; Li, Xiang; Wang, Jianru; Liu, Hui; Zheng, Zhaomin

    2015-11-01

    Tumor necrosis factor-α (TNF-α) has been shown to have a catabolic effect on intervertebral disc degeneration (IVDD), including increasing MMP3 expression and subsequent extracellular matrix (ECM) degradation. In contrast, transforming growth factor-β1 (TGF-β1) has an anabolic effect on nucleus pulposus (NP) cells. However, the anti-catabolic effect of TGF-β1 under inflammatory condition is unknown. The aim of this study was to demonstrate whether TGF-β1 can reverse TNF-α-induced MMP3 increase in NP cells and to further investigate the underlying mechanisms. The transcriptional activity, gene expression, and protein levels of MMP3 were measured by luciferase reporter assay, qRT-PCR and western blot, respectively. TNF-α increased MMP3 expression in rat NP cells time and dose dependently. TGF-β1 could abolish TNF-α-mediated up-regulation of collagen I and MMP3 expression, and down-regulate aggrecan and collagen II expression. The ERK1/2 signaling pathway was activated after exposure to TGF-β1. Treatment with ERK1/2 inhibitors (PD98059 and U0126) abolished the antagonistic effect of TGF-β1 on TNF-α mediated catabolic responses. These findings provide novel evidence supporting the anti-catabolic role of TGF-β1 in IVDD, which is important for the potential clinical application of TGF-β1 in disc degenerative disorders.

  9. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer.

    PubMed

    Basbous, Jihane; Chalbos, Dany; Hipskind, Robert; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2007-06-01

    Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.

  10. Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis

    PubMed Central

    Li, Pengfei; Guo, Youming; Bledsoe, Grant; Yang, Zhirong; Chao, Lee; Chao, Julie

    2016-01-01

    Kallistatin is an endogenous protein that regulates differential signaling pathways and biological functions. Our previous studies showed that kallistatin gene therapy inhibited angiogenesis, tumor growth and metastasis in mice, and kallistatin protein suppressed Wnt-mediated growth, migration and invasion by blocking Wnt/β-catenin signaling pathway in breast cancer cells. In this study, we show that kallistatin reduced cell viability, and increased apoptotic cell death and caspase-3 activity in MDA-MB-231 breast cancer cells. Kallistatin also induced cancer cell autophagy, as evidenced by increased LC3B levels and elevated Atg5 and Beclin-1 expression; however, co-administration of Wnt or PPARγ antagonist GW9662 abolished these effects. Moreover, kallistatin via its heparin-binding site antagonized Wnt3a-induced cancer cell proliferation and increased PPARγ expression. Kallistatin inhibited oncogenic miR-21 synthesis associated with reduced Akt phosphorylation and Bcl-2 synthesis, but increased BAX expression. Kallistatin via PKC-ERK activation reduced miR-203 levels, leading to increased expression of suppressor of cytokine signaling 3 (SOCS3), a tumor suppressor. Conversely, kallistatin stimulated expression of the tumorigenic suppressors miR-34a and p53. Kallistatin’s active site is essential for suppressing miR-21 and miR-203, and stimulating miR-34a and SOCS3 expression. This is the first study to demonstrate that kallistatin’s heparin-binding site is essential for inhibiting Wnt-mediated effects, and its active site plays a key role in regulating miR-21, miR-203, miR-34a and SOCS3 synthesis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in inducing apoptosis and autophagy in breast cancer cells, thus inhibiting tumor progression by regulation of Wnt/PPARγ signaling, as well as miR-21, miR-203 and miR-34a synthesis. PMID:26790955

  11. Long-Term Memory Deficits are Associated with Elevated Synaptic ERK1/2 Activation and Reversed by mGluR5 Antagonism in an Animal Model of Autism

    PubMed Central

    Seese, Ronald R; Maske, Anna R; Lynch, Gary; Gall, Christine M

    2014-01-01

    A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T+ Itpr3tf/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology. PMID:24448645

  12. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand.

    PubMed

    Tassinari, V; Campolo, F; Cesarini, V; Todaro, F; Dolci, S; Rossi, P

    2015-03-12

    Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells.

  13. Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche

    PubMed Central

    Sugimura, Ryohichi; He, Xi C.; Venkatraman, Aparna; Arai, Fumio; Box, Andrew; Semerad, Craig; Haug, Jeffrey S.; Peng, Lai; Zhong, Xiao-bo; Suda, Toshio; Li, Linheng

    2015-01-01

    SUMMARY Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin+ osteoblasts (N-cad+OBs that enrich osteoprogenitors) in the niche. We further found that N-cad+OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca2+-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche. PMID:22817897

  14. Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance

    PubMed Central

    Blakely, Brette D.; Bye, Christopher R.; Fernando, Chathurini V.; Horne, Malcolm K.; Macheda, Maria L.; Stacker, Steven A.; Arenas, Ernest; Parish, Clare L.

    2011-01-01

    During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a−/− mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance. PMID:21483795

  15. Discovery of Klotho peptide antagonists against Wnt3 and Wnt3a target proteins using combination of protein engineering, protein-protein docking, peptide docking and molecular dynamics simulations.

    PubMed

    Mirza, Shaher Bano; Ekhteiari Salmas, Ramin; Fatmi, M Qaiser; Durdagi, Serdar

    2017-12-01

    The Klotho is known as lifespan enhancing protein involved in antagonizing the effect of Wnt proteins. Wnt proteins are stem cell regulators, and uninterrupted exposure of Wnt proteins to the cell can cause stem and progenitor cell senescence, which may lead to aging. Keeping in mind the importance of Klotho in Wnt signaling, in silico approaches have been applied to study the important interactions between Klotho and Wnt3 and Wnt3a (wingless-type mouse mammary tumor virus (MMTV) integration site family members 3 and 3a). The main aim of the study is to identify important residues of the Klotho that help in designing peptides which can act as Wnt antagonists. For this aim, a protein engineering study is performed for Klotho, Wnt3 and Wnt3a. During the theoretical analysis of homology models, unexpected role of number of disulfide bonds and secondary structure elements has been witnessed in case of Wnt3 and Wnt3a proteins. Different in silico experiments were carried out to observe the effect of correct number of disulfide bonds on 3D protein models. For this aim, total of 10 molecular dynamics (MD) simulations were carried out for each system. Based on the protein-protein docking simulations of selected protein models of Klotho with Wnt3 and Wnt3a, different peptides derived from Klotho have been designed. Wnt3 and Wnt3a proteins have three important domains: Index finger, N-terminal domain and a patch of ∼10 residues on the solvent exposed surface of palm domain. Protein-peptide docking of designed peptides of Klotho against three important domains of palmitoylated Wnt3 and Wnt3a yields encouraging results and leads better understanding of the Wnt protein inhibition by proposed Klotho peptides. Further in vitro studies can be carried out to verify effects of novel designed peptides as Wnt antagonists.

  16. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  17. Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled*

    PubMed Central

    Lee, Ho-Jin; Bao, Ju; Miller, Ami; Zhang, Chi; Wu, Jibo; Baday, Yiressy C.; Guibao, Cristina; Li, Lin; Wu, Dianqing; Zheng, Jie J.

    2015-01-01

    Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled. PMID:26504084

  18. Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines

    PubMed Central

    2013-01-01

    cells corroborated this observation. Interestingly, restoration of WNT4 expression in BJAB cells increased the accumulation of cells in G1 phase, and did not induce activation of canonical WNT/β-catenin target genes. Conclusions Our findings suggest that the WNT4 ligand plays a role in regulating the cell growth of leukemia-derived cells by arresting cells in the G1 cell cycle phase in an FZD6-independent manner, possibly through antagonizing the canonical WNT/β-catenin signaling pathway. PMID:24274766

  19. Molecular cloning, characterization and expression analysis of Wnt4, Wnt5, Wnt6, Wnt7, Wnt10 and Wnt16 from Litopenaeus vannamei.

    PubMed

    Zhang, Shuang; Li, Chao-Zheng; Yang, Qi-Hui; Dong, Xiao-Hui; Chi, Shu-Yan; Liu, Hong-Yu; Shi, Li-Li; Tan, Bei-Ping

    2016-07-01

    The Wnt (Wg-type MMTV integration site) signaling represents as the negative regulator of virus-induced innate immune responses. Wnt genes act as ligands to activate the Wnt signaling. To know more about the information of Wnt genes in invertebrates, Litopenaeus vannamei Wnt genes (LvWnts) were identified and characterized. In this study, Six Wnt genes (LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16) were obtained in L. vannamei. The complete cDNAs open reading frames (ORF) of LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16 were 1077 bp, 1107 bp, 1350 bp, 1047 bp, 1509 bp and 1158 bp (GenBank accession no. KU169896, KU169897, KU169898, KU169899, KU169900 and KU169901), encoding 358, 368, 449, 348, 502 and 385 amino acid (aa) residues respectively. All the six members of LvWnts contain a Wnt1 domain, which is considered as an important feature of Wnt gene family. ClustalW analysis with amino acid sequences revealed that the proportion of identity with other species was more than 48% for all the LvWnts except LvWnt10 (36-41%). The phylogenetic relationship analysis illustrated that different subtype of Wnts formed their own separate branches and were placed in branch of invertebrates respectively with strong bootstrap support. The constitutive expressions of LvWnts were confirmed by RT-PCR in all the examined five developmental stages and eleven tissues of L. vannamei with different express patterns. LvWnt4, LvWnt5 and LvWnt10 were expressed highest in nerve while LvWnt6, LvWnt7 and LvWnt16 were expressed highest in intestine, stomach and gill, respectively. In addition, all the LvWnts were regulated by white spot syndrome virus (WSSV) challenges at different levels in hepatopancreas, gill and hemocytes, suggesting that Wnt genes may play a role in the defense against pathogenic virus infection in innate immune of L. vannamei.

  20. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development

    PubMed Central

    Liu, Hong-Xiang; Grosse, Ann S.; Iwatsuki, Ken; Mishina, Yuji; Gumucio, Deborah L.; Mistretta, Charlotte M.

    2012-01-01

    Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor. PMID:22024319

  1. Updating the Wnt pathways

    PubMed Central

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  2. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  3. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    PubMed Central

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  4. ARF6-Regulated Endocytosis of Growth Factor Receptors Links Cadherin-Based Adhesion to Canonical Wnt Signaling in Epithelia

    PubMed Central

    Pellon-Cardenas, Oscar; Clancy, James; Uwimpuhwe, Henriette

    2013-01-01

    Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active β-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in β-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling. PMID:23716594

  5. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia.

    PubMed

    Pellon-Cardenas, Oscar; Clancy, James; Uwimpuhwe, Henriette; D'Souza-Schorey, Crislyn

    2013-08-01

    Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active β-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in β-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling.

  6. The Wnt pathway limits BMP signaling outside of the germline stem cell niche in Drosophila ovaries.

    PubMed

    Mottier-Pavie, Violaine I; Palacios, Victor; Eliazer, Susan; Scoggin, Shane; Buszczak, Michael

    2016-09-01

    The mechanisms that modulate and limit the signaling output of adult stem cell niches remain poorly understood. To gain further insights into how these microenvironments are regulated in vivo, we performed a candidate gene screen designed to identify factors that restrict BMP signal production to the cap cells that comprise the germline stem cell (GSC) niche of Drosophila ovaries. Through these efforts, we found that disruption of Wnt4 and components of the canonical Wnt pathway results in a complex germ cell phenotype marked by an expansion of GSC-like cells, pre-cystoblasts and cystoblasts in young females. This phenotype correlates with an increase of decapentaplegic (dpp) mRNA levels within escort cells and varying levels of BMP responsiveness in the germline. Further genetic experiments show that Wnt4, which exhibits graded expression in somatic cells of germaria, activates the Wnt pathway in posteriorly positioned escort cells. The activation of the Wnt pathway appears to be limited by the BMP pathway itself, as loss of Mad in escort cells results in the expansion of Wnt pathway activation. Wnt pathway activity changes within germaria during the course of aging, coincident with changes in dpp production. These data suggest that mutual antagonism between the BMP and Wnt pathways in somatic cells helps to regulate germ cell differentiation.

  7. Calcipotriol Targets LRP6 to Inhibit Wnt Signaling in Pancreatic Cancer

    PubMed Central

    Arensman, Michael D.; Nguyen, Phillip; Kershaw, Kathleen M.; Lay, Anna R.; Ostertag-Hill, Claire A.; Sherman, Mara H.; Downes, Michael; Liddle, Christopher; Evans, Ronald M.; Dawson, David W.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy in need of more effective treatment approaches. One potential therapeutic target is Wnt/β-catenin signaling, which plays important roles in PDAC tumor initiation and progression. Among Wnt inhibitors with suitable in vivo biological activity is vitamin D, which is known to antagonize Wnt/β-catenin signaling in colorectal cancer and have anti-tumor activity in PDAC. For this study the relationship between vitamin D signaling, Wnt/β-catenin activity and tumor cell growth in PDAC was investigated through the use of calcipotriol, a potent non-hypercalcemic vitamin D analog. PDAC tumor cell growth inhibition by calcipotriol was positively correlated with vitamin D receptor (VDR) expression and Wnt/β-catenin activity. Furthermore, vitamin D and Wnt signaling activity were found to be reciprocally linked through feedback regulation. Calcipotriol inhibited autocrine Wnt/β-catenin signaling in PDAC cell lines in parallel with decreased protein levels of the low density lipoprotein receptor-related protein 6 (LRP6), a requisite co-receptor for ligand-dependent canonical Wnt signaling. Decrease in LRP6 protein seen with calcipotriol was mediated through a novel mechanism involving transcriptional upregulation of low-density lipoprotein receptor adaptor protein 1 (LDLRAP1). Finally, changes in LRP6 or LDLRAP1 expression directly altered Wnt reporter activity, supporting their roles as regulators of ligand-dependent Wnt/β-catenin signaling. Implications This study provides a novel biochemical target through which vitamin D signaling exerts inhibitory effects on Wnt/β-catenin signaling, as well as potential biomarkers for predicting and following tumor response to vitamin D-based therapy. PMID:26224368

  8. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  9. Fritz: a secreted frizzled-related protein that inhibits Wnt activity.

    PubMed

    Mayr, T; Deutsch, U; Kühl, M; Drexler, H C; Lottspeich, F; Deutzmann, R; Wedlich, D; Risau, W

    1997-04-01

    Signaling molecules of the Wnt gene family are involved in the regulation of dorso-ventral, segmental and tissue polarity in Xenopus and Drosophila embryos. Members of the frizzled gene family, such as Drosophila frizzled-2 and rat frizzled-1, have been shown encode Wnt binding activity and to engage intracellular signal transduction molecules known to be part of the Wnt signaling pathway. Here we describe the cloning and characterization of Fritz, a mouse (mfiz) and human (hfiz) gene which codes for a secreted protein that is structurally related to the extracellular portion of the frizzled genes from Drosophila and vertebrates. The Fritz protein antagonizes Wnt function when both proteins are ectopically expressed in Xenopus embryos. In early gastrulation, mouse fiz mRNA is expressed in all three germ layers. Later in embryogenesis fiz mRNA is found in the central and peripheral nervous systems, nephrogenic mesenchyme and several other tissues, all of which are sites where Wnt proteins have been implicated in tissue patterning. We propose a model in which Fritz can interfere with the activity of Wnt proteins via their cognate frizzled receptors and thereby modulate the biological responses to Wnt activity in a multitude of tissue sites.

  10. Recent identification of an ERK signal gradient governing planarian regeneration.

    PubMed

    Agata, Kiyokazu; Tasaki, Junichi; Nakajima, Elizabeth; Umesono, Yoshihiko

    2014-06-01

    Planarians have strong regenerative abilities derived from their adult pluripotent stem cell (neoblast) system. However, the molecular mechanisms involved in planarian regeneration have long remained a mystery. In particular, no anterior-specifying factor(s) could be found, although Wnt family proteins had been successfully identified as posterior-specifying factors during planarian regeneration (Gurley et al., 2008; Petersen and Reddien, 2008). A recent textbook of developmental biology therefore proposes a Wnt antagonist as a putative anterior factor (Gilbert, 2013). That is, planarian regeneration was supposed to be explained by a single decreasing gradient of the β-catenin signal from tail to head. However, recently we succeeded in demonstrating that in fact the extracellular-signal regulated kinases (ERK) form a decreasing gradient from head to tail to direct the reorganization of planarian body regionality after amputation (Umesono et al., 2013).

  11. Wnt Signaling and Injury Repair

    PubMed Central

    Whyte, Jemima L.; Smith, Andrew A.; Helms, Jill A.

    2012-01-01

    Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. In this review we summarize recent data elucidating the roles that the Wnt pathway plays in the injury repair process. These data provide a foundation for potential Wnt-based therapeutic strategies aimed at stimulating tissue regeneration. PMID:22723493

  12. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    SciTech Connect

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji; Gong, Yaoqin; Shao, Changshun

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  13. Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling

    PubMed Central

    Ni, Terri T.; Rellinger, Eric J.; Mukherjee, Amrita; Stephens, Lauren; Thorne, Cutris A; Kim, Kwangho; Hu, Jiangyong; Xie, Shuying; Lee, Ethan; Marnett, Larry; Hatzopoulos, Antonis K.; Zhong, Tao P.

    2011-01-01

    Summary We have developed a robust in vivo small molecule screen that modulates heart size and cardiomyocyte generation in zebrafish. Three structurally-related compounds (Cardionogen-1 to -3) identified from our screen enlarge the size of the developing heart via myocardial hyperplasia. Increased cardiomyocyte number in Cardionogen-treated embryos is due to expansion of cardiac progenitor cells. In zebrafish embryos and murine embryonic stem (ES) cells, Cardionogen treatment promotes cardiogenesis during and after gastrulation, whereas inhibits heart formation before gastrulation. Cardionogen-induced effects can be antagonized by increasing Wnt/β-catenin signaling activity. We demonstrate that Cardionogen inhibits Wnt/β-catenin-dependent transcription in murine ES cells and zebrafish embryos. Cardionogen can rescue Wnt8-induced cardiomyocyte deficiency and heart-specific phenotypes during development. These findings demonstrate that in vivo small molecule screens targeted on heart size can discover compounds with cardiomyogenic effects and identify underlying target pathways. PMID:22195568

  14. Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma.

    PubMed

    Kocemba, Kinga A; Groen, Richard W J; van Andel, Harmen; Kersten, Marie José; Mahtouk, Karène; Spaargaren, Marcel; Pals, Steven T

    2012-01-01

    The Wnt/β-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is low or undetectable in a subset of patients with advanced MM as well as in MM cell lines. This absence of DKK1 is correlated with enhanced Wnt pathway activation, evidenced by nuclear accumulation of β-catenin, which in turn can be antagonized by restoring DKK1 expression. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of β-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling.

  15. Bone Morphogenetic Protein Antagonist Noggin Promotes Skin Tumorigenesis via Stimulation of the Wnt and Shh Signaling Pathways

    PubMed Central

    Sharov, Andrey A.; Mardaryev, Andrei N.; Sharova, Tatyana Y.; Grachtchouk, Marina; Atoyan, Ruzanna; Byers, H. Randolph; Seykora, John T.; Overbeek, Paul; Dlugosz, Andrzej; Botchkarev, Vladimir A.

    2009-01-01

    Bone morphogenetic proteins (BMPs) play pivotal roles in the regulation of skin development. To study the role of BMPs in skin tumorigenesis, BMP antagonist noggin was used to generate keratin 14-targeted transgenic mice. In contrast to wild-type mice, transgenic mice developed spontaneous hair follicle-derived tumors, which resemble human trichofolliculoma. Global gene expression profiles revealed that in contrast to anagen hair follicles of wild-type mice, tumors of transgenic mice showed stage-dependent increases in the expression of genes encoding the selected components of Wnt and Shh pathways. Specifically, expression of the Wnt ligands increased at the initiation stage of tumor formation, whereas expression of the Wnt antagonist and tumor suppressor Wnt inhibitory factor-1 decreased, as compared with fully developed tumors. In contrast, expression of the components of Shh pathway increased in fully developed tumors, as compared with the tumor placodes. Consistent with the expression data, pharmacological treatment of transgenic mice with Wnt and Shh antagonists resulted in the stage-dependent inhibition of tumor initiation, and progression, respectively. Furthermore, BMP signaling stimulated Wnt inhibitory factor-1 expression and promoter activity in cultured tumor cells and HaCaT keratinocytes, as well as inhibited Shh expression, as compared with the corresponding controls. Thus, tumor suppressor activity of the BMPs in skin epithelium depends on the local concentrations of noggin and is mediated at least in part via stage-dependent antagonizing of Wnt and Shh signaling pathways. PMID:19700758

  16. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats.

    PubMed

    Liu, Su; Liu, Yue-Peng; Huang, Zhi-Jiang; Zhang, Yan-Kai; Song, Angela A; Ma, Ping-Chuan; Song, Xue-Jun

    2015-12-01

    Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the β-catenin-dependent pathway in the spinal cord and the β-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. Sciatic nerve injury causes a rapid-onset and long-lasting expression of Wnt3a, Wnt5b, and Ryk receptors in primary sensory neurons, and dorsal horn neurons and astrocytes. Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.

  17. Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells

    PubMed Central

    Hwang, Jung-Hoo; Joo, Jong Cheon; Kim, Dae Joon; Jo, Eunbi; Yoo, Hwa-Seung; Lee, Kyung-Bok; Park, Soo Jung; Jang, Ik-Soon

    2016-01-01

    Constitutive activation of extracellular signal regulated kinase (ERK)-Jun NH2-terminal kinase (JNK) signaling commonly occurs in tumors. The activation of ERK promotes cell proliferation, whereas that of JNK induces cell apoptosis. However, the apoptotic mechanism of ERK-JNK signaling in cancer is not well understood. Recently, we identified that apoptosis and activation of the JNK signaling pathway were induced after cordycepin treatment in human renal cancer, suggesting that JNK signaling might contribute to TK-10 cell apoptosis. We investigated the apoptotic effects of cordycepin by evaluating the activation of the ERK-JNK signaling pathway in renal cancer TK-10 cells. We found that cordycepin downregulated ERK and DUSP5, upregulated phosphorylated-JNK (p-JNK), and induced apoptosis. Moreover, we showed that siRNA-mediated inhibition of ERK downregulated DUSP5, whereas ERK overexpression upregulated DUSP5, and that DUSP5 knockdown by siRNA upregulated p-JNK. The JNK-specific inhibitor SP600125 upregulated nuclear translocation of β-catenin, and downregulated Dickkopf-1 (Dkk1), which has been shown to be a potent inhibitor of Wnt signaling. Dkk1 knockdown by siRNA upregulated nuclear β-catenin, suggesting the involvement of the Wnt/β-catenin signaling pathway. DUSP5 overexpression in TK-10 cells decreased p-JNK and increased nuclear β-catenin. The decreased Bax activation markedly protected against cordycepin-induced apoptosis. Bax subfamily proteins induced apoptosis through caspase-3. Taken together, we show that JNK signaling activation by cordycepin mediated ERK inhibition, which might have induced Bax translocation and caspase-3 activation via regulation of DUSP5 in TK-10 cells, thereby promoting the apoptosis of TK-10 cells. Targeting ERK-JNK signaling via the apoptotic effects of cordycepin could be a potential therapeutic strategy to treat renal cancer. PMID:27648363

  18. Wnt trafficking: new insights into Wnt maturation, secretion and spreading.

    PubMed

    Port, Fillip; Basler, Konrad

    2010-10-01

    Proteins of the Wnt family are secreted signaling molecules that regulate multiple processes in animal development and control tissue homeostasis in the adult. Wnts spread over considerable distances to regulate gene expression in cells located at distant sites. Paradoxically, Wnts are poorly mobile because of their posttranslational modification with lipids. Recent evidence suggests that several pathways exist that are capable of transforming hydrophobic, insoluble Wnts into long-range signaling molecules. Furthermore, the discovery of Wntless as a protein specifically required for the secretion of Wnt suggests that Wnt trafficking through the secretory pathway is already under special scrutiny. Here, we review recent data on the molecular machinery that controls Wnt secretion and discuss how Wnts can be mobilized for long-range signaling.

  19. Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells.

    PubMed

    Zhang, Xiaoxiao; Peterson, Kevin A; Liu, X Shirley; McMahon, Andrew P; Ohba, Shinsuke

    2013-12-01

    Canonical Wnt signaling supports the pluripotency of embryonic stem cells (ESCs) but also promotes differentiation of early mammalian cell lineages. To explain these paradoxical observations, we explored the gene regulatory networks at play. Canonical Wnt signaling is intertwined with the pluripotency network comprising Nanog, Oct4, and Sox2 in mouse ESCs. In defined media supporting the derivation and propagation of ESCs, Tcf3 and β-catenin interact with Oct4; Tcf3 binds to Sox motif within Oct-Sox composite motifs that are also bound by Oct4-Sox2 complexes. Furthermore, canonical Wnt signaling upregulates the activity of the Pou5f1 distal enhancer via the Sox motif in ESCs. When viewed in the context of published studies on Tcf3 and β-catenin mutants, our findings suggest Tcf3 counters pluripotency by competition with Sox2 at these sites, and Tcf3 inhibition is blocked by β-catenin entry into this complex. Wnt pathway stimulation also triggers β-catenin association at regulatory elements with classic Lef/Tcf motifs associated with differentiation programs. The failure to activate these targets in the presence of a mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor essential for ESC culture suggests MEK/ERK signaling and canonical Wnt signaling combine to promote ESC differentiation.

  20. Wnt5a and Wnt11 are essential for second heart field progenitor development

    PubMed Central

    Cohen, Ethan David; Miller, Mayumi F.; Wang, Zichao; Moon, Randall T.; Morrisey, Edward E.

    2012-01-01

    Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development. PMID:22569553

  1. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2

    PubMed Central

    Wang, Chen; Qin, Lingfeng; Manes, Thomas D.; Kirkiles-Smith, Nancy C.; Tellides, George

    2014-01-01

    Recruitment of circulating leukocytes into inflamed tissues depends on adhesion molecules expressed by endothelial cells (ECs). Here we report that rapamycin pretreatment reduced the ability of TNF-treated ECs to capture T cells under conditions of venular flow. This functional change was caused by inhibition of TNF-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and could be mimicked by knockdown of mammalian target of rapamycin (mTOR) or rictor, but not raptor, implicating mTORC2 as the target of rapamycin for this effect. Mechanistically, mTORC2 acts through Akt to repress Raf1-MEK1/2-ERK1/2 signaling, and inhibition of mTORC2 consequently results in hyperactivation of ERK1/2. Increased ERK1/2 activity antagonizes VCAM-1 expression by repressing TNF induction of the transcription factor IRF-1. Preventing activation of ERK1/2 reduced the ability of rapamycin to inhibit TNF-induced VCAM-1 expression. In vivo, rapamycin inhibited mTORC2 activity and potentiated activation of ERK1/2. These changes correlated with reduced endothelial expression of TNF-induced VCAM-1, which was restored via pharmacological inhibition of ERK1/2. Functionally, rapamycin reduced infiltration of leukocytes into renal glomeruli, an effect which was partially reversed by inhibition of ERK1/2. These data demonstrate a novel mechanism by which rapamycin modulates the ability of vascular endothelium to mediate inflammation and identifies endothelial mTORC2 as a potential therapeutic target. PMID:24516119

  2. Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson’s disease

    PubMed Central

    L’Episcopo, Francesca; Tirolo, Cataldo; Caniglia, Salvo; Testa, Nuccio; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    During the past three decades, the Wingless-type MMTV integration site (Wnt) signaling cascade has emerged as an essential system regulating multiple processes in developing and adult brain. Accumulating evidence points to a dysregulation of Wnt signaling in major neurodegenerative pathologies including Parkinson’s disease (PD), a common neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic (mDA) neurons and deregulated activation of astrocytes and microglia. This review highlights the emerging link between Wnt signaling and key inflammatory pathways during mDA neuron damage/repair in PD progression. In particular, we summarize recent evidence documenting that aging and neurotoxicant exposure strongly antagonize Wnt/β-catenin signaling in mDA neurons and subventricular zone (SVZ) neuroprogenitors via astrocyte–microglial interactions. Dysregulation of the crosstalk between Wnt/β-catenin signaling and anti-oxidant/anti-inflammatory pathways delineate novel mechanisms driving the decline of SVZ plasticity with age and the limited nigrostriatal dopaminergic self-repair in PD. These findings hold a promise in developing therapies that target Wnt/β-catenin signaling to enhance endogenous restoration and neuronal outcome in age-dependent diseases, such as PD. PMID:24431301

  3. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    SciTech Connect

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  4. Tay bridge is a negative regulator of EGFR signalling and interacts with Erk and Mkp3 in the Drosophila melanogaster wing.

    PubMed

    Molnar, Cristina; de Celis, Jose F

    2013-01-01

    The regulation of Extracellular regulated kinase (Erk) activity is a key aspect of signalling by pathways activated by extracellular ligands acting through tyrosine kinase transmembrane receptors. In this process, participate proteins with kinase activity that phosphorylate and activate Erk, as well as different phosphatases that inactivate Erk by de-phosphorylation. The state of Erk phosphorylation affects not only its activity, but also its subcellular localization, defining the repertoire of Erk target proteins, and consequently, the cellular response to Erk. In this work, we characterise Tay bridge as a novel component of the EGFR/Erk signalling pathway. Tay bridge is a large nuclear protein with a domain of homology with human AUTS2, and was previously identified due to the neuronal phenotypes displayed by loss-of-function mutations. We show that Tay bridge antagonizes EGFR signalling in the Drosophila melanogaster wing disc and other tissues, and that the protein interacts with both Erk and Mkp3. We suggest that Tay bridge constitutes a novel element involved in the regulation of Erk activity, acting as a nuclear docking for Erk that retains this protein in an inactive form in the nucleus.

  5. Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation.

    PubMed

    Mylona, Anastasia; Theillet, Francois-Xavier; Foster, Charles; Cheng, Tammy M; Miralles, Francesc; Bates, Paul A; Selenko, Philipp; Treisman, Richard

    2016-10-14

    Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity.

  6. Norovirus Mechanisms of Immune Antagonism

    PubMed Central

    Roth, Alexa N.; Karst, Stephanie M.

    2015-01-01

    Noroviruses are a leading cause of gastroenteritis outbreaks globally. Several lines of evidence indicate that noroviruses can antagonize or evade host immune responses, including the absence of long-lasting immunity elicited during a primary norovirus exposure and the ability of noroviruses to establish prolonged infections that are associated with protracted viral shedding. Specific norovirus proteins possessing immune antagonist activity have been described in recent years although mechanistic insight in most cases is limited. In this review, we discuss these emerging strategies used by noroviruses to subvert the immune response, including the actions of two nonstructural proteins (p48 and p22) to impair cellular protein trafficking and secretory pathways; the ability of the VF1 protein to inhibit cytokine induction; and the ability of the minor structural protein VP2 to regulate antigen presentation. We also discuss the current state of the understanding of host and viral factors regulating the establishment of persistent norovirus infections along the gastrointestinal tract. A more detailed understanding of immune antagonism by pathogenic viruses will inform prevention and treatment of disease. PMID:26673810

  7. Wnt your brain be inflamed? Yes, it Wnt!

    PubMed Central

    Marchetti, Bianca; Pluchino, Stefano

    2013-01-01

    The roles of Wnts in neural development, synaptogenesis, and cancer are generally well characterized. Nonetheless, evidence exists that interactions between the immune and nervous systems control major brain regenerative processes ranging from physiological or pathological (reparative) regeneration to neurogenesis and synaptic plasticity. Recent studies describe deregulated Wnt-Fzd signaling in degenerative and inflammatory central nervous system (CNS) disorders, and the expression of Wnt signaling components in the immune system, and in immune-like cells of the mammalian CNS. This would suggest a likely involvement of Wnts in inflammation-driven brain damage and inflammation-directed brain repair. Here, we review how Wnts modulate neuroimmune interactions and offer a perspective on the most challenging therapeutic opportunities for those CNS diseases where injury-reactive Wnt-flavored inflammation precedes secondary neurodegeneration. PMID:23312954

  8. WNT10A — EDRN Public Portal

    Cancer.gov

    WNT10A, a probable developmental protein, is a ligand for members of the frizzled family of seven transmembrane receptors. It may be a signaling molecule important in CNS development. WNT10A is a member of the WNT family. The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

  9. Wnt signaling in the murine diastema

    PubMed Central

    Porntaveetus, Thantrira; Ohazama, Atsushi; Choi, Hong Y.; Herz, Joachim

    2012-01-01

    The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors. PMID:21531785

  10. Loss Of Klotho During Melanoma Progression Leads To Increased Filamin Cleavage, Increased Wnt5A Expression and Enhanced Melanoma Cell Motility

    PubMed Central

    Camilli, Tura C.; Xu, Mai; O'Connell, Michael P.; Chien, Bonnie; Frank, Brittany P.; Subaran, Sarah; Indig, Fred E.; Morin, Patrice J.; Hewitt, Stephen M.; Weeraratna, Ashani T.

    2010-01-01

    Summary We have previously shown that Wnt5A-mediated signaling can promote melanoma metastasis. It has been shown that Wnt signaling is antagonized by the protein Klotho, which has been implicated in aging. We show here that in melanoma cells, expressions of Wnt5A and Klotho are inversely correlated. In the presence of recombinant Klotho (rKlotho) we show that Wnt5A internalization and signaling is decreased in high Wnt5A expressing cells. Moreover, in the presence of rKlotho, we observe an increase in Wnt5A remaining in the medium, coincident with an increase in sialidase activity and decrease in syndecan expression. These effects can be inhibited using a sialidase inhibitor. In addition to its effects on Wnt5A internalization, we also demonstrate that Klotho decreases melanoma cell invasive potential by a second mechanism, that involves the inhibition of calpain and a resultant decrease in filamin cleavage, which we demonstrate is critical for melanoma cell motility. PMID:20955350

  11. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  12. Fresh WNT into the regulation of mitosis.

    PubMed

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  13. Wnt5a Signaling in Cancer

    PubMed Central

    Asem, Marwa S.; Buechler, Steven; Wates, Rebecca Burkhalter; Miller, Daniel L.; Stack, M. Sharon

    2016-01-01

    Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer. PMID:27571105

  14. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  15. Phenotypic spandrel: absolute discrimination and ligand antagonism

    NASA Astrophysics Data System (ADS)

    François, Paul; Hemery, Mathieu; Johnson, Kyle A.; Saunders, Laura N.

    2016-12-01

    We consider the general problem of sensitive and specific discrimination between biochemical species. An important instance is immune discrimination between self and not-self, where it is also observed experimentally that ligands just below the discrimination threshold negatively impact response, a phenomenon called antagonism. We characterize mathematically the generic properties of such discrimination, first relating it to biochemical adaptation. Then, based on basic biochemical rules, we establish that, surprisingly, antagonism is a generic consequence of any strictly specific discrimination made independently from ligand concentration. Thus antagonism constitutes a ‘phenotypic spandrel’: a phenotype existing as a necessary by-product of another phenotype. We exhibit a simple analytic model of discrimination displaying antagonism, where antagonism strength is linear in distance from the detection threshold. This contrasts with traditional proofreading based models where antagonism vanishes far from threshold and thus displays an inverted hierarchy of antagonism compared to simpler models. The phenotypic spandrel studied here is expected to structure many decision pathways such as immune detection mediated by TCRs and FCɛRIs, as well as endocrine signalling/disruption.

  16. Coordination of kidney organogenesis by Wnt signaling.

    PubMed

    Halt, Kimmo; Vainio, Seppo

    2014-04-01

    Several Wnt proteins are expressed in the embryonic kidney during various stages of development. Gene knockout models and ex vivo studies have provided strong evidence that Wnt-mediated signals are essential in renal ontogeny. Perhaps the most critical factors, Wnt9b and Wnt4, function during the early phase when the cap mesenchyme is induced to undergo morphogenesis into a nephron. Wnt11 controls early ureteric bud branching and contributes to the final kidney size. In addition to its inductive role, later on Wnt9b plays a significant role in the convergent extension of the tubular epithelial cells, while Wnt4 signaling controls smooth muscle cell fates in the medulla. Wnt7b has a specific function together with its likely antagonist Dkk1 in controlling the morphogenesis of the renal medulla. The signal-transduction mechanisms of the Wnts in kidney ontogeny have not been resolved, but studies characterizing the downstream signaling pathways are emerging. Aberrant Wnt signaling may lead to kidney diseases ranging from fatal kidney agenesis to more benign phenotypes. Wnt-mediated signaling regulates several critical aspects of kidney development from the early inductive stages to later steps of tubular epithelial maturation.

  17. Decorin Antagonizes the Angiogenic Network

    PubMed Central

    Neill, Thomas; Painter, Hannah; Buraschi, Simone; Owens, Rick T.; Lisanti, Michael P.; Schaefer, Liliana; Iozzo, Renato V.

    2012-01-01

    Decorin, a small leucine-rich proteoglycan, inhibits tumor growth by antagonizing multiple receptor tyrosine kinases including EGFR and Met. Here, we investigated decorin during normoxic angiogenic signaling. An angiogenic PCR array revealed a profound decorin-evoked transcriptional inhibition of pro-angiogenic genes, such as HIF1A. Decorin evoked a reduction of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor A (VEGFA) in MDA-231 breast carcinoma cells expressing constitutively-active HIF-1α. Suppression of Met with decorin or siRNA evoked a similar reduction of VEGFA by attenuating downstream β-catenin signaling. These data establish a noncanonical role for β-catenin in regulating VEGFA expression. We found that exogenous decorin induced expression of thrombospondin-1 and TIMP3, two powerful angiostatic agents. In contrast, decorin suppressed both the expression and enzymatic activity of matrix metalloprotease (MMP)-9 and MMP-2, two pro-angiogenic proteases. Our data establish a novel duality for decorin as a suppressor of tumor angiogenesis under normoxia by simultaneously down-regulating potent pro-angiogenic factors and inducing endogenous anti-angiogenic agents. PMID:22194599

  18. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond

    PubMed Central

    Brandenburg, Julius; Reiling, Norbert

    2016-01-01

    In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide. PMID:28082976

  19. Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication.

    PubMed

    Zhu, Meng; Duan, Hao; Gao, Meng; Zhang, Hao; Peng, Yihong

    2015-03-20

    It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.

  20. Role of Wnt signaling in fracture healing.

    PubMed

    Xu, Huiyun; Duan, Jing; Ning, Dandan; Li, Jingbao; Liu, Ruofei; Yang, Ruixin; Jiang, Jean X; Shang, Peng

    2014-12-01

    The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair.

  1. Wnt signaling in kidney tubulointerstitium during disease.

    PubMed

    Maarouf, Omar H; Ikeda, Yoichiro; Humphreys, Benjamin D

    2015-02-01

    The evolutionary conserved Wnt signaling transduction pathway plays essential roles in a wide array of biologic processes including embryonic development, branching morphogenesis, proliferation and carcinogenesis. Over the past ten years it has become increasingly clear that Wnt signaling also regulates the response of adult organs to disease processes, including kidney disease. This review will focus on the growing literature implicating important roles for Wnt signaling during disease in two separate kidney compartments: the tubular epithelium and the interstitium.

  2. Rescuing failed oral implants via Wnt activation

    PubMed Central

    Yin, Xing; Li, Jingtao; Chen, Tao; Mouraret, Sylvain; Dhamdhere, Girija; Brunski, John B.; Zou, Shujuan; Helms, Jill A.

    2016-01-01

    Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over-sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri-implant bone. After fibrous encapsulation was established peri-implant injections of a liposomal formulation of WNT3A protein (L-WNT3A) or liposomal PBS (L-PBS) were then initiated. Quantitative assays were employed to analyse the effects of L-WNT3A treatment. Results Implants in gap-type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L-WNT3A or L-PBS injections were initiated. L-WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri-implant environment, cell proliferation and osteogenic protein expression. The amount of peri-implant bone and bone in contact with the implant were significantly higher in L-WNT3A cases. Conclusions These data demonstrate L-WNT3A can induce peri-implant bone formation even in cases where fibrous encapsulation predominates. PMID:26718012

  3. Wnt signaling in development and disease.

    PubMed

    Freese, Jennifer L; Pino, Darya; Pleasure, Samuel J

    2010-05-01

    The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years, it has become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review, we turn to the ways that defects in Wnt signaling lead to neurologic disease.

  4. The Evolution of the Wnt Pathway

    PubMed Central

    Holstein, Thomas W.

    2012-01-01

    Wnt genes are important regulators of embryogenesis and cell differentiation in vertebrates and insects. New data revealed by comparative genomics have now shown that members of the Wnt signaling pathway can be found in all clades of metazoans, but not in fungi, plants, or unicellular eukaryotes. This article focuses on new data from recent genomic analyses of several basal metazoan organisms, providing evidence that the Wnt pathway was a primordial signaling pathway during evolution. The formation of a Wnt signaling center at the site of gastrulation was instrumental for the formation of a primary, anterior–posterior body axis, which can be traced throughout animal evolution. PMID:22751150

  5. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors

    PubMed Central

    Zhou, W-J; Xu, N; Kong, L; Sun, S-C; Xu, X-F; Jia, M-Z; Wang, Y; Chen, Z-Y

    2016-01-01

    Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant. PMID:27622936

  6. Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway.

    PubMed

    Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

  7. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2

    PubMed Central

    Perander, Maria; Al-Mahdi, Rania; Jensen, Thomas C.; Nunn, Jennifer A. L.; Kildalsen, Hanne; Johansen, Bjarne; Gabrielsen, Mads; Keyse, Stephen M.; Seternes, Ole-Morten

    2017-01-01

    The atypical MAP kinases ERK3 and ERK4 are activated by phosphorylation of a serine residue lying within the activation loop signature sequence S-E-G. However, the regulation of ERK3 and ERK4 phosphorylation and activity is poorly understood. Here we report that the inducible nuclear dual-specificity MAP kinase phosphatase (MKP) DUSP2, a known regulator of the ERK and p38 MAPKs, is unique amongst the MKP family in being able to bind to both ERK3 and ERK4. This interaction is mediated by a conserved common docking (CD) domain within the carboxyl-terminal domains of ERK3 and ERK4 and the conserved kinase interaction motif (KIM) located within the non-catalytic amino terminus of DUSP2. This interaction is direct and results in the dephosphorylation of ERK3 and ERK4 and the stabilization of DUSP2. In the case of ERK4 its ability to stabilize DUSP2 requires its kinase activity. Finally, we demonstrate that expression of DUSP2 inhibits ERK3 and ERK4-mediated activation of its downstream substrate MK5. We conclude that the activity of DUSP2 is not restricted to the classical MAPK pathways and that DUSP2 can also regulate the atypical ERK3/4-MK5 signalling pathway in mammalian cells. PMID:28252035

  8. Hypermethylation of Wnt antagonist gene promoters and activation of Wnt pathway in myelodysplastic marrow cells.

    PubMed

    Masala, Erico; Valencia, Ana; Buchi, Francesca; Nosi, Daniele; Spinelli, Elena; Gozzini, Antonella; Sassolini, Francesca; Sanna, Alessandro; Zecchi, Sandra; Bosi, Alberto; Santini, Valeria

    2012-10-01

    We observed aberrant gene methylation of Wnt antagonists: sFRP1, sFRP2, sFRP4, sFRP5 and DKK1 in marrow cells of 55 MDS cases. Methylation of Wnt antagonist genes was associated with activation of the Wnt signaling pathway, consistent with the up-regulation of the Wnt downstream genes TCF1 and LEF1. Azacitidine exposure induced demethylation of Wnt-antagonist gene promoters and reduction of the non-phosphorylated β-catenin (NPBC) which is prevalent during Wnt pathway inactivation. Presence of ≥5% of bone marrow blasts was associated with methylation of sFRP1 and DKK1 and with methylation of more than two of the five Wnt antagonist genes.

  9. In the Wnt-er of life: Wnt signalling in melanoma and ageing

    PubMed Central

    Kaur, Amanpreet; Webster, Marie R; Weeraratna, Ashani T

    2016-01-01

    Although the clinical landscape of melanoma is improving rapidly, metastatic melanoma remains a deadly disease. Age remains one of the greatest risk factors for melanoma, and patients older than 55 have a much poorer prognosis than younger individuals, even when the data are controlled for grade and stage. The reasons for this disparity have not been fully uncovered, but there is some recent evidence that Wnt signalling may have a role. Wnt signalling is known to have roles both in cancer progression as well as in organismal ageing. In melanoma, the interplay of Wnt signalling pathways is complex, with different members of the Wnt family guiding different aspects of invasion and proliferation. Here, we will briefly review the current literature addressing the roles of different Wnt pathways in melanoma pathogenesis, provide an overview of Wnt signalling during ageing, and discuss the intersection between melanoma and ageing in terms of Wnt signalling. PMID:27764844

  10. Harmine Induces Adipocyte Thermogenesis through RAC1-MEK-ERK-CHD4 Axis

    PubMed Central

    Nie, Tao; Hui, Xiaoyan; Mao, Liufeng; Nie, Baoming; Li, Kuai; Sun, Wei; Gao, Xuefei; Tang, Xiaofeng; Xu, Yong; Jiang, Baishan; Tu, Zhengcao; Li, Peng; Ding, Ke; Han, Weiping; Zhang, Shaoping; Xu, Aimin; Ding, Sheng; Liu, Pentao; Patterson, Adam; Cooper, Garth; Wu, Donghai

    2016-01-01

    Harmine is a natural compound possessing insulin-sensitizing effect in db/db diabetic mice. However its effect on adipose tissue browning is unknown. Here we reveal that harmine antagonizes high fat diet-induced adiposity. Harmine-treated mice gained less weight on a high fat diet and displayed increased energy expenditure and adipose tissue thermogenesis. In vitro, harmine potently induced the expression of thermogenic genes in both brown and white adipocytes, which was largely abolished by inhibition of RAC1/MEK/ERK pathway. Post-transcriptional modification analysis revealed that chromodomain helicase DNA binding protein 4 (CHD4) is a potential downstream target of harmine-mediated ERK activation. CHD4 directly binds the proximal promoter region of Ucp1, which is displaced upon treatment of harmine, thereby serving as a negative modulator of Ucp1. Thus, here we reveal a new application of harmine in combating obesity via this off-target effect in adipocytes. PMID:27805061

  11. WNT Signaling in Bone Development and Homeostasis

    PubMed Central

    Zhong, Zhendong; Ethen, Nicole J.; Williams, Bart O.

    2014-01-01

    The balance between bone formation and bone resorption controls postnatal bone homeostasis. Research over the last decade has provided a vast amount of evidence that WNT signaling plays a pivotal role in regulating this balance. Therefore, understanding how the WNT signaling pathway regulates skeletal development and homeostasis is of great value for human skeletal health and disease. PMID:25270716

  12. The Wnt signaling pathway in cancer.

    PubMed

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  13. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  14. Signal transduction by the Wnt family of ligands.

    PubMed Central

    Dale, T C

    1998-01-01

    The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102

  15. C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component.

    PubMed

    Howard, Robyn M; Sundaram, Meera V

    2002-07-15

    In Caenorhabditis elegans, Ras/ERK and Wnt/beta-catenin signaling pathways cooperate to induce P12 and vulval cell fates in a Hox-dependent manner. Here we describe eor-1 and eor-2, two new positively acting nuclear components of the Ras and Wnt pathways. eor-1 and eor-2 act downstream or in parallel to ERK and function redundantly with the Mediator complex gene sur-2 and the functionally related gene lin-25, such that removal of both eor-1/eor-2 and sur-2/lin-25 mimics the removal of a main Ras pathway component. Furthermore, the eor-1 and eor-2 mutant backgrounds reveal an essential role for the Elk1-related gene lin-1. eor-1 and eor-2 also act downstream or in parallel to pry-1 Axin and therefore act at the convergence of the Ras and Wnt pathways. eor-1 encodes the ortholog of human PLZF, a BTB/zinc-finger transcription factor that is fused to RARalpha in acute promyelocytic leukemia. eor-2 encodes a novel protein. EOR-1/PLZF and EOR-2 appear to function closely together and cooperate with Hox genes to promote the expression of Ras- and Wnt-responsive genes. Further studies of eor-1 and eor-2 may provide insight into the roles of PLZF in normal development and leukemogenesis.

  16. Pleiotrophin antagonizes Brd2 during neuronal differentiation.

    PubMed

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J; Garcia-Dominguez, Mario

    2014-06-01

    Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system.

  17. Heparin activates Wnt signaling for neuronal morphogenesis.

    PubMed

    Colombres, Marcela; Henríquez, Juan Pablo; Reig, Germán F; Scheu, Jessica; Calderón, Rosario; Alvarez, Alejandra; Brandan, Enrique; Inestrosa, Nibaldo C

    2008-09-01

    Wnt factors are secreted ligands that affect different aspects of the nervous system behavior like neurodevelopment, synaptogenesis and neurodegeneration. In different model systems, Wnt signaling has been demonstrated to be regulated by heparan sulfate proteoglycans (HSPGs). Whether HSPGs modulate Wnt signaling in the context of neuronal behavior is currently unknown. Here we demonstrate that activation of Wnt signaling with the endogenous ligand Wnt-7a results in an increased of neurite outgrowth in the neuroblastoma N2a cell line. Interestingly, heparin induces glycogen synthase kinase-3beta (GSK-3beta) inhibition, beta-catenin stabilization and morphological differentiation in both N2a cells and in rat primary hippocampal neuronal cultures. We also show that heparin modulates Wnt-3a-induced stabilization of beta-catenin. Several extracellular matrix and membrane-attached HSPGs were found to be expressed in both in vitro neuronal models. Changes in the expression of specific HSPGs were observed upon differentiation of N2a cells. Taken together, our findings suggest that HSPGs may modulate canonical Wnt signaling for neuronal morphogenesis.

  18. WNT signaling in neuronal maturation and synaptogenesis

    PubMed Central

    Rosso, Silvana B.; Inestrosa, Nibaldo C.

    2013-01-01

    The Wnt signaling pathway plays a role in the development of the central nervous system and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function, and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised. PMID:23847469

  19. Wnt signaling inhibits CTL memory programming.

    PubMed

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  20. Expression of MIG-6, WNT-9A, and WNT-7B during osteoarthritis.

    PubMed

    Velasquillo, Cristina; Garciadiego-Cázares, David; Almonte, Maylin; Bustamante, Marcia; Ibarra, Clemente; Kouri, Juan B; Chimal-Monroy, Jesús

    2007-11-01

    Although the molecular mechanisms for initiation of cartilage destruction in osteoarthritis (OA) are unknown, it has been demonstrated that disruption of mitogen-inducible gene 6 (Mig-6) in mice leads to the onset of a degenerative joint disease like OA. On this basis, we correlated gene expression of Mig-6 with Wnt-9a and Wnt-7b genes; we showed downregulation of Mig-6, Wnt-7b, and Wnt-9a during OA, while Wnt-7b was expressed also in osteoblast-like cells. Here we suggest that Aggrecan degradation occurs before the downregulation of Mig-6. It remains to be proven whether there is any relation between Wnt signaling and Aggrecan degradation.

  1. Wnt3-frizzled 1 chimera as a model to study canonical Wnt signaling.

    PubMed

    Bhat, Ramesh A; Stauffer, Barbara; Della Pietra, Anthony; Bodine, Peter V N

    2010-04-01

    Wnt proteins initiate signaling by binding to seven transmembrane spanning receptors of the frizzled (Fz) family together with the members of the low-density lipoprotein receptor-related protein (LRP) 5 and 6. A chimera of human Wnt3 and Fz1 receptor was developed that efficiently activated the TCF-luciferase reporter. Deletion of the cytoplasmic tail and point mutations in the PDZ binding region in the chimera resulted in the loss of Wnt signaling, suggesting a critical role for the Fz cytoplasmic region in Wnt signaling. The Fz CRD is also critical for Wnt signaling, as a deletion of 29 amino acids in the 2nd cysteine loop resulted in the total loss of TCF-luciferase activation. DKK-1 protein blocks upregulation of the TCF-luciferase reporter by the Wnt3-Fz1 chimera, suggesting involvement of LRP in Wnt3-Fz1 signaling. Expression of a Wnt3-Fz1 chimera in C3H10T1/2 cells resulted in the upregulation of alkaline phosphatase activity and inhibition of adipocyte formation, demonstrating that the Wnt3-Fz1 chimera is a potent activator of differentiation of C3H10T1/2 cells into osteoblasts and an inhibitor of their differentiation into the adipocyte lineage. In summary, the Wnt-Fz chimera approach has the potential to better our understanding of the mechanism of Wnt action and its role, particularly in stem cell differentiation. In addition, this methodology can be utilized to identify inhibitors of either Wnt, Fz or interactors of the canonical pathway, which may have potential therapeutic value in the treatment of cancers and other diseases.

  2. Polymorphisms in WNT6 and WNT10A and Colorectal Adenoma Risk

    PubMed Central

    Galbraith, Rachel L.; Poole, Elizabeth M.; Duggan, David; Muehling, Jill; Hsu, Li; Makar, Karen; Xiao, Liren; Potter, John D.; Ulrich, Cornelia M.

    2015-01-01

    The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene–environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G > A, rs10177996 A > G). The WNT6 rs6747776 homozygous minor allele (CC) was associated with increased risk of colorectal adenoma (OR = 2.75, 95% CI: 1.03–7.31). We observed a statistically significant interaction between WNT6 rs6747776 and the proportion of calories from total fat (P-int = 0.02), where the highest risk was observed among those with minor alleles and lowest fat intake. We also detected a marginally significant (0.05 < P ≤ 0.10) interaction with fish intake (P-int = 0.09). Additionally, a marginally significant interaction was observed between proportion of calories from saturated fat and the WNT10A rs7349332 polymorphism. Our results suggest that genetic variability in the WNT pathway may play a role in colorectal adenoma formation or may partly mediate the increased risk of colorectal cancer associated with fat intake. PMID:21547848

  3. Polymorphisms in WNT6 and WNT10A and colorectal adenoma risk.

    PubMed

    Galbraith, Rachel L; Poole, Elizabeth M; Duggan, David; Muehling, Jill; Hsu, Li; Makar, Karen; Xiao, Liren; Potter, John D; Ulrich, Cornelia M

    2011-01-01

    The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene-environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G > A, rs10177996 A > G). The WNT6 rs6747776 homozygous minor allele (CC) was associated with increased risk of colorectal adenoma (OR = 2.75, 95% CI: 1.03-7.31). We observed a statistically significant interaction between WNT6 rs6747776 and the proportion of calories from total fat (P-int = 0.02), where the highest risk was observed among those with minor alleles and lowest fat intake. We also detected a marginally significant (0.05 < P ≤ 0.10) interaction with fish intake (P-int = 0.09). Additionally, a marginally significant interaction was observed between proportion of calories from saturated fat and the WNT10A rs7349332 polymorphism. Our results suggest that genetic variability in the WNT pathway may play a role in colorectal adenoma formation or may partly mediate the increased risk of colorectal cancer associated with fat intake.

  4. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation.

    PubMed

    Villaseñor, Tomás; Madrid-Paulino, Edgardo; Maldonado-Bravo, Rafael; Urbán-Aragón, Antonio; Pérez-Martínez, Leonor; Pedraza-Alva, Gustavo

    2017-01-01

    Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis.

  5. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling

    PubMed Central

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC. PMID:26468775

  6. Antagonism by bioactive polyphenols against inflammation: a systematic view.

    PubMed

    Chu, Arthur J

    2014-02-01

    Through pattern recognition receptors, infections and tissue injuries drive innate immune cells to trigger inflammation with elevated cytokines, chemokines, growth factors, and other mediators. Inflammation resolves upon removal of pathogenic signals and the presence of pro-resolving conditions including combating adaptive immunity. Failure of resolution progresses into chronic inflammation, manifesting as detrimental disease development known as inflammatory diseases including cardiovascular diseases, diabetes, obesity, cancers, etc. Inflammation typically involves activations of many intracellular signaling pathways such as PI3K/AkT/mTORC1, PI3K/AkT/IKK(JNK), Ras/Raf/MEK/ERK, JAK/STAT, etc.; these pathways could in turn mediate the upregulations of proinflammatory transcription factors (e.g., NFκB, activator protein 1 (AP-1), HIF, signal transducer and activator of transcription (STAT), etc.). Furthermore, the resulting FOXO inactivation ensures inflammatory proceeding. This review provides a systematic view that polyphenols target multiple inflammatory components and reinforce anti-inflammatory mechanisms by antioxidant potentials, AMPK activation, PI3K/AkT inhibition, IKK/JNK inhibition, mTORC1 inhibition, JAK/STAT inhibition, TLR suppression, and ACE inhibition. As a result, polyphenols readily lead to NFκB, AP-1, HIF, and STAT inactivations with reduced proinflammatory mediator generation. In conclusion, polyphenols sustain resolution of inflammation and antagonize against proinflammation, which is readily consistent with diverse anti-inflammatory actions. The promoted, restored, and maintained tissue homeostasis beyond its anti-inflammatory effects also extends to diverse health benefits for disease preventions and interventions.

  7. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy?

    PubMed Central

    Buscà, Roser; Pouysségur, Jacques; Lenormand, Philippe

    2016-01-01

    The MAP kinase signaling cascade Ras/Raf/MEK/ERK has been involved in a large variety of cellular and physiological processes that are crucial for life. Many pathological situations have been associated to this pathway. More than one isoform has been described at each level of the cascade. In this review we devoted our attention to ERK1 and ERK2, which are the effector kinases of the pathway. Whether ERK1 and ERK2 specify functional differences or are in contrast functionally redundant, constitutes an ongoing debate despite the huge amount of studies performed to date. In this review we compiled data on ERK1 vs. ERK2 gene structures, protein sequences, expression levels, structural and molecular mechanisms of activation and substrate recognition. We have also attempted to perform a rigorous analysis of studies regarding the individual roles of ERK1 and ERK2 by the means of morpholinos, siRNA, and shRNA silencing as well as gene disruption or gene replacement in mice. Finally, we comment on a recent study of gene and protein evolution of ERK isoforms as a distinct approach to address the same question. Our review permits the evaluation of the relevance of published studies in the field especially when measurements of global ERK activation are taken into account. Our analysis favors the hypothesis of ERK1 and ERK2 exhibiting functional redundancy and points to the concept of the global ERK quantity, and not isoform specificity, as being the essential determinant to achieve ERK function. PMID:27376062

  8. Differential transformation of mammary epithelial cells by Wnt genes.

    PubMed Central

    Wong, G T; Gavin, B J; McMahon, A P

    1994-01-01

    The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent. Images PMID:8065359

  9. The mTOR and canonical Wnt signaling pathways mediate the mnemonic effects of progesterone in the dorsal hippocampus.

    PubMed

    Fortress, Ashley M; Heisler, John D; Frick, Karyn M

    2015-05-01

    Although much is known about the neural mechanisms responsible for the mnemonic effects of 17β-estradiol (E2 ), very little is understood about the mechanisms through which progesterone (P4 ) regulates memory. We previously showed that intrahippocampal infusion of P4 in ovariectomized female mice enhances object recognition (OR) memory consolidation in a manner dependent on activation of dorsal hippocampal ERK and mTOR signaling. However, the role of specific progesterone receptors (PRs) in mediating the effects of progesterone on memory consolidation and hippocampal cell signaling are unknown. Therefore, the goals of this study were to investigate the roles of membrane-associated and intracellular PRs in mediating hippocampal memory consolidation, and identify downstream cell signaling pathways activated by PRs. Membrane-associated PRs were targeted using bovine serum albumin-conjugated progesterone (BSA-P), and intracellular PRs (PR-A, PR-B) were targeted using the intracellular PR agonist R5020. Immediately after OR training, ovariectomized mice received bilateral dorsal hippocampal infusion of vehicle, P4 , BSA-P, or R5020. OR memory consolidation was enhanced by P4 , BSA-P, and R5020. However, only P4 and BSA-P activated ERK and mTOR signaling. Furthermore, dorsal hippocampal infusion of the ERK inhibitor U0126 blocked the memory-enhancing effects of BSA-P, but not R5020. The intracellular PR antagonist RU486 blocked the memory-enhancing effects of R5020, but not BSA-P. Interestingly, P4 robustly activated canonical Wnt signaling in the dorsal hippocampus, which is consistent with our recent findings that canonical Wnt signaling is necessary for OR memory consolidation. R5020, but not BSA-P, also elicited a modest increase in canonical Wnt signaling. Collectively, these data suggest that activation of ERK signaling is necessary for membrane-associated PRs to enhance OR, and indicate a role for canonical Wnt signaling in the memory-enhancing effects of

  10. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  11. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling

    PubMed Central

    Lien, Wen-Hui; Fuchs, Elaine

    2014-01-01

    In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells—embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells—in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects. PMID:25030692

  12. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    SciTech Connect

    Singla, Dinender K. . E-mail: Dinender.Kumar@uvm.edu; Schneider, David J.; LeWinter, Martin M.; Sobel, Burton E.

    2006-06-30

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.

  13. Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling.

    PubMed

    Takahashi, Kohta; Hosono, Masahiro; Sato, Ikuro; Hata, Keiko; Wada, Tadashi; Yamaguchi, Kazunori; Nitta, Kazuo; Shima, Hiroshi; Miyagi, Taeko

    2015-10-01

    The plasma membrane-associated sialidase NEU3 is a key enzyme for ganglioside degradation. We previously demonstrated remarkable up-regulation of NEU3 in various human cancers, with augmented malignant properties. Here, we provide evidence of a close link between NEU3 expression and Wnt/β-catenin signaling in colon cancer cells by analyzing tumorigenic potential and cancer stem-like characteristics. NEU3 silencing in HT-29 and HCT116 colon cancer cells resulted in significant decrease in clonogenicity on soft agar and in vivo tumor growth, along with down-regulation of stemness and Wnt-related genes. Analyses further revealed that NEU3 enhanced phosphorylation of the Wnt receptor LRP6 and consequently β-catenin activation by accelerating complex formation with LRP6 and recruitment of GSK3β and Axin, whereas its silencing exerted the opposite effects. NEU3 activity-null mutants failed to demonstrate the activation, indicating the requirement of ganglioside modulation by the sialidase for the effects. Under sphere-forming conditions, when stemness genes are up-regulated, endogenous NEU3 expression was found to be significantly increased, whereas NEU3 silencing suppressed sphere-formation and in vivo tumor incidence in NOD-SCID mice. Increased ability of clonogenicity on soft agar and sphere formation by Wnt stimulation was abrogated by NEU3 silencing. Furthermore, NEU3 was found to regulate phosphorylation of ERK and Akt via EGF receptor and Ras cascades, thought to be additionally required for tumor progression. The results indicate an essential contribution of NEU3 to tumorigenic potential through maintenance of stem-like characteristics of colon cancer cells by regulating Wnt signaling at the receptor level, in addition to tumor progression via Ras/MAPK signaling.

  14. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity

    PubMed Central

    Klaus, Christina; Schneider, Ursula; Hedberg, Christian; Schütz, Anke K; Bernhagen, Jürgen; Waldmann, Herbert; Gassler, Nikolaus; Kaemmerer, Elke

    2014-01-01

    AIM: To investigate the role of acyl-CoA synthetase 5 (ACSL5) activity in Wnt signaling in intestinal surface epithelia. METHODS: Several cell lines were used to investigate the ACSL5-dependent expression and synthesis of Wnt2B, a mitochondrially expressed protein of the Wnt signaling family. Wnt activity was functionally assessed with a luciferase reporter assay. ACSL5-related biochemical Wnt2B modifications were investigated with a modified acyl-exchange assay. The findings from the cell culture models were verified using an Apcmin/+ mouse model as well as normal and neoplastic diseased human intestinal tissues. RESULTS: In the presence of ACSL5, Wnt2B was unable to translocate into the nucleus and was enriched in mitochondria, which was paralleled by a significant decrease in Wnt activity. ACSL5-dependent S-palmitoylation of Wnt2B was identified as a molecular reason for mitochondrial Wnt2B accumulation. In cell culture systems, a strong relation of ACSL5 expression, Wnt2B palmitoylation, and degree of malignancy were found. Using normal mucosa, the association of ACSL5 and Wnt2B was seen, but in intestinal neoplasias the mechanism was only rudimentarily observed. CONCLUSION: ACSL5 mediates antiproliferative activities via Wnt2B palmitoylation with diminished Wnt activity. The molecular pathway is probably relevant for intestinal homeostasis, overwhelmed by other pathways in carcinogenesis. PMID:25356045

  15. Regulation of NMDA-receptor synaptic transmission by Wnt signaling

    PubMed Central

    Cerpa, Waldo; Gambrill, Abigail; Inestrosa, Nibaldo C.; Barria, Andres

    2011-01-01

    Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections is not known. We found that Wnt-5a acutely and specifically up-regulates synaptic NMDAR currents in rat hippocampal slices facilitating induction of LTP, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca2+ and activation of non-canonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism. PMID:21715611

  16. ERKed by LRRK2: A cell biological perspective on hereditary and sporadic Parkinson’s disease

    PubMed Central

    Verma, Manish; Steer, Erin K.; Chu, Charleen T.

    2014-01-01

    The leucine rich repeat kinase 2 (LRRK2/dardarin) is implicated in autosomal dominant familial and sporadic Parkinson’s disease (PD); mutations in LRRK2 account for up to 40% of PD cases in some populations. LRRK2 is a large protein with a kinase domain, a GTPase domain, and multiple potential protein interaction domains. As such, delineating the functional pathways for LRRK2 and mechanisms by which PD-linked variants contribute to age-related neurodegeneration could result in pharmaceutically tractable therapies. A growing number of recent studies implicate dysregulation of mitogen activated protein kinases 3 and 1 (also known as ERK1/2) as possible downstream mediators of mutant LRRK2 effects. As these master regulators of growth, differentiation, neuronal plasticity and cell survival have also been implicated in other PD models, a set of common cell biological pathways may contribute to neuronal susceptibility in PD. Here, we review the literature on several major cellular pathways impacted by LRRK2 mutations – autophagy, microtubule/cytoskeletal dynamics, and protein synthesis – in context of potential signaling crosstalk involving the ERK1/2 and Wnt signaling pathways. Emerging implications for calcium homeostasis, mitochondrial biology and synaptic dysregulation are discussed in relation to LRRK2 interactions with other PD gene products. It has been shown that substantia nigra neurons in human PD and Lewy body dementia patients exhibit cytoplasmic accumulations of ERK1/2 in mitochondria, autophagosomes and bundles of intracellular fibrils. Both experimental and human tissue data implicate pathogenic changes in ERK1/2 signaling in sporadic, toxin-based and mutant LRRK2 settings, suggesting engagement of common cell biological pathways by divergent PD etiologies. PMID:24225420

  17. Delivery of the Porcupine Inhibitor WNT974 in Mice

    PubMed Central

    Zhang, Li-shu; Lum, Lawrence

    2016-01-01

    We describe here a technique for delivering the porcupine inhibitor WNT974 (formerly LGK974) in mice. The protocol entails once-a-day oral delivery of WNT974 for up to 3 months at a concentration sufficient to achieve systemic Wnt pathway inhibition with limited toxicity as measured by weight change. This route of delivery enables extended durations of Wnt signaling inhibition in a mammalian model organism. PMID:27590157

  18. Exosomes go with the Wnt.

    PubMed

    Koles, Kate; Budnik, Vivian

    2012-07-01

    Exosomes, small secreted microvesicles, are implicated in intercellular communication in diverse cell types, transporting protein, lipid and nucleic acid cargo that impact the physiology of recipient cells. Besides the signaling function of exosomes they also serve as a mechanism to dispose obsolete cellular material.(1) Particularly exciting is the involvement of exosomal communication in the nervous system, as this has important implications for brain development and function. The properties of exosomes are also beginning to entice the biomedical community since they represent potentially novel avenues for the targeted delivery of customized exosome cargo, such as miRNAs, during disease. Our findings implicating exosomes in trans-synaptic communication emerged from the serendipitous observation that at the Drosophila larval neuromuscular junction (NMJ) the release of a signaling molecule, Wnt1/Wingless (Wg) and its binding partner Evenness Interrupted (Evi)/Wntless (Wls)/Sprint (Srt), were released by motorneurons in association with vesicles, which we postulated to be exosomes.(2) In our most recent paper(3) using in vivo analysis at the Drosophila NMJ as well as in cultured insect cells we formally demonstrate that Evi rides in exosomes that are released to the extracellular space and identify some of the players involved in their release. In addition, a proteomic analysis of exosomes highlights novel potential function of exosomes.

  19. A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers

    PubMed Central

    Ahmed, Kamal; Shaw, Holly V.; Koval, Alexey; Katanaev, Vladimir L.

    2016-01-01

    Aberrant WNT signaling underlies cancerous transformation and growth in many tissues, such as the colon, breast, liver, and others. Downregulation of the WNT pathway is a desired mode of development of targeted therapies against these cancers. Despite the urgent need, no WNT signaling-directed drugs currently exist, and only very few candidates have reached early phase clinical trials. Among different strategies to develop WNT-targeting anti-cancer therapies, repositioning of existing drugs previously approved for other diseases is a promising approach. Nonsteroidal anti-inflammatory drugs like aspirin, the anti-leprotic clofazimine, and the anti-trypanosomal suramin are among examples of drugs having recently revealed WNT-targeting activities. In total, 16 human-use drug compounds have been found to be working through the WNT pathway and show promise for their prospective repositioning against various cancers. Advances, hurdles, and prospects of developing these molecules as potential drugs against WNT-dependent cancers, as well as approaches for discovering new ones for repositioning, are the foci of the current review. PMID:27429001

  20. Wnt signaling: role in LTP, neural networks and memory.

    PubMed

    Oliva, Carolina A; Vargas, Jessica Y; Inestrosa, Nibaldo C

    2013-06-01

    Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulates the function of the adult nervous system. In fact, most of the key components including Wnts and Frizzled receptors are expressed in the adult brain. Wnt ligands have been implicated in the regulation of synaptic assembly as well as in neurotransmission and synaptic plasticity. Deregulation of Wnt signaling has been associated with several pathologies, and more recently has been related to neurodegenerative diseases and to mental and mood disorders. In this review, we focus our attention on the Wnt signaling cascade in postnatal life and we review in detail the presence of Wnt signaling components in pre- and postsynaptic regions. Due to the important role of Wnt proteins in wiring neural circuits, we discuss recent findings about the role of Wnt pathways both in basal spontaneous activities as well as in activity-dependent processes that underlie synaptic plasticity. Finally, we review the role of Wnt in vivo and we finish with the most recent data in literature that involves the effect of components of the Wnt signaling pathway in neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling, as well as the data that support a neuroprotective role of Wnt proteins in relation to the pathogenesis of Alzheimer's disease.

  1. Perfluorooctanoic acid induces human Ishikawa endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling

    PubMed Central

    Li, Fujun; Wang, Yixong; Xu, Yang; Zhang, Mei; Zhang, Xiaoqian; Ying, Xiaoyan; Zhang, Xuesen

    2016-01-01

    Perfluorooctanoic acid (PFOA) is a common environmental pollutant that has been associated with various diseases, including cancer. We explored the molecular mechanisms underlying PFOA-induced endometrial cancer cell invasion and migration. PFOA treatment enhanced migration and invasion by human Ishikawa endometrial cancer cells, which correlated with decreased E-cadherin expression, a marker of epithelial-mesenchymal transition. PFOA also induced activation of ERK1/2/mTOR signaling. Treatment with rapamycin, an mTOR inhibitor, antagonized the effects of PFOA and reversed the effects of PFOA activation in a xenograft mouse model of endometrial cancer. Consistent with these results, pre-treatment with rapamycin abolished PFOA-induced down-regulation of E-cadherin expression. These results indicate that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. PMID:27589685

  2. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  3. Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells

    PubMed Central

    Min, Soonki; Park, Ki Cheong; Park, Sunho; Hwang, Tae Hyun; Ryu, Do Hyun; Hwang, Geum-Sook; Cheong, Jae-Ho

    2016-01-01

    Abnormal tumor cell metabolism is a consequence of alterations in signaling pathways that provide critical selective advantage to cancer cells. However, a systematic characterization of the metabolic and signaling pathways altered in cancer stem-like cells (CSCs) is currently lacking. Using nuclear magnetic resonance and mass spectrometry, we profiled the whole-cell metabolites of a pair of parental (P-231) and stem-like cancer cells (S-231), and then integrated with whole transcriptome profiles. We identified elevated NAAD+ in S-231 along with a coordinated increased expression of genes in Wnt/calcium signaling pathway, reflecting the correlation between metabolic reprogramming and altered signaling pathways. The expression of CD38 and ALP, upstream NAAD+ regulatory enzymes, was oppositely regulated between P- and S-231; high CD38 strongly correlated with NAADP in P-231 while high ALP with NAAD+ levels in S-231. Antagonizing Wnt activity by dnTCF4 transfection reversed the levels of NAAD+ and ALP expression in S-231. Of note, elevated NAAD+ caused a decrease of cytosolic Ca2+ levels preventing calcium-induced apoptosis in nutrient-deprived conditions. Reprograming of NAD+ metabolic pathway instigated by Wnt signaling prevented cytosolic Ca2+ overload thereby inhibiting calcium-induced apoptosis in S-231. These results suggest that “oncometabolites” resulting from cross talk between the deranged core cancer signaling pathway and metabolic network provide a selective advantage to CSCs. PMID:27391070

  4. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    SciTech Connect

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung; Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho; Lee, Gye Won; Yun, Mi-Young; Cuong, Nguyen Manh; Shin, Jae-Gook; Song, Gyu-Yong; Oh, Sangtaek

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  5. [Wnt signalling pathway and cervical cancer].

    PubMed

    Ramos-Solano, Moisés; Álvarez-Zavala, Monserrat; García-Castro, Beatriz; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana

    2015-01-01

    Cervical cancer (CC) is a pathology that arises in the cervical epithelium, whose major cause of risk is human papillomavirus (HPV) infection. Due to the fact that HPV infection per se is not enough to generate a carcinogenic process, it has been proposed that alterations in the Wnt signaling pathway are involved in cervical carcinogenesis. The Wnt family consists of 13 receptors and 19 ligands, and it is highly conserved phylogenetically due to its contribution in different biological processes, such as embryogenesis and tissue regeneration. Additionally, this signaling pathway modulates various cellular functions, for instance: cell proliferation, differentiation, migration and cell polarity. This paper describes the Wnt signaling pathways and alterations that have been found in members of this family in different cancer types and, especially, in CC.

  6. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  7. 6-HYDROXYDOPAMINE INDUCES MITOCHONDRIAL ERK ACTIVATION

    PubMed Central

    Kulich, Scott M.; Horbinski, Craig; Patel, Manisha; Chu, Charleen T.

    2007-01-01

    Reactive oxygen species (ROS) are implicated in 6-hydroxydopamine (6-OHDA) injury to catecholaminergic neurons; however, the mechanism(s) are unclear. In addition to ROS generated during autoxidation, 6-OHDA may initiate secondary cellular sources of ROS that contribute to toxicity. Using a neuronal cell line, we found that catalytic metalloporphyrin antioxidants conferred protection if added 1 hour after exposure to 6-OHDA, whereas the hydrogen peroxide scavenger catalase failed to protect if added more than 15 min after 6-OHDA. There was a temporal correspondence between loss of protection and loss of the ability of the antioxidant to inhibit 6-OHDA-induced ERK phosphorylation. Time course studies of aconitase inactivation, as an indicator of intracellular superoxide, and MitoSOX red, a mitochondria targeted ROS indicator, demonstrate early intracellular ROS followed by a delayed phase of mitochondrial ROS production, associated with phosphorylation of a mitochondrial pool of ERK. Furthermore, upon initiation of mitochondrial ROS and ERK activation, 6-OHDA-injured cells became refractory to rescue by metalloporphyrin antioxidants. Together with previous studies showing that inhibition of the ERK pathway confers protection from 6-OHDA toxicity, and that phosphorylated ERK accumulates in mitochondria of degenerating human Parkinson’s disease neurons, these studies implicate mitochondrial ERK activation in Parkinsonian oxidative neuronal injury. PMID:17602953

  8. Wnt signalling in neuronal differentiation and development.

    PubMed

    Inestrosa, Nibaldo C; Varela-Nallar, Lorena

    2015-01-01

    Wnts are secreted glycoproteins that play multiple roles in early development, including the differentiation of precursor cells. During this period, gradients of Wnts and other morphogens are formed and regulate the differentiation and migration of neural progenitor cells. Afterwards, Wnt signalling cascades participate in the formation of neuronal circuits, playing roles in dendrite and axon development, dendritic spine formation and synaptogenesis. Finally, in the adult brain, Wnts control hippocampal plasticity, regulating synaptic transmission and neurogenesis. In this review, we summarize the reported roles of Wnt signalling cascades in these processes with a particular emphasis on the role of Wnts in neuronal differentiation and development.

  9. Wnt signaling in axial patterning and regeneration: lessons from planaria.

    PubMed

    De Robertis, Edward M

    2010-06-22

    Wnt signal transduction plays a crucial role in stem cell proliferation and regeneration. When canonical Wnt signaling is low, heads develop, and when it is high, tails are formed. In planarians, Wnt transcription is activated by wounding in a beta-catenin-independent way. Hedgehog is one of the signals involved, because it induces regeneration of tails (instead of heads) through the activation of Wnt transcription. Depletion of Smad4 blocks regeneration entirely, which suggests that the bone morphogenetic protein signaling pathway and the Wnt pathway are required for regeneration and body patterning.

  10. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis.

    PubMed

    Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick

    2012-01-01

    Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.

  11. Antagonizing Retinoic Acid and FGF/MAPK Pathways Control Posterior Body Patterning in the Invertebrate Chordate Ciona intestinalis

    PubMed Central

    Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick

    2012-01-01

    Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region. PMID:23049976

  12. Phosphatase resistance of ERK2 brain kinase PK40erk2.

    PubMed

    Roder, H M; Hoffman, F J; Schröder, W

    1995-05-01

    We have previously shown that a brain protein kinase, termed PK40, catalyzes the multiple phosphorylation of the KSP-repeat site of neurofilaments (NFs) and also can transform tau proteins into the paired helical filament-like state as found in Alzheimer's disease (AD) brains. Protein sequence analysis suggests that PK40 is a form of the extracellular signal-regulated kinase ERK2. A subpopulation of ERK2 species in soluble brain fractions can be efficiently phosphorylated and activated in cell-free systems, simply by adding Mg(2+)-ATP. Two phosphoisoforms of PK40erk2 are formed in this process, which have a reduced gel mobility, very much like the ERK2 form obtained in cell culture by stimulation with growth factors. One of these low-mobility forms cannot be inactivated with protein phosphatase 2A (PP2A) or with tyrosine phosphatases. The second form can be slowly inactivated by PP2A. In this case two Ser/Thr phosphates are removed at different rates during inactivation: One phosphate is very quickly removed to result in the formation of a high-mobility 39-kDa ERK2 species without consequence for activity; the other, slowly removed Ser/Thr phosphate controls the activity but has no effect on the gel mobility of ERK2. These results show that forms of ERK2 exist with properties different from the previously characterized ERK2 (p42mapk) from stimulated cell cultures. The active ERK2 forms produced in the presence of Mg(2+)-ATP alone could provide an explanation for the existence of constitutive ERK2-like NF phosphorylation in vivo. Excessive formation of an ERK2 species resistant to inactivation by PP2A might be relevant to the persistent pathological tau hyperphosphorylation in AD.

  13. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2009-05-01

    We cloned and characterized human WNT2B in 1996, and then others cloned and characterized mouse, chicken, and zebrafish WNT2B orthologs. WNT2B is expressed in several types of human cancer, such as basal cell carcinoma, gastric cancer, breast cancer, head/neck squamous cell carcinoma, cervical cancer and leukemia. WNT2B is one of canonical WNTs transducing signals through Frizzled (FZD) and LRP5/LRP6 receptors to beta-catenin-TCF/LEF signaling cascade. Here, refined integrative genomic analyses on WNT2B orthologs were carried out to elucidate its transcriptional mechanisms. GLI-, double FOX-, HES/HEY-, bHLH-, and Sp1-binding sites within mammalian WNT2B promoter were well conserved. Because GLI1, FOXA2, FOXC2, FOXE1, FOXF1 and FOXL1 are direct target genes of Hedgehog-GLI2 signaling cascade, Hedgehog signals should induce WNT2B upregulation through GLI family members as well as FOX family members. Notch, BMP and Hedgehog signals inhibit WNT2B expression via HES/HEY-binding to N-box, whereas BMP and WNT signals inhibit bHLH transcription factor-induced WNT2B expression via ID1, ID2, ID3, MSX1 or MSX2. Together these facts indicate that Hedgehog signals and bHLH transcription factors are involved in WNT2B upregulation, which is counteracted by BMP, WNT and Notch signals. Mesenchymal BMP induces IHH expression in gastrointestinal epithelial cells, and then epithelial Hedgehog induces WNT2B and BMP4 expression in mesenchymal cells. NF-kappaB signals induce SHH upregulation, and WNT2B is upregulated in inflammatory bowel disease (IBD). BMP-IHH and inflammation-SHH signaling loops are involved in WNT2B up-regulation during embryogenesis, adult tissue homeostasis, and carcinogenesis.

  14. The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway

    PubMed Central

    Chang, Sai; Ruan, Wen-chen; Xu, Ya-zhou; Wang, Yun-jie; Pang, Jie; Zhang, Lu-yong; Liao, Hong; Pang, Tao

    2017-01-01

    Recent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro. ARDD (1, 10 μmol/L) significantly enhanced neurite outgrowth in NGF-treated PC12 cells and N1E115 cells in a time-dependent manner. In cultured primary cortical neurons, ARDD (5, 10 μmol/L) not only significantly increased neurite outgrowth but also increased the number of neurites on the soma and the number of bifurcations. Further analyses showed that ARDD (10 μmol/L) significantly increased the phosphorylation of ERK1/2 and the downstream GSK-3β, subsequently induced β-catenin expression and up-regulated the gene expression of the Wnt ligands Fzd1 and Wnt3a in neuronal cells. The neurite outgrowth-promoting effect of ARDD in neuronal cells was abolished by pretreatment with the specific ERK1/2 inhibitor PD98059, but was partially reversed by XAV939, an inhibitor of the Wnt/β-catenin pathway. ARDD also increased the expression of BDNF, CREB and GAP-43 in N1E115 cells, which was reversed by pretreatment with PD98059. In N1E115 cells subjected to oxygen and glucose deprivation (OGD), pretreatment with ARDD (1–10 μmol/L) significantly enhanced the phosphorylation of ERK1/2 and induced neurite outgrowth. These results demonstrated that the natural product ARDD exhibits neurite outgrowth-inducing activity in neurons via activation of the ERK signaling pathway, which may be beneficial to the treatment of brain diseases. PMID:27840407

  15. The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway.

    PubMed

    Chang, Sai; Ruan, Wen-Chen; Xu, Ya-Zhou; Wang, Yun-Jie; Pang, Jie; Zhang, Lu-Yong; Liao, Hong; Pang, Tao

    2017-01-01

    Recent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro. ARDD (1, 10 μmol/L) significantly enhanced neurite outgrowth in NGF-treated PC12 cells and N1E115 cells in a time-dependent manner. In cultured primary cortical neurons, ARDD (5, 10 μmol/L) not only significantly increased neurite outgrowth but also increased the number of neurites on the soma and the number of bifurcations. Further analyses showed that ARDD (10 μmol/L) significantly increased the phosphorylation of ERK1/2 and the downstream GSK-3β, subsequently induced β-catenin expression and up-regulated the gene expression of the Wnt ligands Fzd1 and Wnt3a in neuronal cells. The neurite outgrowth-promoting effect of ARDD in neuronal cells was abolished by pretreatment with the specific ERK1/2 inhibitor PD98059, but was partially reversed by XAV939, an inhibitor of the Wnt/β-catenin pathway. ARDD also increased the expression of BDNF, CREB and GAP-43 in N1E115 cells, which was reversed by pretreatment with PD98059. In N1E115 cells subjected to oxygen and glucose deprivation (OGD), pretreatment with ARDD (1-10 μmol/L) significantly enhanced the phosphorylation of ERK1/2 and induced neurite outgrowth. These results demonstrated that the natural product ARDD exhibits neurite outgrowth-inducing activity in neurons via activation of the ERK signaling pathway, which may be beneficial to the treatment of brain diseases.

  16. Distinct Wnt signaling pathways have opposing roles in appendage regeneration.

    PubMed

    Stoick-Cooper, Cristi L; Weidinger, Gilbert; Riehle, Kimberly J; Hubbert, Charlotte; Major, Michael B; Fausto, Nelson; Moon, Randall T

    2007-02-01

    In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.

  17. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds

    PubMed Central

    Madan, Babita; Walker, Matthew P.; Young, Robert; Quick, Laura; Orgel, Kelly A.; Ryan, Meagan; Gupta, Priti; Henrich, Ian C.; Ferrer, Marc; Marine, Shane; Roberts, Brian S.; Arthur, William T.; Berndt, Jason D.; Oliveira, Andre M.; Moon, Randall T.; Chou, Margaret M.; Major, Michael B.

    2016-01-01

    The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit. PMID:27162353

  18. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    PubMed

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  19. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    PubMed Central

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  20. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients

    PubMed Central

    Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Introduction Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. Methods MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Results Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Conclusion Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential. PMID:26352263

  1. Expression of Wnt Signaling Components during Xenopus Pronephros Development

    PubMed Central

    Zhang, Bo; Tran, Uyen; Wessely, Oliver

    2011-01-01

    Background The formation of the vertebrate kidney is tightly regulated and relies on multiple evolutionarily conserved inductive events. These are present in the complex metanephric kidney of higher vertebrates, but also in the more primitive pronephric kidney functional in the larval stages of amphibians and fish. Wnts have long been viewed as central in this process. Canonical β-Catenin-dependent Wnt signaling establishes kidney progenitors and non-canonical β-Catenin-independent Wnt signaling participate in the morphogenetic processes that form the highly sophisticated nephron structure. While some individual Wnt signaling components have been studied extensively in the kidney, the overall pathway has not yet been analyzed in depth. Methodology/Principal Findings Here we report a detailed expression analysis of all Wnt ligands, receptors and several downstream Wnt effectors during pronephros development in Xenopus laevis using in situ hybridization. Out of 19 Wnt ligands, only three, Wnt4, Wnt9a and Wnt11, are specifically expressed in the pronephros. Others such as Wnt8a are present, but in a broader domain comprising adjacent tissues in addition to the kidney. The same paradigm is observed for the Wnt receptors and its downstream signaling components. Fzd1, Fzd4, Fzd6, Fzd7, Fzd8 as well as Celsr1 and Prickle1 show distinct expression domains in the pronephric kidney, whereas the non-traditional Wnt receptors, Ror2 and Ryk, as well as the majority of the effector molecules are rather ubiquitous. In addition to this spatial regulation, the timing of expression is also tightly regulated. In particular, non-canonical Wnt signaling seems to be restricted to later stages of pronephros development. Conclusion/Significance Together these data suggest a complex cross talk between canonical and non-canonical Wnt signaling is required to establish a functional pronephric kidney. PMID:22028899

  2. p120-catenin in canonical Wnt signaling.

    PubMed

    Duñach, Mireia; Del Valle-Pérez, Beatriz; García de Herreros, Antonio

    2017-03-03

    Canonical Wnt signaling controls β-catenin protein stabilization, its translocation to the nucleus and the activation of β-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1ɛ, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of β-catenin; (iii) the activation of Rac1 small GTPase, required for β-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for β-catenin stabilization but for β-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where β-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.

  3. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  4. Gut Commensal Bacteria and Regional Wnt Gene Expression in the Proximal Versus Distal Colon

    PubMed Central

    Neumann, Philipp-Alexander; Koch, Stefan; Hilgarth, Roland S.; Perez-Chanona, Ernesto; Denning, Patricia; Jobin, Christian; Nusrat, Asma

    2015-01-01

    Regional expression of Wingless/Int (Wnt) genes plays a central role in regulating intestinal development and homeostasis. However, our knowledge of such regional Wnt proteins in the colon remains limited. To understand further the effect of Wnt signaling components in controlling intestinal epithelial homeostasis, we investigated whether the physiological heterogeneity of the proximal and distal colon can be explained by differential Wnt signaling. With the use of a Wnt signaling-specific PCR array, expression of 84 Wnt-mediated signal transduction genes was analyzed, and a differential signature of Wnt-related genes in the proximal versus distal murine colon was identified. Several Wnt agonists (Wnt5a, Wnt8b, and Wnt11), the Wnt receptor frizzled family receptor 3, and the Wnt inhibitory factor 1 were differentially expressed along the colon length. These Wnt signatures were associated with differential epithelial cell proliferation and migration in the proximal versus distal colon. Furthermore, reduced Wnt/β-catenin activity and decreased Wnt5a and Wnt11 expression were observed in mice lacking commensal bacteria, an effect that was reversed by conventionalization of germ-free mice. Interestingly, myeloid differentiation primary response gene 88 knockout mice showed decreased Wnt5a levels, indicating a role for Toll-like receptor signaling in regulating Wnt5a expression. Our results suggest that the morphological and physiological heterogeneity within the colon is in part facilitated by the differential expression of Wnt signaling components and influenced by colonization with bacteria. PMID:24418259

  5. Wnt signaling in heart valve development and osteogenic gene induction

    PubMed Central

    Alfieri, Christina M.; Cheek, Jonathan; Chakraborty, Santanu; Yutzey, Katherine E.

    2009-01-01

    Wnt signaling mediated by beta-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VIC) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of beta-catenin and induction of periostin and matrix gla-protein, but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis and pathogenesis. PMID:19961844

  6. Wnt-11 overexpression promoting the invasion of cervical cancer cells.

    PubMed

    Wei, Heng; Wang, Ning; Zhang, Yao; Wang, Shizhuo; Pang, Xiaoao; Zhang, Shulan

    2016-09-01

    Wnt-11 is a positive regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, Wnt-11 expression in cervical cancer has not been well investigated. The aim of this study was to investigate the role of Wnt-11 in cervical tumor proliferation and invasion. This study examined 24 normal cervical squamous epithelia, 29 cervical intraepithelial neoplasia (CIN), and 78 cervical cancer samples. The expression of Wnt-11 was investigated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction analysis. The expression of the high-risk human papilloma virus (HR-HPV) E6 oncoprotein was also investigated by immunohistochemistry. In addition, the expression of Wnt-11, HR-HPV E6, JNK-1, phosphorylated JNK-1(P-JNK1), and β-catenin was examined by western blot analysis following Wnt-11 knockdown or overexpression in HeLa or SiHa cells, respectively. The promotion of cervical cancer cell proliferation and invasion was investigated using the cell counting kit-8 and Matrigel invasion assay, respectively. Wnt-11 and HR-HPV E6 expression increased in a manner that corresponded with the progression of cervical cancer and was significantly correlated with the International Federation of Gynecology and Obstetrics cancer stage, lymph node metastasis, tumor size, and HPV infection. Wnt-11 protein expression was positively associated with HR-HPV E6 protein expression in all 78 cervical cancer samples (P < 0.001). Furthermore, Wnt-11 was positively associated with P-JNK1 expression and promoted cervical cancer cell proliferation and invasion. These observations suggest that the increased Wnt-11 expression observed in cervical cancer cells may lead to the phosphorylation and activation of JNK-1 and significantly promote tumor cell proliferation and cell migration/invasion through activation of the Wnt/JNK pathway. Consequently, Wnt-11 may serve as a novel target for cervical cancer therapy.

  7. Wnt-3a is critical for caudal embryonic development

    SciTech Connect

    Camper, S.A.; Greco, T.L.; Newhouse, M.M.

    1994-09-01

    Skeletal and neural tube defects represent an important class of birth defects. The majority of mouse mutants with neural tube defects also have malformations of the tail. Vestigial tail (vt) is an autosomal recessive mouse mutation characterized by reduction or absence of the tail, vertebral abnormalities, and reduced fertility. The phenotype has been described as the result of failure of cell migration through the primitive streak, causing abnormalities in the development of the neural tube and a reduction in the ventral ectodermal ridge. Wnt3a is an excellent candidate gene for vt because Wnt3a is expressed in the primitive streak and in the embryonic mesoderm, and it is thought to be involved in cell-to-cell communication and formation of the dorsal-ventral axis in the CNS. A lack of Wnt3a might be expected to result in overdorsalization of the neural tube and reduction of the ventral ectodermal ridge characteristic of vt/vt embryos. In a high resolution backcross segregating vt, we observed no recombination between vt and Wnt3a in 363 individuals analyzed. In vt/vt mice, Southern blot analysis revealed no abnormalities in the Wnt3a gene, and the Wnt3a cDNA sequence does not encode any amino acid changes. Whole mount in situ hybridization analysis demonstrated that Wnt3a expression is severely reduced in the developing tailbud of day 9.5 vt/vt embryos, suggestive of a lesion in the regulation on Wnt3a expression. An alleleism test, carried out by mating vt/vt males with Wnt3a +/Wnt3a- females, demonstrated that vt and Wnt3a are noncomplementing alleles. All of the compound heterozygotes exhibited severe tail defects, including occasional examples of hind limb parlaysis and spina bifida. The vertebral defects are intermediate between those of vt and Wnt3a homozygotes, suggesting that the concentration of Wnt3a correlates with the severity of the defect.

  8. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    PubMed

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  9. Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β*

    PubMed Central

    Galea, Gabriel L.; Meakin, Lee B.; Sugiyama, Toshihiro; Zebda, Noureddine; Sunters, Andrew; Taipaleenmaki, Hanna; Stein, Gary S.; van Wijnen, Andre J.; Lanyon, Lance E.; Price, Joanna S.

    2013-01-01

    Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is prevented by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHPP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect. Tamoxifen, a nongenomic ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation

  10. Genetic Screening of WNT4 and WNT5B in Two Populations with Deviating Bone Mineral Densities.

    PubMed

    Hendrickx, Gretl; Boudin, Eveline; Steenackers, Ellen; Nielsen, Torben Leo; Andersen, Marianne; Brixen, Kim; Van Hul, Wim

    2017-03-01

    A role for WNT4 and WNT5B in bone metabolism was indicated by genome-wide association studies (GWAS) and a Wnt4 knockout mouse model. The aim of this study was therefore to replicate and further investigate the causality between genetic variation in WNT4 and WNT5B and deviating bone mineral density (BMD) values. A WNT4 and WNT5B mutation screening was performed in patients with craniotubular hyperostosis using Sanger sequencing. Here, no putative causal mutations were detected. Moreover, a high and low BMD cohort was selected from the Odense Androgen Study population for re-sequencing. In WNT4 we detected four variants (three rare, one common), while in WNT5B we detected five variants (two rare, three common). For the common variants, no significant difference in genotype frequencies between the high and low BMD cohorts was observed. The SNPs associated with the GWAS were genotyped in these cohorts, but again no significant difference in genotype frequencies was observed. Despite the findings of the GWAS, we were not able to replicate or further verify the genetic association of polymorphisms in WNT4 and WNT5B with BMD. In order to do so, the intronic regions of both genes could be investigated more thoroughly in more extended populations (or extremes) with greater power. Future genetic and functional studies toward adjacent genes of WNT4 and WNT5B can also be interesting to figure out whether the signal from GWAS could possibly be attributed to genetic variation in these genes.

  11. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    SciTech Connect

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat; and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  12. Tankyrase is necessary for canonical Wnt signaling during kidney development

    PubMed Central

    Karner, Courtney M.; Merkel, Calli E; Dodge, Michael; Ma, Zhiqiang; Lu, Jianming; Chen, Chuo; Lum, Lawrence; Carroll, Thomas J.

    2010-01-01

    Recent studies utilizing small molecule antagonists have revealed that the poly(ADP-ribose) polymerases (PARPs) Tankyrase 1 and 2 are critical regulators of canonical Wnt signaling in some cellular contexts. However, the absence of any activity during zebrafish embryogenesis suggested that the tankyrases may not be general/core components of the Wnt pathway. Here we show that Tnks1 and 2 are broadly expressed during mouse development and are essential during kidney and lung development. In the kidney, blockage of tankyrase activity phenocopies the effect of blocking production of all Wnt ligands. Tankyrase inhibition can be rescued by activation of β-catenin demonstrating its specificity for the Wnt pathway. In addition, treatment with tankyrase inhibitors appears to be completely reversible in some cell types. These studies suggest that the tankyrases are core components of the canonical Wnt pathway and their inhibitors should enjoy broad usage as antagonists of Wnt signaling. PMID:20549720

  13. Secretion and extracellular space travel of Wnt proteins.

    PubMed

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  14. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells.

    PubMed

    Voloshanenko, Oksana; Erdmann, Gerrit; Dubash, Taronish D; Augustin, Iris; Metzig, Marie; Moffa, Giusi; Hundsrucker, Christian; Kerr, Grainne; Sandmann, Thomas; Anchang, Benedikt; Demir, Kubilay; Boehm, Christina; Leible, Svenja; Ball, Claudia R; Glimm, Hanno; Spang, Rainer; Boutros, Michael

    2013-01-01

    Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.

  15. Canonical Wnt signaling is necessary for object recognition memory consolidation.

    PubMed

    Fortress, Ashley M; Schram, Sarah L; Tuscher, Jennifer J; Frick, Karyn M

    2013-07-31

    Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical β-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3β, β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3β levels, followed by a decrease in β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3β/β-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3β phosphorylation and levels of β-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.

  16. Wnt signaling regulates homeostasis of the periodontal ligament

    PubMed Central

    Lim, W.H.; Liu, B.; Cheng, D.; Williams, B.O.; Mah, S.J.; Helms, J.A.

    2014-01-01

    Background and Objective In health, the periodontal ligament maintains a constant width throughout an organism’s lifetime. The molecular signals responsible for maintaining homeostatic control over the periodontal ligament are unknown. The purpose of this study was to investigate the role of Wnt signaling in this process by removing an essential chaperone protein, Wntless (Wls) from odontoblasts and cementoblasts, and observing the effects of Wnt depletion on cells of the periodontal complex. Material and Methods The Wnt responsive status of the periodontal complex was assessed using two strains of Wnt reporter mice, Axin2LacZ/+ mice and Lgr5LacZ/+. The function of this endogenous Wnt signal was evaluated by conditionally eliminating the Wntless (Wls) gene using an Osteocalcin Cre driver. The resulting OCN-Cre;Wlsfl/fl mice were examined using micro-CT and histology, immunohistochemical analyses for Osteopontin, Runx2 and Fibromodulin, in situ hybridization for Osterix, and alkaline phosphatase activity. Results The adult periodontal ligament is Wnt responsive. Elimination of Wnt signaling in the periodontal complex of OCN-Cre;Wlsfl/fl mice results in a wider periodontal ligament space. This pathologically increased periodontal width is due to a reduction in the expression of osteogenic genes and proteins, which results in thinner alveolar bone. A concomitant increase in fibrous tissue occupying the periodontal space was observed along with a disruption in the orientation of the periodontal ligament. Conclusion The periodontal ligament is a Wnt dependent tissue. Cells in the periodontal complex are Wnt responsive and eliminating an essential component of the Wnt signaling network leads to a pathological widening of the periodontal ligament space. Osteogenic stimuli are reduced and a disorganized fibrillary matrix results from depletion of Wnt signaling. Collectively, these data underscore the importance of Wnt signaling in homeostasis of the periodontal ligament

  17. Targeting the WNT Signaling Pathway in Cancer Therapeutics.

    PubMed

    Tai, David; Wells, Keith; Arcaroli, John; Vanderbilt, Chad; Aisner, Dara L; Messersmith, Wells A; Lieu, Christopher H

    2015-10-01

    The WNT signaling cascade is integral in numerous biological processes including embryonic development, cell cycle regulation, inflammation, and cancer. Hyperactivation of WNT signaling secondary to alterations to varying nodes of the pathway have been identified in multiple tumor types. These alterations converge into increased tumorigenicity, sustained proliferation, and enhanced metastatic potential. This review seeks to evaluate the evidence supporting the WNT pathway in cancer, the therapeutic strategies in modulating this pathway, and potential challenges in drug development.

  18. Anti-Melanogenic Activities of Heracleum moellendorffii via ERK1/2-Mediated MITF Downregulation

    PubMed Central

    Alam, Md Badrul; Seo, Bum-Ju; Zhao, Peijun; Lee, Sang-Han

    2016-01-01

    In this study, the anti-melanogenic effects of Heracleum moellendorffii Hance extract (HmHe) and the mechanisms through which it inhibits melanogenesis in melan-a cells were investigated. Mushroom tyrosinase (TYR) activity and melanin content as well as cellular tyrosinase activity were measured in the cells. mRNA and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), TYR-related protein-1 (TYRP-1) and -2 were also examined. The results demonstrate that treatment with HmHe significantly inhibits mushroom tyrosinase activity. Furthermore, HmHe also markedly inhibits melanin production and intracellular tyrosinase activity. By suppressing the expression of TYR, TYRP-1, TYRP-2, and MITF, HmHe treatment antagonized melanin production in melan-a cells. Additionally, HmHe interfered with the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, with reversal of HmHe-induced melanogenesis inhibition after treatment with specific inhibitor U0126. In summary, HmHe can be said to stimulate ERK1/2 phosphorylation and subsequent degradation of MITF, resulting in suppression of melanogenic enzymes and melanin production, possibly due to the presence of polyphenolic compounds. PMID:27827938

  19. Wnt proteins can direct planar cell polarity in vertebrate ectoderm

    PubMed Central

    Chu, Chih-Wen; Sokol, Sergei Y

    2016-01-01

    The coordinated orientation of cells across the tissue plane, known as planar cell polarity (PCP), is manifested by the segregation of core PCP proteins to different sides of the cell. Secreted Wnt ligands are involved in many PCP-dependent processes, yet whether they act as polarity cues has been controversial. We show that in Xenopus early ectoderm, the Prickle3/Vangl2 complex was polarized to anterior cell edges and this polarity was disrupted by several Wnt antagonists. In midgastrula embryos, Wnt5a, Wnt11, and Wnt11b, but not Wnt3a, acted across many cell diameters to orient Prickle3/Vangl2 complexes away from their sources regardless of their positions relative to the body axis. The planar polarity of endogenous Vangl2 in the neuroectoderm was similarly redirected by an ectopic Wnt source and disrupted after depletion of Wnt11b in the presumptive posterior region of the embryo. These observations provide evidence for the instructive role of Wnt ligands in vertebrate PCP. DOI: http://dx.doi.org/10.7554/eLife.16463.001 PMID:27658614

  20. [Cytokines in bone diseases. Wnt signal and excessive bone formation].

    PubMed

    Hosoi, Takayuki

    2010-10-01

    Wnt signal has been known to play various roles in many organ from the beginning of embryogensis. Its role in bone metabolism has also been investigated and established. Lipoprotein receptor-related protein 5 (LRP5) is one of the important molecules in wnt signal pathway whose point mutations are related to both bone loss and excessive bone formation. Wnt signal is involved in the action of sclerostin which was found as a gene for osteosclerosis, one of the diseases of excessive bone formation. Wnt signal is keeping the position as an important research target for normal and pathological bone formation.

  1. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis.

    PubMed

    Bosada, Fernanda M; Devasthali, Vidusha; Jones, Kimberly A; Stankunas, Kryn

    2016-03-15

    Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.

  2. A strategy for antagonizing quorum sensing

    PubMed Central

    Chen, Guozhou; Swem, Lee R.; Swem, Danielle L.; Stauff, Devin L.; O’Loughlin, Colleen T.; Jeffrey, Philip D.; Bassler, Bonnie L.; Hughson, Frederick M.

    2011-01-01

    SUMMARY Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by ~60 Å, twice the ~30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multi-domain proteins. PMID:21504831

  3. Antagonism of cyanide poisoning by dihydroxyacetone.

    PubMed

    Niknahad, Hossein; Ghelichkhani, Esmaeel

    2002-06-14

    Dihydroxyacetone (DHA) effectively antagonized the lethal effect of cyanide in mice and rabbits, particularly if administered in combination with thiosulfate. Oral DHA (2 and 4 g/kg) given to mice 10 min before injection (i.p.) of cyanide increased the LD50 values of cyanide from 5.7 mg/kg to 12 and 17.6 mg/kg, respectively. DHA prevented cyanide-induced lethality most effectively, if given orally 10-15 min before injection of cyanide. A combination of pretreatment with oral DHA (4 g/kg) and post-treatment with sodium thiosulfate (1 g/kg) increased the LD50 of cyanide by a factor of 9.9. Furthermore, DHA given intravenously to rabbits 5 min after subcutaneous injection of cyanide increased the LD50 of cyanide from 6 mg/kg to more than 11 mg/kg, while thiosulfate (1 g/kg) given intravenously 5 min after cyanide injection increased the LD50 of cyanide only to 8.5 mg/kg. DHA also prevented the convulsions that occurred after cyanide intoxication.

  4. A Strategy for Antagonizing Quorum Sensing

    SciTech Connect

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  5. Lung epithelial branching program antagonizes alveolar differentiation.

    PubMed

    Chang, Daniel R; Martinez Alanis, Denise; Miller, Rachel K; Ji, Hong; Akiyama, Haruhiko; McCrea, Pierre D; Chen, Jichao

    2013-11-05

    Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.

  6. Smooth muscle archvillin is an ERK scaffolding protein.

    PubMed

    Gangopadhyay, Samudra S; Kengni, Edouard; Appel, Sarah; Gallant, Cynthia; Kim, Hak Rim; Leavis, Paul; DeGnore, Jon; Morgan, Kathleen G

    2009-06-26

    ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.

  7. Wnt Signaling in Renal Cell Carcinoma

    PubMed Central

    Xu, Qi; Krause, Mirja; Samoylenko, Anatoly; Vainio, Seppo

    2016-01-01

    Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers. PMID:27322325

  8. Antagonism and synergism between lead and zinc in amphibian larvae.

    PubMed

    Herkovits, J; Pérez-Coll, C S

    1991-01-01

    Lead and zinc effects on Bufo arenarum larval survival were studied in single and combined treatments. On a weight basis, lead is about twice as toxic as zinc. The antagonism or synergism between these heavy metals is dose-dependent.

  9. Systematic Mapping of WNT-FZD Protein Interactions Reveals Functional Selectivity by Distinct WNT-FZD Pairs*

    PubMed Central

    Dijksterhuis, Jacomijn P.; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O.; Ji, Yun; Andres, Osler; Rubin, Jeffrey S.; Hannoush, Rami N.; Schulte, Gunnar

    2015-01-01

    The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717

  10. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    SciTech Connect

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  11. Insulin antagonizes the phagocytosis stimulating action of histamine in Tetrahymena.

    PubMed

    Csaba, G; Darvas, Z

    1992-02-01

    Histamine increased specifically the phagocytic activity of the unicellular Tetrahymena, whereas insulin had no influence on it. Insulin antagonized the phagocytosis stimulating action of histamine after simultaneous exposure and after preexposure two days earlier as well, although in the latter case to a lesser degree. Double exposure to a combination of histamine+insulin didn't influence the phagocytic activity at all, demonstrating the histamine antagonizing effect of insulin in this model.

  12. Wnt5b-associated exosomes promote cancer cell migration and proliferation.

    PubMed

    Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira

    2017-01-01

    Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner.

  13. Regulation of Adipogenesis by Quinine through the ERK/S6 Pathway

    PubMed Central

    Ning, Xiaomin; He, Jingjing; Shi, Xin’e; Yang, Gongshe

    2016-01-01

    Quinine is a bitter tasting compound that is involved in the regulation of body weight as demonstrated in in vivo animal models and in vitro models of the adipogenic system. Arguments exist over the positive or negative roles of quinine in both in vivo animal models and in vitro cell models, which motivates us to further investigate the functions of quinine in the in vitro adipogenic system. To clarify the regulatory functions of quinine in adipogenesis, mouse primary preadipocytes were induced for differentiation with quinine supplementation. The results showed that quinine enhanced adipogenesis in a dose dependent manner without affecting lipolysis. The pro-adipogenic effect of quinine was specific, as other bitter tasting agonists had no effect on adipogenesis. Moreover, the pro-adipogenic effect of quinine was mediated by activation of ERK/S6 (extracellular-signal-regulated kinase/Ribosomal protein S6) signaling. Knockdown of bitter taste receptor T2R106 (taste receptor, type 2, member 106) impaired the pro-adipogenic effect of quinine and suppressed the activation of ERK/S6 signaling. Taken together, quinine stimulates adipogenesis through ERK/S6 signaling, which at least partly functions via T2R106. PMID:27089323

  14. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    PubMed Central

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  15. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins.

    PubMed

    Rios-Esteves, Jessica; Resh, Marilyn D

    2013-09-26

    Wnt proteins contain palmitoleic acid, an unusual lipid modification. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on the attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here, we show that stearoyl desaturase (SCD) generates a monounsaturated fatty acid substrate that is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation.

  16. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  17. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells.

    PubMed

    Im, Eunok; Martinez, Jesse D

    2004-02-01

    Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is known as a cytoprotective agent. UDCA prevents apoptosis induced by a variety of stress stimuli including cytotoxic bile acids such as deoxycholic acid (DCA). Here we examined the molecular mechanism by which UDCA can antagonize DCA-induced apoptosis in human colon cancer cells. UDCA pretreatment decreases the number of apoptotic cells caused by exposure to DCA and UDCA. Further studies of the signaling pathway showed that UDCA pretreatment suppressed DNA binding activity of activator protein-1 and this was accompanied by downregulation of both extracellular signal-regulated kinase (ERK) and Raf-1 kinase activities stimulated by exposure to DCA. DCA was also found to activate epidermal growth factor receptor (EGFR) activity and UDCA inhibited this. Collectively, these findings suggest that the inhibitory effect of UDCA in DCA-induced apoptosis is partly mediated by modulation of EGFR/Raf-1/ERK signaling.

  18. Wnt Expression in the Adult Rat Subventricular Zone After Stroke

    PubMed Central

    Morris, Daniel C.; Zhang, Zheng Geng; Wang, Ying; Zhang, Rui Lan; Greg, Sara; Liu, Xian Shuang; Chopp, Michael

    2007-01-01

    Introduction: In the adult brain, neurogenesis occurs in the subventricular zone (SVZ) of the lateral ventricle. During development, the Wnt pathways contribute to stem cell maintenance and promote neurogenesis. We hypothesized that the Wnt family genes are expressed in neural progenitor cells of the non-ischemic and ischemic SVZ of the adult rodent brain after middle cerebral artery (MCA) occlusion. Methods: Non-ischemic and ischemic cultured SVZ cells and a single population of non-ischemic and ischemic SVZ cells isolated by laser capture microdisection (LCM) were analyzed for Wnt pathway expression using real-time RT-PCR and immunostaining. Results: The number of neurospheres increased significantly (p<0.05) in SVZ cells derived from ischemic (32 ±4.7/rat) compared with the number in non-ischemic SVZ cells (18 ± 3/rat). Wnt family gene mRNA levels were detected in SVZ cells isolated from both cultured and LCM SVZ cells, however there was no upregulation between non-ischemic and ischemic SVZ cells. Immunostaining on brain sections also demonstrated no upregulation of Wnt pathway protein between ischemic and non-ischemic SVZ cells. Conclusions: Expression of the Wnt family genes in SVZ cells suggests that the Wnt pathway may be involved in neurogenesis in the adult brain. However, ischemia does not upregulate Wnt family gene expression. PMID:17400378

  19. Non-canonical WNT signalling in the lung.

    PubMed

    Li, Changgong; Bellusci, Saverio; Borok, Zea; Minoo, Parviz

    2015-11-01

    The role of WNT signalling in metazoan organogenesis has been a topic of widespread interest. In the lung, while the role of canonical WNT signalling has been examined in some detail by multiple studies, the non-canonical WNT signalling has received limited attention. Reliable evidence shows that this important signalling mechanism constitutes a major regulatory pathway in lung development. In addition, accumulating evidence has also shown that the non-canonical WNT pathway is critical for maintaining lung homeostasis and that aberrant activation of this pathway may underlie several debilitating lung diseases. Functional analyses have further revealed that the non-canonical WNT pathway regulates multiple cellular activities in the lung that are dependent on the specific cellular context. In most cell types, non-canonical WNT signalling regulates canonical WNT activity, which is also critical for many aspects of lung biology. This review will summarize what is currently known about the role of non-canonical WNT signalling in lung development, homeostasis and pathogenesis of disease.

  20. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  1. Non-canonical WNT signalling in the lung

    PubMed Central

    Li, Changgong; Bellusci, Saverio; Borok, Zea; Minoo, Parviz

    2015-01-01

    The role of WNT signalling in metazoan organogenesis has been a topic of widespread interest. In the lung, while the role of canonical WNT signalling has been examined in some detail by multiple studies, the non-canonical WNT signalling has received limited attention. Reliable evidence shows that this important signalling mechanism constitutes a major regulatory pathway in lung development. In addition, accumulating evidence has also shown that the non-canonical WNT pathway is critical for maintaining lung homeostasis and that aberrant activation of this pathway may underlie several debilitating lung diseases. Functional analyses have further revealed that the non-canonical WNT pathway regulates multiple cellular activities in the lung that are dependent on the specific cellular context. In most cell types, non-canonical WNT signalling regulates canonical WNT activity, which is also critical for many aspects of lung biology. This review will summarize what is currently known about the role of non-canonical WNT signalling in lung development, homeostasis and pathogenesis of disease. PMID:26261051

  2. Mesodermal Wnt signaling organizes the neural plate via Meis3.

    PubMed

    Elkouby, Yaniv M; Elias, Sarah; Casey, Elena S; Blythe, Shelby A; Tsabar, Nir; Klein, Peter S; Root, Heather; Liu, Karen J; Frank, Dale

    2010-05-01

    In vertebrates, canonical Wnt signaling controls posterior neural cell lineage specification. Although Wnt signaling to the neural plate is sufficient for posterior identity, the source and timing of this activity remain uncertain. Furthermore, crucial molecular targets of this activity have not been defined. Here, we identify the endogenous Wnt activity and its role in controlling an essential downstream transcription factor, Meis3. Wnt3a is expressed in a specialized mesodermal domain, the paraxial dorsolateral mesoderm, which signals to overlying neuroectoderm. Loss of zygotic Wnt3a in this region does not alter mesoderm cell fates, but blocks Meis3 expression in the neuroectoderm, triggering the loss of posterior neural fates. Ectopic Meis3 protein expression is sufficient to rescue this phenotype. Moreover, Wnt3a induction of the posterior nervous system requires functional Meis3 in the neural plate. Using ChIP and promoter analysis, we show that Meis3 is a direct target of Wnt/beta-catenin signaling. This suggests a new model for neural anteroposterior patterning, in which Wnt3a from the paraxial mesoderm induces posterior cell fates via direct activation of a crucial transcription factor in the overlying neural plate.

  3. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  4. Role of the Wnt Pathway in Thyroid Cancer

    PubMed Central

    Sastre-Perona, Ana; Santisteban, Pilar

    2012-01-01

    Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major types of pathways: (i) the canonical or Wnt/β-catenin pathway; and (ii) the non-canonical pathways, which do not involve β-catenin stabilization. Among these pathways, the Wnt/β-catenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize the role of the Wnt/β-catenin pathway in thyroid cancer. This pathway plays a crucial role in development and epithelial renewal, and components such as β-catenin and Axin are often mutated in thyroid cancer. Although it is accepted that altered Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data suggest that it is also altered in papillary thyroid carcinoma (PTC) with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt signaling in thyroid cancer, with special emphasis on the Wnt/β-catenin pathway. PMID:22645520

  5. Keeping Wnt Signalosome in Check by Vesicular Traffic

    PubMed Central

    FENG, QIANG; GAO, NAN

    2015-01-01

    Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking. PMID:25336320

  6. Wntless in Wnt secretion: molecular, cellular and genetic aspects.

    PubMed

    Das, Soumyashree; Yu, Shiyan; Sakamori, Ryotaro; Stypulkowski, Ewa; Gao, Nan

    2012-12-01

    Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.

  7. Regulation of Wnt/β-catenin signaling by herpesviruses

    PubMed Central

    Zwezdaryk, Kevin J; Combs, Joseph A; Morris, Cindy A; Sullivan, Deborah E

    2016-01-01

    The Wnt/β-catenin signaling pathway is instrumental in successful differentiation and proliferation of mammalian cells. It is therefore not surprising that the herpesvirus family has developed mechanisms to interact with and manipulate this pathway. Successful coexistence with the host requires that herpesviruses establish a lifelong infection that includes periods of latency and reactivation or persistence. Many herpesviruses establish latency in progenitor cells and viral reactivation is linked to host-cell proliferation and differentiation status. Importantly, Wnt/β-catenin is tightly connected to stem/progenitor cell maintenance and differentiation. Numerous studies have linked Wnt/β-catenin signaling to a variety of cancers, emphasizing the importance of Wnt/β-catenin pathways in development, tissue homeostasis and disease. This review details how the alpha-, beta-, and gammaherpesviruses interact and manipulate the Wnt/β-catenin pathway to promote a virus-centric agenda. PMID:27878101

  8. Wnt pathway regulation of embryonic stem cell self-renewal.

    PubMed

    Merrill, Bradley J

    2012-09-01

    Embryonic stem cells (ESCs) can generate all of the cell types found in the adult organism. Remarkably, they retain this ability even after many cell divisions in vitro, as long as the culture conditions prevent differentiation of the cells. Wnt signaling and β-catenin have been shown to cause strong effects on ESCs both in terms of stimulating the expansion of stem cells and stimulating differentiation toward lineage committed cell types. The varied effects of Wnt signaling in ESCs, alongside the sometimes unconventional mechanisms underlying the effects, have generated a fair amount of controversy and intrigue regarding the role of Wnt signaling in pluripotent stem cells. Insights into the mechanisms of Wnt function in stem cells can be gained by examination of the causes for seemingly opposing effects of Wnt signaling on self-renewal versus differentiation.

  9. Follistatin Operates Downstream of Wnt4 in Mammalian Ovary Organogenesis

    PubMed Central

    Yao, Humphrey H.C.; Matzuk, Martin M.; Jorgez, Carolina J.; Menke, Douglas B.; Page, David C.; Swain, Amanda; Capel, Blanche

    2014-01-01

    Wnt4−/− XX gonads display features normally associated with testis differentiation, suggesting that WNT4 actively represses elements of the male pathway during ovarian development. Here, we show that follistatin (Fst), which encodes a TGFβ superfamily binding protein, is a downstream component of Wnt4 signaling. Fst inhibits formation of the XY-specific coelomic vessel in XX gonads. In addition, germ cells in the ovarian cortex are almost completely lost in both Wnt4 and Fst null gonads before birth. Thus, we propose that WNT4 acts through FST to regulate vascular boundaries and maintain germ cell survival in the ovary. Developmental Dynamics 230:210–215, 2004. PMID:15162500

  10. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Sun, Bing; Sun, Gui-Bo; Xiao, Jing; Chen, Rong-Chang; Wang, Xin; Wu, Ying; Cao, Li; Yang, Zhi-Hong; Sun, Xiao-Bo

    2012-02-01

    As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.

  11. IGF-1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors

    PubMed Central

    Rota, Lauren M.; Albanito, Lidia; Shin, Marcus E.; Goyeneche, Corey L.; Shushanov, Sain; Gallagher, Emily J.; LeRoith, Derek; Lazzarino, Deborah A.; Wood, Teresa L.

    2014-01-01

    Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment. PMID:25092896

  12. Wnt signaling: role in Alzheimer disease and schizophrenia.

    PubMed

    Inestrosa, Nibaldo C; Montecinos-Oliva, Carla; Fuenzalida, Marco

    2012-12-01

    Wnt signaling function starts during the development of the nervous system and is crucial for synaptic plasticity in the adult brain. Clearly Wnt effects in synaptic and plastic processes are relevant, however the implication of this pathway in the prevention of neurodegenerative diseases that produce synaptic impairment, is even more interesting. Several years ago our laboratory found a relationship between the loss of Wnt signaling and the neurotoxicity of the amyloid-β-peptide (Aβ), one of the main players in Alzheimer's disease (AD). Moreover, the activation of the Wnt signaling cascade prevents Aβ-dependent cytotoxic effects. In fact, disrupted Wnt signaling may be a direct link between Aβ-toxicity and tau hyperphosphorylation, ultimately leading to impaired synaptic plasticity and/or neuronal degeneration, indicating that a single pathway can account for both neuro-pathological lesions and altered synaptic function. These observations, suggest that a sustained loss of Wnt signaling function may be a key relevant factor in the pathology of AD. On the other hand, Schizophrenia remains one of the most debilitating and intractable illness in psychiatry. Since Wnt signaling is important in organizing the developing brain, it is reasonable to propose that defects in Wnt signaling could contribute to Schizophrenia, particularly since the neuro-developmental hypothesis of the disease implies subtle dys-regulation of brain development, including some core components of the Wnt signaling pathways such as GSK-3β or Disrupted in Schizophrenia-1 (DISC-1). This review focuses on the relationship between Wnt signaling and its potential relevance for the treatment of neurodegenerative and neuropsychiatric diseases including AD and Schizophrenia.

  13. Regulation of Wnt4 in chronic obstructive pulmonary disease

    PubMed Central

    Durham, Andrew L.; McLaren, Alistair; Hayes, Brian P.; Caramori, Gaetano; Clayton, Chris L.; Barnes, Peter J.; Chung, K. Fan; Adcock, Ian M.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with persistent inflammation and oxidative stress in susceptible individuals. Using microarray analysis of bronchial biopsy samples from patients with COPD and controls, we identified Wnt4 as being up-regulated in COPD. Analysis of bronchial biopsy samples showed a very strong correlation between Wnt4 and IL8 gene expression, suggesting that Wnt4 plays a role in chronic lung inflammation. In vitro, Wnt4 induced proliferation and inflammation in human epithelial cells (BEAS-2B) and normal primary human bronchial epithelial cells in a concentration-dependent manner. This effect was enhanced in the presence of interleukin-1β (IL-1β) as a result of activation of the p38 and c-Jun NH2-terminal kinase mitogen-activated protein kinase pathways. Hydrogen peroxide, but not proinflammatory stimuli, up-regulated Wnt4 expression in epithelial cells. In monocytic THP-1 and primary airway smooth muscle cells, Wnt4 induced inflammation and enhanced the inflammatory response to lipopolysaccharide and IL-1β but did not induce proliferation. In addition, these other cell types did not have enhanced Wnt4 expression in response to hydrogen peroxide. Our results indicate that airway epithelial activation, due to oxidative stress, may lead to Wnt4 induction. Wnt4, in turn, acts through the noncanonical pathway to activate epithelial cell remodeling and IL8 gene expression, leading to neutrophil infiltration and inflammation.—Durham, A. L., McLaren, A., Hayes, B. P., Caramori, G., Clayton, C. L., Barnes, P. J., Chung, K. F., Adcock, I. M. Regulation of Wnt4 in chronic obstructive pulmonary disease. PMID:23463699

  14. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions

    PubMed Central

    Zeng, Xin; Huang, He; Tamai, Keiko; Zhang, Xinjun; Harada, Yuko; Yokota, Chika; Almeida, Karla; Wang, Jianbo; Doble, Brad; Woodgett, Jim; Wynshaw-Boris, Anthony; Hsieh, Jen-Chieh; He, Xi

    2016-01-01

    Canonical Wnt/β-catenin signaling has central roles in development and diseases, and is initiated by the action of the frizzled (Fz) receptor, its coreceptor LDL receptor-related protein 6 (Lrp6), and the cytoplasmic dishevelled (Dvl) protein. The functional relationships among Fz, Lrp6 and Dvl have long been enigmatic. We demonstrated previously that Wnt-induced Lrp6 phosphorylation via glycogen synthase kinase 3 (Gsk3) initiates Wnt/β-catenin signaling. Here we show that both Fz and Dvl functions are critical for Wnt-induced Lrp6 phosphorylation through Fz-Lrp6 interaction. We also show that axin, a key scaffolding protein in the Wnt pathway, is required for Lrp6 phosphorylation via its ability to recruit Gsk3, and inhibition of Gsk3 at the plasma membrane blocks Wnt/β-catenin signaling. Our results suggest a model that upon Wnt-induced Fz-Lrp6 complex formation, Fz recruitment of Dvl in turn recruits the axin-Gsk3 complex, thereby promoting Lrp6 phosphorylation to initiate β-catenin signaling. We discuss the dual roles of the axin-Gsk3 complex and signal amplification by Lrp6-axin interaction during Wnt/β-catenin signaling. PMID:18077588

  15. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways

    SciTech Connect

    Samarzija, Ivana; Sini, Patrizia; Schlange, Thomas; MacDonald, Gwen; Hynes, Nancy E.

    2009-08-28

    Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of {beta}-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.

  16. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL.

    PubMed

    Chitalia, Vipul C; Foy, Rebecca L; Bachschmid, Markus M; Zeng, Liling; Panchenko, Maria V; Zhou, Mina I; Bharti, Ajit; Seldin, David C; Lecker, Stewart H; Dominguez, Isabel; Cohen, Herbert T

    2008-10-01

    The von Hippel-Lindau protein pVHL suppresses renal tumorigenesis in part by promoting the degradation of hypoxia-inducible HIF-alpha transcription factors; additional mechanisms have been proposed. pVHL also stabilizes the plant homeodomain protein Jade-1, which is a candidate renal tumour suppressor that may correlate with renal cancer risk. Here we show that Jade-1 binds the oncoprotein beta-catenin in Wnt-responsive fashion. Moreover, Jade-1 destabilizes wild-type beta-catenin but not a cancer-causing form of beta-catenin. Whereas the well-established beta-catenin E3 ubiquitin ligase component beta-TrCP ubiquitylates only phosphorylated beta-catenin, Jade-1 ubiquitylates both phosphorylated and non-phosphorylated beta-catenin and therefore regulates canonical Wnt signalling in both Wnt-off and Wnt-on phases. Thus, the different characteristics of beta-TrCP and Jade-1 may ensure optimal Wnt pathway regulation. Furthermore, pVHL downregulates beta-catenin in a Jade-1-dependent manner and inhibits Wnt signalling, supporting a role for Jade-1 and Wnt signalling in renal tumorigenesis. The pVHL tumour suppressor and the Wnt tumorigenesis pathway are therefore directly linked through Jade-1.

  17. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    PubMed

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p < 0.001), the clinical stage (p < 0.001), and presence of metastasis and recurrence (p < 0.001). VM-positive colon cancer samples showed increased Wnt3a expression (p < 0.001) and β-catenin nuclear expression (p < 0.001) compared with the VM-negative samples. In vitro, over-regulated Wnt3a expression in HT29 colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  18. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development

    PubMed Central

    Poulain, Morgane; Ober, Elke A.

    2011-01-01

    The vertebrate liver, pancreas and lung arise in close proximity from the multipotent foregut endoderm. Tissue-explant experiments uncovered instructive signals emanating from the neighbouring lateral plate mesoderm, directing the endoderm towards specific organ fates. This suggested that an intricate network of signals is required to control the specification and differentiation of each organ. Here, we show that sequential functions of Wnt2bb and Wnt2 control liver specification and proliferation in zebrafish. Their combined specific activities are essential for liver specification, as their loss of function causes liver agenesis. Conversely, excess wnt2bb or wnt2 induces ectopic liver tissue at the expense of pancreatic and anterior intestinal tissues, revealing the competence of intestinal endoderm to respond to hepatogenic signals. Epistasis experiments revealed that the receptor frizzled homolog 5 (fzd5) mediates part of the broader hepatic competence of the alimentary canal. fzd5 is required for early liver formation and interacts genetically with wnt2 as well as wnt2bb. In addition, lack of both ligands causes agenesis of the swim bladder, the structural homolog of the mammalian lung. Thus, tightly regulated spatiotemporal expression of wnt2bb, wnt2 and fzd5 is central to coordinating early liver, pancreas and swim bladder development from a multipotent foregut endoderm. PMID:21771809

  19. Wnt antagonist gene polymorphisms and renal cancer

    PubMed Central

    Hirata, Hiroshi; Hinoda, Yuji; Nakajima, Koichi; Kikuno, Nobuyuki; Yamamura, Soichiro; Kawakami, Kazumori; Suehiro, Yutaka; Tabatabai, Z. Laura; Ishii, Nobuhisa; Dahiya, Rajvir

    2014-01-01

    Purpose Epigenetic silencing of several Wnt pathway related genes has been reported in renal cancer. Except for the TCF4 gene, there are no reports regarding Wnt pathway gene polymorphisms in renal cancer. Therefore, we hypothesized that the polymorphisms in Wnt signaling genes may be risk factors for renal cancer. Experimental Design A total of 210 patients (145 male and 65 female) with pathologically confirmed renal cell carcinoma (RCC), and 200 age- and sex-matched control individuals were enrolled in this study. We genotyped 14 SNPs in six genes including DKK2 (rs17037102, rs419558, rs447372), DKK3 (rs3206824, rs11022095, rs1472189, rs7396187, rs2291599), DKK4 (rs2073664), sFRP4 (rs1802073, rs1802074), SMAD7 (rs12953717), DAAM2 (rs6937133, rs2504106) using PCR-RFLP and direct sequencing in RCC and age-matched healthy subjects. We also tested the relationship between these polymorphisms and clinicopathologic data including gender, grade, tumor stage, lymph-node involvement, distant metastasis, and overall survival. Results A significant decrease in the frequency of the G/A+A/A genotypes in the DKK3 codon335 rs3206824 was observed in RCC patients compared with controls. The frequency of the rs3206824 (G/A) A- rs7396187 (G/C) C haplotype was significantly lower in RCC compared with other haplotypes. We also found that DKK3 rs1472189 C/T is associated with distant metastasis and furthermore, DKK2 rs17037102 G homozygous patients had a decreased risk for death by multivariate Cox regression analysis. Conclusions This is the first report documenting that DKK3 polymorphisms are associated with RCC and that the DKK2 rs17037102 polymorphism may be a predictor for survival in RCC patients after radical nephrectomy. PMID:19562778

  20. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation.

    PubMed

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest

    2005-03-01

    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  1. Epilepsy and the Wnt Signaling Pathway

    DTIC Science & Technology

    2015-06-01

    and Decitabine attenuated SE (Figure 4) Background. Green tea and EGCG. Green tea is the world’s second most popular beverage after water and is... tea compound EGCG [(-) epigallocatechin gallate] is the main catechin component in dry green tea (about 30%). Green tea is about 0.1% EGCG solution...w/v), or 2 mM. Green tea and EGCG (4~8 U.S. cups/day) has no appreciable side effects in humans 33,34 35. We showed that EGCG blocks Wnt signaling

  2. Wnt Signaling in Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2015-09-01

    resume in Ace-1- Dkk1 cells. However, SP600125 significantly increased the mRNA expression of genes that induce osteoblast differentiation as well as...decreased osteolytic genes (decreased RANKL:OPG ratio) in both Ace-1- Dkk1 and Ace-1-Vector cells. 15. SUBJECT TERMS Prostate cancer, Bone...pathway in Ace-1-VectorAP-1 and Ace-1-Dkk-1AP-1 cell lines with the anti- Dkk1 -antibody. Aim 2. Determine the role of the canonical Wnt pathway on the

  3. Can we safely target the WNT pathway?

    PubMed Central

    Kahn, Michael

    2015-01-01

    WNT–β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective. PMID:24981364

  4. Sprouty 2: a novel attenuator of B-cell receptor and MAPK-Erk signaling in CLL.

    PubMed

    Shukla, Ashima; Rai, Karan; Shukla, Vipul; Chaturvedi, Nagendra K; Bociek, R Gregory; Pirruccello, Samuel J; Band, Hamid; Lu, Runqing; Joshi, Shantaram S

    2016-05-12

    Clinical heterogeneity is a major barrier to effective treatment of chronic lymphocytic leukemia (CLL). Emerging evidence suggests that constitutive activation of various signaling pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-Erk) signaling plays a role in the heterogeneous clinical outcome of CLL patients. In this study, we have investigated the role of Sprouty (SPRY)2 as a negative regulator of receptor and nonreceptor tyrosine kinase signaling in the pathogenesis of CLL. We show that SPRY2 expression is significantly decreased in CLL cells, particularly from poor-prognosis patients compared with those from good-prognosis patients. Overexpression of SPRY2 in CLL cells from poor-prognosis patients increased their apoptosis. Conversely, downregulation of SPRY2 in CLL cells from good-prognosis patients resulted in increased proliferation. Furthermore, CLL cells with low SPRY2 expression grew more rapidly in a xenograft model of CLL. Strikingly, B-cell-specific transgenic overexpression of spry2 in mice led to a decrease in the frequency of B1 cells, the precursors of CLL cells in rodents. Mechanistically, we show that SPRY2 attenuates the B-cell receptor (BCR) and MAPK-Erk signaling by binding to and antagonizing the activities of RAF1, BRAF, and spleen tyrosine kinase (SYK) in normal B cells and CLL cells. We also show that SPRY2 is targeted by microRNA-21, which in turn leads to increased activity of Syk and Erk in CLL cells. Taken together, these results establish SPRY2 as a critical negative regulator of BCR-mediated MAPK-Erk signaling in CLL, thereby providing one of the molecular mechanisms to explain the clinical heterogeneity of CLL.

  5. Exploring Leptin Antagonism in Ophthalmic Cell Models

    PubMed Central

    Coroniti, Roberta; Otvos, Laszlo; Surmacz, Eva

    2013-01-01

    Background Emerging evidence suggests that angiogenic and pro-inflammatory cytokine leptin might be implicated in ocular neovascularization. However, the potential of inhibiting leptin function in ophthalmic cells has never been explored. Here we assessed mitogenic, angiogenic, and signaling leptin activities in retinal and corneal endothelial cells and examined the capability of a specific leptin receptor (ObR) antagonist, Allo-aca, to inhibit these functions. Methods and Results The experiments were carried out in monkey retinal (RF/6A) and bovine corneal (BCE) endothelial cells. Leptin at 50-250 ng/mL stimulated the growth of both cell lines in a dose-dependent manner. The maximal mitogenic response (35±7 and 27±3% in RF6A and BCE cells, respectively) was noted at 24 h of 250 ng/mL leptin treatments. Leptin-dependent proliferation was reduced to base levels with 10 and 100 nM Allo-aca in BCE and RF6A cells, respectively. In both cell lines, leptin promoted angiogenic responses, with the maximal increase in tube formation (163±10 and 133±8% in RF6A and BCE cultures, respectively) observed under a 250 ng/mL leptin treatment for 3 h. Furthermore, in both cell lines 250 ng/mL leptin modulated the activity or expression of several signaling molecules involved in proliferation, inflammatory activity and angiogenesis, such as STAT3, Akt, and ERK1/2, COX2, and NFκB. In both cell lines, leptin-induced angiogenic and signaling responses were significantly inhibited with 100 nM Allo-aca. We also found that leptin increased its own mRNA and protein expression in both cell lines, and this autocrine effect was abolished by 100-250 nM Allo-aca. Conclusions Our data provide new insights into the role of leptin in ocular endothelial cells and represent the first original report on targeting ObR in ophthalmic cell models. PMID:24098500

  6. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies.

    PubMed

    Cain, Corey J; Manilay, Jennifer O

    2013-01-01

    Wingless and int (Wnt) proteins are secreted proteins that are important for regulating hematopoietic stem cell self-renewal and differentiation in the bone marrow microenvironment in mice. The mechanisms by which Wnt signaling regulates these hematopoietic cell fate decisions are not fully understood. Secreted Wnt antagonists, which are expressed in bone and bone marrow stromal cells, either bind to Wnt ligands directly or block Wnt receptors and co-receptors to halt Wnt-mediated signal transduction in both osteolineage and hematopoietic cell types. Secreted frizzled related proteins-1 and -2, Wnt inhibitory factor-1, Dickkopf-1, and Sclerostin are Wnt antagonists that influence hematopoietic cell fate decisions in the bone marrow niche. In this review, we compare and contrast the roles of these Wnt antagonists and their effects on hematopoietic development in mice, and also discuss the clinical significance of targeting Wnt antagonists within the context of hematopoietic disease.

  7. MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm

    SciTech Connect

    Masuda, Kouhei; Katagiri, Chiaki; Nomura, Miyuki; Sato, Masami; Kakumoto, Kyoko; Akagi, Tsuyoshi; Kikuchi, Kunimi; Tanuma, Nobuhiro; Shima, Hiroshi

    2010-03-05

    MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.

  8. Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Giani, Vincent C.; Seaver, Elaine C.; Weisblat, David A.

    2010-01-01

    The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215–R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073–1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896–1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121–131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1–17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol. 18:1624–1629.]), but little is known from the third major bilaterian group, the lophotrochozoans (e.g., mollusks and annelids [Prud'homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M. 2002. Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol. 12:1395.]). To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron–exon structure, and embryonic

  9. Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

    PubMed Central

    Gillers, Benjamin S; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R; Boukens, Bastiaan J; Rentschler, Stacey

    2014-01-01

    Rationale Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results We utilized a novel allele of β-catenin that preserves β-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricular preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue. PMID:25599332

  10. Wnt signaling regulates pulp volume and dentin thickness

    PubMed Central

    Lim, Won Hee; Liu, Bo; Cheng, Du; Hunter, Daniel J; Zhong, Zhendong; Ramos, Daniel M; Williams, Bart O; Sharpe, Paul T; Bardet, Claire; Mah, Su-jung; Helms, Jill A

    2015-01-01

    Odontoblasts, cementoblasts, ameloblasts and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wingless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin, which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-Cre;Wlsfl/fl mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt-mediated mis-regulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits DSP; this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wlsfl/fl mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex. PMID:23996396

  11. The complex roles of Wnt antagonists in RCC.

    PubMed

    Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir

    2011-10-25

    Renal cell carcinoma (RCC) is the most lethal of all the genitourinary cancers, as it is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as vascular endothelial growth factor, von Hippel-Lindau tumor suppressor and mammalian target of rapamycin, have shown limited efficacy so far. Thus, Wnt signaling, which is known to be intricately involved in the pathogenesis of RCC, has attracted much interest. Several Wnt signaling components have been examined in RCC, and, while studies suggest that Wnt signaling is constitutively active in RCC, the molecular mechanisms differ considerably from other human carcinomas. Increasing evidence indicates that secreted Wnt antagonists have important roles in RCC pathogenesis. Considering these vital roles, it has been postulated--and supported by experimental evidence--that the functional loss of Wnt antagonists, for example by promoter hypermethylation, can contribute to constitutive activation of the Wnt pathway, resulting in carcinogenesis through dysregulation of cell proliferation and differentiation. However, subsequent functional studies of these Wnt antagonists have demonstrated the inherent complexities underlying their role in RCC pathogenesis.

  12. SOX9 drives WNT pathway activation in prostate cancer

    PubMed Central

    Ma, Fen; Ye, Huihui; He, Housheng Hansen; Gerrin, Sean J.; Chen, Sen; Tanenbaum, Benjamin A.; Sowalsky, Adam G.; He, Lingfeng; Wang, Hongyun; Balk, Steven P.; Yuan, Xin

    2016-01-01

    The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β−catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy. PMID:27043282

  13. RhoA Controls Wnt Upregulation on Microstructured Titanium Surfaces

    PubMed Central

    Mazzotta, Silvia; Piergianni, Maddalena; Piemontese, Marilina; Passeri, Giovanni

    2014-01-01

    Rough topography enhances the activation of Wnt canonical signaling in vitro, and this mediates its effects on cell differentiation. However, the molecular mechanisms underlying topography-dependent control of Wnt signaling are still poorly understood. As the small GTPase RhoA controls cytoskeletal reorganization and actomyosin-induced tensional forces, we hypothesized that RhoA could affect the activation of Wnt signaling in cells on micropatterned titanium surfaces. G-LISA assay revealed that RhoA activation was higher in C2C12 cells on rough (SLA) surfaces under basal conditions than on smooth (Polished) titanium. Transfection with dominant negative RhoA decreased Wnt activation by normalized TCF-Luc activity on SLA, whilst transfection with constitutively active RhoA increased TCF-Luc activation on Polished titanium. One mM Myosin II inhibitor Blebbistatin increased RhoA activation but decreased Wnt activation on SLA surfaces, indicating that tension-generating structures are required for canonical Wnt modulation on titanium surfaces. Actin inhibitor Cytochalasin markedly enhanced RhoA and TCF-Luc activation on both surfaces and increased the expression of differentiation markers in murine osteoblastic MC3T3 cells. Taken together, these data show that RhoA is upregulated in cells on rough surfaces and it affects the activation of Wnt canonical signaling through Myosin II modulation. PMID:24949442

  14. Wnt Signaling and Its Contribution to Craniofacial Tissue Homeostasis.

    PubMed

    Yin, X; Li, J; Salmon, B; Huang, L; Lim, W H; Liu, B; Hunter, D J; Ransom, R C; Singh, G; Gillette, M; Zou, S; Helms, J A

    2015-11-01

    A new field of dental medicine seeks to exploit nature's solution for repairing damaged tissues, through the process of regeneration. Most adult mammalian tissues have limited regenerative capacities, but in lower vertebrates, the molecular machinery for regeneration is an elemental part of their genetic makeup. Accumulating data suggest that the molecular pathways responsible for the regenerative capacity of teleosts, amphibians, and reptiles have fallen into disuse in mammals but that they can be "jumpstarted" by the selective activation of key molecules. The Wnt family of secreted proteins constitutes one such critical pathway: Wnt proteins rank among the most potent and ubiquitous stem cell self-renewing factors, with tremendous potential for promoting human tissue regeneration. Wnt reporter and lineage-tracing strains of mice have been employed to create molecular maps of Wnt responsiveness in the craniofacial tissues, and these patterns of Wnt signaling colocalize with stem/progenitor populations in the rodent incisor apex, the dental pulp, the alveolar bone, the periodontal ligament, the cementum, and oral mucosa. The importance of Wnt signaling in both the maintenance and healing of these craniofacial tissues is summarized, and the therapeutic potential of Wnt-based strategies to accelerate healing through activation of endogenous stem cells is highlighted.

  15. Targets of Wnt/ß-Catenin Transcription in Penile Carcinoma

    PubMed Central

    Henrique, Rui; Millar, Michael; Hamblin, Ruth; Davda, Reena; Aare, Kristina; Masters, John R.; Thomson, Calum; Muneer, Asif; Patel, Hitendra R. H.; Ahmed, Aamir

    2015-01-01

    Penile squamous cell carcinoma (PeCa) is a rare malignancy and little is known regarding the molecular mechanisms involved in carcinogenesis of PeCa. The Wnt signaling pathway, with the transcription activator ß-catenin as a major transducer, is a key cellular pathway during development and in disease, particularly cancer. We have used PeCa tissue arrays and multi-fluorophore labelled, quantitative, immunohistochemistry to interrogate the expression of WNT4, a Wnt ligand, and three targets of Wnt-ß-catenin transcription activation, namely, MMP7, cyclinD1 (CD1) and c-MYC in 141 penile tissue cores from 101 unique samples. The expression of all Wnt signaling proteins tested was increased by 1.6 to 3 fold in PeCa samples compared to control tissue (normal or cancer adjacent) samples (p<0.01). Expression of all proteins, except CD1, showed a significant decrease in grade II compared to grade I tumors. High magnification, deconvolved confocal images were used to measure differences in co-localization between the four proteins. Significant (p<0.04-0.0001) differences were observed for various permutations of the combinations of proteins and state of the tissue (control, tumor grades I and II). Wnt signaling may play an important role in PeCa and proteins of the Wnt signaling network could be useful targets for diagnosis and prognostic stratification of disease. PMID:25901368

  16. Antagonism by d,1-propranolol of imipramine effects in mice.

    PubMed

    Souto, M; Francès, H; Lecrubier, Y; Puech, A J; Simon, P

    1979-11-23

    Three agents with known or suspected antidepressant activity, imipramine, salbutamol and dexamphetamine, were active in animal tests predictive of an antidepressant effect in man: antagonism of the hypothermia induced by reserpine, by oxotremorine or by a high dose of apomorphine, and the potentiation of the yohimbine-induced toxicity. These effects were antagonized by d,1-propranolol, suggesting that the stimulation of beta-adrenergic receptors could be a common mechanism underlying their effects. These results agree with the noradrenergic hypothesis of the pathophysiology of affective disorders.

  17. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.

    PubMed

    Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven D

    2016-05-01

    Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

  18. Concentration-dependent effects of WNTLESS on WNT1/3A signaling

    PubMed Central

    Galli, Lisa M.; Szabo, Linda A.; Li, Lydia; Htaik, Yin Min; Onguka, Ouma; Burrus, Laura W.

    2014-01-01

    Background WNTLESS (WLS) is a multi-transmembrane protein that transports Wnt ligands from the Golgi to the cell surface. Although WLS loss-of-function experiments in the developing central nervous system reveal phenotypes consistent with defects in WNT1 and WNT3A signaling, data from complementary gain-of-function experiments have not yet been reported. Here, we report the phenotypic consequences of WLS overexpression in cultured cells and in the developing chick spinal cord. Results Overexpression of small amounts of WLS along with either WNT1 or WNT3A promotes the Wnt/β-catenin pathway in HEK293T cells, while overexpression of higher levels of WLS inhibits the Wnt/β-catenin pathway in these cells. Similarly, overexpressed WLS inhibits the Wnt/β-catenin pathway in the developing spinal cord, as assessed by cell proliferation and specification. These effects appear to be Wnt-specific as overexpression of WLS inhibits the expression of FZD10, a target of β-catenin-dependent transcription. Conclusion Our results show that overexpression of WLS inhibits Wnt/β-catenin signaling in the spinal cord. As the activation of the Wnt/β-catenin pathway in the spinal cord requires WNT1 or WNT3A, our results are consistent with a model in which the relative concentration of WLS to Wnt regulates WNT1/3A signaling in the developing spinal cord. PMID:24866848

  19. Characterization of the reversible phosphorylation and activation of ERK8

    PubMed Central

    Klevernic, Iva V.; Stafford, Margaret J.; Morrice, Nicholas; Peggie, Mark; Morton, Simon; Cohen, Philip

    2005-01-01

    ERK8 (extracellular-signal-regulated protein kinase 8) expressed in Escherichia coli or insect cells was catalytically active and phosphorylated at both residues of the Thr-Glu-Tyr motif. Dephosphorylation of the threonine residue by PP2A (protein serine/threonine phosphatase 2A) decreased ERK8 activity by over 95% in vitro, whereas complete dephosphorylation of the tyrosine residue by PTP1B (protein tyrosine phosphatase 1B) decreased activity by only 15–20%. Wild-type ERK8 expressed in HEK-293 cells was over 100-fold less active than the enzyme expressed in bacteria or insect cells, but activity could be increased by exposure to hydrogen peroxide, by incubation with the protein serine/threonine phosphatase inhibitor okadaic acid, or more weakly by osmotic shock. In unstimulated cells, ERK8 was monophosphorylated at Tyr-177, and exposure to hydrogen peroxide induced the appearance of ERK8 that was dually phosphorylated at both Thr-175 and Tyr-177. IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor), PMA or anisomycin had little effect on activity. In HEK-293 cells, phosphorylation of the Thr-Glu-Tyr motif of ERK8 was prevented by Ro 318220, a potent inhibitor of ERK8 in vitro. The catalytically inactive mutants ERK8[D154A] and ERK8[K42A] were not phosphorylated in HEK-293 cells or E. coli, whether or not the cells had been incubated with protein phosphatase inhibitors or exposed to hydrogen peroxide. Our results suggest that the activity of ERK8 in transfected HEK-293 cells depends on the relative rates of ERK8 autophosphorylation and dephosphorylation by one or more members of the PPP family of protein serine/threonine phosphatases. The major residue in myelin basic protein phosphorylated by ERK8 (Ser-126) was distinct from that phosphorylated by ERK2 (Thr-97), demonstrating that, although ERK8 is a proline-directed protein kinase, its specificity is distinct from ERK1/ERK2. PMID:16336213

  20. Specific functions for ERK/MAPK signaling during PNS development

    PubMed Central

    Newbern, Jason M.; Li, Xiaoyan; Shoemaker, Sarah E.; Zhou, Jiang; Zhong, Jian; Wu, Yaohong; Bonder, Daniel; Hollenback, Steven; Coppola, Giovanni; Geschwind, Daniel H.; Landreth, Gary E.; Snider, William D.

    2011-01-01

    We have established functions of the stimulus dependent MAPKs, ERK1/2 and ERK5 in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest resulted in peripheral nerves that were devoid of Schwann cell progenitors, and deletion of Erk1/2 in Schwann cell precursors caused disrupted differentiation and marked hypomyelination of axons. The Schwann cell phenotypes are similar to those reported in neuregulin-1 and ErbB mutant mice and neuregulin effects could not be elicited in glial precursors lacking Erk1/2. ERK/MAPK regulation of myelination was specific to Schwann cells, as deletion in oligodendrocyte precursors did not impair myelin formation, but reduced precursor proliferation. Our data suggest a tight linkage between developmental functions of ERK/MAPK signaling and biological actions of specific RTK-activating factors. PMID:21220101

  1. Teaching resource. Canonical Wnt/beta-catenin signaling.

    PubMed

    Moon, Randall T

    2004-06-29

    This animation provides an interactive presentation of the Wnt signaling pathway as it may occur in multiple cell types. This animation would be useful in teaching developmental biology, immunology, and cell signaling courses. Activation of Wnt pathways can modulate cell proliferation, cell survival, cell behavior, and cell fate. In the basal, unstimulated state in the absence of ligand, there is a constitutively active kinase, which phosphorylates target proteins, resulting in their degradation. Thus, the presence of the ligand Wnt inactivates the kinase allowing accumulation of beta-catenin, which then translocates to the nucleus and acts as a transcriptional regulator.

  2. HPV-16 E6 promotes cell growth of esophageal cancer via downregulation of miR-125b and activation of Wnt/β-catenin signaling pathway.

    PubMed

    Zang, Bao; Huang, Guojin; Wang, Xiaowei; Zheng, Shiying

    2015-01-01

    High-risk human papillomavirus (HPV) is a possible cause of esophageal cancer. However, the molecular pathogenesis of HPV-infected esophageal cancer remains unclear. The expression levels of some microRNAs including miR-125b have been negatively correlated with HPV infection, and miR-125b downregulation is associated with tumorigenesis. In addition, Wnt/β-catenin signaling pathway has been suggested to play an important role in esophageal cancer (EC). We examined miR-125b and Wnt/β-catenin signaling pathway in HPV-16 E6 promoted tumor progression in EC. HPV-16 E6 transfection decreased markedly the expression levels of miR-125b and promoted the colony formation in the Eca 109 and Kyse 150 cell lines, and restoration of miR-125b expression level antagonized the increased colony formation in HPV-16 E6 transfected cell lines. We also demonstrated that overexpression of E6 upregulated the Wnt/β-catenin signaling activity via modulating the multiple regulators including TLE1, GSK3β, and sFRP4. Overexpression of miR-125b restored the expression levels of these proteins. Expression of miR-125b was lower in HPV-16 E6 positive esophageal cancer tissues, and was negatively correlated with E6 mRNA levels. Our results indicate that HPV-16 E6 promotes tumorigenesis in EC via down-regulation of miR-125b, and this underlying mechanism may be involved in the activation of the Wnt/β-catenin signaling pathway.

  3. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition.

    PubMed

    Meng, Hui; Li, Fei; Hu, Rong; Yuan, Yikai; Gong, Guoqi; Hu, Shengli; Feng, Hua

    2015-03-30

    Post-hemorrhagic chronic hydrocephalus (PHCH) is a common complication after intraventricular hemorrhage (IVH). The mechanism of PHCH is not fully understood, and its treatment is relatively difficult. In the present study, a rat model of PHCH was used to elucidate the role of iron in the pathogenesis of PHCH. The action of deferoxamine (DFX) in IVH-induced PHCH, the expression of brain ferritin, the concentration of iron in cerebrospinal fluid (CSF), and changes in Wnt1/Wnt3a gene expression were determined. Results indicate that iron plays an important role in the occurrence of hydrocephalus after IVH. The iron chelator, DFX, can decrease the concentrations of iron and ferritin after cerebral hemorrhage and can thereby decrease the incidence of hydrocephalus. In addition, after IVH, the gene expression of Wnt1 and Wnt3a was enhanced, with protein expression also upregulated; DFX was able to suppress both gene and protein expression of Wnt1 and Wnt3a in brain tissue. This indicates that iron may be the key stimulus that activates the Wnt signaling pathway and regulates subarachnoid fibrosis after cerebral hemorrhage, and that DFX may be a candidate for preventing PHCH in patients with IVH.

  4. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells.

    PubMed

    Ford, Caroline E; Jary, Eve; Ma, Sean Si Qian; Nixdorf, Sheri; Heinzelmann-Schwarz, Viola A; Ward, Robyn L

    2013-01-01

    Aberrant Wnt signalling is implicated in numerous human cancers, and understanding the effects of modulation of pathway members may lead to the development of novel therapeutics. Expression of secreted frizzled related protein 4 (SFRP4), an extracellular modulator of the Wnt signalling pathway, is progressively lost in more aggressive ovarian cancer phenotypes. Here we show that recombinant SFRP4 (rSFRP4) treatment of a serous ovarian cancer cell line results in inhibition of β-catenin dependent Wnt signalling as measured by TOP/FOP Wnt reporter assay and decreased transcription of Wnt target genes, Axin2, CyclinD1 and Myc. In addition, rSFRP4 treatment significantly increased the ability of ovarian cancer cells to adhere to collagen and fibronectin, and decreased their ability to migrate across an inflicted wound. We conclude that these changes in cell behaviour may be mediated via mesenchymal to epithelial transition (MET), as rSFRP4 treatment also resulted in increased expression of the epithelial marker E-cadherin, and reduced expression of Vimentin and Twist. Combined, these results indicate that modulation of a single upstream gatekeeper of Wnt signalling can have effects on downstream Wnt signalling and ovarian cancer cell behaviour, as mediated through epithelial to mesenchymal plasticity (EMP). This raises the possibility that SFRP4 may be used both diagnostically and therapeutically in epithelial ovarian cancer.

  5. Frequent up-regulation of WNT5A mRNA in primary gastric cancer.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-05-01

    WNT signal is transduced to the beta-catenin - TCF pathway, the JNK pathway, or the Ca2+-releasing pathway through seven-transmembrane-type WNT receptors encoded by Frizzled genes (FZD1-FZD10). We have previously cloned and characterized human WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT10A, WNT10B, WNT11, WNT14, and WNT14B/WNT15 by using bioinformatics, cDNA-library screening, and cDNA-PCR. Here, we investigated expression of human WNT5A mRNA in various normal tissues, 66 primary tumors derived from various tissues, and 15 human cancer cell lines. WNT5A mRNA was relatively highly expressed in salivary gland, bladder, uterus, placenta, and fetal kidney. Up-regulation of WNT5A mRNA was detected in 5 out of 8 cases of primary gastric cancer, 5 out of 18 cases of primary colorectal tumors, and in 2 out of 7 cases of primary uterus tumors by using matched tumor/normal expression array analysis. Up-regulation of WNT5A mRNA was also detected in 7 out of 10 other cases of primary gastric cancer by using cDNA-PCR. Although low-level expression of WNT5A mRNA was detected in gastric cancer cell line MKN45, WNT5A mRNA was almost undetectable in gastric cancer cell lines OKAJIMA, TMK1, MKN7, MKN28, MKN74, and KATO-III. Compared with frequent up-regulation of WNT5A mRNA in primary gastric cancer, expression levels of WNT5A mRNA in 7 gastric cancer cell lines were significantly lower than that in normal stomach. Frequent up-regulation of WNT5A mRNA in human primary gastric cancer might be due to cancer-stromal interaction.

  6. THE MAPK ERK5, BUT NOT ERK1/2, INHIBITS THE PROGRESSION OF MONOCYTIC PHENOTYPE TO THE FUNCTIONING MACROPHAGE

    PubMed Central

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2014-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. PMID:25447310

  7. Wnt5a is required for endothelial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/beta-catenin and protein kinase Calpha.

    PubMed

    Yang, Dong-Hwa; Yoon, Ju-Young; Lee, Soung-Hoon; Bryja, Vitezslav; Andersson, Emma R; Arenas, Ernest; Kwon, Young-Guen; Choi, Kang-Yell

    2009-02-13

    In this study, we examined the signaling pathways activated by Wnt5a in endothelial differentiation of embryonic stem (ES) cells and the function of Wnt5a during vascular development. We first found that Wnt5a(-/-) mouse embryonic stem (mES) cells exhibited a defect in endothelial differentiation, which was rescued by addition of Wnt5a, suggesting that Wnt5a is required for endothelial differentiation of ES cells. Involvement of both beta-catenin and protein kinase (PK)Calpha pathways in endothelial differentiation of mES cells requiring Wnt5a was indicated by activation of both beta-catenin and PKCalpha in Wnt5a(+/-) but not in Wnt5a(-/-) mES cells. We also found that beta-catenin or PKCalpha knockdowns inhibited the Wnt5a-induced endothelial differentiation of ES cells. Moreover, the lack of endothelial differentiation of Wnt5a(-/-) mES cells was rescued only by transfection of both beta-catenin and PKCalpha, indicating that both genes are required for Wnt5a-mediated endothelial differentiation. Wnt5a was also found to be essential for the differentiation of mES cells into immature endothelial progenitor cells, which are known to play a role in repair of damaged endothelium. Furthermore, a defect in the vascularization of the neural tissue was detected at embryonic day 14.5 in Wnt5a(-/-) mice, implicating Wnt5a in vascular development in vivo. Thus, we conclude that Wnt5a is involved in the endothelial differentiation of ES cells via both Wnt/beta-catenin and PKC signaling pathways and regulates embryonic vascular development.

  8. Wnt5a through Noncanonical Wnt/JNK or Wnt/PKC Signaling Contributes to the Differentiation of Mesenchymal Stem Cells into Type II Alveolar Epithelial Cells In Vitro

    PubMed Central

    Cai, Shixia; Dong, Liang; Liu, Le; Yang, Yi; Guo, Fengmei; Lu, Xiaomin; He, Hongli; Chen, Qihong; Hu, Shuling; Qiu, Haibo

    2014-01-01

    The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells is critical for reepithelization and recovery in acute respiratory distress syndrome (ARDS), and Wnt signaling was considered to be the underlying mechanisms. In our previous study, we found that canonical Wnt pathway promoted the differentiation of MSCs into AT II cells, however the role of the noncanonical Wnt pathway in this process is unclear. It was disclosed in this study that noncanonical Wnt signaling in mouse bone marrow–derived MSCs (mMSCs) was activated during the differentiation of mMSCs into AT II cells in a modified co-culture system with murine lung epithelial-12 cells and small airway growth media. The levels of surfactant protein (SP) C, SPB and SPD, the specific markers of AT II cells, increased in mMSCs when Wnt5a was added to activate noncanonical Wnt signaling, while pretreatment with JNK or PKC inhibitors reversed the promotion of Wnt5a. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. We found that the Wnt5a supplement promoted the vertical and horizontal migration of mMSCs, ameliorated the cell death and the reduction of Bcl-2/Bax induced by H2O2. The effect of Wnt5a on the migration of mMSCs and their survival after H2O2 exposure were partially inhibited with PKC or JNK blockers. In conclusion, Wnt5a through Wnt/JNK signaling alone or both Wnt/JNK and Wnt/PKC signaling promoted the differentiation of mMSCs into AT II cells and the migration of mMSCs; through Wnt/PKC signaling, Wnt5a increased the survival of mMSCs after H2O2 exposure in vitro. PMID:24658098

  9. Wnt10b Activates the Wnt, Notch and NFκB Pathways in U2OS Osteosarcoma Cells

    PubMed Central

    Mödder, Ulrike I.; Oursler, Merry Jo; Khosla, Sundeep; Monroe, David G.

    2011-01-01

    Although osteosarcoma represents the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Recent evidence has suggested that the Wnt signaling pathway may play a crucial role in osteosarcoma. This study employed a microarray approach to discover novel genes and pathways involved in Wnt signaling in osteosarcoma. We developed a Wnt10b-expressing cell line using the human U2OS osteosarcoma model (U2OS-Wnt10b) and performed microarray and pathway analyses using parental U2OS cells as control. Differential expression of 1003 genes encompassing 28 pathways was noted. The Wnt, NFκB and Notch pathways were chosen for further study based on their known importance in bone biology. Known Wnt-responsive genes Axin-2 (4.9-fold), CD44 (2.1-fold), endothelin-1 (4.2-fold) and sclerostin domain containing-1 (43-fold) were regulated by Wnt10b. The proinflammatory cytokines interleukin-1α and tumor necrosis factor-α, known inducers of NFκB, were upregulated both at the transcript and protein level, and NFκB reporter activity was stimulated 3.8-fold, confirming NFκB activation. Interestingly, genes involved in Notch signaling [Notch-1 (2.4-fold) and Jagged-1 (3.1-fold)] were upregulated, whereas the Notch inhibitor, lunatic fringe, was downregulated (8.2-fold). This resulted in the activation of the classic Notch-responsive genes, hairy and enhancer of split-1 (Hes-1; 2.2-fold) and hairy/enhancer-of-split related with YRPW motif-1 (Hey-1; 2.5-fold). A Hey-1 reporter construct was regulated 9.1-fold in U2OS-Wnt10b cells, confirming Notch activation. Interestingly, Wnt3a failed to induce the Notch and NFκB pathways, demonstrating Wnt-specificity. In conclusion, our data demonstrate that Wnt10b, but not Wnt3a, stimulates the NFκB and Notch pathways in U2OS osteosarcoma cells. PMID:21321991

  10. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development

    PubMed Central

    Sinha, Tanvi; Lin, Lizhu; Li, Ding; Davis, Jennifer; Evans, Sylvia; Wynshaw-Boris, Anthony; Wang, Jianbo

    2015-01-01

    Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained

  11. The mechanism of cyanide intoxication and its antagonism.

    PubMed

    Way, J L; Leung, P; Cannon, E; Morgan, R; Tamulinas, C; Leong-Way, J; Baxter, L; Nagi, A; Chui, C

    1988-01-01

    The mechanism of cyanide intoxication has been attributed to the inhibition of cytochrome oxidase, thereby decreasing the tissue utilization of oxygen. One mechanism of cyanide antagonism is by sequestering cyanide with methaemoglobin to form cyanmethaemoglobin and another mechanism is detoxifying with a sulphur donor to thiocyanate. Questions have been raised with regard to these classical mechanisms. Oxygen with nitrite-thiosulphate antagonizes the lethal effects of cyanide. Theoretically, increased oxygen should serve no useful purpose, as it is the tissue utilization of oxygen which is inhibited. In the nitrite-thiosulphate antidotal combination, the proposal is made that the predominate antidotal action of nitrite is a vasogenic action, rather than methaemoglobin formation, because when methaemoglobin formation is inhibited by methylene blue the protective action of sodium nitrite persists. This suggests that methaemoglobin formation plays only a small part, if any, in the therapeutic antagonism of the lethal effects of cyanide. The roles and implications of sodium thiosulphate and non-rhodanese substrates in the detoxification mechanism are compared. Lastly, a new approach to cyanide antagonism has been initiated which involves the erythrocyte encapsulation of thiosulphate and sulphurtransferase as an antidote and prophylaxis against cyanide.

  12. Novel pharmacological approaches for the antagonism of neuromuscular blockade.

    PubMed

    Pic, Lisa C

    2005-02-01

    Gamma cyclodextrin and purified plasma cholinesterase are 2 novel pharmacological agents being investigated as to their suitability for antagonism of neuromuscular blockade. Both of these agents are devoid of cholinergic stimulation and the accompanying side effects because their action is independent of acetylcholinesterase inhibition. Gamma cyclodextrin antagonizes the steroidal neuromuscular blocker rocuronium via the chemical encapsulation of the molecule forming a "host-guest" complex through van der Waals and hydrophobic interactions in the plasma. Encapsulation decreases plasma drug concentrations, shifting the neuromuscular blocking drug molecules from the neuromuscular junction back to the plasma compartment resulting in a rapid recovery of the neuromuscular function. Org 25969, a modified gamma cyclodextrin, will antagonize profound neuromuscular block induced by rocuronium in approximately 2 minutes. A commercial preparation of purified human plasma cholinesterase has been shown to be effective in reversing succinylcholine or mivacurium-induced block. Administration of exogenous plasma cholinesterase also has been shown to be effective in antagonizing mivacurium-induced neuromuscular block, cocaine toxicity, and organophosphate poisoning.

  13. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  14. AOP description: ER antagonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...

  15. Wnt family proteins are secreted and associated with the cell surface.

    PubMed Central

    Smolich, B D; McMahon, J A; McMahon, A P; Papkoff, J

    1993-01-01

    Members of the Wnt gene family are proposed to function in both normal development and differentiation as well as in mammary tumorigenesis. To understand the function of Wnt proteins in these two processes, we present here a biochemical characterization of seven Wnt family members. For these studies, AtT-20 cells, a neuroendocrine cell line previously shown to efficiently process and secrete Wnt-1, was transfected with expression vectors encoding Wnt family members. All of the newly characterized Wnt proteins are glycosylated, secreted proteins that are tightly associated with the cell surface or extracellular matrix. We have also identified native Wnt proteins in retinoic acid-treated P19 embryonal carcinoma cells, and they exhibit the same biochemical characteristics as the recombinant proteins. These data suggest that Wnt family members function in cell to cell signaling in a fashion similar to Wnt-1. Images PMID:8167409

  16. Small molecule modulators of Wnt/β-catenin signaling.

    PubMed

    Mook, Robert A; Chen, Minyong; Lu, Jiuyi; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2013-04-01

    The Wnt signal transduction pathway is dysregulated in many highly prevalent diseases, including cancer. Unfortunately, drug discovery efforts have been hampered by the paucity of targets and drug-like lead molecules amenable to drug discovery. Recently, we reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling by a unique mechanism, though the target responsible remains unknown. We interrogated the mechanism and structure-activity relationships to understand drivers of potency and to assist target identification efforts. We found inhibition of Wnt signaling by Niclosamide appears unique among the structurally-related anthelmintic agents tested and found the potency and functional response was dependent on small changes in the chemical structure of Niclosamide. Overall, these findings support efforts to identify the target of Niclosamide inhibition of Wnt/β-catenin signaling and the discovery of potent and selective modulators to treat human disease.

  17. Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development

    PubMed Central

    Barbieri, Elisa; Deflorian, Gianluca; Pezzimenti, Federica; Valli, Debora; Saia, Marco; Meani, Natalia

    2016-01-01

    Nucleophosmin (NPM1) is a ubiquitous multifunctional phosphoprotein with both oncogenic and tumor suppressor functions. Mutations of the NPM1 gene are the most frequent genetic alterations in acute myeloid leukemia (AML) and result in the expression of a mutant protein with aberrant cytoplasmic localization, NPMc+. Although NPMc+ causes myeloproliferation and AML in animal models, its mechanism of action remains largely unknown. Here we report that NPMc+ activates canonical Wnt signaling during the early phases of zebrafish development and determines a Wnt-dependent increase in the number of progenitor cells during primitive hematopoiesis. Coherently, the canonical Wnt pathway is active in AML blasts bearing NPMc+ and depletion of the mutant protein in the patient derived OCI-AML3 cell line leads to a decrease in the levels of active β-catenin and of Wnt target genes. Our results reveal a novel function of NPMc+ and provide insight into the molecular pathogenesis of AML bearing NPM1 mutations. PMID:27486814

  18. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  19. WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition

    PubMed Central

    Xu, Jing; Zhang, Lan; Wang, Jianhua; Huang, Long; Huang, Shuting; Yuan, Linjing; Jia, Weihua; Yu, Xingjuan; Luo, Rongzhen; Zheng, Min

    2016-01-01

    Background Previously, we found an 11-gene signature could predict pelvic lymph node metastasis (PLNM), and WNT2 is one of the key genes in the signature. This study explored the expression and underlying mechanism of WNT2 in PLNM of cervical cancer. Methods WNT2 expression level in cervical cancer was detected using western blotting, quantitative PCR, and immunohistochemistry. Two WNT2-specific small interfering RNAs (siRNAs) were used to explore the effects of WNT2 on invasive and metastatic ability of cancer cells, and to reveal the possible mechanism of WNT2 affecting epithelial—mesenchymal transition (EMT). The correlation between WNT2 expression and PLNM was further investigated in clinical cervical specimens. Results Both WNT2 mRNA and protein expression was upregulated in cervical cancer. High WNT2 expression was significantly associated with tumor size, lymphovascular space involvement, positive parametrium, and most importantly, PLNM. PLNM and WNT2 expression were independent prognostic factors for overall survival and disease-free survival. WNT2 knockdown inhibited SiHa cell motility and invasion and reversed EMT by inhibiting the WNT2/β-catenin pathway. WNT2 overexpression in cervical cancer was associated with β-catenin activation and induction of EMT, which further contributed to metastasis in cervical cancer. Conclusion WNT2 might be a novel predictor of PLNM and a promising prognostic indicator in cervical cancer. PMID:27513465

  20. Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma.

    PubMed

    Nakamoto, Mitsuhiro; Matsuyama, Atsuji; Shiba, Eisuke; Shibuya, Ryo; Kasai, Takahiko; Yamaguchi, Koji; Hisaoka, Masanori

    2014-10-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies and is associated with a variety of molecular abnormalities. Although WNT signaling through its canonical/non-canonical pathways is one of the major factors involved in oncogenesis or progression of PDA, the prognostic significance of WNT signaling still remains poorly investigated. In this study, the status of the WNT signaling pathways was immunohistochemically analyzed in 101 PDAs, and its potential association with patient postoperative survival was assessed. Nuclear expression of beta-catenin, a hallmark of the activated canonical pathway, was identified in 59 cases, and was associated with reduced survival compared to the patients lacking nuclear beta-catenin expression (P = 0.002). In contrast, activation of the non-canonical pathway (25 cases), as indicated by co-expression of WNT2/5a and nuclear NFATc1, was not correlated with reduced survival (P = 0.268). Co-activation of both pathways (16 cases) was associated with worse prognosis in comparison with cases with an activated non-canonical pathway (P = 0.034). In addition, nuclear beta-catenin expression was an independent unfavorable prognostic factor (P = 0.006). Our data indicate that activated WNT signaling through its canonical pathway has a significantly negative effect on the clinical course of PDA, and the canonical WNT pathway should be considered as a future therapeutic target for PDA.

  1. WNT/β-Catenin Signaling in Vertebrate Eye Development

    PubMed Central

    Fujimura, Naoko

    2016-01-01

    The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages. PMID:27965955

  2. Endodermal Wnt signaling is required for tracheal cartilage formation

    PubMed Central

    Snowball, John; Ambalavanan, Manoj; Whitsett, Jeffrey; Sinner, Debora

    2015-01-01

    Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wlsf/f;ShhCre/+ tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation. PMID:26093309

  3. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis

    PubMed Central

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-01-01

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI: http://dx.doi.org/10.7554/eLife.12845.001 PMID:27063937

  4. Endodermal Wnt signaling is required for tracheal cartilage formation.

    PubMed

    Snowball, John; Ambalavanan, Manoj; Whitsett, Jeffrey; Sinner, Debora

    2015-09-01

    Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wls(f/f);Shh(Cre/+) tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation.

  5. Monitoring Wnt/β-Catenin Signaling in Skin

    PubMed Central

    Ku, Amy T.; Miao, Qi; Nguyen, Hoang

    2017-01-01

    Wnt signaling through β-catenin plays a crucial role in skin development and homeostasis. Disruption or hyperactivation of this pathway results in skin defects and diseases (Lim and Nusse, Cold Spring Harb Perspect Biol 5(2), 2013). Monitoring Wnt signaling in skin under normal and abnormal conditions is therefore critical to understand the role of this pathway in development and homeostasis. In this chapter, we provide methods to detect Wnt/β-catenin (canonical) signaling in the skin. We present a comprehensive list of Wnt reporter mice and detail the processing of skin tissue to detect reporter genes. From this list, we focus on the three most recent lines that, according to reports, are the most sensitive in skin. Additionally, we describe a protocol to detect nuclear β-catenin, a hallmark of active Wnt signaling, although this technique should be used with caution due to its limited sensitivity. The techniques outlined below will be useful for detecting active Wnt signaling in skin. PMID:27590159

  6. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters.

    PubMed

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  7. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters

    PubMed Central

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M.

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  8. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies

    PubMed Central

    Ettenberg, Seth A.; Charlat, Olga; Daley, Michael P.; Liu, Shanming; Vincent, Karen J.; Stuart, Darrin D.; Schuller, Alwin G.; Yuan, Jing; Ospina, Beatriz; Green, John; Yu, Qunyan; Walsh, Renee; Schmitz, Rita; Heine, Holger; Bilic, Sanela; Ostrom, Lance; Mosher, Rebecca; Hartlepp, K. Felix; Zhu, Zhenping; Fawell, Stephen; Yao, Yung-Mae; Stover, David; Finan, Peter M.; Porter, Jeffery A.; Sellers, William R.; Klagge, Ingo M.; Cong, Feng

    2010-01-01

    Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer. PMID:20713706

  9. ERK5 signalling in prostate cancer promotes an invasive phenotype

    PubMed Central

    Ramsay, A K; McCracken, S R C; Soofi, M; Fleming, J; Yu, A X; Ahmad, I; Morland, R; Machesky, L; Nixon, C; Edwards, D R; Nuttall, R K; Seywright, M; Marquez, R; Keller, E; Leung, H Y

    2011-01-01

    Background: Aberrant mitogen/extracellular signal-regulated kinase 5 (MEK5)–extracellular signal-regulated protein kinase 5 (ERK5)-mediated signalling has been implicated in a number of tumour types including prostate cancer (PCa). The molecular basis of ERK5-driven carcinogenesis and its clinical relevance remain to be fully characterised. Methods: Modulation of ERK5 expression or function in human PCa PC3 and PC3–ERK5 (stably transfected with ERK5) cells was performed using siRNA-mediated knockdown or the MEK inhibitor PD18435 respectively. In vitro significance of ERK5 signalling was assessed by assays for proliferation, motility, invasion and invadopodia. Expression of matrix metalloproteinases/tissue inhibitors of metalloproteases was determined by Q-RT–PCR. Extracellular signal-regulated protein kinase 5 expression in primary and metastatic PCa was examined using immunohistochemistry. Results: Reduction of ERK5 expression or signalling significantly inhibited the motility and invasive capability of PC3 cells. Extracellular signal-regulated protein kinase 5-mediated signalling significantly promoted formation of in vivo metastasis in an orthotopic PCa model (P<0.05). Invadopodia formation was also enhanced by forced ERK5 expression in PC3 cells. Furthermore, in metastatic PCa, nuclear ERK5 immunoreactivity was significantly upregulated when compared with benign prostatic hyperplasia and primary PCa (P=0.013 and P<0.0001, respectively). Conclusion: Our in vitro, in vivo and clinical data support an important role for the MEK5–ERK5 signalling pathway in invasive PCa, which represents a potential target for therapy in primary and metastatic PCa. PMID:21266977

  10. Zinc and the ERK Kinases in the Developing Brain

    PubMed Central

    Nuttall, J. R.

    2015-01-01

    This article reviews evidence in support of the hypothesis that impaired activation of the extracellular signal-regulated kinases (ERK1/2) contributes to the disruptions in neurodevelopment associated with zinc deficiency. These kinases are implicated in major events of brain development, including proliferation of progenitor cells, neuronal migration, differentiation, and apoptotic cell death. In humans, mutations in ERK1/2 genes have been associated with neuro-cardio-facial-cutaneous syndromes. ERK1/2 deficits in mice have revealed impaired neurogenesis, altered cellularity, and behavioral abnormalities. Zinc is an important modulator of ERK1/2 signaling. Conditions of both zinc deficiency and excess affect ERK1/2 phosphorylation in fetal and adult brains. Hypophosphorylation of ERK1/2, associated with decreased zinc availability in cell cultures, is accompanied by decreased proliferation and an arrest of the cell cycle at the G0/G1 phase. Zinc and ERK1/2 have both been shown to modulate neural progenitor cell proliferation and cell death in the brain. Furthermore, behavioral deficits resulting from developmental zinc deficiency are similar to those observed in mice with decreased ERK1/2 signaling. For example, impaired performance on behavioral tests of learning and memory; such as the Morris water maze, fear conditioning, and the radial arm maze; has been reported in both animals exposed to developmental zinc deficiency and transgenic mice with decreased ERK signaling. Future study should clarify the mechanisms through which a dysregulation of ERK1/2 may contribute to altered brain development associated with dietary zinc deficiency and with conditions that limit zinc availability. PMID:22095091

  11. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism.

    PubMed

    de Bartolomeis, Andrea; Tomasetti, Carmine; Iasevoli, Felice

    2015-09-01

    Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.

  12. A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans

    PubMed Central

    Lezzerini, Marco; Budovskaya, Yelena

    2014-01-01

    Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age-related diseases. These effects occur through highly complicated cell-to-cell interactions mediated by multiple Wnt-secreted proteins. While they share a high degree of sequence similarity, their function is highly diversified. Although the role of Wnt ligands during development is well studied, very little is known about the possible actions of Wnt signaling in natural aging. In this study, Caenorhabditis elegans serves, for the first time, as a model system to determine the role of Wnt ligands in aging. Caenorhabditis elegans has five Wnt proteins, mom-2, egl-20, lin-44, cwn-1, and cwn-2. We show that all five Wnt ligands are expressed and active past the development stages. The ligand mom-2/Wnt plays a major detrimental role in longevity, whereas the function of lin-44/Wnt is beneficial for long life. Interestingly, no evidence was found for Wnt signaling being involved in cellular or oxidative stress responses during aging. Our results suggest that Wnt signaling regulates aging-intrinsic genetic pathways, opening a new research direction on the role of Wnt signaling in aging and age-related diseases. PMID:23879250

  13. Role for WNT16B in human epidermal keratinocyte proliferation and differentiation.

    PubMed

    Teh, Muy-Teck; Blaydon, Diana; Ghali, Lucy R; Briggs, Victoria; Edmunds, Scott; Pantazi, Eleni; Barnes, Michael R; Leigh, Irene M; Kelsell, David P; Philpott, Michael P

    2007-01-15

    WNT signalling regulates a variety of cell functions including cell fate, polarity, and differentiation via the canonical or beta-catenin stabilisation pathway and/or the planar cell polarity or non-canonical pathway. We have previously demonstrated that two isoforms (A and B) from the WNT16 locus have differential expression in various adult human tissues. In this study we show that WNT16B but not WNT16A isoform was upregulated in basal cell carcinomas compared with normal skin. We further investigated the cellular and molecular functions of WNT16B in primary human epidermal keratinocytes and a keratinocyte cell line. Cellular expression of WNT16B neither stabilised beta-catenin nor activated the lymphoid enhancer factor or T-cell factor transcriptional reporter in primary keratinocytes. WNT16B activated the Jun-N-terminal kinase cascade suggesting the activation of a non-canonical WNT signalling pathway. Constitutive expression of WNT16B significantly enhanced the rate of cell proliferation and prolonged clonogenicity in primary keratinocytes. Silencing WNT16B by RNA interference reduced keratinocyte proliferation. Furthermore, overexpression of WNT16B induced a hyperproliferation phenotype in an organotypical culture system. This work presents the first evidence that WNT16B activates human keratinocyte proliferation possibly via a beta-catenin-independent non-canonical WNT transduction pathway.

  14. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis

    PubMed Central

    Daneman, Richard; Agalliu, Dritan; Zhou, Lu; Kuhnert, Frank; Kuo, Calvin J.; Barres, Ben A.

    2009-01-01

    Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood−brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/β-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/β-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/β-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/β-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/β-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked. PMID:19129494

  15. Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development.

    PubMed

    Brunk, Fabian; Augustin, Iris; Meister, Michael; Boutros, Michael; Kyewski, Bruno

    2015-12-01

    Wnt signaling has been implicated in T cell development. However, it remained unclear which cell type is the major source of Wnt ligands and to what extent thymic epithelial cell (TEC) development is dependent on Wnt signaling. In this study, we analyzed the role of Wnt ligands provided by TECs for the development of T cells and TECs without manipulating the intracellular Wnt signaling machinery in either cell type. To this end, we used conditional knockout mice (FoxN1-Gpr177) in which TECs are unable to secrete Wnt ligands. Gpr177 (Evi/Wls) is a Wnt-specific cargo receptor that is required for the secretion of Wnt ligands. We found that TECs are the main source of Wnt ligands in the thymus, which serves a nonredundant role, and lack of TEC-provided Wnt ligands led to thymic hypotrophy, as well as a reduced peripheral T cell pool. Despite being reduced in numbers, T cells that developed in the absence of TEC-secreted Wnt ligands were functionally competent, and the subset composition of the peripheral T cell pool was not affected. Thus, our data suggest that T cell development is not directly dependent on TEC-provided Wnt ligands. Rather, TEC-secreted Wnt ligands are essential for normal thymus development and normal peripheral T cell frequencies but are dispensable for T cell function in the periphery.

  16. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    SciTech Connect

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  17. The evolution of reduced antagonism--A role for host-parasite coevolution.

    PubMed

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism.

  18. Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma.

    PubMed

    Annavarapu, Srinivas R; Cialfi, Samantha; Dominici, Carlo; Kokai, George K; Uccini, Stefania; Ceccarelli, Simona; McDowell, Heather P; Helliwell, Timothy R

    2013-10-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilization of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target.

  19. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  20. C3 toxin activates the stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in rat-1 cells.

    PubMed

    Beltman, J; Erickson, J R; Martin, G A; Lyons, J F; Cook, S J

    1999-02-05

    Lysophosphatidic acid (LPA) stimulates the c-Fos serum response element (SRE) by activating two distinct signal pathways regulated by the small GTPases, Ras and RhoA. Ras activates the ERK cascade leading to phosphorylation of the transcription factors Elk-1 and Sap1a at the Ets/TCF site. RhoA regulates an undefined pathway required for the activation of the SRF/CArG site. Here we have examined the role of the Ras and RhoA pathways in activation of the SRE and c-Fos expression in Rat-1 cells. Pertussis toxin and PD98059 strongly inhibited LPA-stimulated c-Fos expression and activation of a SRE:Luc reporter. C3 toxin completely inhibited RhoA function, partially inhibited SRE:Luc activity, but had no effect on LPA-stimulated c-Fos expression. Thus, in a physiological context the Ras-Raf-MEK-ERK pathway, but not RhoA, is required for LPA-stimulated c-Fos expression in Rat-1 cells. C3 toxin stimulated the stress-activated protein kinases JNK and p38 and potentiated c-Jun expression and phosphorylation; these properties were shared by another cellular stress agonist the protein kinase C inhibitor Ro-31-8220. However, C3 toxin alone or in combination with growth factors did not stimulate AP-1:Luc activity and actually antagonized the synergistic activation of AP-1:Luc observed in response to co-stimulation with growth factors and Ro-31-8220. These data indicate that C3 toxin is a cellular stress which antagonizes activation of AP-1 at a point downstream of stress-activated kinase activation or immediate-early gene induction.

  1. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis.

    PubMed

    Chu, Po-Yin; Walder, Ken; Horlock, Duncan; Williams, David; Nelson, Erin; Byrne, Melissa; Jandeleit-Dahm, Karin; Zimmet, Paul; Kaye, David M

    2015-01-01

    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach.

  2. STUDIES OF PYRIDOXAL-PENICILLAMINE ANTAGONISM IN THE HUMAN,

    DTIC Science & Technology

    The pyridoxal-L- penicillamine antagonism previously studied by others in lower animals has now been studied in man by means of urinary xanthurenic...studies involved urinary XA determinations, with and without tryptophan-loading tests, and with varying dosage combinations of penicillamines and...pyridoxine hydrochloride. It was found that urinary XA excretions remained normal after DL- penicillamine or DL-tryptophan alone but increased when the two

  3. Convergent evolution of escape from hepaciviral antagonism in primates.

    PubMed

    Patel, Maulik R; Loo, Yueh-Ming; Horner, Stacy M; Gale, Michael; Malik, Harmit S

    2012-01-01

    The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.

  4. Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b

    PubMed Central

    Zhang, Yiming; Xing, Yizhan; Guo, Haiying; Ma, Xiaogen; Li, Yuhong

    2016-01-01

    The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells. PMID:27766026

  5. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide.

    PubMed

    Dillon, Nicholas A; Peterson, Nicholas D; Rosen, Brandon C; Baughn, Anthony D

    2014-12-01

    Pyrazinamide (PZA) is a first-line tuberculosis drug that inhibits the growth of Mycobacterium tuberculosis via an as yet undefined mechanism. An M. tuberculosis laboratory strain that was auxotrophic for pantothenate was found to be insensitive to PZA and to the active form, pyrazinoic acid (POA). To determine whether this phenotype was strain or condition specific, the effect of pantothenate supplementation on PZA activity was assessed using prototrophic strains of M. tuberculosis. It was found that pantothenate and other β-alanine-containing metabolites abolished PZA and POA susceptibility, suggesting that POA might selectively target pantothenate synthesis. However, when the pantothenate-auxotrophic strain was cultivated using a subantagonistic concentration of pantetheine in lieu of pantothenate, susceptibility to PZA and POA was restored. In addition, we found that β-alanine could not antagonize PZA and POA activity against the pantothenate-auxotrophic strain, indicating that the antagonism is specific to pantothenate. Moreover, pantothenate-mediated antagonism was observed for structurally related compounds, including n-propyl pyrazinoate, 5-chloropyrazinamide, and nicotinamide, but not for nicotinic acid or isoniazid. Taken together, these data demonstrate that while pantothenate can interfere with the action of PZA, pantothenate synthesis is not directly targeted by PZA. Our findings suggest that targeting of pantothenate synthesis has the potential to enhance PZA efficacy and possibly to restore PZA susceptibility in isolates with panD-linked resistance.

  6. Examining Docking Interactions on ERK2 with Modular Peptide Substrates

    PubMed Central

    Lee, Sunbae; Warthaka, Mangalika; Yan, Chunli; Kaoud, Tamer S; Ren, Pengyu; Dalby, Kevin N

    2012-01-01

    ERK2 primarily recognizes substrates through two recruitment sites, which lie outside the active site cleft of the kinase. These recruitment sites bind modular-docking sequences called docking sites and are potentially attractive sites for the development of non-ATP competitive inhibitors. The D-recruitment site (DRS) and the F-recruitment site (FRS) bind D-sites and F-sites, respectively. For example, peptides that target the FRS have been proposed to inhibit all ERK2 activity (J. Biol. Chem. 2001, 276, 965-973), however it has not been established whether this inhibition is steric or allosteric in origin. To facilitate inhibitor design and to examine potential coupling of recruitment sites to other ligand recognition sites within ERK2 Energetic coupling within ERK2 was investigated using two new modular peptide substrates for ERK2. Modeling shows that one peptide (Sub-D) recognizes the DRS, while the other peptide (Sub-F) binds the FRS. A steady-state kinetic analysis reveals little evidence of thermodynamic linkage between peptide substrate and ATP. Both peptides are phosphorylated through a random-order sequential mechanism with a kcat/Km comparable to Ets-1, a bona fide ERK2 substrate. Occupancy of the FRS with a peptide containing a modular docking sequence has no effect on the intrinsic ability of ERK2 to phosphorylate Sub-D. Occupancy of the DRS with a peptide containing a modular docking sequence has a slight effect (1.3 ± 0.1-fold increase in kcat) on the intrinsic ability of ERK2 to phosphorylate Sub-F. These data suggest that while docking interactions at the DRS and the FRS are energetically uncoupled, the DRS can exhibit weak communication to the active site. In addition, they suggest that peptides bound to the FRS inhibit the phosphorylation of protein substrates through a steric mechanism. The modeling and kinetic data suggest that the recruitment of ERK2 to cellular locations via its DRS may facilitate the formation of F-site selective ERK2

  7. Multiple Wnt genes are required for posterior patterning in the short germ embryo of Tribolium castaneum

    PubMed Central

    Bolognesi, Renata; Farzana, Laila; Fischer, Tamara D.; Brown, Susan J.

    2008-01-01

    Summary wingless (wg)/Wnt family genes encode secreted glycoproteins essential for the development of virtually all metazoans. In short germ insects, including the red flour beetle, Tribolium castaneum, the segment-polarity function of wg is conserved [1]. Wnt signalling is also implicated in posterior patterning and germband elongation [2–4], but despite its expression in the posterior growth zone, Wnt1/wg alone is not responsible for these functions; [1–3]. Tribolium contains additional Wnt family genes of unknown function that are also expressed in the growth zone [5]. After depleting one of these, Tc-WntD/8, we found a small percentage of embryos lacking abdominal segments. Additional removal of Tc-Wnt1 significantly enhanced this phenotype, suggesting functional redundancy. Seeking alternative methods to deplete Wnt signal, we performed RNAi with other components of the Wnt pathway including wntless (wls) and porcupine (porc), which process Wnt ligands, and pangolin (pan), which transduces the signal to the nucleus. Tc-wls RNAi caused segmentation defects similar to Tc-Wnt1, but not Tc-WntD/8 RNAi, indicating that the effects of Tc-WntD/8 depletion are Tc-wls-independent. In contrast, depletion of Tc-porc and Tc-pan resulted in embryos resembling those of double Tc-Wnt1,Tc-WntD/8 RNAi, suggesting Tc-porc is essential for the function of both ligands and that they signal through the canonical pathway. Our results provide the first evidence of functional redundancy between Wnt ligands in posterior patterning in short germ insects. This Wnt function appears to be conserved in other arthropods [6] and vertebrates [7–9]. PMID:18926702

  8. Activation of Alternative Wnt Signaling Pathways in Human Mammary Gland and Breast Cancer Cells

    DTIC Science & Technology

    2006-06-01

    signalling, the antagonistic role of Wnt5a on canonical Wnt signalling, and the fact that the genes regulated by either of these pathways differ in...differentiation, apoptosis, and migration. Wnt/Frizzled signaling is now linked to human hereditary disorders with retinal vascular defects, implicating...www.physiologyonline.org fact that the role of FrzA in vascular biology is not well understood. Wnt Signaling Comes into Play in Human Vascular

  9. Negative regulation of the Wnt signal by MM-1 through inhibiting expression of the wnt4 gene.

    PubMed

    Yoshida, Tatsuya; Kitaura, Hirotake; Hagio, Yuko; Sato, Toshiya; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2008-04-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc through TIF1beta/KAP1, a transcriptional corepressor, and that the c-fms gene was a target gene involved in this pathway. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, to further identify target genes of MM-1, DNA microarray analysis was carried out by comparing expression levels of genes in MM-1 knockdown and parental cells, and the wnt4 gene, a member of the Wnt-beta-catenin pathway, was identified as a target gene of MM-1. Increased expression level of the wnt4 gene, accumulation and translocation of beta-catenin to the cytoplasm and nucleus, and upregulation of TCF/Lef-1, a target protein of the Wnt-beta-catenin pathway, were found in MM-1 knockdown cells. Reporter assays using various deletion constructs of the wnt4 gene promoter showed that MM-1 recognized the region spanning -286 to -229 from a transcription start site, and MM-1 complex was found to bind to this region by chromatin immunoprecipitation and gel mobility shift assays. Furthermore, it was found that Egr-1 and MM-1 were bound to this region and that both proteins mutually down-regulate promoter activity of the wnt4 gene. Since the c-myc gene is the target gene of the Wnt-beta-catenin pathway, these findings suggest that MM-1 inhibits c-Myc by a dual mechanism.

  10. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts

    SciTech Connect

    Ohnaka, Keizo . E-mail: oonaka@geriat.med.kyushu-u.ac.jp; Tanabe, Mizuho; Kawate, Hisaya; Nawata, Hajime; Takayanagi, Ryoichi

    2005-04-01

    To explore the mechanism of glucocorticoid-induced osteoporosis, we investigated the effect of glucocorticoid on canonical Wnt signaling that emerged as a novel key pathway for promoting bone formation. Wnt3a increased the T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-dependent transcriptional activity in primary cultured human osteoblasts. Dexamethasone suppressed this transcriptional activity in a dose-dependent manner, while 1,25-dihydroxyvitamin D3 increased this transcriptional activity. LiCl, an inhibitor of glycogen synthase kinase-3{beta}, also enhanced the Tcf/Lef-dependent transcriptional activity, which was, however, not inhibited by dexamethasone. The addition of anti-dickkopf-1 antibody partially restored the transcriptional activity suppressed by dexamethasone. Dexamethasone decreased the cytosolic amount of {beta}-catenin accumulated by Wnt3a and also inhibited the nuclear translocation of {beta}-catenin induced by Wnt3a. These data suggest that glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts, partially through the enhancement of the dickkopf-1 production.

  11. Wnt and planar cell polarity signaling in cystic renal disease.

    PubMed

    Goggolidou, Paraskevi

    2014-01-01

    Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.

  12. Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

    PubMed Central

    Voronkov, Andrey; Krauss, Stefan

    2012-01-01

    Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions. PMID:23016862

  13. The Polycystin complex mediates WNT/Ca2+ signaling

    PubMed Central

    Nesin, Vasyl; Tran, Uyen; Outeda, Patricia; Bai, Chang-Xi; Keeling, Jacob; Maskey, Dipak; Watnick, Terry; Wessely, Oliver; Tsiokas, Leonidas

    2016-01-01

    WNT ligands induce Ca2+ signaling on target cells. PKD1 (Polycystin 1) is considered an orphan, atypical G protein coupled receptor complexed with TRPP2 (Polycystin 2 or PKD2), a Ca2+-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole cell currents and Ca2+ influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2−/− fibroblasts lack WNT-induced Ca2+ currents and are unable to polarize during directed cell migration. In Xenopus embryos, PKD1, Dishevelled 2 (DVL2), and WNT9A act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca2+ signaling as one of the causes of ADPKD. PMID:27214281

  14. Neurodevelopment in Schizophrenia: The Role of the Wnt Pathways

    PubMed Central

    Panaccione, Isabella; Napoletano, Flavia; Forte, Alberto Maria; Kotzalidis, Giorgio D.; Del Casale, Antonio; Rapinesi, Chiara; Brugnoli, Chiara; Serata, Daniele; Caccia, Federica; Cuomo, Ilaria; Ambrosi, Elisa; Simonetti, Alessio; Savoja, Valeria; De Chiara, Lavinia; Danese, Emanuela; Manfredi, Giovanni; Janiri, Delfina; Motolese, Marta; Nicoletti, Ferdinando; Girardi, Paolo; Sani, Gabriele

    2013-01-01

    Objectives. To review the role of Wnt pathways in the neurodevelopment of schizophrenia. Methods: Systematic PubMed search, using as keywords all the terms related to the Wnt pathways and crossing them with each of the following areas: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. Results: Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. Conclusions: The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data. PMID:24403877

  15. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt–Wnt Situation

    PubMed Central

    Villaseñor, Tomás; Madrid-Paulino, Edgardo; Maldonado-Bravo, Rafael; Urbán-Aragón, Antonio; Pérez-Martínez, Leonor; Pedraza-Alva, Gustavo

    2017-01-01

    Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis. PMID:28203237

  16. RING finger protein PLR-1 blocks Wnt signaling by altering trafficking of Wnt Receptors

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan E.

    Secreted Wnt proteins control a wide range of essential developmental processes, including axon guidance and establishment of anteroposterior neuronal polarity. We identified a transmembrane RING finger protein, PLR-1, that governs the response to Wnts by reducing the cell surface levels of Wnt receptors Frizzled, CAM-1 and LIN-18 in Caenorhabditis elegans. Frizzled, CAM-1 and LIN-18 are normally enriched at the plasma membrane where they are capable of detecting and responding to extracellular Wnts. However, when PLR-1 is expressed Frizzled, CAM-1 and LIN-18 are no longer detected at the cell surface and instead colocalize with PLR-1 in endosomes and Golgi. PLR-1 is related to a broad family of transmembrane proteins that contain a lumenal protease associated domain and a cytosolic RING finger. The RING finger is a hallmark of one type of E3 ubiquitin ligase and monoubiquitination is commonly used to regulate protein trafficking. Protease associated domains are largely thought to mediate interactions between proteins. To identify the domains responsible for PLR-1 regulation of Frizzled from the cell surface we utilized a series of fluorescently tagged fusion proteins and protein truncations containing various domains from PLR-1 and Frizzled. Our data suggests that PLR-1 and Frizzled interact and form a complex via their respective extracellular/lumenal domains, and that ubiqiuitination of Frizzled by PLR-1 targets the Frizzled/PLR-1 complex to the endosome.

  17. ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway.

    PubMed

    Liu, Jia; Ma, Leina; Chen, Xiao; Wang, Jianxun; Yu, Tao; Gong, Ying; Ma, Aiguo; Zheng, Lanhong; Liang, Hui

    2016-06-01

    Oleanolic acid (OA) is a natural triterpenoid that is widely distributed in edible and medicinal plants. OA exerts anti-tumor activity on a wide range of cancer cells primarily through inducing apoptosis. Dysregulated ERK signaling is closely complicated in the biology of cancer, such as metastasis, proliferation, and survival, and it can be activated by various stimuli. In this study, we found that OA induced the activation of ERK in cancer cells. ERK activation compromised the apoptosis induced by OA. Blocking ERK activation by U0126 or siRNAs was able to potentiate the pro-apoptotic activity of OA on cancer cells. OA was shown to promote ERK-dependent Nrf2 expression in cancer cells, and in turn, Nrf2 expression was able to suppress OA-induced ROS generation. Blockade of Nrf2 expression was able to increase ROS levels and apoptotic death in cancer cells. In conclusion, we provided evidences that ERK activation is a mechanism underlying the resistance of cancer cells to OA-induced apoptosis and targeting ERK is a promising strategy to enhance the anti-tumor efficacy of OA.

  18. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation

    PubMed Central

    de Jong, Petrus R.; Taniguchi, Koji; Harris, Alexandra R.; Bertin, Samuel; Takahashi, Naoki; Duong, Jen; Campos, Alejandro D.; Powis, Garth; Corr, Maripat; Karin, Michael; Raz, Eyal

    2016-01-01

    The ERK1/2 MAPK signalling module integrates extracellular cues that induce proliferation and differentiation of epithelial lineages, and is an established oncogenic driver, particularly in the intestine. However, the interrelation of the ERK1/2 module relative to other signalling pathways in intestinal epithelial cells and colorectal cancer (CRC) is unclear. Here we show that loss of Erk1/2 in intestinal epithelial cells results in defects in nutrient absorption, epithelial cell migration and secretory cell differentiation. However, intestinal epithelial cell proliferation is not impeded, implying compensatory mechanisms. Genetic deletion of Erk1/2 or pharmacological targeting of MEK1/2 results in supraphysiological activity of the ERK5 pathway. Furthermore, targeting both pathways causes a more effective suppression of cell proliferation in murine intestinal organoids and human CRC lines. These results suggest that ERK5 provides a common bypass route in intestinal epithelial cells, which rescues cell proliferation upon abrogation of ERK1/2 signalling, with therapeutic implications in CRC. PMID:27187615

  19. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification

    PubMed Central

    Ling, Irving TC; Rochard, Lucie; Liao, Eric C.

    2017-01-01

    Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel’s cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification. PMID:27908786

  20. SNP-SNP interactions between WNT4 and WNT5A were associated with obesity related traits in Han Chinese Population

    PubMed Central

    Dong, Shan-Shan; Hu, Wei-Xin; Yang, Tie-Lin; Chen, Xiao-Feng; Yan, Han; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Guo, Yan

    2017-01-01

    Considering the biological roles of WNT4 and WNT5A involved in adipogenesis, we aimed to investigate whether SNPs in WNT4 and WNT5A contribute to obesity related traits in Han Chinese population. Targeted genomic sequence for WNT4 and WNT5A was determined in 100 Han Chinese subjects and tag SNPs were selected. Both single SNP and SNP × SNP interaction association analyses with body mass index (BMI) were evaluated in the 100 subjects and another independent sample of 1,627 Han Chinese subjects. Meta-analyses were performed and multiple testing corrections were carried out using the Bonferroni method. Consistent with the Genetic Investigation of ANthropometric Traits (GIANT) dataset results, we didn’t detect significant association signals in single SNP association analyses. However, the interaction between rs2072920 and rs11918967, was associated with BMI after multiple testing corrections (combined P = 2.20 × 10−4). The signal was also significant in each contributing data set. SNP rs2072920 is located in the 3′-UTR of WNT4 and SNP rs11918967 is located in the intron of WNT5A. Functional annotation results revealed that both SNPs might be involved in transcriptional regulation of gene expression. Our results suggest that a combined effect of SNPs via WNT4-WNT5A interaction may affect the variation of BMI in Han Chinese population. PMID:28272483

  1. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects.

    PubMed

    Bai, Baoling; Chen, Shuyuan; Zhang, Qin; Jiang, Qian; Li, Huili

    2016-01-01

    The association between Wnt genes and neural tube defects (NTDs) is recognized, however, it remains to be fully elucidated. Our previous study demonstrated that epigenetic mechanisms are affected in human NTDs. Therefore, the present study aimed to evaluate whether Wnt2b and Wnt7b are susceptible to abnormal epigenetic modification in NTDs, using chromatin immunoprecipitation assays to evaluate histone enrichments and the MassARRAY platform to detect the methylation levels of target regions within Wnt genes. The results demonstrated that the transcriptional activities of Wnt2b and Wnt7b were abnormally upregulated in mouse fetuses with NTDs and, in the GC‑rich promoters of these genes, histone 3 lysine 4 (H3K4) acetylation was enriched, whereas H3K27 trimethylation was reduced. Furthermore, several CpG sites in the altered histone modification of target regions were significantly hypomethylated. The present study also detected abnormal epigenetic modifications of these Wnt genes in human NTDs. In conclusion, the present study detected abnormal upregulation in the levels of Wnt2b and Wnt7b, and hypothesized that the alterations may be due to the ectopic opening of chromatin structure. These results improve understanding of the dysregulation of epigenetic modification of Wnt genes in NTDs.

  2. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    PubMed

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  3. Immunoexpression of Wnt/β-catenin signaling pathway proteins in ameloblastoma and calcifying cystic odontogenic tumor

    PubMed Central

    Dutra, Sabrina-Nogueira; Pires, Fábio-Ramôa; Armada, Luciana

    2017-01-01

    Background Wnt/β-catenin signaling pathway is essential for the beginning of odontogenesis and may be involved in the development and progression of some odontogenic tumors. Thus, the aim of this study was to comparatively evaluate the immunohistochemical expression of Wnt/β-catenin signaling pathway proteins in a series of AME and CCOT. Material and Methods Immunohistochemical reactions were performed using antibodies against Wnt1, Wnt5a and β-catenin in 17 cases of solid AME and 6 cases of CCOT. Results In the AME group, Wnt1 and Wnt5a were identified in the epithelium in most of the cases, and β-catenin was mainly identified in the cytoplasm of the tumoral cells. In the CCOT group, Wnt1 and Wnt5a were identified in the epithelium and in the ghost cells in almost all the cases, and β-catenin was mainly identified in the cytoplasm and in the nuclei of the tumoral cells. Conclusions These results contribute to support the importance of Wnt/β-catenin signaling pathway proteins in AME and CCOT tumorigenesis. The abnormal expression of cytoplasmic and/or nuclear β-catenin appears to contribute to the development of both AME and CCOT. In addition, it is possible that Wnt1 and Wnt5a expression in ghost cells can contribute to its histogenesis in CCOT. Key words:Ameloblastoma, β-catenin, calcifying cystic odontogenic tumor, immunohistochemistry, Wnt. PMID:28149478

  4. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development.

    PubMed

    Fu, Jiang; Ivy Yu, Hsiao-Man; Maruyama, Takamitsu; Mirando, Anthony J; Hsu, Wei

    2011-02-01

    We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we create a new mouse strain permitting conditional inactivation of Gpr177. The loss of Gpr177 in the Wnt1-expressing cells causes mid/hindbrain and craniofacial defects which are far more severe than the Wnt1 knockout, but resemble the double knockout of Wnt1 and Wnt3a as well as β-catenin deletion in the Wnt1-expressing cells. Our findings demonstrate the importance of Gpr177 in Wnt1-mediated development of the mouse embryo, suggesting an overlapping function of Wnt family members in the Wnt1-expressing cells.

  5. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.

    PubMed

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-11-03

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila Wls, is expressed during formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly reminiscent to the loss of Wnt3. Although many different mammalian Wnt proteins are required for a wide range of developmental processes, the Wnt3 ablation exhibits the earliest developmental abnormality. This suggests that the Gpr177-mediated Wnt production cannot be substituted. As a direct target of Wnt, Gpr177 is activated by beta-catenin and LEF/TCF-dependent transcription. This activation alters the cellular distributions of Gpr177 which binds to Wnt proteins and assists their sorting and secretion in a feedback regulatory mechanism. Our findings demonstrate that the loss of Gpr177 affects Wnt production in the signal-producing cells, leading to alterations of Wnt signaling in the signal-receiving cells. A reciprocal regulation of Wnt and Gpr177 is essential for the patterning of the anterior-posterior axis during mammalian development.

  6. WNT5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis.

    PubMed

    Qin, Li; Yin, Yan-Tao; Zheng, Fang-Jing; Peng, Li-Xia; Yang, Chang-Fu; Bao, Ying-Na; Liang, Ying-Ying; Li, Xin-Jian; Xiang, Yan-Qun; Sun, Rui; Li, An-Hua; Zou, Ru-Hai; Pei, Xiao-Qing; Huang, Bi-Jun; Kang, Tie-Bang; Liao, Duan-Fang; Zeng, Yi-Xin; Williams, Bart O; Qian, Chao-Nan

    2015-04-30

    Nasopharyngeal carcinoma (NPC) has the highest metastasis rate among head and neck cancers with unclear mechanism. WNT5A belongs to the WNT family of cysteine-rich secreted glycoproteins. Our previous high-throughput gene expression profiling revealed that WNT5A was up-regulated in highly metastatic cells. In the present study, we first confirmed the elevated expression of WNT5A in metastatic NPC tissues at both the mRNA and protein levels. We then found that WNT5A promoted epithelial-mesenchymal transition (EMT) in NPC cells, induced the accumulation of CD24-CD44+ cells and side population, which are believed to be cancer stem cell characteristics. Moreover, WNT5A promoted the migration and invasion of NPC cells in vitro, while in vivo treatment with recombinant WNT5A promoted lung metastasis. Knocking down WNT5A diminished NPC tumorigenesis in vivo. When elevated expression of WNT5A coincided with the elevated expression of vimentin in the primary NPC, the patients had a poorer prognosis. Among major signaling pathways, protein kinase C (PKC) signaling was activated by WNT5A in NPC cells. A positive feedback loop between WNT5A and phospho-PKC to promote EMT was also revealed. Taken together, these data suggest that WNT5A is an important molecule in promoting stem cell characteristics in NPC, leading to tumorigenesis and metastasis.

  7. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  8. Role of Wnt/β-catenin, Wnt/c-Jun N-terminal kinase and Wnt/Ca2+ pathways in cisplatin-induced chemoresistance in ovarian cancer

    PubMed Central

    Huang, Lu; Jin, Ye; Feng, Shujun; Zou, Yuqing; Xu, Sainan; Qiu, Shuang; Li, Ling; Zheng, Jianhua

    2016-01-01

    The aim of the present study was to explore the expression of Wnt signaling proteins β-catenin, c-Jun N-terminal kinase (JNK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in ovarian cancer cells, and assess the correlation between this expression and cisplatin-induced chemoresistance. SKOV3 ovarian carcinoma cells and SKOV3/DDP (cisplatin resistant) cells were treated with cisplatin in the absence or presence of a Wnt signaling activator (CHIR-99021, glycogen synthase kinase 3β inhibitor) or inhibitor (XAV-939, tankyrase inhibitor). Following incubation for 48 h, cell viability, proliferation and cytotoxicity were measured using a sensitive colorimetric cell counting kit. Expression levels of β-catenin, JNK and CaMKII were detected by western blot and immunofluorescence staining. The results of the current study identified that β-catenin and JNK expression levels were significantly higher (P<0.01 and P<0.05 respectively), while CaMKII expression was lower (P>0.05), in SKOV3/DDP cells compared with SKOV3 cells. Moreover, following treatment with 20 µM cisplatin, reduced expression of β-catenin and JNK (P<0.05 and P<0.01 respectively), and increased expression of CaMKII (P<0.01), was observed in SKOV3 and SKOV3/DPP cell lines. Furthermore, inhibition of β-catenin signaling by XAV-939 effectively reversed cisplatin chemoresistance in SKOV3/DDP cells. Similarly, XAV-939 downregulated JNK expression (P<0.001), but upregulated CaMKII expression (P<0.001), in SKOV3/DDP cells. In conclusion, abnormal activation of Wnt/β-catenin and Wnt/JNK signaling pathways in ovarian cancer cells promotes cisplatin resistance, while the Wnt/Ca2+ signaling pathway reduces cisplatin resistance. This indicates that β-catenin, JNK and CaMKII are potential therapeutic targets in chemoresistant ovarian cancers. PMID:28101169

  9. Crossroads of Wnt and Hippo in epithelial tissues.

    PubMed

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.

  10. Genomic insights into WNT/β-catenin signaling

    PubMed Central

    Rosenbluh, Joseph; Wang, Xiaoxing; Hahn, William C.

    2014-01-01

    The canonical WNT pathway regulates the stability of the proto-oncogene β-catenin and is aberrantly activated in many cancer types. Studies in a wide range of experimental models confirm that β-catenin activity is required for tumor initiation in cancers where this pathway is deregulated. However, to date this pathway has proven to be challenging to target therapeutically. Moreover, several lines of evidence suggest that other components and regulators of β-catenin exist. Here we will describe recent structural and functional studies describing genomic alterations and new regulators of β-catenin that lead to aberrant activation of the WNT/β-catenin pathway. These findings provide new insights into the biology of WNT/β-catenin signaling and suggest potential therapeutic opportunities. PMID:24365576

  11. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target.

  12. IGFBP‐3 inhibits Wnt signaling in metastatic melanoma cells

    PubMed Central

    Zingariello, Maria; Sancillo, Laura; Panasiti, Vincenzo; Polinari, Dorina; Martella, Marianna; Rosa Alba, Rana; Londei, Paola

    2016-01-01

    In previous works, we have shown that insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), a tissue and circulating protein able to bind to IGFs, decreases drastically in the blood serum of patients with diffuse metastatic melanoma. In agreement with the clinical data, recombinant IGFBP‐3 was found to inhibit the motility and invasiveness of cultured metastatic melanoma cells and to prevent growth of grafted melanomas in mice. The present work was aimed at identifying the signal transduction pathways underlying the anti‐tumoral effects of IGFBP‐3. We show that the anti‐tumoral effect of IGFBP‐3 is due to inhibition of the Wnt pathway and depends upon the presence of CD44, a receptor protein known to modulate Wnt signaling. Once it has entered the cell, IGFBP‐3 binds the Wnt signalosome interacting specifically with its component GSK‐3β. As a consequence, the β‐catenin destruction complex dissociates from the LRP6 Wnt receptor and GSK‐3β is activated through dephosphorylation, becoming free to target cytoplasmic β‐catenin which is degraded by the proteasomal pathway. Altogether, the results suggest that IGFBP‐3 is a novel and effective inhibitor of Wnt signaling. As IGFBP‐3 is a physiological protein which has no detectable toxic effects either on cultured cells or live mice, it might qualify as an interesting new therapeutic agent in melanoma, and potentially many other cancers with a hyperactive Wnt signaling. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27377812

  13. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  14. Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation.

    PubMed

    Agudo-Ibañez, Lorena; Crespo, Piero; Casar, Berta

    2017-01-01

    A vast number of stimuli use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their cognate receptors, in order to regulate multiple cellular functions, including key processes such as proliferation, cell cycle progression, differentiation, and survival. The duration, intensity and specificity of the responses are, in part, controlled by the compartmentalization/subcellular localization of the signaling intermediaries. Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate a multitude of biological responses. The Ras effector pathway leading to ERKs activation is also subject to space-related regulatory processes. About half of ERK1/2 substrates are found in the nucleus and function mainly as transcription factors. The other half resides in the cytosol and other cellular organelles. Such subcellular distribution enhances the complexity of the Ras/ERK cascade and constitutes an essential mechanism to endow variability to its signals, which enables their participation in the regulation of a broad variety of functions. Thus, analyzing the subcellular compartmentalization of the members of the Ras/ERK cascade constitutes an important factor to be taken into account when studying specific biological responses evoked by Ras/ERK signals. Herein, we describe methods for such purpose.

  15. Dopamine Promotes Striatal Neuronal Apoptotic Death via ERK Signaling Cascades

    PubMed Central

    Chen, Jun; Rusnak, Milan; Lombroso, Paul J.; Sidhu, Anita

    2009-01-01

    Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/PKA/Rap1/B-Raf/MEK pathway. Blockade of D2 DA receptors, β-adrenergic receptors or NMDA receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal–enriched tyrosine phosphatase (STEP), an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in striatum. Interestingly p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein β-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration. PMID:19200235

  16. ERK signaling controls blastema cell differentiation during planarian regeneration.

    PubMed

    Tasaki, Junichi; Shibata, Norito; Nishimura, Osamu; Itomi, Kazu; Tabata, Yoshimichi; Son, Fuyan; Suzuki, Nobuko; Araki, Ryoko; Abe, Masumi; Agata, Kiyokazu; Umesono, Yoshihiko

    2011-06-01

    The robust regenerative ability of planarians depends on a population of somatic stem cells called neoblasts, which are the only mitotic cells in adults and are responsible for blastema formation after amputation. The molecular mechanism underlying neoblast differentiation associated with blastema formation remains unknown. Here, using the planarian Dugesia japonica we found that DjmkpA, a planarian mitogen-activated protein kinase (MAPK) phosphatase-related gene, was specifically expressed in blastema cells in response to increased extracellular signal-related kinase (ERK) activity. Pharmacological and genetic [RNA interference (RNAi)] approaches provided evidence that ERK activity was required for blastema cells to exit the proliferative state and undergo differentiation. By contrast, DjmkpA RNAi induced an increased level of ERK activity and rescued the differentiation defect of blastema cells caused by pharmacological reduction of ERK activity. These observations suggest that ERK signaling plays an instructive role in the cell fate decisions of blastema cells regarding whether to differentiate or not, by inducing DjmkpA as a negative regulator of ERK signaling during planarian regeneration.

  17. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    DTIC Science & Technology

    2013-06-01

    bone morphogenetic protein-9, -10, -11 BMSC bone marrow stromal cell Dkk1 gene encoding Dickkopf-related protein 1 ERK extracellular signal...Elkasrawy et al. 2011a). The Wnt signaling factor Dkk1 is significantly upregulated with myostatin treatment during TGF-β1-induced chondrogenesis, and...with myostatin treatment (Fig. 2). Dkk1 is a molecule that inhibits the Wnt signaling pathway by binding to and antagonizing LRP5/6, forming a ternary

  18. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development.

    PubMed

    Zhang, Yujin; Yeh, Lung-Kun; Zhang, Suohui; Call, Mindy; Yuan, Yong; Yasunaga, Mayu; Kao, Winston W-Y; Liu, Chia-Yang

    2015-10-01

    The development of organs with an epithelial parenchyma relies on reciprocal mesenchymal-epithelial communication. Mouse corneal epithelium stratification is the consequence of a coordinated developmental process based on mesenchymal-epithelial interactions. The molecular mechanism underlying these interactions remains unclear. The Wnt/β-catenin signaling pathway is involved in fundamental aspects of development through the regulation of various growth factors. Here, we show that conditional ablation of either β-catenin (Ctnnb1(cKO)) or co-receptors Lrp5/6 (Lrp5/6(cKO)) in corneal stromal cells results in precocious stratification of the corneal epithelium. By contrast, ectopic expression of a murine Ctnnb1 gain-of-function mutant (Ctnnb1(cGOF)) retards corneal epithelium stratification. We also discovered that Bmp4 is upregulated in the absence of β-catenin in keratocytes, which further triggers ERK1/2 (Mapk3/1) and Smad1/5 phosphorylation and enhances transcription factor p63 (Trp63) expression in mouse corneal basal epithelial cells and in a human corneal epithelial cell line (HTCE). Interestingly, mouse neonates given a subconjunctival BMP4 injection displayed a phenotype resembling that of Ctnnb1(cKO). Conditional ablation of Bmp4 eradicates the phenotype produced in Ctnnb1(cKO) mice. Furthermore, ChIP and promoter-luciferase assays show that β-catenin binds to and suppresses Bmp4 promoter activity. These data support the concept that cross-talk between the Wnt/β-catenin/Bmp4 axis (in the stromal mesenchyme) and Bmp4/p63 signaling (in the epithelium) plays a pivotal role in epithelial stratification during corneal morphogenesis.

  19. Revisiting the role of Wnt/β-catenin signaling in prostate cancer.

    PubMed

    Schneider, Jeffrey A; Logan, Susan K

    2017-02-09

    The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.

  20. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    PubMed

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-11-25

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  1. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance

    PubMed Central

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. PMID:26603103

  2. The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms.

    PubMed

    Yamamoto, Hideki; Awada, Chihiro; Hanaki, Hideaki; Sakane, Hiroshi; Tsujimoto, Ikuko; Takahashi, Yuko; Takao, Toshifumi; Kikuchi, Akira

    2013-07-01

    Wnts are glycan- and lipid-modified morphogens that are important for cellular responses, but how Wnts are secreted in polarized epithelial cells remains unclear. Although Wntless (Wls) has been shown to interact with Wnts and support their secretion, the role of Wls in the sorting of Wnts to the final destination in polarized epithelial cells have not been clarified. Glycosylation was shown to be important for the sorting of some transmembrane and secreted proteins, but glycan profiles and their roles in the polarized secretion of Wnts has not yet been demonstrated. Here we show the apical and basolateral secretion of Wnts is regulated by different mechanisms. Wnt11 and Wnt3a were secreted apically and basolaterally, respectively, in polarized epithelial cells. Wls was localized to the basolateral membrane. Mass-spectrometric analyses revealed that Wnt11 is modified with complex/hybrid(Asn40)-, high-mannose(Asn90)- and high-mannose/hybrid(Asn300)-type glycans and that Wnt3a is modified with two high-mannose-type glycans (Asn87 and Asn298). Glycosylation processing at Asn40 and galectin-3 were required for the apical secretion of Wnt11, whereas clathrin and adaptor protein-1 were required for the basolateral secretion of Wnt3a. By the fusion of the Asn40 glycosylation site of Wnt11, Wnt3a was secreted apically. The recycling of Wls by AP-2 was necessary for the basolateral secretion of Wnt3a but not for the apical secretion of Wnt11. These results suggest that Wls has different roles in the polarized secretion of Wnt11 and Wnt3a and that glycosylation processing of Wnts decides their secretory routes.

  3. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.

    PubMed

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V

    2012-12-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.

  4. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling

    PubMed Central

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-01-01

    FRP1-induced phosphorylation of extracellular signal-regulated kinase (ERK) (p44/42) maximally at 5 min after sFRP1 addition, earlier than that found in OGM alone. Addition of a phospholipase C (PLC) inhibitor also prevented sFRP-stimulated increases in CXCL8 mRNA. siRNA technology targeting the Fzd-2 and 5 and the non-canonical Fzd co-receptor RoR2 also significantly decreased sFRP1/2-stimulated CXCL8 mRNA levels. CONCLUSION: CXC chemokine expression in hMSCs is controlled in part by sFRPs signaling through non-canonical Wnt involving Fzd2/5 and the ERK and PLC pathways. PMID:26730270

  5. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation.

    PubMed

    Zhao, Chenghai; Bu, Xianmin; Wang, Wei; Ma, Tingxian; Ma, Haiying

    2014-01-01

    Aberrant macrophage infiltration and activation has been implicated in gastric inflammation and carcinogenesis. Overexpression of Wnt5a and downregulation of SFRP5, a Wnt5a antagonist, were both observed in gastric cancers recently. This study attempted to explore whether Wnt5a/SFRP5 axis was involved in macrophage chemotaxis and activation. It was found that both Wnt5a transfection and recombinant Wnt5a (rWnt5a) treatment upregulated CCL2 expression in macrophages, involving JNK and NFκB signals. Conditioned medium from Wnt5a-treated macrophages promoted macrophage chemotaxis mainly dependent on CCL2. SFRP5 from gastric epithelial cells (GECs) inhibited Wnt5a-induced CCL2 expression and macrophage chemotaxis. In addition, Wnt5a treatment stimulated macrophages to produce inflammatory cytokines and COX-2/PGE2, which was also suppressed by SFRP5 from GECs. These results demonstrate that Wnt5a induces macrophage chemotaxis and activation, which can be blocked by GEC-derived SFRP5, suggesting that Wnt5a overproduction and SFRP5 deficiency in gastric mucosa may together play an important role in gastric inflammation and carcinogenesis.

  6. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis.

    PubMed

    Fu, Jiang; Hsu, Wei

    2013-04-01

    A signal first arising in the dermis to initiate the development of hair follicles has been described for many decades. Wnt is the earliest signal known to be intimately involved in hair follicle induction. However, it is not clear whether the inductive signal of Wnt arises intradermally or intraepidermally. Whether Wnt acts as the first dermal signal to initiate hair follicle development also remains unclear. Here we report that Wnt production mediated by Gpr177, the mouse Wls ortholog, is essential for hair follicle induction. Gpr177, encoding a multipass transmembrane protein, regulates Wnt sorting and secretion. Cell type-specific abrogation of the signal reveals that only epidermal, but not dermal, production of Wnt is required. An intraepidermal Wnt signal is necessary and sufficient for hair follicle initiation. However, the subsequent development depends on reciprocal signaling crosstalk of epidermal and dermal cells. Wnt signals within the epidermis and dermis and crossing between the epidermis and dermis have distinct roles and specific functions in skin development. This study not only defines the cell type responsible for Wnt production, but also reveals a highly dynamic regulation of Wnt signaling at different steps of hair follicle morphogenesis. Our findings uncover a mechanism underlying hair follicle development orchestrated by the Wnt pathway.

  7. The centipede Strigamia maritima possesses a large complement of Wnt genes with diverse expression patterns.

    PubMed

    Hayden, Luke; Arthur, Wallace

    2014-05-01

    The genes of the Wnt family play important roles in the development of many animals. In the arthropods, these genes are known to have multiple functions, including roles in posterior development and segmentation. Despite this, secondary loss of Wnt genes is common among the Arthropoda. Unlike many arthropods, Strigamia maritima, a geophilomorph centipede, possesses a large complement of Wnt ligands, with 11 Wnt genes present. In this study, the expression of each of these genes was examined across a range of stages during embryonic development. The expression of Wnt genes in Strigamia displays much variability. Most Wnt genes are expressed in segmental stripes in the trunk; near the proctodeum; and in the head region. However, despite this overall broad similarity, there are many differences between the various Wnt genes in their exact patterns of expression. These data should be considered in the context of different hypotheses regarding the functional relationships between the Wnt genes and the degree of redundancy present in this system. The findings of this study are consistent with one particular model of Wnt activity, the combinatorial model, whereby the combination of Wnt ligands present in a particular region defines its identity. These findings should also be useful in attempts to reconstruct the evolutionary history of Wnt signaling in arthropods.

  8. Wnt-Frizzled/Planar Cell Polarity Signaling: Cellular Orientation by Facing the Wind (Wnt)

    PubMed Central

    Yang, Yingzi; Mlodzik, Marek

    2015-01-01

    The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework. PMID:26566118

  9. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth

    SciTech Connect

    Ouji, Yukiteru Yoshikawa, Masahide; Moriya, Kei; Nishiofuku, Mariko; Matsuda, Ryosuke; Ishizaka, Shigeaki

    2008-03-07

    Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelial cells in the hair follicle.

  10. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-03-31

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC.

  11. Genome-wide network analysis of Wnt signaling in three pediatric cancers

    NASA Astrophysics Data System (ADS)

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.

    2013-10-01

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  12. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways

    PubMed Central

    Lee, Ho-Jin; Shi, De-Li; Zheng, Jie J

    2015-01-01

    The intracellular signaling molecule Dishevelled (Dvl) mediates canonical and non-canonical Wnt signaling via its PDZ domain. Different pathways diverge at this point by a mechanism that remains unclear. Here we show that the peptide-binding pocket of the Dvl PDZ domain can be occupied by Dvl's own highly conserved C-terminus, inducing a closed conformation. In Xenopus, Wnt-regulated convergent extension (CE) is readily affected by Dvl mutants unable to form the closed conformation than by wild-type Dvl. We also demonstrate that while Dvl cooperates with other Wnt pathway elements to activate canonical Wnt signaling, the open conformation of Dvl more effectively activates Jun N-terminal kinase (JNK). These results suggest that together with other players in the Wnt signaling pathway, the conformational change of Dvl regulates Wnt stimulated JNK activity in the non-canonical Wnt signaling. DOI: http://dx.doi.org/10.7554/eLife.08142.001 PMID:26297804

  13. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells.

    PubMed

    Stefater, James A; Lewkowich, Ian; Rao, Sujata; Mariggi, Giovanni; Carpenter, April C; Burr, Adam R; Fan, Jieqing; Ajima, Rieko; Molkentin, Jeffery D; Williams, Bart O; Wills-Karp, Marsha; Pollard, Jeffrey W; Yamaguchi, Terry; Ferrara, Napoleone; Gerhardt, Holger; Lang, Richard A

    2011-05-29

    Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally, somatic deletion in RMCs of the Wnt ligand transporter Wntless results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF). These findings indicate that resident myeloid cells can use a non-canonical, Wnt-Flt1 pathway to suppress angiogenic branching.

  14. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme.

    PubMed

    Rajagopal, Jayaraj; Carroll, Thomas J; Guseh, J Sawalla; Bores, Sam A; Blank, Leah J; Anderson, William J; Yu, Jing; Zhou, Qiao; McMahon, Andrew P; Melton, Douglas A

    2008-05-01

    The effects of Wnt7b on lung development were examined using a conditional Wnt7b-null mouse. Wnt7b-null lungs are markedly hypoplastic, yet display largely normal patterning and cell differentiation. In contrast to findings in prior hypomorphic Wnt7b models, we find decreased replication of both developing epithelium and mesenchyme, without abnormalities of vascular smooth muscle development. We further demonstrate that Wnt7b signals to neighboring cells to activate both autocrine and paracrine canonical Wnt signaling cascades. In contrast to results from hypomorphic models, we show that Wnt7b modulates several important signaling pathways in the lung. Together, these cascades result in the coordinated proliferation of adjacent epithelial and mesenchymal cells to stimulate organ growth with few alterations in differentiation and patterning.

  15. Genome-wide network analysis of Wnt signaling in three pediatric cancers.

    PubMed

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J

    2013-10-17

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors-medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma-that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  16. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases

    PubMed Central

    Shao, Yue; Zheng, Qianqian; Wang, Wei; Xin, Na; Song, Xiaowen; Zhao, Chenghai

    2016-01-01

    Wnt5a is implicated in development and tissue homeostasis by activating β-catenin-independent pathway. Excessive production of Wnt5a is related to some human diseases. Macrophage recruitment is a character of inflammation and cancer, therefore macrophage-derived Wnt5a is supposed to be a player in these conditions. Actually, macrophage-derived Wnt5a maintains macrophage immune function, stimulates pro-inflammatory cytokine release, and induces angiogenesis and lymphangiogenesis. Furthermore, macrophage-derived Wnt5a is involved in insulin resistance, atherosclerosis and cancer. These findings indicate that macrophage-derived Wnt5a may be a target in the treatment of these diseases. Notably, unlike macrophages, the exact role of macrophage-derived Wnt5a in bacterial infection remains largely unknown. PMID:27608847

  17. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development

    PubMed Central

    Drelon, Coralie; Berthon, Annabel; Sahut-Barnola, Isabelle; Mathieu, Mickaël; Dumontet, Typhanie; Rodriguez, Stéphanie; Batisse-Lignier, Marie; Tabbal, Houda; Tauveron, Igor; Lefrançois-Martinez, Anne-Marie; Pointud, Jean-Christophe; Gomez-Sanchez, Celso E.; Vainio, Seppo; Shan, Jingdong; Sacco, Sonia; Schedl, Andreas; Stratakis, Constantine A.; Martinez, Antoine; Val, Pierre

    2016-01-01

    Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates β-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling. PMID:27624192

  18. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics.

    PubMed

    Silva-Alvarez, Carmen; Arrázola, Macarena S; Godoy, Juan A; Ordenes, Daniela; Inestrosa, Nibaldo C

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca(2+)signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident.

  19. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics

    PubMed Central

    Silva-Alvarez, Carmen; Arrázola, Macarena S.; Godoy, Juan A.; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident. PMID:23805073

  20. Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway

    PubMed Central

    Yang, Jiali; Zhang, Kangjian; Wu, Jing; Shi, Juan; Xue, Jing; Li, Jing; Zhu, Yongzhao; Wei, Jun

    2016-01-01

    The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies. PMID:27895670

  1. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.

    PubMed

    Liu, Y; Wang, M; Zhao, W; Yuan, X; Yang, X; Li, Y; Qiu, M; Zhu, X-J; Zhang, Z

    2015-07-01

    Cleft palate represents one of the major congenital birth defects in humans. Despite the essential roles of ectodermal canonical Wnt and mesenchymal Wnt signaling in the secondary palate development, the function of mesenchymal canonical Wnt activity in secondary palate development remains elusive. Here we show that Gpr177, a highly conserved transmembrane protein essential for Wnt trafficking, is required for secondary palate development. Gpr177 is expressed in both epithelium and mesenchyme of palatal shelves during mouse development. Wnt1(Cre)-mediated deletion of Gpr177 in craniofacial neural crest cells leads to a complete cleft secondary palate, which is formed mainly due to aberrant cell proliferation and increased cell death in palatal shelves. By BATGAL staining, we reveal an intense canonical Wnt activity in the anterior palate mesenchyme of E12.5 wild-type embryos but not in Gpr177(Wnt1-Cre) embryos, suggesting that mesenchymal canonical Wnt signaling activated by Gpr177-mediated mesenchymal Wnts is critical for secondary palate development. Moreover, phosphorylation of JNK and c-Jun is impaired in the Gpr177(Wnt1-Cre) palate and is restored by implantation of Wnt5a-soaked beads in the in vitro palate explants, suggesting that Gpr177 probably regulates palate development via the Wnt5a-mediated noncanonical Wnt pathway in which c-Jun and JNK are involved. Importantly, certain cellular processes and the altered gene expression in palates lacking Gpr177 are distinct from that of the Wnt5a mutant, further demonstrating involvement of other mesenchymal Wnts in the process of palate development. Together, these results suggest that mesenchymal Gpr177 is required for secondary palate development by regulating and integrating mesenchymal canonical and noncanonical Wnt signals.

  2. Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes.

    PubMed

    Wang, Lai; Shao, Yvonne Y; Ballock, R Tracy

    2009-02-01

    Carboxypeptidase Z (CPZ) removes carboxyl-terminal basic amino acid residues, particularly arginine residues, from proteins. CPZ contains a cysteine-rich domain (CRD) similar to the CRD found in the frizzled family of Wnt receptors. We have previously shown that thyroid hormone regulates terminal differentiation of growth plate chondrocytes through activation of Wnt-4 expression and Wnt/beta-catenin signaling. The Wnt-4 protein contains a C-terminal arginine residue and binds to CPZ through the CRD. The objective of this study was to determine whether CPZ modulates Wnt/beta-catenin signaling and terminal differentiation of growth plate chondrocytes. Our results show that CPZ and Wnt-4 mRNA are co-expressed throughout growth plate cartilage. In primary pellet cultures of rat growth plate chondrocytes, thyroid hormone increases both Wnt-4 and CPZ expression, as well as CPZ enzymatic activity. Knockdown of either Wnt-4 or CPZ mRNA levels using an RNA interference technique or blocking CPZ enzymatic activity with the carboxypeptidase inhibitor GEMSA reduces the thyroid hormone effect on both alkaline phosphatase activity and Col10a1 mRNA expression. Adenoviral overexpression of CPZ activates Wnt/beta-catenin signaling and promotes the terminal differentiation of growth plate cells. Overexpression of CPZ in growth plate chondrocytes also removes the C-terminal arginine residue from a synthetic peptide consisting of the carboxyl-terminal 16 amino acids of the Wnt-4 protein. Removal of the C-terminal arginine residue of Wnt-4 by site-directed mutagenesis enhances the positive effect of Wnt-4 on terminal differentiation. These data indicate that thyroid hormone may regulate terminal differentiation of growth plate chondrocytes in part by modulating Wnt signaling pathways through the induction of CPZ and subsequent CPZ-enhanced activation of Wnt-4.

  3. Ror2 Receptor Mediates Wnt11 Ligand Signaling and Affects Convergence and Extension Movements in Zebrafish*

    PubMed Central

    Bai, Yan; Tan, Xungang; Zhang, Haifeng; Liu, Chengdong; Zhao, Beibei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng

    2014-01-01

    The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish. PMID:24928507

  4. Phosphorylation releases constraints to domain motion in ERK2.

    PubMed

    Xiao, Yao; Lee, Thomas; Latham, Michael Parker; Warner, Lisa Rose; Tanimoto, Akiko; Pardi, Arthur; Ahn, Natalie G

    2014-02-18

    Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the microsecond-to-millisecond time regime between the different activity states of ERK2. In inactive, unphosphorylated ERK2, localized conformational exchange was observed among methyl side chains, with little evidence for coupling between residues. Upon dual phosphorylation by MAP kinase kinase 1, the dynamics of assigned methyls in ERK2 were altered throughout the conserved kinase core, including many residues in the catalytic pocket. The majority of residues in active ERK2 fit to a single conformational exchange process, with kex ≈ 300 s(-1) (kAB ≈ 240 s(-1)/kBA ≈ 60 s(-1)) and pA/pB ≈ 20%/80%, suggesting global domain motions involving interconversion between two states. A mutant of ERK2, engineered to enhance conformational mobility at the hinge region linking the N- and C-terminal domains, also induced two-state conformational exchange throughout the kinase core, with exchange properties of kex ≈ 500 s(-1) (kAB ≈ 15 s(-1)/kBA ≈ 485 s(-1)) and pA/pB ≈ 97%/3%. Thus, phosphorylation and activation of ERK2 lead to a dramatic shift in conformational exchange dynamics, likely through release of constraints at the hinge.

  5. Pathway-selective antagonism of proteinase activated receptor 2

    PubMed Central

    Suen, J Y; Cotterell, A; Lohman, R J; Lim, J; Han, A; Yau, M K; Liu, L; Cooper, M A; Vesey, D A; Fairlie, D P

    2014-01-01

    Background and Purpose Proteinase activated receptor 2 (PAR2) is a GPCR associated with inflammation, metabolism and disease. Clues to understanding how to block PAR2 signalling associated with disease without inhibiting PAR2 activation in normal physiology could be provided by studies of biased signalling. Experimental Approach PAR2 ligand GB88 was profiled for PAR2 agonist and antagonist properties by several functional assays associated with intracellular G-protein-coupled signalling in vitro in three cell types and with PAR2-induced rat paw oedema in vivo. Key Results In HT29 cells, GB88 was a PAR2 antagonist in terms of Ca2+ mobilization and PKC phosphorylation, but a PAR2 agonist in attenuating forskolin-induced cAMP accumulation, increasing ERK1/2 phosphorylation, RhoA activation, myosin phosphatase phosphorylation and actin filament rearrangement. In CHO-hPAR2 cells, GB88 inhibited Ca2+ release, but activated Gi/o and increased ERK1/2 phosphorylation. In human kidney tubule cells, GB88 inhibited cytokine secretion (IL6, IL8, GM-CSF, TNF-α) mediated by PAR2. A rat paw oedema induced by PAR2 agonists was also inhibited by orally administered GB88 and compared with effects of locally administered inhibitors of G-protein coupled pathways. Conclusions and Implications GB88 is a biased antagonist of PAR2 that selectively inhibits PAR2/Gq/11/Ca2+/PKC signalling, leading to anti-inflammatory activity in vivo, while being an agonist in activating three other PAR2-activated pathways (cAMP, ERK, Rho) in human cells. These findings highlight opportunities to design drugs to block specific PAR2-linked signalling pathways in disease, without blocking beneficial PAR2 signalling in normal physiology, and to dissect PAR2-associated mechanisms of disease in vivo. PMID:24821440

  6. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds

    PubMed Central

    Yang, Jie; Wang, Shih-Kai; Choi, Murim; Reid, Bryan M; Hu, Yuanyuan; Lee, Yuan-Ling; Herzog, Curtis R; Kim-Berman, Hera; Lee, Moses; Benke, Paul J; Kent Lloyd, K C; Simmer, James P; Hu, Jan C-C

    2015-01-01

    WNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA,EDAR, or EDARADD variations. Wnt10a null mice exhibited supernumerary mandibular fourth molars, and smaller molars with abnormal cusp patterning and root taurodontism. Wnt10a−/− incisors showed distinctive apical–lingual wedge-shaped defects. These findings spurred us to closely examine the dental phenotypes of our WNT10A families. WNT10A heterozygotes exhibited molar root taurodontism and mild tooth agenesis (with incomplete penetrance) in their permanent dentitions. Individuals with two defective WNT10A alleles showed severe tooth agenesis and had fewer cusps on their molars. The misshapened molar crowns and roots were consistent with the Wnt10a null phenotype and were not previously associated with WNT10A defects. The missing teeth contrasted with the presence of supplemental teeth in the Wnt10a null mice and demonstrated mammalian species differences in the roles of Wnt signaling in early tooth development. We conclude that molar crown and root dysmorphologies are caused by WNT10A defects and that the severity of the tooth agenesis correlates with the number of defective WNT10A alleles. PMID:25629078

  7. Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development

    PubMed Central

    Akbergenova, Yulia; Cho, Richard W.; Baas-Thomas, Maximilien S.; Littleton, J. Troy

    2016-01-01

    Prosap/Shank scaffolding proteins regulate the formation, organization, and plasticity of excitatory synapses. Mutations in SHANK family genes are implicated in autism spectrum disorder and other neuropsychiatric conditions. However, the molecular mechanisms underlying Shank function are not fully understood, and no study to date has examined the consequences of complete loss of all Shank proteins in vivo. Here we characterize the single Drosophila Prosap/Shank family homolog. Shank is enriched at the postsynaptic membrane of glutamatergic neuromuscular junctions and controls multiple parameters of synapse biology in a dose-dependent manner. Both loss and overexpression of Shank result in defects in synaptic bouton number and maturation. We find that Shank regulates a noncanonical Wnt signaling pathway in the postsynaptic cell by modulating the internalization of the Wnt receptor Fz2. This study identifies Shank as a key component of synaptic Wnt signaling, defining a novel mechanism for how Shank contributes to synapse maturation during neuronal development. SIGNIFICANCE STATEMENT Haploinsufficiency for SHANK3 is one of the most prevalent monogenic causes of autism spectrum disorder, making it imperative to understand how the Shank family regulates neurodevelopment and synapse function. We created the first animal model lacking all Shank proteins and used the Drosophila neuromuscular junction, a model glutamatergic synapse, to characterize the role of Shank at synapses. We identified a novel function of Shank in synapse maturation via regulation of Wnt signaling in the postsynaptic cell. PMID:27225771

  8. Wnt signaling in the regulation of adult hippocampal neurogenesis

    PubMed Central

    Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed. PMID:23805076

  9. Mammary Development and Breast Cancer: A Wnt Perspective

    PubMed Central

    Yu, Qing Cissy; Verheyen, Esther M.; Zeng, Yi Arial

    2016-01-01

    The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology. PMID:27420097

  10. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles.

    PubMed

    Wainstein, Ehud; Seger, Rony

    2016-04-01

    The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases.

  11. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling

    PubMed Central

    Shindo, Yuki; Iwamoto, Kazunari; Mouri, Kazunari; Hibino, Kayo; Tomita, Masaru; Kosako, Hidetaka; Sako, Yasushi; Takahashi, Koichi

    2016-01-01

    The phosphorylation cascade in the extracellular signal-regulated kinase (ERK) pathway is a versatile reaction network motif that can potentially act as a switch, oscillator or memory. Nevertheless, there is accumulating evidence that the phosphorylation response is mostly linear to extracellular signals in mammalian cells. Here we find that subsequent nuclear translocation gives rise to a switch-like increase in nuclear ERK concentration in response to signal input. The switch-like response disappears in the presence of ERK inhibitor, suggesting the existence of autoregulatory mechanisms for ERK nuclear translocation involved in conversion from a graded to a switch-like response. In vitro reconstruction of ERK nuclear translocation indicates that ERK-mediated phosphorylation of nucleoporins regulates ERK translocation. A mathematical model and knockdown experiments suggest a contribution of nucleoporins to regulation of the ERK nuclear translocation response. Taken together, this study provides evidence that nuclear translocation with autoregulatory mechanisms acts as a switch in ERK signalling. PMID:26786866

  12. Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent

    PubMed Central

    Lázár, Viktória; Papp, Balázs; Arnoldini, Markus; Abel zur Wiesch, Pia; Busa-Fekete, Róbert; Fekete, Gergely; Pál, Csaba; Ackermann, Martin; Bonhoeffer, Sebastian

    2014-01-01

    Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions. PMID:24867991

  13. Antagonism of thromboxane receptors by diclofenac and lumiracoxib

    PubMed Central

    Selg, E; Buccellati, C; Andersson, M; Rovati, G E; Ezinga, M; Sala, A; Larsson, A-K; Ambrosio, E; Låstbom, L; Capra, V; Dahlén, B; Ryrfeldt, Å; Folco, G C; Dahlén, S-E

    2007-01-01

    Background and purpose: Non-steroidal anti-inflammatory drugs (NSAIDs) are analgesic and anti-inflammatory by virtue of inhibition of the cyclooxygenase (COX) reaction that initiates biosynthesis of prostaglandins. Findings in a pulmonary pharmacology project gave rise to the hypothesis that certain members of the NSAID class might also be antagonists of the thromboxane (TP) receptor. Experimental approach: Functional responses due to activation of the TP receptor were studied in isolated airway and vascular smooth muscle preparations from guinea pigs and rats as well as in human platelets. Receptor binding and activation of the TP receptor was studied in HEK293 cells. Key results: Diclofenac concentration-dependently and selectively inhibited the contraction responses to TP receptor agonists such as prostaglandin D2 and U-46619 in the tested smooth muscle preparations and the aggregation of human platelets. The competitive antagonism of the TP receptor was confirmed by binding studies and at the level of signal transduction. The selective COX-2 inhibitor lumiracoxib shared this activity profile, whereas a number of standard NSAIDs and other selective COX-2 inhibitors did not. Conclusions and implications: Diclofenac and lumiracoxib, in addition to being COX unselective and highly COX-2 selective inhibitors, respectively, displayed a previously unknown pharmacological activity, namely TP receptor antagonism. Development of COX-2 selective inhibitors with dual activity as potent TP antagonists may lead to coxibs with improved cardiovascular safety, as the TP receptor mediates cardiovascular effects of thromboxane A2 and isoprostanes. PMID:17965743

  14. Glucagon receptor antagonism induces increased cholesterol absorption[S

    PubMed Central

    Guan, Hong-Ping; Yang, Xiaodong; Lu, Ku; Wang, Sheng-Ping; Castro-Perez, Jose M.; Previs, Stephen; Wright, Michael; Shah, Vinit; Herath, Kithsiri; Xie, Dan; Szeto, Daphne; Forrest, Gail; Xiao, Jing Chen; Palyha, Oksana; Sun, Li-Ping; Andryuk, Paula J.; Engel, Samuel S.; Xiong, Yusheng; Lin, Songnian; Kelley, David E.; Erion, Mark D.; Davis, Harry R.; Wang, Liangsu

    2015-01-01

    Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism. PMID:26373568

  15. Alcohol, TLR4-TGF-β Antagonism, and Liver Cancer

    PubMed Central

    Tsukamoto, Hidekazu; Mishra, Lopa; Machida, Keigo

    2016-01-01

    Alcohol abuse and obesity are two known risk factors for hepatocellular carcinoma (HCC) that also synergistically promote HBV/HCV-related carcinogenesis. TLR4, the PAMP for endotoxin participates in inflammatory processes such as M1 activation of hepatic macrophages in alcoholic liver disease. However its role in liver carcinogenesis via ectopic expression and activation, has only recently been revealed in alcohol/HCV-associated HCC models. Alcohol feeding to mice expressing the HCV Ns5a in a hepatocyte specific manner, aggravates liver inflammation via activation of overexpressed TLR4 in the parenchymal cells. Long-term alcohol feeding produces liver tumors in these transgenic mice in a manner dependent on TLR4. From these mice, CD133+/CD49f+ tumor initiating stem cell-like cells (TICs) have been isolated. These TICs exhibit self-renewal and tumorigenic activities driven by TLR4-dependent upregulation of the stem cell factor NANOG. Defective TGF-β tumor suppressor pathway is identified in the TICs and mediated by NANOG target genes Igf2bp3 and Yap1. This TGF-β pathway antagonism is responsible in part for TIC’s tumorigenic activity and chemoresistance. Conversely, mice with attenuated TGF-β pathway due to haploinsufficiency of β2-Spectrin, spontaneously develop liver tumors and alcohol-feeding increases tumor incidence in a TLR4 dependent manner. This reciprocal antagonism between TLR4 and TGF-β pathways may serve as a novel therapeutic target for HCC. PMID:26201318

  16. Ouabain–digoxin antagonism in rat arteries and neurones

    PubMed Central

    Song, Hong; Karashima, Eiji

    2014-01-01

    Key points ‘Classic’ cardiotonic steroids (CTSs) all inhibit Na+,K+‐ATPase (Na+ pumps) and exert cardiotonic and vasotonic effects. Nevertheless, prolonged ouabain, but not digoxin, administration induces hypertension; moreover, digoxin antagonizes the hypertensinogenic effect of ouabain.To examine acute ouabain–digoxin interactions, we tested these and related CTSs on myogenic tone (MT) in pressurized rat mesenteric small arteries and glutamate‐evoked Ca2+ transients in primary cultured rat hippocampal neurones.The CTSs (0.3–10 nm) all augmented MT at 70 mmHg and Ca2+ signals, but separated into two functional groups according to whether they were ouabain‐ or digoxin‐like. CTSs within each group were synergistic, but between groups, were antagonistic to one another in both assays.Na+ pump αβ protomers may function as tetraprotomers ((αβ)4) with quarter‐site reactivity; simultaneous ouabain‐ and digoxin‐like molecule binding promotes tetraprotomer disaggregation, enabling partial protomer reactivation.These results may reveal why some patients respond poorly to digoxin therapy, and why Na+ pumps may be a novel target for therapeutic development. Abstract ‘Classic’ cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+,K+‐ATPase (the Na+ pump) and, via Na+/Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The ‘classic’ CTSs (0.3–10 nm) behaved as ‘agonists’: all increased MT70 (MT at 70 mmHg) and augmented glutamate‐evoked Ca2+ (Fura‐2) signals. We then

  17. Wnt signaling in bone formation and its therapeutic potential for bone diseases

    PubMed Central

    Kim, Jeong Hwan; Liu, Xing; Wang, Jinhua; Chen, Xiang; Zhang, Hongyu; Kim, Stephanie H.; Cui, Jing; Li, Ruidong; Zhang, Wenwen; Kong, Yuhan; Zhang, Jiye; Shui, Wei; Lamplot, Joseph; Rogers, Mary Rose; Zhao, Chen; Wang, Ning; Rajan, Prashant; Tomal, Justin; Statz, Joseph; Wu, Ningning; Luu, Hue H.; Haydon, Rex C.

    2013-01-01

    The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential. PMID:23514963

  18. Wnt11 Signaling Promotes Proliferation, Transformation, and Migration of IEC6 Intestinal Epithelial Cells*

    PubMed Central

    Ouko, Lillian; Ziegler, Thomas R.; Gu, Li H.; Eisenberg, Leonard M.; Yang, Vincent W.

    2005-01-01

    Wnts are morphogens with well recognized functions during embryogenesis. Aberrant Wnt signaling has been demonstrated to be important in colorectal carcinogenesis. However, the role of Wnt in regulating normal intestinal epithelial cell proliferation is not well established. Here we determine that Wnt11 is expressed throughout the mouse intestinal tract including the epithelial cells. Conditioned media from Wnt11-secreting cells stimulated proliferation and migration of IEC6 intestinal epithelial cells. Co-culture of Wnt11-secreting cells with IEC6 cells resulted in morphological transformation of the latter as evidenced by the formation of foci, a condition also accomplished by stable transfection of IEC6 with a Wnt11-expressing construct. Treatment of IEC6 cells with Wnt11 conditioned media failed to induce nuclear translocation of β-catenin but led to increased activities of protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Inhibition of protein kinase C resulted in a decreased ability of Wnt11 to induce foci formation in IEC6 cells. Finally, E-cadherin was redistributed in Wnt11-treated IEC6 cells, resulting in diminished E-cadherin-mediated cell-cell contact. We conclude that Wnt11 stimulates proliferation, migration, cytoskeletal rearrangement, and contact-independent growth of IEC6 cells by a β-catenin-independent mechanism. These findings may help understand the molecular mechanisms that regulate proliferation and migration of intestinal epithelial cells. PMID:15084607

  19. Silencing of Wnt10B reduces viability of heptocellular carcinoma HepG2 cells

    PubMed Central

    Wu, Guohui; Fan, Xiaoli; Sun, Li

    2015-01-01

    Dysregulation of Wnt-mediated β-catenin signaling is associated with carcinogenesis and progression of hepatocellular carcinoma (HCC). Our previous studies showed that the Wnt10B gene, a member of Wnt gene family, over-activated in HCC tissues and cells. Here we demonstrate that stable silencing of Wnt10B reduces the viability of HCC cells in culture. HepG2, a human HCC cell line, was cultured in vitro and Wnt10B gene in the cells stably silenced, as showed in Western blotting analysis, by the shRNA interference with lentivirus plasmid transfection. Compared to the control (HepG2 cells without Wnt10B silencing), the Wnt10B-silencing cells showed significant reductions in proliferation, colony formation, migration and invasion. Furthermore, serum deprivation-induced apoptotic death, assessed by Hoechst 33342 staining and fluorescent microscopy, increased significantly in the Wnt10B-silencing cells. FACScan analysis indicated an arrest of the cell cycle in the Wnt10B-silencing HCC cells, with significant increases in the number of cells in G0-G1 and S phases. Thus, we hypothesize that Wnt10B plays an oncogenic role in HCC and is a potential therapeutic target. PMID:26269753

  20. Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

    PubMed

    Naillat, Florence; Yan, Wenying; Karjalainen, Riikka; Liakhovitskaia, Anna; Samoylenko, Anatoly; Xu, Qi; Sun, Zhandong; Shen, Bairong; Medvinsky, Alexander; Quaggin, Susan; Vainio, Seppo J

    2015-03-15

    The indifferent mammalian embryonic gonad generates an ovary or testis, but the factors involved are still poorly known. The Wnt-4 signal represents one critical female determinant, since its absence leads to partial female-to-male sex reversal in mouse, but its signalling is as well implicated in the testis development. We used the Wnt-4 deficient mouse as a model to identify candidate gonadogenesis genes, and found that the Notum, Phlda2, Runx-1 and Msx1 genes are typical of the wild-type ovary and the Osr2, Dach2, Pitx2 and Tacr3 genes of the testis. Strikingly, the expression of these latter genes becomes reversed in the Wnt-4 knock-out ovary, suggesting a role in ovarian development. We identified the transcription factor Runx-1 as a Wnt-4 signalling target gene, since it is expressed in the ovary and is reduced upon Wnt-4 knock-out. Consistent with this, introduction of the Wnt-4 signal into early ovary cells ex vivo induces Runx-1 expression, while conversely Wnt-4 expression is down-regulated in the absence of Runx-1. We conclude that the Runx-1 gene can be a Wnt-4 signalling target, and that Runx-1 and Wnt-4 are mutually interdependent in their expression. The changes in gene expression due to the absence of Wnt-4 in gonads reflect the sexually dimorphic role of this signal and its complex gene network in mammalian gonad development.

  1. WNT5A signaling contributes to Aβ-induced neuroinflammation and neurotoxicity.

    PubMed

    Li, Bei; Zhong, Ling; Yang, Xiangling; Andersson, Tommy; Huang, Min; Tang, Shao-Jun

    2011-01-01

    Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in the AD mouse brain, and that beta-amyloid peptide (Aβ), a major constituent of amyloid plaques, stimulated Wnt5a and Fz5 expression in primary cortical cultures; these observations indicate that Wnt5a signaling could be aberrantly activated during AD pathogenesis. In support of such a possibility, we observed that inhibition of Wnt5a signaling attenuated while activation of Wnt5a signaling enhanced Aβ-evoked neurotoxicity, suggesting a role of Wnt5a signaling in AD-related neurodegeneration. Furthermore, we also demonstrated that Aβ-induced neurotoxicity depends on inflammatory processes, and that activation of Wnt5a signaling elicited the expression of proinflammatory cytokines IL-1β and TNF-α whereas inhibition of Wnt5a signaling attenuated the Aβ-induced expression of the cytokines in cortical cultures. Our findings collectively suggest that aberrantly up-regulated Wnt5a signaling is a crucial pathological step that contributes to AD-related neurodegeneration by regulating neuroinflammation.

  2. Ectodermal Wnt Controls Nasal Pit Morphogenesis Through Modulation of the BMP/FGF/JNK Signaling Axis

    PubMed Central

    Zhu, Xiao-Jing; Liu, Yudong; Yuan, Xueyan; Wang, Min; Zhao, Wanxin; Yang, Xueqin; Zhang, Xiaoyun; Hsu, Wei; Qiu, Mengsheng; Zhang, Ze; Zhang, Zunyi

    2016-01-01

    Background Mutations of WNT3, WNT5A, WNT9B, and WNT11 genes are associated with orofacial birth defects, including non-syndromic cleft lip with cleft palate in humans. However, the source of Wnt ligands and their signaling effects on the orofacial morphogenetic process remain elusive. Results Using Foxg1-Cre to impair Wnt secretion through the inactivation of Gpr177/mWls, we investigate the relevant regulation of Wnt production and signaling in nasal–facial development. Ectodermal ablation of Gpr177 leads to severe facial deformities resulting from dramatically reduced cell proliferation and increased cell death due to a combined loss of WNT, FGF and BMP signaling in the developing facial prominence. In the invaginating nasal pit, the Gpr177 disruption also causes a detrimental effect on migration of the olfactory epithelial cells into the mesenchymal region. The blockage of Wnt secretion apparently impairs the olfactory epithelial cells through modulation of JNK signaling. Conclusions Our study thus suggests the head ectoderm, including the facial ectoderm and the neuroectoderm, as the source of canonical as well as noncanonical Wnt ligands during early development of the nasal–facial prominence. Both β-catenin–dependent and –independent signaling pathways are required for proper development of these morphogenetic processes. PMID:26661618

  3. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation.

    PubMed

    Covey, Tracy M; Kaur, Simran; Tan Ong, Tina; Proffitt, Kyle D; Wu, Yonghui; Tan, Patrick; Virshup, David M

    2012-01-01

    Porcupine (PORCN) is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS) binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC) cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.

  4. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification.

    PubMed

    Coombs, Gary S; Yu, Jia; Canning, Claire A; Veltri, Charles A; Covey, Tracy M; Cheong, Jit K; Utomo, Velani; Banerjee, Nikhil; Zhang, Zong Hong; Jadulco, Raquel C; Concepcion, Gisela P; Bugni, Tim S; Harper, Mary Kay; Mihalek, Ivana; Jones, C Michael; Ireland, Chris M; Virshup, David M

    2010-10-01

    Wnt proteins are secreted post-translationally modified proteins that signal locally to regulate development and proliferation. The production of bioactive Wnts requires a number of dedicated factors in the secreting cell whose coordinated functions are not fully understood. A screen for small molecules identified inhibitors of vacuolar acidification as potent inhibitors of Wnt secretion. Inhibition of the V-ATPase or disruption of vacuolar pH gradients by diverse drugs potently inhibited Wnt/β-catenin signaling both in cultured human cells and in vivo, and impaired Wnt-regulated convergent extension movements in Xenopus embryos. WNT secretion requires its binding to the carrier protein wntless (WLS); we find that WLS is ER-resident in human cells and WNT3A binding to WLS requires PORCN-dependent lipid modification of WNT3A at serine 209. Inhibition of vacuolar acidification results in accumulation of the WNT3A-WLS complex both in cells and at the plasma membrane. Modeling predictions suggest that WLS has a lipid-binding β-barrel that is similar to the lipocalin-family fold. We propose that WLS binds Wnts in part through a lipid-binding domain, and that vacuolar acidification is required to release palmitoylated WNT3A from WLS in secretory vesicles, possibly to facilitate transfer of WNT3A to a soluble carrier protein.

  5. WNT5A inhibits human dental papilla cell proliferation and migration

    SciTech Connect

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-12-18

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  6. The Extracellular Domain of Lrp5/6 Inhibits Noncanonical Wnt Signaling In Vivo

    PubMed Central

    Andersson, Emma R.; Schambony, Alexandra; Esner, Milan; Bryjová, Lenka; Biris, Kristin K.; Hall, Anita C.; Kraft, Bianca; Cajanek, Lukas; Yamaguchi, Terry P.; Buckingham, Margaret

    2009-01-01

    Lrp5/6 are crucial coreceptors for Wnt/β-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/β-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6−/− mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo. PMID:19056682

  7. WNT7B promotes bone formation in part through mTORC1.

    PubMed

    Chen, Jianquan; Tu, Xiaolin; Esen, Emel; Joeng, Kyu Sang; Lin, Congxin; Arbeit, Jeffrey M; Rüegg, Markus A; Hall, Michael N; Ma, Liang; Long, Fanxin

    2014-01-01

    WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through mTORC1 activation.

  8. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures

    SciTech Connect

    Hirsch, Cordula; Campano, Louise M.; Woehrle, Simon; Hecht, Andreas . E-mail: andreas.hecht@mol-med.uni-freiburg.de

    2007-02-01

    Canonical Wnt signaling triggers the formation of heterodimeric transcription factor complexes consisting of {beta}-catenin and T cell factors, and thereby controls the execution of specific genetic programs. During the expansion and neurogenic phases of embryonic neural development canonical Wnt signaling initially controls proliferation of neural progenitor cells, and later neuronal differentiation. Whether Wnt growth factors affect neural progenitor cells postnatally is not known. Therefore, we have analyzed the impact of Wnt signaling on neural progenitors isolated from cerebral cortices of newborn mice. Expression profiling of pathway components revealed that these cells are fully equipped to respond to Wnt signals. However, Wnt pathway activation affected only a subset of neonatal progenitors and elicited a limited increase in proliferation and neuronal differentiation in distinct subsets of cells. Moreover, Wnt pathway activation only transiently stimulated S-phase entry but did not support long-term proliferation of progenitor cultures. The dampened nature of the Wnt response correlates with the predominant expression of inhibitory pathway components and the rapid actuation of negative feedback mechanisms. Interestingly, in differentiating cell cultures activation of canonical Wnt signaling reduced Hes1 and Hes5 expression suggesting that during postnatal neural development, Wnt/{beta}-catenin signaling enhances neurogenesis from progenitor cells by interfering with Notch pathway activity.

  9. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche.

    PubMed

    Farin, Henner F; Jordens, Ingrid; Mosa, Mohammed H; Basak, Onur; Korving, Jeroen; Tauriello, Daniele V F; de Punder, Karin; Angers, Stephane; Peters, Peter J; Maurice, Madelon M; Clevers, Hans

    2016-02-18

    Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and 'plasma membrane dilution' through cell division shape the epithelial Wnt3 gradient.

  10. A wound-induced Wnt expression program controls planarian regeneration polarity.

    PubMed

    Petersen, Christian P; Reddien, Peter W

    2009-10-06

    Regeneration requires specification of the identity of new tissues to be made. Whether this process relies only on intrinsic regulative properties of regenerating tissues or whether wound signaling provides input into tissue repatterning is not known. The head-versus-tail regeneration polarity decision in planarians, which requires Wnt signaling, provides a paradigm to study the process of tissue identity specification during regeneration. The Smed-wntP-1 gene is required for regeneration polarity and is expressed at the posterior pole of intact animals. Surprisingly, wntP-1 was expressed at both anterior- and posterior-facing wounds rapidly after wounding. wntP-1 expression was induced by all types of wounds examined, regardless of whether wounding prompted tail regeneration. Regeneration polarity was found to require new expression of wntP-1. Inhibition of the wntP-2 gene enhanced the polarity phenotype due to wntP-1 inhibition, with new expression of wntP-2 in regeneration occurring subsequent to expression of wntP-1 and localized only to posterior-facing wounds. New expression of wntP-2 required wound-induced wntP-1. Finally, wntP-1 and wntP-2 expression changes occurred even in the absence of neoblast stem cells, which are required for regeneration, suggesting that the role of these genes in polarity is independent of and instructive for tail formation. These data indicate that wound-induced input is involved in resetting the normal polarized features of the body axis during regeneration.

  11. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    SciTech Connect

    Liu, Yang Han, Dong Wang, Lei Feng, Hailan

    2013-05-17

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation.

  12. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction.

    PubMed

    Sobel, Katrin; Tham, Marius; Stark, Hans-Jürgen; Stammer, Hermann; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-06-15

    Aberrant Wnt regulation, detectable by nuclear translocation of beta-catenin, is a hallmark of many cancers including skin squamous cell carcinomas (SCCs). By analyzing primary human skin SCCs, we demonstrate that nuclear beta-catenin is not restricted to SCC cells but also detected in stromal fibroblasts, suggesting an important role for aberrant Wnt regulation also in the tumor microenvironment. When human keratinocytes and fibroblasts were treated with Wnt-3a, fibroblasts proved to be more responsive. Accordingly, Wnt-3a did not alter HaCaT cell functions in a cell-autonomous manner. However, when organotypic cultures (OTCs) were treated with Wnt-3a, HaCaT keratinocytes responded with increased proliferation. As nuclear beta-catenin was induced only in the fibroblasts, this argued for a Wnt-dependent, paracrine keratinocyte stimulation. Global gene expression analysis of Wnt-3a-stimulated fibroblasts identified genes encoding interleukin-8 (IL-8) and C-C motif chemokine 2 (CCL-2) as well as matrix metalloproteinase-1 (MMP-1) as Wnt-3a targets. In agreement, we show that IL-8 and CCL-2 were secreted in high amounts by Wnt-3a-stimulated fibroblasts also in OTCs. The functional role of IL-8 and CCL-2 as keratinocyte growth regulators was confirmed by directly stimulating HaCaT cell proliferation in conventional cultures. Most important, neutralizing antibodies against IL-8 and CCL-2 abolished the Wnt-dependent HaCaT cell hyperproliferation in OTCs. Additionally, MMP-1 was expressed in high amounts in Wnt-3a-stimulated OTCs and degraded the stromal matrix. Thus, our data show that Wnt-3a stimulates fibroblasts to secrete both keratinocyte proliferation-inducing cytokines and stroma-degrading metalloproteinases, thereby providing evidence for a novel Wnt deregulation in the tumor-stroma directly contributing to skin cancer progression.

  13. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    PubMed

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  14. Imipenem antagonism of the in vitro activity of piperacillin against Pseudomonas aeruginosa.

    PubMed Central

    Bertram, M A; Young, L S

    1984-01-01

    The MICs of imipenem and piperacillin, alone and in combination, against Pseudomonas aeruginosa were determined in a checkerboard titration microdilution assay. A dramatic, one-way antagonism of imipenem for piperacillin was demonstrated in 28 of the 35 strains examined; antagonism was associated with the induction of a beta-lactamase. PMID:6435517

  15. Competitive antagonism at thromboxane receptors in human platelets.

    PubMed Central

    Armstrong, R. A.; Jones, R. L.; Peesapati, V.; Will, S. G.; Wilson, N. H.

    1985-01-01

    The inhibitory effects of three prostanoid analogues, EP 045, EP 092 and pinane thromboxane A2 (PTA2), on the aggregation of human platelets in vitro have been investigated. In diluted platelet-rich plasma (PRP), EP 045 (20 microM) and EP 092 (1 microM) completely inhibited irreversible aggregation responses to thromboxane A2 (TXA2), prostaglandin H2 (PGH2) and five chemically stable thromboxane mimetics, including 11,9-epoxymethano-PGH2 and 9,11-azo-PGH2. Reversible aggregation produced by the prostanoid analogue, CTA2, was also inhibited. The block of the stable agonist action was surmountable. In plasma-free platelet suspensions EP 045 and EP 092 were more potent antagonists. Schild analysis indicated a competitive type of antagonism for EP 045 (affinity constant of 1.1 X 10(7) M-1); the nature of the EP 092 block is not clear. Primary aggregation waves induced by ADP, platelet activating factor (Paf) and adrenaline were unaffected by EP 045 and EP 092, whereas the corresponding second phases of aggregation were suppressed. Aggregation and 5-hydroxytryptamine (5-HT) release induced by either PGH2 or 11,9-epoxymethano-PGH2 were inhibited in a parallel manner by EP 045. Inhibition of thromboxane biosynthesis is not involved in these effects. EP 045 and EP 092 did not raise adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in the platelet suspensions. In plasma-free platelet suspensions PTA2 produced a shape change response which could be blocked by EP 045. PTA2, therefore, has a thromboxane-like agonist action. The block of the aggregatory action of 11,9-epoxymethano-PGH2 by PTA2 appears to be mainly due to competition at the thromboxane receptor. However, PTA2 produced a slight rise in cyclic AMP levels; this could be due to a very weak stimulant action on either PGI2 or PGD2 receptors present in the human platelet. Functional antagonism by PTA2 may therefore augment its thromboxane receptor blocking activity. The results are discussed in terms of (a) the

  16. Analyzing pERK Activation During Planarian Regeneration.

    PubMed

    Fraguas, Susanna; Umesono, Yoshihiko; Agata, Kiyokazu; Cebrià, Francesc

    2017-01-01

    Planarians are an ideal model in which to study stem cell-based regeneration. After amputation, planarian pluripotent stem cells surrounding the wound proliferate to produce the regenerative blastema, in which they differentiate into the missing tissues and structures. Recent independent studies in planarians have shown that Smed-egfr-3, a gene encoding a homologue of epidermal growth factor (EGF) receptors, and DjerkA, which encodes an extracellular signal-regulated kinase (ERK), may control cell differentiation and blastema growth. However, because these studies were carried in two different planarian species, the relationship between these two genes remains unclear. We have optimized anti-pERK immunostaining in Schmidtea mediterranea using the original protocol developed in Dugesia japonica. Both protocols are reported here as most laboratories worldwide work with one of these two species. Using this protocol we have determined that Smed-egfr-3 appears to be necessary for pERK activation during planarian regeneration.

  17. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca²⁺-calmodulin/ERK mitogen-activated protein kinase signaling pathway.

    PubMed

    Sticozzi, C; Belmonte, G; Meini, A; Carbotti, P; Grasso, G; Palmi, M

    2013-11-12

    Reactive astrogliosis, a feature of neuro-inflammation is induced by a number of endogenous mediators including cytokines. Despite interleukin-1 beta (IL-1β) stands out as the major inducer of this process, the underlying mechanism and its role on neuronal viability remain elusive. We investigated in human astrocytoma cells and the rat brain striatum, the role of the nuclear factor-kB (NF-kB) intracellular Ca(2+) concentration ([Ca(2+)]i) calmodulin (CaM) and extracellular regulated mitogen-activated protein kinases (ERK1/2) in IL-1β-induced expression of glial fibrillary acidic protein (GFAP) and neuronal apoptosis associated to a brain trauma. Cell data showed that IL-1β (1 ng/ml) increased NF-kB, pERK1/2 and GFAP expression. Nevertheless, further increase in IL-1β levels reversed progressively these responses. Preventing ERK1/2 activation with 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthiol]-butadiene antagonized IL-1β-induced GFAP expression while inhibiting selectively nuclear translocation of NF-kB with caffeic-acid phenethyl-ester down-regulated both ERK1/2 and GFAP expression induced by IL-1β. The GFAP response was also prevented by antagonizing selectively increase in [Ca(2+)]i, CaM activity or inducible nitric oxide synthase expression with respectively ryanodine plus 2-aminoethoxydiphenyl-borate, N-(6-aminohexyl)-5-chloro-1-naphthalensulfonamide hydrochloride and N-[(3-(aminomethyl)-phenyl]methyl]-ethanimidamide dihydrochloride. Data in vivo supported these findings and showed that GFAP expression induced by IL-1β (50 ng/ml) correlated with attenuated glial scar formation and reduced neuronal apoptosis. Our data identified the NF-kB/Ca(2+)-CaM/ERK signaling pathway as a novel in vivo key regulator of IL-1β-induced astrogliosis which may represent a potential target in neurodegeneration.

  18. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells.

    PubMed

    Andersson, Emma R; Saltó, Carmen; Villaescusa, J Carlos; Cajanek, Lukas; Yang, Shanzheng; Bryjova, Lenka; Nagy, Irina I; Vainio, Seppo J; Ramirez, Carmen; Bryja, Vitezslav; Arenas, Ernest

    2013-02-12

    Wnts are a family of secreted proteins that regulate multiple steps of neural development and stem cell differentiation. Two of them, Wnt1 and Wnt5a, activate distinct branches of Wnt signaling and individually regulate different aspects of midbrain dopaminergic (DA) neuron development. However, several of their functions and interactions remain to be elucidated. Here, we report that loss of Wnt1 results in loss of Lmx1a and Ngn2 expression, as well as agenesis of DA neurons in the midbrain floor plate. Remarkably, a few ectopic DA neurons still emerge in the basal plate of Wnt1(-/-) mice, where Lmx1a is ectopically expressed. These results indicate that Wnt1 orchestrates DA specification and neurogenesis in vivo. Analysis of Wnt1(-/-);Wnt5a(-/-) mice revealed a greater loss of Nurr1(+) cells and DA neurons than in single mutants, indicating that Wnt1 and Wnt5a interact genetically and cooperate to promote midbrain DA neuron development in vivo. Our results unravel a functional interaction between Wnt1 and Wnt5a resulting in enhanced DA neurogenesis. Taking advantage of these findings, we have developed an application of Wnts to improve the generation of midbrain DA neurons from neural and embryonic stem cells. We thus show that coordinated Wnt actions promote DA neuron development in vivo and in stem cells and suggest that coordinated Wnt administration can be used to improve DA differentiation of stem cells and the development of stem cell-based therapies for Parkinson's disease.

  19. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

    2015-06-15

    Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation.

  20. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice

    PubMed Central

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Shi, Fuxin

    2016-01-01

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant

  1. Canonical RTK-Ras-ERK signaling and related alternative pathways

    PubMed Central

    Sundaram, Meera V.

    2013-01-01

    Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway. PMID:23908058

  2. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.

  3. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  4. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis

    PubMed Central

    Nguyen, Nam Trung; Nakahama, Taisuke; Nguyen, Chi Hung; Tran, Trang Thu; Le, Van Son; Chu, Hoang Ha; Kishimoto, Tadamitsu

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common autoimmune disease, affecting approximately 1% of the population worldwide, its pathogenic mechanisms are poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabolism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr antagonism in treating RA. PMID:27186143

  5. MNT and Emerging Concepts of MNT-MYC Antagonism

    PubMed Central

    Yang, Guang; Hurlin, Peter J.

    2017-01-01

    MYC family proteins play fundamental roles in stem and progenitor cell homeostasis, morphogenesis and cancer. As expected for proteins that profoundly affect the fate of cells, the activities of MYC are regulated at a multitude of levels. One mechanism with the potential to broadly affect the activities of MYC is transcriptional antagonism by a group of MYC-related transcriptional repressors. From this group, the protein MNT has emerged as having perhaps the most far-reaching impact on MYC activities. In this review, we discuss the current understanding of MNT, its regulation and how, as a MYC antagonist, it functions both as a tumor suppressor and facilitator of MYC-driven proliferation and oncogenesis. PMID:28230739

  6. Scopolamine and depression: a role for muscarinic antagonism?

    PubMed

    Hasselmann, Helge

    2014-01-01

    Depressive disorders have, for a sizeable extent, proven resilient to pharmacotherapy. Established drugs such as selective serotonin reuptake inhibitors (SSRIs) or serotonin-noradrenaline reuptake inhibitors (SNRIs) often provide inadequate symptom relief and sometimes fail altogether. Recently, interest in antidepressant effects of scopolamine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, has arisen. Initial evidence suggests that scopolamine provides relatively rapid and long-lasting symptom alleviation for unipolar and bipolar depressed patients. At the same time, side effects of medical dosages appear mild and transient in nature. The aim of the present review is to tentatively discuss the antidepressant potential of scopolamine and to outline putative neurobiological pathways. Clearly, mAChR antagonism provides an intriguing novel therapeutical approach for treating depressive disorders.

  7. Association Study of Wnt Signaling Pathway Genes in Bipolar Disorder

    PubMed Central

    Zandi, Peter P.; Belmonte, Pamela L.; Willour, Virginia L.; Goes, Fernando S.; Badner, Judith A.; Simpson, Sylvia G.; Gershon, Elliot S.; McMahon, Francis J.; DePaulo, J. Raymond; Potash, James B.

    2011-01-01

    Context The Wnt signaling pathways promote cell growth and are best known for their role in embryogenesis and cancer. Several lines of evidence suggest these pathways might also be involved in bipolar disorder (BP). Objective We tested for the association of candidate genes in the Wnt signaling pathways with disease susceptibility in a family-based BP study Design 227 tagSNPs from 34 genes were successfully genotyped. Initial results led us to focus on the gene PPARD, in which we genotyped an additional 13 SNPs for follow-up. Setting Nine academic medical centers in the United States. Participants 554 BP offspring and their parents from 317 families. Main Outcome Measures We tested for family-based association using FBAT and HBAT. Exploratory analyses testing for interactions of PPARD SNPs with clinical covariates and with other Wnt genes were conducted with GENASSOC. Results In the initial analysis, the most significantly associated SNP was rs2267665 in PPARD (nominal p=0.0003). This remained significant at p=0.05 by permutation after accounting for all SNPs tested. Additional genotyping in PPARD yielded four SNPs in one haplotype block that were significantly associated with BP at p<0.01, the most significant being rs9462082 (p=0.0001). Exploratory analyses revealed significant evidence (p<0.01) for interactions of rs9462082 with poor functioning on the Global Assessment Scale (OR = 3.36, 95% CI = 1.85–6.08), and with SNPs in WNT2B (rs3790606, OR = 2.56, 95% CI = 1.67–4.00) and WNT7A (rs4685048, OR = 1.79, 95% CI 1.23–2.63). Conclusions We found evidence for association of BP with PPARD, a gene in the Wnt signaling pathway. The consistency of this result with one from the Wellcome Trust Case-Control Consortium encourages further study. If the finding can be confirmed in additional samples, it may illuminate a new avenue for understanding the pathogenesis of severe BP and developing more effective treatments. PMID:18606951

  8. Pheromone antagonism in the European corn borer moth Ostrinia nubilalis.

    PubMed

    Gemeno, César; Sans, Albert; López, Carmen; Albajes, Ramon; Eizaguirre, Matilde

    2006-05-01

    Mixing the sex pheromones of the Mediterranean corn borer, Sesamia nonagrioides, and the European corn borer, Ostrinia nubilalis, results in significantly lower captures of O. nubilalis when compared to traps loaded with its pheromone alone. Rubber septa loaded with a constant concentration of the pheromone of O. nubilalis and different percentages of the S. nonagrioides pheromone (from 1 to 100%) causes dose-dependent antagonism in the field. Electroantennograms of O. nubilalis males showed high antennal responses to its own pheromone components, followed by smaller responses to the major, [(Z)-11-hexadecenyl acetate (Z11-16:Ac)], and two minor components [dodecyl acetate (12:Ac) and (Z)-11-hexadecenal (Z11-16:Ald)] of the S. nonagrioides pheromone. There was almost no response to the S. nonagrioides minor component (Z)-11-hexadecenol (Z11-16:OH). Field tests that used traps baited with the O. nubilalis pheromone plus individual components of S. nonagrioides showed that Z11-16:Ald causes the antagonism. Adding 1% Z11-16:Ald to the pheromone of O. nubilalis reduced oriented flight and pheromone source contact in the wind tunnel by 26% and 83%, respectively, and trap captures in the field by 90%. The other three pheromone components of S. nonagrioides inhibited pheromone source contact but not oriented flight of O. nubilalis males and did not inhibit capture in the field. Cross-adaptation electroantennogram suggests that Z11-16:Ald stimulates a different odor receptor neuron than the pheromone components of O. nubilalis. We conclude that Z11-16:Ald is a potent antagonist of the behavioral response of O. nubilalis.

  9. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor.

    PubMed

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-05-10

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted.

  10. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    SciTech Connect

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-04-11

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/{beta}-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active {beta}-catenin, two key members of the Wnt/{beta}-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/{beta}-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.

  11. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-03

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  12. Wnt signaling pathways in urological cancers: past decades and still growing

    PubMed Central

    2012-01-01

    The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers. PMID:22325146

  13. Wnt signaling pathways in urological cancers: past decades and still growing.

    PubMed

    Majid, Shahana; Saini, Sharanjot; Dahiya, Rajvir

    2012-02-10

    The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.

  14. Topical androgen antagonism promotes cutaneous wound healing without systemic androgen deprivation by blocking β-catenin nuclear translocation and cross-talk with TGF-β signaling in keratinocytes.

    PubMed

    Toraldo, Gianluca; Bhasin, Shalender; Bakhit, Mena; Guo, Wen; Serra, Carlo; Safer, Joshua D; Bhawan, Jag; Jasuja, Ravi

    2012-01-01

    Orchidectomy in rodents and lower testosterone levels in men are associated with improved cutaneous wound healing. However, due to the adverse effects on skeletal and sexual tissues, systemic androgen blockade is not a viable therapeutic intervention. Accordingly, we tested the hypothesis that topical application of an androgen antagonist would elicit accelerated wound healing without systemic androgen antagonism. Full-thickness cutaneous wounds were created on adult C57BL6/J mice. Daily topical application of androgen receptor antagonist, flutamide, resulted in improved gap closure similar to orchiectomized controls and faster than orchidectomized mice treated with topical testosterone. In vivo data showed that the effects of androgen antagonism on wound closure primarily accelerate keratinocytes migration without effecting wound contraction. Consequently, mechanisms of testosterone action on reepithelialization were investigated in vitro by scratch wounding assays in confluent keratinocytes. Testosterone inhibited keratinocyte migration and this effect was in part mediated through promotion of nuclear translocation of β-catenin and by attenuating transforming growth factor-β (TGF-β) signaling through β-catenin. The link between Wnt and TGF beta signaling was confirmed by blocking β-catenin and by following TGF-β-induced transcription of a luciferase reporter gene. Together, these data show that blockade of β-catenin can, as a potential target for novel therapeutic interventions, accelerate cutaneous wound healing.

  15. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

    PubMed

    Schevzov, Galina; Kee, Anthony J; Wang, Bin; Sequeira, Vanessa B; Hook, Jeff; Coombes, Jason D; Lucas, Christine A; Stehn, Justine R; Musgrove, Elizabeth A; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T; Hardeman, Edna C; Gunning, Peter W

    2015-07-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.

  16. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments

    PubMed Central

    Schevzov, Galina; Kee, Anthony J.; Wang, Bin; Sequeira, Vanessa B.; Hook, Jeff; Coombes, Jason D.; Lucas, Christine A.; Stehn, Justine R.; Musgrove, Elizabeth A.; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T.; Hardeman, Edna C.; Gunning, Peter W.

    2015-01-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells. PMID:25971798

  17. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2013-02-01

    mammary epithelium impacts glandular development . We found ductal abnormali ties; however, the phenotype was not as severe as expected. Approximately...In previous reports we have clearly showed that cells w ith activated canonical Wnt signaling are present within the mammary epithelium starting at...Wnt1 transgenic cells. We generated a mouse line in which ~-catenin is conditionally deleted in the mammary epithelium of MMTV-Wnt1 transgenic

  18. Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells.

    PubMed

    Ju, Xiaoli; Ishikawa, Tomo-O; Naka, Kazuhito; Ito, Kosei; Ito, Yoshiaki; Oshima, Masanobu

    2014-04-01

    RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/β-catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling-high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and β-catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, β-catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c-Myc, and the occupancy of TCF4 and β-catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/β-catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor-suppressing role in KatoIII cells through a Wnt-independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/β-catenin complex by cell context-dependent mechanisms.

  19. Wnt signalling suppresses voltage-dependent Na⁺ channel expression in postnatal rat cardiomyocytes.

    PubMed

    Liang, Wenbin; Cho, Hee Cheol; Marbán, Eduardo

    2015-03-01

    Wnt signalling plays crucial roles in heart development, but is normally suppressed postnatally. In arrhythmogenic conditions, such as cardiac hypertrophy and heart failure, Wnt signalling is reactivated. To explore the potential role of Wnt signalling in arrhythmogenic electrical remodelling, we examined voltage-dependent ion channels in cardiomyocytes. Treatment of neonatal rat ventricular myocytes with either recombinant Wnt3a protein or CHIR-99021 (CHIR, a glycogen synthase kinase-3β inhibitor) caused a dose-dependent increase in Wnt target gene expression (Axin2 and Lef1), indicating activation of the Wnt/β-catenin pathway. Cardiac Na(+) current (INa) density was reduced by Wnt3a (-20 ± 4 vs. control -59 ± 7 pA pF(-1) , at -30 mV) or CHIR (-22 ± 5 pA pF(-1) ), without changes in steady-state activation, inactivation or repriming kinetics. Wnt3a and CHIR also produced dose-dependent reductions in the mRNA level of Scn5a (the cardiac Na(+) channel α subunit gene), as well as a 56% reduction (by Wnt3a) in the Nav 1.5 protein level. Consistent with INa reduction, action potentials in Wnt3a-treated neonatal rat ventricular myocytes had a lower upstroke amplitude (91 ± 3 vs. control 137 ± 2 mV) and decreased maximum upstroke velocity (70 ± 10 vs. control 163 ± 15 V s(-1)). In contrast, inward rectifier K(+) current and L-type Ca(2+) channels were not affected by Wnt3a treatment. Taken together, our data indicate that the Wnt/β-catenin pathway suppresses INa in postnatal cardiomyocytes and may contribute to ion channel remodelling in heart disease.

  20. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  1. WNT regulation of embryonic development likely involves pathways independent of nuclear CTNNB1.

    PubMed

    Tribulo, Paula; Moss, James I; Ozawa, Manabu; Jiang, Zongliang; Tian, Xiuchun Cindy; Hansen, Peter J

    2017-04-01

    The bovine was used to examine the potential for WNT signaling to affect the preimplantation embryo. Expression of seven key genes involved in canonical WNT signaling declined to a nadir at the morula or blastocyst stage. Expression of 80 genes associated with WNT signaling in the morula and inner cell mass (ICM) and trophectoderm (TE) of the blastocyst was also evaluated. Many genes associated with WNT signaling were characterized by low transcript abundance. Seven genes were different between ICM and TE, and all of them were overexpressed in TE as compared to ICM, including WNT6, FZD1, FZD7, LRP6, PORCN, APC and SFRP1 Immunoreactive CTNNB1 was localized primarily to the plasma membrane at all stages examined from the 2-cell to blastocyst stages of development. Strikingly, neither CTNNB1 nor non-phospho (i.e., active) CTNNB1 was observed in the nucleus of blastomeres at any stage of development even after the addition of WNT activators to culture. In contrast, CTNNB1 associated with the plasma membrane was increased by activators of WNT signaling. The planar cell polarity pathway (PCP) could be activated in the embryo as indicated by an experiment demonstrating an increase in phospho-JNK in the nucleus of blastocysts treated with the non-canonical WNT11. Furthermore, WNT11 improved development to the blastocyst stage. In conclusion, canonical WNT signaling is attenuated in the preimplantation bovine embryo but WNT can activate the PCP component JNK. Thus, regulation of embryonic development by WNT is likely to involve activation of pathways independent of nuclear actions of CTNNB1.

  2. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus).

    PubMed

    Weng, Shenda; You, Feng; Fan, Zhaofei; Wang, Lijuan; Wu, Zhihao; Zou, Yuxia

    2016-08-01

    WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation.

  3. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.

    PubMed

    Schwebs, David J; Hadwiger, Jeffrey A

    2015-01-01

    Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1- and gα4- cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5- mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5- cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1.

  4. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    PubMed Central

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  5. Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-Raf–ERK1/2-dependent anti-apoptotic pathway

    PubMed Central

    Shen, Xiao-Li; Song, Ning; Du, Xi-Xun; Li, Yong; Xie, Jun-Xia; Jiang, Hong

    2017-01-01

    Several brain-gut peptides have been reported to have a close relationship with the central dopaminergic system; one such brain-gut peptide is nesfatin-1. Nesfatin-1 is a satiety peptide that is predominantly secreted by X/A-like endocrine cells in the gastric glands, where ghrelin is also secreted. We previously reported that ghrelin exerted neuroprotective effects on nigral dopaminergic neurons, which implied a role for ghrelin in Parkinson’s disease (PD). In the present study, we aim to clarify whether nesfatin-1 has similar effects on dopaminergic neurons both in vivo and in vitro. We show that nesfatin-1 attenuates the loss of nigral dopaminergic neurons in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In addition, nesfatin-1 antagonized 1-methyl-4-phenylpyridillium ion (MPP+)-induced toxicity by restoring mitochondrial function, inhibiting cytochrome C release and preventing caspase-3 activation in MPP+-treated MES23.5 dopaminergic cells. These neuroprotective effects could be abolished by selective inhibition of C-Raf and the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Our data suggest that C-Raf-ERK1/2, which is involved in an anti-apoptotic pathway, is responsible for the neuroprotective effects of nesfatin-1 in the context of MPTP-induced toxicity. These results imply that nesfatin-1 might have therapeutic potential for PD. PMID:28106099

  6. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2011-05-01

    regulators of Wnt/Lrp signaling (Sost,  Dkk1 ) modulate bone loss in response to mechanical  disuse. Furthermore, we proposed to test whether these...induced paralysis of the quadriceps, hamstrings, and soleus) in one hindlimb of a series of mice  with mutations in Wnt modulators (Sost‐/‐,  Dkk1 ...and in wild‐type mice that are also treated with  neutralizing antibody to  Dkk1  or Sost (or both).  These experiments have the potential to reveal new

  7. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2014-07-01

    approach for overcoming the bone loss that normally occurs with disuse. We are also investigating the efficacy of Dkk1 neutralization (and genetic...proposed to determine whether local, secreted regulators of Wnt/Lrp signaling (Sost,  Dkk1 ) modulate bone  loss in response to mechanical disuse...with muta ons in Wnt modulators (Sost‐/‐,  Dkk1 +/‐) and in wild‐type mice that are also treated with  neutralizing an body to  Dkk1  or Sost.  These

  8. Wnt signaling in planarians: new answers to old questions.

    PubMed

    Almuedo-Castillo, Maria; Sureda-Gómez, Miquel; Adell, Teresa

    2012-01-01

    Wnts are secreted glycoproteins involved in a broad range of essential cell functions, including proliferation, migration and cell-fate determination. Recent years have seen substantial research effort invested in elucidating the role of the Wnt signaling pathway in planarians, flatworms with incredible regenerative capacities. In this review, we summarize current knowledge on the role of canonical (β-catenin-dependent) and non-canonical (β-catenin-independent) Wnt signaling in planarians, not only during regeneration, but also during normal homeostasis. We also describe some of the preliminary data that has been obtained regarding the role of these pathways during embryogenesis. Models are proposed to integrate the different results which have been obtained to date and highlight those questions that still remain to be answered.

  9. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.

    PubMed

    Yu, Jia; Chia, Joanne; Canning, Claire Ann; Jones, C Michael; Bard, Frédéric A; Virshup, David M

    2014-05-12

    Wnts are transported to the cell surface by the integral membrane protein WLS (also known as Wntless, Evi, and GPR177). Previous studies of WLS trafficking have emphasized WLS movement from the Golgi to the plasma membrane (PM) and then back to the Golgi via retromer-mediated endocytic recycling. We find that endogenous WLS binds Wnts in the endoplasmic reticulum (ER), cycles to the PM, and then returns to the ER through the Golgi. We identify an ER-targeting sequence at the carboxyl terminus of native WLS that is critical for ER retrograde recycling and contributes to Wnt secretory function. Golgi-to-ER recycling of WLS requires the COPI regulator ARF as well as ERGIC2, an ER-Golgi intermediate compartment protein that is also required for the retrograde trafficking of the KDEL receptor and certain toxins. ERGIC2 is required for efficient Wnt secretion. ER retrieval is an integral part of the WLS transport cycle.

  10. Wnt signaling and colon tumorigenesis - A view from the periphery

    SciTech Connect

    Burgess, Antony W.; Faux, Maree C.; Layton, Meredith J.; Ramsay, Robert G.

    2011-11-15

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stem cell localization and crypt fission are considered.

  11. Canonical Wnts, specifically Wnt-10b, show ability to maintain dermal papilla cells

    SciTech Connect

    Ouji, Yukiteru Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2013-08-30

    Highlights: •First report on effects of various Wnts on DP cells. •Wnt-10b promoted trichogenesis, while Wnt-3a showed to a limited extent. •Canonical Wnts, specifically Wnt-10b, is important for DP cells maintenance. -- Abstract: Although Wnts are expressed in hair follicles (HFs) and considered to be crucial for maintaining dermal papilla (DP) cells, the functional differences among them remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, 5a, 10b, 11) on the proliferation of mouse-derived primary DP cells in vitro as well as their trichogenesis-promoting ability using an in vivo skin reconstitution protocol. Wnt-10b promoted cell proliferation and trichogenesis, while Wnt-3a showed those abilities to a limited extent, and Wnt-5a and 11 had no effects. Furthermore, we investigated the effects of these Wnts on cultured DP cells obtained from versican-GFP transgenic mice and found that Wnt-10b had a potent ability to sustain their GFP-positivity. These results suggest that canonical Wnts, specifically Wnt-10b, play important roles in the maintenance of DP cells and trichogenesis.

  12. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    PubMed

    Takamatsu, Akira; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Sakai, Tadahiro; Ishiguro, Naoki; Ohno, Kinji

    2014-01-01

    In past years, the canonical Wnt/β-catenin signaling pathway has emerged as a critical regulator of cartilage development and homeostasis. FRZB, a soluble antagonist of Wnt signaling, has been studied in osteoarthritis (OA) animal models and OA patients as a modulator of Wnt signaling. We screened for FDA-approved drugs that induce FRZB expression and suppress Wnt/β-catenin signaling. We found that verapamil, a widely prescribed L-type calcium channel blocker, elevated FRZB expression and suppressed Wnt/β-catenin signaling in human OA chondrocytes. Expression and nuclear translocation of β-catenin was attenuated by verapamil in OA chondrocytes. Lack of the verapamil effects in LiCl-treated and FRZB-downregulated OA chondrocytes also suggested that verpamil suppressed Wnt signaling by inducing FRZB. Verapamil enhanced gene expressions of chondrogenic markers of ACAN encoding aggrecan, COL2A1 encoding collagen type II α1, and SOX9, and suppressed Wnt-responsive AXIN2 and MMP3 in human OA chondrocytes. Verapamil ameliorated Wnt3A-induced proteoglycan loss in chondrogenically differentiated ATDC5 cells. Verapamil inhibited hypertrophic differentiation of chondrocytes in the explant culture of mouse tibiae. Intraarticular injection of verapamil inhibited OA progression as well as nuclear localizations of β-catenin in a rat OA model. We propose that verapamil holds promise as a potent therapeutic agent for OA by upregulating FRZB and subsequently downregulating Wnt/β-catenin signaling.

  13. Optimization, validation, and identification of two reliable antibodies for immunodetection of WNT5A.

    PubMed

    Prgomet, Z; Andersson, T; Lindberg, P

    2017-01-01

    WNT5A is a secreted, noncanonical WNT signaling protein that has been reported to promote progression of several types of cancer, including oral squamous cell carcinoma. Many WNT5A antibodies are available commercially for immunohistochemistry (IHC) and western blot analysis. Validation of the primary antibodies, however, is often neglected. We characterized antibodies for detecting WNT5A by IHC and western blot analysis. We evaluated one polyclonal and three monoclonal commercially available WNT5A antibodies. After optimization of the IHC assay, all four antibodies showed cytoplasmic WNT5A expression in tissue samples; in contrast, only one antibody detected WNT5A in western blots. A pre-absorption test with recombinant WNT5A showed that AF645 and 3A4 antibodies specifically detected WNT5A in different assays. We suggest that the monoclonal 3A4 antibody is the most appropriate for use with IHC, while the polyclonal AF645 antibody is the best for western blot analysis.

  14. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone

    PubMed Central

    Todd, Henry; Galea, Gabriel L.; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  15. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    PubMed

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  16. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD.

    PubMed

    Baarsma, Hoeke A; Skronska-Wasek, Wioletta; Mutze, Kathrin; Ciolek, Florian; Wagner, Darcy E; John-Schuster, Gerrit; Heinzelmann, Katharina; Günther, Andreas; Bracke, Ken R; Dagouassat, Maylis; Boczkowski, Jorge; Brusselle, Guy G; Smits, Ron; Eickelberg, Oliver; Yildirim, Ali Ö; Königshoff, Melanie

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.

  17. A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus.

    PubMed

    Robert, Nicolas; Lhomond, Guy; Schubert, Michael; Croce, Jenifer C

    2014-03-01

    WNT signaling is, in all multicellular animals, an essential intercellular communication pathway that is critical for shaping the embryo. At the molecular level, WNT signals can be transmitted by several transduction cascades, all activated chiefly by the binding of WNT ligands to receptors of the FRIZZLED family. The first step in assessing the biological functions of WNT signaling during embryogenesis is thus the establishment of the spatiotemporal expression profiles of wnt and frizzled genes in the course of embryonic development. To this end, using quantitative polymerase chain reaction, Northern blot, and in situ hybridization assays, we report here the comprehensive expression patterns of all 11 wnt and 4 frizzled genes present in the genome of the sea urchin Paracentrotus lividus during its embryogenesis. Our findings indicate that the expression of these wnt ligands and frizzled receptors is highly dynamic in both time and space. We further establish that all wnt genes are chiefly transcribed in the vegetal hemisphere of the embryo, whereas expression of the frizzled genes is distributed more widely across the embryonic territories. Thus, in P. lividus, WNT ligands might act both as short- and long-range signaling molecules that may operate in all cell lineages and tissues to control various developmental processes during embryogenesis.

  18. Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells

    PubMed Central

    Tüysüz, Nesrin; van Bloois, Louis; van den Brink, Stieneke; Begthel, Harry; Verstegen, Monique M. A.; Cruz, Luis J.; Hui, Lijian; van der Laan, Luc J. W.; de Jonge, Jeroen; Vries, Robert; Braakman, Eric; Mastrobattista, Enrico; Cornelissen, Jan J.; Clevers, Hans; ten Berge, Derk

    2017-01-01

    Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations. Stabilized Wnt3a supports strongly increased self-renewal of organ and embryonic stem cells and the serum-free establishment of human organoids from healthy and diseased intestine and liver. Moreover, the lipophilicity of Wnt3a protein greatly facilitates its purification. Our findings remove a major obstacle impeding clinical applications of adult stem cells and offer advantages for all cell culture uses of Wnt3a protein. PMID:28262686

  19. Transcriptional Analysis of Gli3 Mutants Identifies Wnt Target Genes in the Developing Hippocampus

    PubMed Central

    Hasenpusch-Theil, Kerstin; Magnani, Dario; Amaniti, Eleni-Maria; Han, Lin; Armstrong, Douglas

    2012-01-01

    Early development of the hippocampus, which is essential for spatial memory and learning, is controlled by secreted signaling molecules of the Wnt gene family and by Wnt/β-catenin signaling. Despite its importance, little is known, however, about Wnt-regulated genes during hippocampal development. Here, we used the Gli3 mutant mouse extra-toes (XtJ), in which Wnt gene expression in the forebrain is severely affected, as a tool in a microarray analyses to identify potential Wnt target genes. This approach revealed 53 candidate genes with restricted or graded expression patterns in the dorsomedial telencephalon. We identified conserved Tcf/Lef-binding sites in telencephalon-specific enhancers of several of these genes, including Dmrt3, Gli3, Nfia, and Wnt8b. Binding of Lef1 to these sites was confirmed using electrophoretic mobility shift assays. Mutations in these Tcf/Lef-binding sites disrupted or reduced enhancer activity in vivo. Moreover, ectopic activation of Wnt/β-catenin signaling in an ex vivo explant system led to increased telencephalic expression of these genes. Finally, conditional inactivation of Gli3 results in defective hippocampal growth. Collectively, these data strongly suggest that we have identified a set of direct Wnt target genes in the developing hippocampus and provide inside into the genetic hierarchy underlying Wnt-regulated hippocampal development. PMID:22235033

  20. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration.

    PubMed

    Myung, Peggy S; Takeo, Makoto; Ito, Mayumi; Atit, Radhika P

    2013-01-01

    β-Catenin, a key transducer molecule of Wnt signaling, is required for adult hair follicle growth and regeneration. However, the cellular source of Wnt ligands required for Wnt/β-catenin activation during anagen induction is unknown. In this study, we genetically deleted Wntless (Wls), a gene required for Wnt ligand secretion by Wnt-producing cells, specifically in the hair follicle epithelium during telogen phase. We show that epithelial Wnt ligands are required for anagen, as loss of Wls in the follicular epithelium resulted in a profound hair cycle arrest. Both the follicular epithelium and dermal papilla showed markedly decreased Wnt/β-catenin signaling during anagen induction compared with control hair follicles. Surprisingly, hair follicle stem cells that are responsible for hair regeneration maintained expression of stem cell markers but exhibited significantly reduced proliferation. Finally, we demonstrate that epidermal Wnt ligands are critical for adult wound-induced de novo hair formation. Collectively, these data show that Wnt ligands secreted by the hair follicle epithelium are required for adult hair follicle regeneration and provide new insight into potential cellular targets for the treatment of hair disorders such as alopecia.

  1. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    PubMed Central

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  2. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development

    PubMed Central

    Cui, Chang-Yi; Yin, Mingzhu; Sima, Jian; Childress, Victoria; Michel, Marc; Piao, Yulan; Schlessinger, David

    2014-01-01

    To maintain body temperature, sweat glands develop from embryonic ectoderm by a poorly defined mechanism. We demonstrate a temporal cascade of regulation during mouse sweat gland formation. Sweat gland induction failed completely when canonical Wnt signaling was blocked in skin epithelium, and was accompanied by sharp downregulation of downstream Wnt, Eda and Shh pathway genes. The Wnt antagonist Dkk4 appeared to inhibit this induction: Dkk4 was sharply downregulated in β-catenin-ablated mice, indicating that it is induced by Wnt/β-catenin; however, its overexpression repressed Wnt target genes and significantly reduced gland numbers. Eda signaling succeeded Wnt. Wnt signaling was still active and nascent sweat gland pre-germs were still seen in Eda-null mice, but the pre-germs failed to develop further and the downstream Shh pathway was not activated. When Wnt and Eda were intact but Shh was ablated, germ induction and subsequent duct formation occurred normally, but the final stage of secretory coil formation failed. Thus, sweat gland development shows a relay of regulatory steps initiated by Wnt/β-catenin – itself modulated by Dkk4 – with subsequent participation of Eda and Shh pathways. PMID:25249463

  3. Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons.

    PubMed

    Muñoz, Francisco J; Godoy, Juan A; Cerpa, Waldo; Poblete, Inés M; Huidobro-Toro, Juan Pablo; Inestrosa, Nibaldo C

    2014-02-07

    Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca(2+) signaling through a mechanism that depends on Ca(2+) release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.

  4. Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells

    SciTech Connect

    Shen, Longxiang; Glowacki, Julie; Zhou, Shuanhu

    2011-08-01

    The WNT signaling pathway plays important roles in the self-renewal and differentiation of mesenchymal stem cells (MSCs). Little is known about WNT signaling in adipocyte differentiation of human MSCs. In this study, we tested the hypothesis that canonical and non-canonical WNTs differentially regulate in vitro adipocytogenesis in human MSCs. The expression of adipocyte gene PPAR{gamma}2, lipoprotein lipase, and adipsin increased during adipocytogenesis of hMSCs. Simultaneously, the expression of canonical WNT2, 10B, 13, and 14 decreased, whereas non-canonical WNT4 and 11 increased, and WNT5A was unchanged. A small molecule WNT mimetic, SB-216763, increased accumulation of {beta}-catenin protein, inhibited induction of WNT4 and 11 and inhibited adipocytogenesis. In contrast, knockdown of {beta}-catenin with siRNA resulted in spontaneous adipocytogenesis. These findings support the view that canonical WNT signaling inhibits and non-canonical WNT signaling promotes adipocytogenesis in adult human marrow-derived mesenchymal stem cells.

  5. Wnt5a inhibits K(+) currents in hippocampal synapses through nitric oxide production.

    PubMed

    Parodi, Jorge; Montecinos-Oliva, Carla; Varas, Rodrigo; Alfaro, Iván E; Serrano, Felipe G; Varas-Godoy, Manuel; Muñoz, Francisco J; Cerpa, Waldo; Godoy, Juan A; Inestrosa, Nibaldo C

    2015-09-01

    Hippocampal synapses play a key role in memory and learning processes by inducing long-term potentiation and depression. Wnt signaling is essential in the development and maintenance of synapses via several mechanisms. We have previously found that Wnt5a induces the production of nitric oxide (NO), which modulates NMDA receptor expression in the postsynaptic regions of hippocampal neurons. Here, we report that Wnt5a selectively inhibits a voltage-gated K(+) current (Kv current) and increases synaptic activity in hippocampal slices. Further supporting a specific role for Wnt5a, the soluble Frizzled receptor protein (sFRP-2; a functional Wnt antagonist) fully inhibits the effects of Wnt5a. We additionally show that these responses to Wnt5a are mediated by activation of a ROR2 receptor and increased NO production because they are suppressed by the shRNA-mediated knockdown of ROR2 and by 7-nitroindazole, a specific inhibitor of neuronal NOS. Together, our results show that Wnt5a increases NO production by acting on ROR2 receptors, which in turn inhibit Kv currents. These results reveal a novel mechanism by which Wnt5a may regulate the excitability of hippocampal neurons.

  6. Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment.

    PubMed

    Li, Ding; Sinha, Tanvi; Ajima, Rieko; Seo, Hwa-Seon; Yamaguchi, Terry P; Wang, Jianbo

    2016-04-01

    Wnt5a, a non-canonical Wnt ligand critical for outflow tract (OFT) morphogenesis, is expressed specifically in second heart field (SHF) progenitors in the caudal splanchnic mesoderm (SpM) near the inflow tract (IFT). Using a conditional Wnt5a gain of function (GOF) allele and Islet1-Cre, we broadly over-expressed Wnt5a throughout the SHF lineage, including the entire SpM between the IFT and OFT. Wnt5a over-expression in Wnt5a null mutants can rescue the cell polarity and actin polymerization defects as well as severe SpM shortening, but fails to rescue OFT shortening. Moreover, Wnt5a over-expression in wild-type background is able to cause OFT shortening. We find that Wnt5a over-expression does not perturb SHF cell proliferation, apoptosis or differentiation, but affects the deployment of SHF cells by causing them to accumulate into a large bulge at the rostral SpM and fail to enter the OFT. Our immunostaining analyses suggest an inverse correlation between cell cohesion and Wnt5a level in the wild-type SpM. Ectopic Wnt5a expression in the rostral SpM of Wn5a-GOF mutants diminishes the upregulation of adherens junction; whereas loss of Wnt5a in Wnt5a null mutants causes premature increase in adherens junction level in the caudal SpM. Over-expression of mouse Wnt5a in Xenopus animal cap cells also reduces C-cadherin distribution on the plasma membrane without affecting its overall protein level, suggesting that Wnt5a may play an evolutionarily conserved role in controlling the cell surface level of cadherin to modulate cell cohesion during tissue morphogenesis. Collectively, our data indicate that restricted expression of Wnt5a in the caudal SpM is essential for normal OFT morphogenesis, and uncover a novel function of spatially regulated cell cohesion by Wnt5a in driving the deployment of SHF cells from the SpM into the OFT.

  7. Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway.

    PubMed

    Greer, Elisabeth R; Chao, Anna T; Bejsovec, Amy

    2013-12-01

    Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene.

  8. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors

    PubMed Central

    Miranda-Carboni, Gustavo A.; Krum, Susan A.; Yee, Kathleen; Nava, Miguel; Deng, Qiming E.; Pervin, Shehla; Collado-Hidalgo, Alicia; Galić, Zoran; Zack, Jerome A.; Nakayama, Keiko; Nakayama, Keiichi I.; Lane, Timothy F.

    2008-01-01

    Loss of the CDK inhibitor p27KIP1 is widely linked with poor prognosis in human cancer. In Wnt10b-expressing mammary tumors, levels of p27KIP1 were extremely low; conversely, Wnt10b-null mammary cells expressed high levels of this protein, suggesting Wnt-dependent regulation of p27KIP1. Interestingly we found that Wnt-induced turnover of p27KIP1 was independent from classical SCFSKP2-mediated degradation in both mouse and human cells. Instead, turnover required Cullin 4A and Cullin 4B, components of an alternative E3 ubiquitin ligase induced in response to active Wnt signaling. We found that CUL4A was a novel Wnt target gene in both mouse and human cells and that CUL4A physically interacted with p27KIP1 in Wnt-responding cells. We further demonstrated that both Cul4A and Cul4B were required for Wnt-induced p27KIP1 degradation and S-phase progression. CUL4A and CUL4B are therefore components of a conserved Wnt-induced proteasome targeting (WIPT) complex that regulates p27KIP1 levels and cell cycle progression in mammalian cells. PMID:19056892

  9. Developmental Drift and the Role of Wnt Signaling in Aging

    PubMed Central

    Gruber, Jan; Yee, Zhuangli; Tolwinski, Nicholas S.

    2016-01-01

    Population aging is a public health problem affecting the majority of the developed world. As populations age, the incidence of degenerative diseases increases exponentially, leading to large increases in public spending on healthcare. Here we summarize recent findings on the developmental drift theory of aging, and the links that have been established between aging and the Wnt signaling pathways. We focus on insights derived from model organisms connecting the evolutionary basis of aging and the link to developmental programming. PMID:27490570

  10. Determine the Role of Canonical Wnt Signaling in Ovarian Tumorigenesis

    DTIC Science & Technology

    2012-10-01

    Goldstein M, Sellers WR, Yaron Y , et al. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft...Months 1-12) Specifically, we will determine whether inhibition of canonical Wnt signaling induces the expression of markers of senescence in human...cells treated with FJ9 demonstrated features of senescence such as a large flat cell morphology (Figure 1B). However, examination of markers of canonical

  11. Spatial and Temporal Analysis of Active ERK in the C. elegans Germline

    PubMed Central

    Gervaise, Amanda L.; Arur, Swathi

    2016-01-01

    The evolutionarily conserved extracellular signal transducing RTK-RAS-ERK pathway is an important kinase-signaling cascade that controls multiple cellular and developmental processes principally via activation of ERK, the terminal kinase of the pathway. Tight regulation of ERK activity is essential for normal development and homeostasis; overly active ERK results in excessive cellular proliferation, while underactive ERK causes cell death. C. elegans is a powerful model system that has helped characterize the function and regulation of RTK-RAS-ERK signaling pathway during development. In particular, the RTK-RAS-ERK pathway is essential for C. elegans germline development, which is the focus of this method. Using antibodies specific to the active, diphosphorylated form of ERK (dpERK), the stereotypical localization pattern can be visualized within the germline. Because this pattern is both spatially and temporally controlled, the ability to reproducibly assay dpERK is useful to identify regulators of the pathway that affect dpERK signal duration and amplitude and thus germline development. Here we demonstrate how to successfully dissect, stain, and image dpERK within the C. elegans gonad. This method can be adapted for spatial localization of any signaling or structural protein in the C. elegans gonad, provided an antibody compatible with immunofluorescence is available. PMID:27929466

  12. ERK5 Activation in Macrophages Promotes Efferocytosis and Inhibits Atherosclerosis

    PubMed Central

    Heo, Kyung-Sun; Cushman, Hannah J.; Akaike, Masashi; Woo, Chang-Hoon; Wang, Xin; Qiu, Xing; Fujiwara, Keigi; Abe, Jun-ichi

    2015-01-01

    Background Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. Methods and Results When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity–dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor−/− mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. Conclusions Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases. PMID:25001623

  13. Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pterostilbene, a natural analog of resveratrol, has diverse health-beneficial properties. However, the neurological activities of this compound are largely unexplored. Here we report that pterostilbene shows anxiolytic action by downregulating phosphorylated levels of ERKs in the hippocampus of mice...

  14. Shp2 SUMOylation promotes ERK activation and hepatocellular carcinoma development

    PubMed Central

    Deng, Rong; Zhao, Xian; Qu, YingYing; Chen, Cheng; Zhu, Changhong; Zhang, Hailong; Yuan, Haihua; Jin, Hui; Liu, Xin; Wang, Yanli; Chen, Qin; Huang, Jian; Yu, Jianxiu

    2015-01-01

    Shp2, an ubiquitously expressed protein tyrosine phosphatase, is essential for regulation of Ras/ERK signaling pathway and tumorigenesis. Here we report that Shp2 is modified by SUMO1 at lysine residue 590 (K590) in its C-terminus, which is reduced by SUMO1-specific protease SENP1. Analysis of wild-type Shp2 and SUMOylation-defective Shp2K590R mutant reveals that SUMOylation of Shp2 promotes EGF-stimulated ERK signaling pathway and increases anchorage-independent cell growth and xenografted tumor growth of hepatocellular carcinoma (HCC) cell lines. Furthermore, we find that mutant Shp2K590R reduces its binding with the scaffolding protein Gab1, and consistent with this, knockdown of SENP1 increased the interaction between Shp2 and Gab1. More surprisingly, we show that human Shp2 (hShp2) and mouse Shp2 (mShp2) have differential effects on ERK activation as a result of different SUMOylation level, which is due to the event of K590 at hShp2 substituted by R594 at mShp2. In summary, our data demonstrate that SUMOylation of Shp2 promotes ERK activation via facilitating the formation of Shp2-Gab1 complex and thereby accelerates HCC cell and tumor growth, which presents a novel regulatory mechanism underlying Shp2 in regulation of HCC development. PMID:25823821

  15. Processive phosphorylation of ERK MAP kinase in mammalian cells

    PubMed Central

    Aoki, Kazuhiro; Yamada, Masashi; Kunida, Katsuyuki; Yasuda, Shuhei; Matsuda, Michiyuki

    2011-01-01

    The mitogen-activated protein (MAP) kinase pathway is comprised of a three-tiered kinase cascade. The distributive kinetic mechanism of two-site MAP kinase phosphorylation inherently generates a nonlinear switch-like response. However, a linear graded response of MAP kinase has also been observed in mammalian cells, and its molecular mechanism remains unclear. To dissect these input-output behaviors, we quantitatively measured the kinetic parameters involved in the MEK (MAPK/ERK kinase)-ERK MAP kinase signaling module in HeLa cells. Using a numerical analysis based on experimentally determined parameters, we predicted in silico and validated in vivo that ERK is processively phosphorylated in HeLa cells. Finally, we identified molecular crowding as a critical factor that converts distributive phosphorylation into processive phosphorylation. We proposed the term quasi-processive phosphorylation to describe this mode of ERK phosphorylation that is operated under the physiological condition of molecular crowding. The generality of this phenomenon may provide a new paradigm for a diverse set of biochemical reactions including multiple posttranslational modifications. PMID:21768338

  16. Wnt addiction of genetically defined cancers reversed by PORCN inhibition

    PubMed Central

    Madan, B; Ke, Z; Harmston, N; Ho, S Y; Frois, A O; Alam, J; Jeyaraj, D A; Pendharkar, V; Ghosh, K; Virshup, I H; Manoharan, V; Ong, E H Q; Sangthongpitag, K; Hill, J; Petretto, E; Keller, T H; Lee, M A; Matter, A; Virshup, D M

    2016-01-01

    Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts. This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers. PMID:26257057

  17. Our evolving view of Wnt signaling in C. elegans

    PubMed Central

    Robertson, Scott M.; Lin, Rueyling

    2012-01-01

    In this commentary, we discuss how our recent paper by Yang et al. contributes a new wrinkle to the already somewhat curious Wnt signaling pathway in C. elegans. We begin with a historical perspective on the Wnt pathway in the worm, followed by a summary of the key salient point from Yang et al., 2011, namely demonstration of mutually inhibitory binding of a β-catenin SYS-1 to the N-terminus and another β-catenin WRM-1 to the C-terminus of the TCF protein POP-1, and a plausible structural explanation for these differential binding specificities. The mutually inhibitory binding creates one population of POP-1 that is bound by WRM-1, phosphorylated by the NLK kinase and exported from the nucleus, and another bound by coactivator SYS-1 that remains in the nucleus. We speculate on the evolutionary history of the four β-catenins in C. elegans and suggest a possible link between multiple β-catenin gene duplications and the requirement to reduce nuclear POP-1 levels to activate Wnt target genes. PMID:24058829

  18. WNT signaling suppression in the senescent human thymus.

    PubMed

    Ferrando-Martínez, Sara; Ruiz-Mateos, Ezequiel; Dudakov, Jarrod A; Velardi, Enrico; Grillari, Johannes; Kreil, David P; Muñoz-Fernandez, M Ángeles; van den Brink, Marcel R M; Leal, Manuel

    2015-03-01

    Human thymus is completely developed in late fetal stages and its function peaks in newborns. After the first year of life, the thymus undergoes a progressive atrophy that dramatically decreases de novo T-lymphocyte maturation. Hormonal signaling and changes in the microRNA expression network are identified as underlying causes of human thymus involution. However, specific pathways involved in the age-related loss of thymic function remain unknown. In this study, we analyzed differential gene-expression profile and microRNA expression in elderly (70 years old) and young (less than 10 months old and 11 years old) human thymic samples. Our data have shown that WNT pathway deregulation through the overexpression of different inhibitors by the nonadipocytic component of the human thymus stimulates the age-related involution. These results are of particular interest because interference of WNT signaling has been demonstrated in both animal models and in vitro studies, with the three major hallmarks of thymic involution: (i) epithelial structure disruption, (ii) adipogenic process, and (iii) thymocyte development arrest. Thus, our results suggest that secreted inhibitors of the WNT pathway could be explored as a novel therapeutical target in the reversal of the age-related thymic involution.

  19. Adrenal cortex tissue homeostasis and zonation: A WNT perspective.

    PubMed

    Drelon, Coralie; Berthon, Annabel; Mathieu, Mickael; Martinez, Antoine; Val, Pierre

    2015-06-15

    The adrenal cortex plays essential roles in the control of sodium and water homeostasis, stress response, inflammation and metabolism, through secretion of glucocorticoids and mineralocorticoids. Coordinated production of these hormones relies on functional zonation of the cortex, characterised by expression of Cyp11b2 under the control of angiotensin II and plasma potassium level in zona glomerulosa (ZG) and Cyp11b1 under the control of ACTH in zona fasciculata (ZF). The mechanisms involved in the establishment of functional zonation and its maintenance during centripetal cortex cell renewal are still poorly understood. Here, we hypothesise that the hormonal and signalling pathways that control adrenal cortex function are also involved in cortical zonation. In particular, we summarise evidence on the role of WNT/β-catenin signalling in ZG differentiation and how tight control of its activity is required to shape the adult cortex. In this context, we discuss the potential role of known WNT regulators and the possibility of a reciprocal cross-talk between PKA and WNT signalling.

  20. RHOA inactivation enhances Wnt signaling and promotes colorectal cancer

    PubMed Central

    Rodrigues, Paulo; Macaya, Irati; Bazzocco, Sarah; Mazzolini, Rocco; Andretta, Elena; Dopeso, Higinio; Mateo-Lozano, Silvia; Bilić, Josipa; Cartón-García, Fernando; Nieto, Rocio; Suárez-López, Lucia; Afonso, Elsa; Landolfi, Stefania; Hernandez-Losa, Javier; Kobayashi, Kazuto; Cajal, Santiago Ramón y; Tabernero, Josep; Tebbutt, Niall C.; Mariadason, John M.; Schwartz, Simo; Arango, Diego

    2014-01-01

    Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis. PMID:25413277

  1. Molecular hydrogen suppresses activated Wnt/β-catenin signaling

    PubMed Central

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  2. Angiotensin-(1–7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways

    PubMed Central

    Zhang, Feng; Ren, Xingsheng; Zhao, Mingxia; Zhou, Bing; Han, Ying

    2016-01-01

    The proliferation, migration and inflammation of vascular smooth muscle cells (VSMCs) contribute to the pathogenesis and progression of several cardiovascular diseases such as atherosclerosis and hypertension. Angiotensin (Ang)-(1–7) and Ang II are identified to be involved in regulating cardiovascular activity. The present study is designed to determine the interaction between Ang-(1–7) and Ang II on VSMCs proliferation, migration and inflammation as well as their underlying mechanisms. We found that Ang-(1–7) significantly suppressed the positive effects of Ang II on VSMCs proliferation, migration and inflammation, as well as on induction of the phosphorylation of Akt and ERK1/2 and increase of superoxide anion level and NAD(P)H oxidase activity in VSMCs, whereas Ang-(1–7) alone had no significant effects. This inhibitory effects of Ang-(1–7) were abolished by Mas receptor antagonist A-779. In addition, Ang II type 1 (AT1) receptor antagonist losartan, but not A-779, abolished Ang II induced VSMCs proliferation, migration and inflammation responses. Furthermore, superoxide anion scavenger N-acetyl-L-cysteine (NAC) or NAD(P)H oxidase inhibitor apocynin inhibited Ang II-induced activation of Akt and ERK1/2 signaling. These results indicate that Ang-(1–7) antagonizes the Ang II-induced VSMC proliferation, migration and inflammation through activation of Mas receptor and then suppression of ROS-dependent PI3K/Akt and MAPK/ERK signaling pathways. PMID:27687768

  3. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  4. Effects of Wenyangzhenshuai Granule on ERK1/2 and ERK5 activity in the myocardial tissue in a rabbit model of adriamycin-induced chronic heart failure

    PubMed Central

    Chen, Xinyu; Cai, Huzhi; Chen, Qingyang; Xie, Haibo; Liu, Yuemei; Lu, Qing; Tang, Yanping

    2015-01-01

    Objective: To elucidate the effects of Wenyangzhenshuai granule on expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and 5 (ERK5) in the myocardial tissue using a rabbit model of adriamycin-induced chronic heart failure. Materials and methods: Rabbits were divided into heart failure positive control, adriamycin injection, and adriamycin injection with Wenyangzhenshuai treatment (low, medium and high dose) groups. Cardiac function and cardiac hypotrophy were measured in all groups. Besides, myocardial expression of ERK1/2 and ERK5 phosphorylation were evaluated by Western blotting and ERK1/2 and ERK5 mRNA levels by RT-PCR. The cardiac structure and cardiac function were also compared using histology staining and electron microscope. Results: Adriamycin injection led to cardiac failure reflected by decreased left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), E/A ratio, and increased cardiac hypertrophy, both of which have been improved by Wenyangzhenshuai granule treatment (all P<0.05). Mechanistically, increased P-ERK1/2 and decreased P-ERK5 levels were observed in myocardial tissues of mice treated with Adriamycin for 8 weeks. However, such signaling change could be partially corrected by Wenyangzhenshuai treatment. In addition, no significant difference was detected in the expression of ERK1/2 and ERK5 mRNA levels between adriamycin injection groups and Wenyangzhenshuai treatment groups (P>0.05), indicating an alteration in the activity/phosphorylation levels of these proteins instead of the transcription levels. Conclusion: we found a beneficial effect of Wenyangzhenshuai treatment in partially decelerating the progression of CHF. Such effect was probably through the role of Wenyangzhenchuan in diminishing p-ERK1/2 and raising p-ERK5 level in myocardial tissue. PMID:26884996

  5. Cooperation, Trust, and Antagonism: How Public Goods Are Promoted.

    PubMed

    Parks, Craig D; Joireman, Jeff; Van Lange, Paul A M

    2013-12-01

    One of the most continually vexing problems in society is the variability with which citizens support endeavors that are designed to help a great number of people. In this article, we examine the twin roles of cooperative and antagonistic behavior in this variability. We find that each plays an important role, though their contributions are, understandably, at odds. It is this opposition that produces seeming unpredictability in citizen response to collective need. In fact, we suggest that careful consideration of the research allows one to often predict when efforts to provide a collectively beneficial good will succeed and when they will fail. To understand the dynamics of participation in response to collective need, it is necessary to distinguish between the primary types of need situations. A public good is an entity that relies in whole or in part on contributions to be provided. Examples of public goods are charities and public broadcasting. Public goods require that citizens experience a short-term loss (of their contribution) in order to realize a long-term gain (of the good). However, because everyone can use the good once it is provided, there is also an incentive to not contribute, let others give, and then take advantage of their efforts. This state of affairs introduces a conflict between doing what is best for oneself and what is best for the group. In a public goods situation, cooperation and antagonism impact how one resolves this conflict. The other major type of need situation is a common-pool resource problem. Here, a good is fully provided at the outset, and citizens may sample from it. The resource is usually, but not necessarily, partially replenished. Examples of replenished resources are drinking water and trees; examples of resources that are functionally not replenished are oil and minerals. Common-pool resources allow citizens to experience a short-term gain (by getting what they want in the early life of the resource) but also present

  6. Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation

    PubMed Central

    2014-01-01

    Background The Onychophora are a probable sister group to Arthropoda, one of the most intensively studied animal phyla from a developmental perspective. Pioneering work on the fruit fly Drosophila melanogaster and subsequent investigation of other arthropods has revealed important roles for Wnt genes during many developmental processes in these animals. Results We screened the embryonic transcriptome of the onychophoran Euperipatoides kanangrensis and found that at least 11 Wnt genes are expressed during embryogenesis. These genes represent 11 of the 13 known subfamilies of Wnt genes. Conclusions Many onychophoran Wnt genes are expressed in segment polarity gene-like patterns, suggesting a general role for these ligands during segment regionalization, as has been described in arthropods. During early stages of development, Wnt2, Wnt4, and Wnt5 are expressed in broad multiple segment-wide domains that are reminiscent of arthropod gap and Hox gene expression patterns, which suggests an early instructive role for Wnt genes during E. kanangrensis segmentation. PMID:24708787

  7. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells

    PubMed Central

    Loilome, Watcharin; Bungkanjana, Pornpan; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Puapairoj, Anucha; Khuntikeo, Narong; Riggins, Gregory J.

    2016-01-01

    The Wnt/β-catenin signaling pathway is pathologically activated in cholangiocarcinoma (CCA). Here, we determined the expression profile as well as biological role of activated Wnt/β-catenin signaling in CCA. The quantitative reverse transcription polymerase chain reaction demonstrated that Wnt3a, Wnt5a, and Wnt7b mRNA were significantly higher in CCA tissues than adjacent non-tumor tissues and normal liver tissues. Immunohistochemical staining revealed that Wnt3a, Wnt5a, and Wnt7b were positive in 92.1, 76.3, and 100 % of 38 CCA tissues studied. It was noted that Wnt3 had a low expression in tumor cells, whereas a high expression was mainly found in inflammatory cells. Interestingly, a high expression level of Wnt5a was significantly correlated to poor survival of CCA patients (P=0.009). Membrane localization of β-catenin was reduced in the tumors compared to normal bile duct epithelia, and we also found that 73.7 % of CCA cases showed the cytoplasmic localization. Inflammation is known to be a risk factor for CCA development, and we tested whether this might induce Wnt/β-catenin signaling. We found that lipopolysaccharides (LPS) elevated the expression of Wnt3 both mRNA and protein levels in the macrophage cell line. Additionally, the conditioned media taken from LPS-induced activated macrophage culture promoted β-catenin accumulation in CCA cells. Furthermore, transient suppression of β-catenin by siRNA significantly induced growth inhibition of CCA cells, concurrently with decreasing cyclin D1 protein level. In conclusion, the present study reports the abundant expression of Wnt protein family and β-catenin in CCA as well as the effect of inflammatory condition on Wnt/β-catenin activation in CCA cells. Importantly, abrogation of β-catenin expression caused significant CCA cell growth inhibition. Thus, the Wnt/β-catenin signaling pathway may contribute to CCA cell proliferation and hence may serve as a prognostic marker for CCA progression and provide a

  8. Transcriptome Analysis of Wnt3a-Treated Triple-Negative Breast Cancer Cells

    PubMed Central

    Maubant, Sylvie; Tesson, Bruno; Maire, Virginie; Ye, Mengliang; Rigaill, Guillem; Gentien, David; Cruzalegui, Francisco; Tucker, Gordon C.; Roman-Roman, Sergio; Dubois, Thierry

    2015-01-01

    The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC). The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3) of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3) which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors. PMID:25848952

  9. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    SciTech Connect

    Fox, Simon A.; Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi; Bolitho, Erin M.; Mutsaers, Steven E.; Dharmarajan, Arun M.

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  10. Wnt-5a Ligand Modulates Mitochondrial Fission-Fusion in Rat Hippocampal Neurons*

    PubMed Central

    Godoy, Juan A.; Arrázola, Macarena S.; Ordenes, Daniela; Silva-Alvarez, Carmen; Braidy, Nady; Inestrosa, Nibaldo C.

    2014-01-01

    The Wnt signaling pathway plays an important role in developmental processes, including embryonic patterning, cell specification, and cell polarity. Wnt components participate in the development of the central nervous system, and growing evidence indicates that this pathway also regulates the function of the adult nervous system. In this study, we report that Wnt-5a, a noncanonical Wnt ligand, is a potent activator of mitochondrial dynamics and induces acute fission and fusion events in the mitochondria of rat hippocampal neurons. The effect of Wnt-5a was inhibited in the presence of sFRP, a Wnt scavenger. Similarly, the canonical Wnt-3a ligand had no effect on mitochondrial fission-fusion events, suggesting that this effect is specific for Wnt-5a alone. We also show that the Wnt-5a effects on mitochondrial dynamics occur with an increase in both intracellular and mitochondrial calcium (Ca2+), which was correlated with an increased phosphorylation of Drp1(Ser-616) and a decrease of Ser-637 phosphorylation, both indicators of mitochondrial dynamics. Electron microscope analysis of hippocampal tissues in the CA1 region showed an increase in the number of mitochondria present in the postsynaptic region, and this finding correlated with a change in mitochondrial morphology. We conclude that Wnt-5a/Ca2+ signaling regulates the mitochondrial fission-fusion process in hippocampal neurons, a feature that might help to further understand the role of Wnt-related pathologies, including neurodegenerative diseases associated with mitochondrial dysfunction, and represents a potentially important link between impaired metabolic function and degenerative disorders. PMID:25336659

  11. Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons.

    PubMed

    Godoy, Juan A; Arrázola, Macarena S; Ordenes, Daniela; Silva-Alvarez, Carmen; Braidy, Nady; Inestrosa, Nibaldo C

    2014-12-26

    The Wnt signaling pathway plays an important role in developmental processes, including embryonic patterning, cell specification, and cell polarity. Wnt components participate in the development of the central nervous system, and growing evidence indicates that this pathway also regulates the function of the adult nervous system. In this study, we report that Wnt-5a, a noncanonical Wnt ligand, is a potent activator of mitochondrial dynamics and induces acute fission and fusion events in the mitochondria of rat hippocampal neurons. The effect of Wnt-5a was inhibited in the presence of sFRP, a Wnt scavenger. Similarly, the canonical Wnt-3a ligand had no effect on mitochondrial fission-fusion events, suggesting that this effect is specific for Wnt-5a alone. We also show that the Wnt-5a effects on mitochondrial dynamics occur with an increase in both intracellular and mitochondrial calcium (Ca(2+)), which was correlated with an increased phosphorylation of Drp1(Ser-616) and a decrease of Ser-637 phosphorylation, both indicators of mitochondrial dynamics. Electron microscope analysis of hippocampal tissues in the CA1 region showed an increase in the number of mitochondria present in the postsynaptic region, and this finding correlated with a change in mitochondrial morphology. We conclude that Wnt-5a/Ca(2+) signaling regulates the mitochondrial fission-fusion process in hippocampal neurons, a feature that might help to further understand the role of Wnt-related pathologies, including neurodegenerative diseases associated with mitochondrial dysfunction, and represents a potentially important link between impaired metabolic function and degenerative disorders.

  12. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    2016-12-09

    The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells.

  13. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    PubMed

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity.

  14. Wnt signaling during tooth replacement in zebrafish (Danio rerio): pitfalls and perspectives

    PubMed Central

    Huysseune, Ann; Soenens, Mieke; Elderweirdt, Fien

    2014-01-01

    The canonical (β-catenin dependent) Wnt signaling pathway has emerged as a likely candidate for regulating tooth replacement in continuously renewing dentitions. So far, the involvement of canonical Wnt signaling has been experimentally demonstrated predominantly in amniotes. These studies tend to show stimulation of tooth formation by activation of the Wnt pathway, and inhibition of tooth formation when blocking the pathway. Here, we report a strong and dynamic expression of the soluble Wnt inhibitor dickkopf1 (dkk1) in developing zebrafish (Danio rerio) tooth germs, suggesting an active repression of Wnt signaling during morphogenesis and cytodifferentiation of a tooth, and derepression of Wnt signaling during start of replacement tooth formation. To further analyse the role of Wnt signaling, we used different gain-of-function approaches. These yielded disjunct results, yet none of them indicating enhanced tooth replacement. Thus, masterblind (mbl) mutants, defective in axin1, mimic overexpression of Wnt, but display a normally patterned dentition in which teeth are replaced at the appropriate times and positions. Activating the pathway with LiCl had variable outcomes, either resulting in the absence, or the delayed formation, of first-generation teeth, or yielding a regular dentition with normal replacement, but no supernumerary teeth or accelerated tooth replacement. The failure so far to influence tooth replacement in the zebrafish by perturbing Wnt signaling is discussed in the light of (i) potential technical pitfalls related to dose- or time-dependency, (ii) the complexity of the canonical Wnt pathway, and (iii) species-specific differences in the nature and activity of pathway components. Finally, we emphasize the importance of in-depth knowledge of the wild-type pattern for reliable interpretations. It is hoped that our analysis can be inspiring to critically assess and elucidate the role of Wnt signaling in tooth development in polyphyodonts. PMID

  15. A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells.

    PubMed

    Ross, Jason; Busch, Julia; Mintz, Ellen; Ng, Damian; Stanley, Alexandra; Brafman, David; Sutton, V Reid; Van den Veyver, Ignatia; Willert, Karl

    2014-12-11

    WNT signaling promotes the reprogramming of somatic cells to an induced pluripotent state. We provide genetic evidence that WNT signaling is a requisite step during the induction of pluripotency. Fibroblasts from individuals with focal dermal hypoplasia (FDH), a rare genetic syndrome caused by mutations in the essential WNT processing enzyme PORCN, fail to reprogram with standard methods. This blockade in reprogramming is overcome by ectopic WNT signaling and PORCN overexpression, thus demonstrating that WNT signaling is essential for reprogramming. The rescue of reprogramming is critically dependent on the level of WNT signaling: steady baseline activation of the WNT pathway yields karyotypically normal iPSCs, whereas daily stimulation with Wnt3a produces FDH-iPSCs with severely abnormal karyotypes. Therefore, although WNT signaling is required for cellular reprogramming, inappropriate activation of WNT signaling induces chromosomal instability, highlighting the precarious nature of ectopic WNT activation and its tight relationship with oncogenic transformation.

  16. Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters.

    PubMed

    Hendrickx, Gretl; Boudin, Eveline; Fijałkowski, Igor; Nielsen, Torben Leo; Andersen, Marianne; Brixen, Kim; Van Hul, Wim

    2014-02-01

    The importance of WNT16 in the regulation of bone metabolism was recently confirmed by several genome-wide association studies and by a Wnt16 (Wnt16(-/-)) knockout mouse model. The aim of this study was thus to replicate and further elucidate the effect of common genetic variation in WNT16 on osteoporosis related parameters. Hereto, we performed a WNT16 candidate gene association study in a population of healthy Caucasian men from the Odense Androgen Study (OAS). Using HapMap, five tagSNPs and one multimarker test were selected for genotyping to cover most of the common genetic variation in and around WNT16 (MAF>5%). This study confirmed previously reported associations for rs3801387 and rs2707466 with bone mineral density (BMD) at several sites. Furthermore, we additionally demonstrated that rs2908007 is strongly associated with BMD at several sites in the young, elderly and complete OAS population. The observed effect of these three associated SNPs on the respective phenotypes is comparable and we can conclude that the presence of the minor allele results in an increase in BMD. Additionally, we performed re-sequencing of WNT16 on two cohorts selected from the young OAS cohort, based on their extreme BMD values. On this basis, rs55710688 was selected for an in vitro translation experiment since it is located in the Kozak sequence of WNT16a. We observed an increased translation efficiency and thus a higher amount of WNT16a for the Kozak sequence that was significantly more prevalent in the high BMD cohort. This observation is in line with the results of the Wnt16(-/-) mice. Finally, a WNT luciferase reporter assay was performed and showed no activation of the β-catenin dependent pathway by Wnt16. We did detect a dose-dependent inhibitory effect of Wnt16 on WNT1 activation of this canonical WNT pathway. Increased translation of WNT16 can thus lead to an increased inhibitory action of WNT16 on canonical WNT signaling. This statement is in contrast with the known

  17. Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation

    PubMed Central

    Vithayathil, Joseph; Pucilowska, Joanna; Goodnough, L. Henry; Atit, Radhika P.

    2015-01-01

    The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus. PMID:25926459

  18. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    SciTech Connect

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  19. Interaction with the adaptor protein Shc prevents aberrant Erk activation in the absence of extracellular stimulus

    PubMed Central

    Suen, Kin Man; Lin, Chi-Chuan; George, Roger; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E.

    2014-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a novel mechanism by which the adaptor protein Shc binds directly to the MAP-kinase Erk, preventing its activation in the absence of extracellular stimulus. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex is formed through unique binding sites on both the Shc PTB domain and N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP-kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered as a tumor suppressor in human cells. PMID:23584453

  20. Zinc antagonizes homocysteine-induced fetal heart defects in rats.

    PubMed

    He, Xiaoyu; Hong, Xinru; Zeng, Fang; Kang, Fenhong; Li, Li; Sun, Qinghua

    2009-09-01

    It has been suggested that zinc may have a protective role against heart defects during fetal development. We investigated the effects of zinc on the development of fetal cardiac malformations induced by homocysteine. Pregnant Sprague-Dawley rats were randomized into one of five groups: control (C), homocysteine (H), homocysteine + zinc (Z), homocysteine + folic acid (F), or homocysteine + zinc + folic acid (ZF) (each n = 8). Homocysteine (8 nmol/day) was administered intraperitoneally in the H, Z, F, and ZF groups on gestation days (GD) 8, 9, and 10. Zinc (30 mg/kg day), folic acid (30 mg/kg day), or both (30 mg/kg day each) were administered intragastrically daily in the Z, F, and ZF groups, respectively, throughout the pregnancy. In each group, two fetuses were removed on GD 13, 15, 17, and 19 and examined for cardiac malformations; maternal copper/zinc-containing-superoxide dismutase (Cu/Zn-SOD) activity and metallothionein type I (MT-1) mRNA expression were measured simultaneously. The prevalence of cardiac malformations was significantly higher in group H than in group C, and significantly lower in group Z than in group H at the studied time points. Cu/Zn-SOD activity and MT-1 mRNA levels were significantly lower in group H than in group C, and significantly higher in group Z than in group H. Our data suggest that zinc antagonizes homocysteine-induced teratogenic effects on the fetal heart, possibly via the inhibition of excessive peroxidation.

  1. TNFα antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth.

    PubMed

    Bourouba, Mehdi; Zergoun, Ahmed-Amine; Maffei, Joseph S; Chila, Dalia; Djennaoui, Djamel; Asselah, Fatima; Amir-Tidadini, Zine-Charef; Touil-Boukoffa, Chafia; Zaman, Muhammad H

    2015-07-01

    Tumor necrosis factor (TNFα) is a pro-inflammatory cytokine which mediates via nitric oxide (NO) several carcinogenic processes. Increasing evidences suggest that NO promotes inflammation induced growth of nasopharyngeal carcinoma (NPC). In patients, TNFα synthesis associates with poor survival. To explore the effect of the cytokine on NO production and NOS2 dependent NPC growth, NO2(-) (nitrite) producing cells in patients were analyzed in vitro. We observed that patients' monocytes/macrophages (Mo/Ma) and primary tumor biopsies synthesized significant amounts of NO2(-). Interestingly, tumor explants derived NO2(-) levels were more important in elderly patients in comparison with juveniles. Endogenous TNFα neutralization with an anti-TNFα monoclonal antibody (mAb) successfully inhibited NO2(-) synthesis by blood mononuclear cells and tumor explants. Recombinant TNFα (rTNFα) enhanced NO2(-) synthesis and C666-1 NPC cell proliferation. NOS2 selective inhibition (1400W) and TNFα antagonization with an anti-TNFα mAb potently inhibited rTNFα induced C666-1 proliferation and NO2(-) production. Importantly, primary tumors treated with the anti-TNFα mAb also displayed reduced proliferation index (Ki67). Altogether, our results define monocytes/macrophages and the primary tumor as major sources of circulating NO2(-) in NPC patients and support the idea that antibody dependent inhibition of the TNFα/NOS2 pathway may alter NPC tumor growth.

  2. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors.

    PubMed

    Medrano, Micaela; Pérez, Pablo Fernando; Abraham, Analía Graciela

    2008-02-29

    Kefiran, the polysaccharide produced by microorganisms present in kefir grains, is a water-soluble branched glucogalactan containing equal amounts of D-glucose and D-galactose. In this study, the effect of kefiran on the biological activity of Bacillus cereus strain B10502 extracellular factors was assessed by using cultured human enterocytes (Caco-2 cells) and human erythrocytes. In the presence of kefiran concentrations ranging from 300 to 1000 mg/L, the ability of B. cereus B10502 spent culture supernatants to detach and damage cultured human enterocytes was significantly abrogated. In addition, mitochondrial dehydrogenase activity was higher when kefiran was present during the cell toxicity assays. Protection was also demonstrated in hemolysis and apoptosis/necrosis assays. Scanning electron microscopy showed the protective effect of kefiran against structural cell damages produced by factors synthesized by B. cereus strain B10502. Protective effect of kefiran depended on strain of B. cereus. Our findings demonstrate the ability of kefiran to antagonize key events of B. cereus B10502 virulence. This property, although strain-specific, gives new perspectives for the role of bacterial exopolysaccharides in functional foods.

  3. Structure-based rationale for interleukin 5 receptor antagonism.

    PubMed

    Ishino, Tetsuya; Harrington, Adrian E; Gopi, Hosahudya; Chaiken, Irwin

    2008-01-01

    Human interleukin 5 (IL5) is the major hematopoietin that stimulates the proliferation, migration and activation of eosinophils and is implicated in the pathogenesis of inflammatory and other myeloproliferative diseases. IL5 functions through the signaling of a common receptor subunit beta (beta c), in a receptor activation process that requires initial recruitment of an IL5 specific receptor subunit alpha (IL5Ralpha), for cytokine presentation to beta c. Important advances have been made to understand molecular mechanisms of cytokine recognition and receptor antagonism. Mutational studies indicate that a pair of charge complementary regions play an essential role in specific interaction between IL5Ralpha and IL5. Moreover, peptide studies with the IL5 system have identified a cyclic peptide inhibitor, AF17121, which binds specifically to IL5Ralpha by mimicking the cytokine. A key receptor-recognition pharmacophore has been identified in this peptide inhibitor, and sites of inhibitor recognition can be proposed in the homology-deduced structural model of IL5Ralpha. These results provide an experimental platform to derive enhanced-potency peptidomimetic inhibitors. Such inhibitors have potential use as tools to evaluate the role of eosinophilia in disease and as potential leads to antagonists to treat hyper-eosinophilic diseases such as eosinophilic esophagitis, asthma and chronic myeloproliferative leukemias.

  4. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    PubMed Central

    Vande Burgt, Nathan H.; Kaletsky, Rachel L.; Bates, Paul

    2015-01-01

    Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism. PMID:26516900

  5. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  6. Enhanced antagonism of BST-2 by a neurovirulent SIV envelope

    PubMed Central

    Matsuda, Kenta; Chen, Chia-Yen; Whitted, Sonya; Chertova, Elena; Roser, David J.; Wu, Fan; Plishka, Ronald J.; Ourmanov, Ilnour; Buckler-White, Alicia; Lifson, Jeffrey D.; Strebel, Klaus; Hirsch, Vanessa M.

    2016-01-01

    Current antiretroviral therapy (ART) is not sufficient to completely suppress disease progression in the CNS, as indicated by the rising incidence of HIV-1–associated neurocognitive disorders (HAND) among infected individuals on ART. It is not clear why some HIV-1–infected patients develop HAND, despite effective repression of viral replication in the circulation. SIV-infected nonhuman primate models are widely used to dissect the mechanisms of viral pathogenesis in the CNS. Here, we identified 4 amino acid substitutions in the cytoplasmic tail of viral envelope glycoprotein gp41 of the neurovirulent virus SIVsm804E that enhance replication in macrophages and associate with enhanced antagonism of the host restriction factor BM stroma